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DEDEKIND-FINITE CARDINALS HAVING COUNTABLE PARTITIONS

SUPAKUN PANASAWATWONG AND JOHN KENNETH TRUSS

Abstract. We study the possible structures which can be carried by sets which have no countable subset,
but which fail to be ‘surjectively Dedekind finite’, in two possible senses, that there is surjection to �, or
alternatively, that there is a surjection to a proper superset.

§1. Introduction. In [10] a study was made of a long list of possible definitions of
‘finiteness’, following on from earlier work on this, for instance in [2, 6, 8, 11, 13]. A
set is said to be Dedekind finite if it has no countably infinite subset, or equivalently,
there is no bijection to a proper subset. This notion is vacuous in the presence of the
axiom of choice, AC, where this is just the same as saying that the set is finite (i.e.,
has cardinality in �), so except when we want to construct certain models, we shall
not assume AC.

The aim in [10] was to try to unify all the approaches mentioned in a systematic
way, from the point of view of inclusions between the classes so defined, and their
closure under the most natural operations such as unions and products. It was
found that there was a natural subdivision, into those which admit no surjection
to �, called in [15] ‘weakly Dedekind finite’, and those which have no countable
subset, but do admit a surjection to �. Cardinalities of sets for which there is no
countable subset (‘Dedekind finite’) were written in [11] as Δ, and those of sets for
which there is no surjection to � as Δ4. Another class was introduced there, written
Δ5, comprising the cardinalities of sets having no surjection to a proper superset.
The analogy between the two classes can be expressed by saying that for |X | to lie
in Δ, any injection from X to X must also be surjective, whereas for it to lie in Δ5,
any surjection from X to X must be injective. The most stringent notion (apart from
actual finiteness) is called being ‘amorphous’, which we mention in some places. A
set is said to be amorphous if it is infinite, but cannot be written as the disjoint union
of two infinite sets. Such a set can actually carry quite a lot of structure (despite the
name), and a detailed study was carried out in [13].

Some tree structures which arise naturally when considering weak versions of the
axiom of choice related to König’s Infinity Lemma were studied in [5, 12]. The trees
in question are ‘balanced’ trees of height �, meaning that they have � levels, and
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2 SUPAKUN PANASAWATWONG AND JOHN KENNETH TRUSS

on each level the ramification order is constant (in this case, finite). For such a tree
there is a natural surjection to itself, obtained by mapping each non-minimal node
to its predecessor, clearly surjective but not injective, so its cardinality cannot lie in
Δ5. In a suitable model, it will however lie in Δ.

The main focus of this paper is therefore on trees which may or may not arise on a
Dedekind finite set. We begin by looking at cardinals in Δ5 \ Δ4, where trees as just
mentioned do not arise. However, other types of trees, called ‘weakly 2-transitive’
may, and this is a good source of examples. We study members of Δ5 \ Δ4, some
of which can be written as a countable union of weakly Dedekind finite sets, and
others, more typically, cannot. We give 2ℵ0 inequivalent examples, in a sense of
‘equivalence’ introduced in [14].

The other main case examined is of cardinals in Δ \ Δ5, which is done in terms
of trees of height �, which, it is shown, must arise in this situation. We show that
under natural hypotheses, any such tree has a balanced subtree, and we extend the
work of [5] in the finitely branching case, and give some generalizations for infinitely
branching trees.

§2. Preliminaries. The main focus of the paper will be on the relationship between
tree structures that a set can carry, and notions of Dedekind-finiteness. Here by
a tree we understand a partially ordered set (T,≤) in which any two elements
have a common lower bound, and for every x ∈ T , {y ∈ T : y ≤ x} is linearly
ordered (under the restriction of ≤). We consider two main cases, the first being
densely ordered, as in [3, 4], appropriate for studying members of Δ5 \ Δ4 (sometimes
Δ4), and the other well-founded, which arises when we wish to study members of
Δ \ Δ5. In the latter case there is a unique least element (the ‘root’) and for each
x ∈ T , {y ∈ T : y ≤ x} is well-ordered. For any such tree there are ‘levels’Lα given
recursively by Lα is the set of minimal elements of T \

⋃
�<α L� (which implies that

L0 just consists of the root). A maximal element is called a ‘leaf’. Since T is assumed
to be a set, there is a least ordinal for which Lα = ∅, which is the height of the tree.
For us, well-founded trees will always have height �, since any greater height would
violate Dedekind-finiteness.

Lemma 2.1. For any set X, |X | �∈ Δ5 if and only if there is a subset T of X which
carries a well-founded tree structure of height � and no leaves.

Proof. Suppose |X | �∈ Δ5. Then there is a surjection f from X to X which is not
injective. Let f map distinct x and y to the same point. Then the restriction g of f to
X \ {x} is a surjection from a proper subset of X to X. Let Ln = g–n(x) for n ∈ �,
and let T =

⋃
n∈� Ln. Since x �∈ dom(g), members of Ln are those a such that n is

least such that gn(a) = x, and it follows that the Ln are pairwise disjoint. We let
a ≤ b if gn(b) = a for some n, and since g–1(a) is nonempty, there are no leaves.
Clearly Ln is the nth level of the tree, so T has � levels.

Conversely, if a T as stated exists, then this gives rise to a surjective but not injective
function from X to X by mapping each element of T which is not the root to the
immediately preceding element (which exists because it lies in a successor level, so
there is a unique greatest point below it) and fixing all other points (including the
root). �
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DEDEKIND-FINITE CARDINALS HAVING COUNTABLE PARTITIONS 3

There is a related but weaker notion, which is that |X | ∈ Δ∗
5 if there is no finite-

to-one surjection from X to X which is not injective. By adapting the above proof,
the following results.

Lemma 2.2. For any set X, |X | �∈ Δ∗
5 if and only if there is a subset T of X which

carries a tree structure of height �, finite levels, and no leaves.

Corollary 2.3. Δ5 ⊆ Δ∗
5 .

Proof. This is immediate from the definitions, or else one can use Lemmas 2.1
and 2.2. �

§3. Constructions of cardinals in Δ5 \ Δ4. We briefly review the Fraenkel–
Mostowski method, which we shall use, and which presents fewer technical
complications than forcing. We work in FMC, which is the same as ordinary ZFC
set theory, except that we allow a set U of ‘atoms’ (‘urelements’), being objects which
have no elements, but are different from the empty set. This can be axiomatized by
replacing the axiom of extensionality by an axiom which says that no member of
U has any elements, and sets not lying in U having the same members are equal.
One starts with a ground model M containing an interpretation for U, together
with a group G of permutations of U, and a ‘normal’ filter F of subgroups of G
(meaning that it is closed under conjugacy), all lying in M. We allow G to act on
the whole of M by defining g(x) = {g(y) : y ∈ x}, and then the standard notions
of pointwise and setwise stabilizers Gx and G{x} of x ∈ M make sense. Thus Gx
is the set of elements g of G such that g(y) = y for every y ∈ x, and G{x} is
the set of elements g of G such that g(x) = x. The Fraenkel–Mostowski model
thereby defined is N = {x ∈ M : G{x} ∈ F ∧ x ⊆ N} (which is a valid definition by
transfinite induction). Normality of F is required so that the axiom of replacement
holds in the model. Usually it is assumed that G{u} ∈ F for each u ∈ U , in which
case U ∈ N. We say that F is ‘generated by finite supports’ if it is the family of all
subgroups of G containing the pointwise stabilizer of a finite subset of U. This is
automatically normal, since gGAg–1 = GgA. IfG{x} ≥ GA, we say that x is supported
by A.

It can be checked that N satisfies all the axioms of FMC, except the axiom
of choice, AC. This provides a conceptually relatively straightforward method for
producing models in which AC is false, and the method predates forcing. Cohen
showed how to adapt the main ideas to give models of ZF in which choice is
false, and the Jech–Sochor Theorem [7] provides general circumstances in which
consistency results achieved using FM models can be automatically transferred to
forcing proofs.

We now use the Fraenkel–Mostowski method to present various ways in which
cardinals in Δ5 \ Δ4 can be constructed. The first family of examples provides the
desired set rather directly, with the surjection to � included explicitly. The most
well-known model of this type gives Russell’s ‘pairs of socks’, meaning that there
is a countable sequence of pairs without a choice function. Thus we let the set
of atoms in the ground model M be U = {uni : n ∈ �, i ∈ 2}. For ease we write
Un = {un0, un1}, and the group G used to define the model is taken to be the set
of permutations of U fixing each Un. The filter F of subgroups of G is taken to be
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4 SUPAKUN PANASAWATWONG AND JOHN KENNETH TRUSS

generated by finite supports, which is automatically normal, and hence gives rise to
a model N of FM. Clearly the partition into the setsUn persists in the model. To see
that |U | ∈ Δ5 in N, suppose that f ∈ N is a surjection from U to U ∪ {0}. Then f
must be supported by

⋃
k<N Uk for some N. For i ≥ N ,f–1Ui must be non-empty. If

umj ∈ f–1Ui \Ui then we can interchange the two members ofUi leaving umj and all
members of

⋃
k<N Uk fixed, contrary to f a function supported by

⋃
k<N Uk . Hence

f–1Ui ⊆ Ui . It follows that f maps
⋃
k<N Uk onto a set containing

⋃
k<N Uk ∪ {0},

which is impossible for a finite set.
We can generalize this example to the following case. Let An be non-trivial ℵ0-

categorical structures having pairwise disjoint domains, and assume that they are
all transitive, meaning that their automorphism groups Gn act transitively. Then
we just copy the above construction, taking Un to be indexed by the members of
An. The automorphism group G of the resulting set U of atoms is taken to be
the (unrestricted) direct product of the Gn. By the results of [15], in the resulting
model N, each Un has cardinality in Δ4. The fact that |U | ∈ Δ5 follows by the
same argument as for ‘pairs of socks’. For suppose that f is a map from U onto
U ∪ {0}, having finite support contained in

⋃
k<N Uk . If for some i ≥ N , there is

x ∈ f–1Ui \Ui , then again by non-triviality the member f(x) of Ui can be moved
by a member of G while keeping fixed all members of {x} ∪

⋃
k<N Uk , contrary to

f a function supported by
⋃
k<N Uk . Hence for each i ≥ N , f–1Ui ⊆ Ui , and so f

maps
⋃
k<N Uk onto a set containing the proper superset

⋃
k<N Uk ∪ {0}. However,

Δ4 is closed under forming finite unions, so this gives a contradiction.
We remark that actually what is required to make the above argument work is

that each Gn acts transitively on Un, and |Un| ∈ Δ5. Requiring Un to arise from an
ℵ0-categorical structure corresponds to |Un| ∈ Δ4, so that is a stronger hypothesis
than necessary, though easier to describe. For instance, we can take eachUn to arise
from a weakly 2-transitive tree, as described below, and although these need not be
ℵ0-categorical, the argument to show that |U | ∈ Δ5 still goes through.

Note that if the requirement of transitivity is dropped, then
⋃
n∈� Un may even

fail to lie in Δ. For instance, if every An is a copy of the closed rational interval [0, 1]
then the set of left endpoints forms a countable subset of U.

Since |U | �∈ Δ4, by [15], the corresponding structure is not ℵ0-categorical, so
it must have non-isomorphic but elementarily equivalent models. What these are
will depend on the precise choice of language used to describe the structure. For
instance if we axiomatize Russell’s pairs of socks using unary predicates Pn to stand
for {un0, un1}, then any model is determined up to isomorphism by the cardinality
of the set of realizations of the non-principal type {¬Pn : n ∈ �}, so there are many
options. These are not of particular interest however from the point of view of models
for Dedekind-finite cardinals. If we instead try axiomatizing the pairs of socks by
means of a partial order in which umi < unj ⇔ m < n, then in non-standard models
any ‘infinite’ point lies in a copy of Z× {0, 1}, so these models have a very different
character. The moral of these examples is that ordinary first order logic is not the
right way to describe non-weakly Dedekind finite sets, and a suitably strengthened
language should be used instead.

We now demonstrate by means of some examples, that there are many sets having
cardinality in Δ5 which cannot be written as a countable union of weakly Dedekind
finite sets, so the situation so far described is very much atypical. For a start, we
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DEDEKIND-FINITE CARDINALS HAVING COUNTABLE PARTITIONS 5

can vary the pairs of socks example by having a longer transfinite sequence of pairs.
In the resulting model, U has not only countably infinite partitions, but it may
also have well-ordered partitions of greater cardinality. In the simplest case, we can
let U = {uαi : α < �1, i < 2}, G be the group of all permutations of U fixing each
Uα = {uα0, uα1} (setwise), and F be generated by finite supports. The proof that in
the resulting FM model, |U | ∈ Δ5 is a slightly simpler version of that for the next
model. To see that U cannot be written as a countable union of weakly Dedekind-
finite sets, observe that any weakly Dedekind-finite subset of U must actually be
finite, as if it intersects infinitely many Uα then it can be mapped onto �, and of
course U is not a countable union of finite sets.

A superficially similar example, which is however radically different, is as follows.
Let U and Uα be as in the previous example, but this time we take the group
G of all permutations of U which preserve the partition Π = {Uα : α < �1}, and
for the filter F of subgroups we take the family of all subgroups containing the
pointwise stabilizer GA∪B of sets A ∪ B for which A is a finite subset of U, and
B is a countable subset of Π. This is a normal filter since gGA∪Bg–1 = GgA∪gB .
Each countable subset of Π then lies in the resulting model N, and so |U | �∈ Δ4.
But we can see that |U | ∈ Δ5 as follows. Suppose that f is a surjection from U to
U ∪ {0}, and let G{f} ≥ GA∪B . Let us write Xn = f–n(0). Since f is surjective, all
theXn are disjoint and non-empty. Since A is finite, there is α such that uα0, uα1 �∈ A
and either one or both of uα0, uα1 lie in some Xn. First treating the case in which
they both lie in some Xn, let uα0 ∈ Xm and uα1 ∈ Xn, and assume without loss of
generality that m ≤ n. Let � ∈ G interchange uα0 and uα1 and fix all other points.
Then � ∈ GA∪B , so �(f) = f. Since f is surjective, there is u�i mapped by f to uα1,
and u�i ∈ Xn+1, so u�i �= uα0, uα1. Therefore � fixes u�i . Now 〈u�i , uα1〉 ∈ f, so as �
fixes f, 〈u�i , uα0〉 ∈ f too. But this contradicts f a function. If just one of uα0, uα1

lies in some Xn, suppose for example that it is uα0. Consider � swapping uα0 and uα1

and fixing all other points. If f(u�i) = uα0 then u�i �∈ Uα , so it is fixed by �, and
as in the first case we contradict f a function. As in the previous example, U is not
a countable union of weakly Dedekind-finite sets. We remark that the partition Π
is, in N, a ‘quasi-amorphous’ set, in the sense defined in [1]. This means that it is
uncountable, every infinite subset has a countable subset, but it cannot be written
as the disjoint union of two uncountable sets.

More complicated examples arise from 2-transitive or weakly 2-transitive trees, as
defined in [3, 4]. We recall the basic definitions. A tree is said to be 2-transitive if for
any two isomorphic 2-element substructures there is an automorphism which takes
the first to the second (which is not required to extend the given isomorphism). It is
weakly 2-transitive if for any two 2-element chains there is an automorphism taking
the first to the second. (The difference therefore is that the automorphism group of
a weakly 2-transitive tree is not required to act transitively on 2-element antichains.)
Now these two differ in that countable 2-transitive trees are ℵ0-categorical, but ones
which are weakly 2-transitive need not be. In fact in the most typical cases, a weakly
2-transitive tree exhibits infinitely many distinct ramification orders, so is definitely
not ℵ0-categorical. We assume non-triviality, namely that all maximal chains are
isomorphic to Q, and that there are incomparable points.

In order to explain ‘ramification’, we require a tree, written T+, which is obtained
from T by adjoining extra points so that any two members of T have a greatest
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6 SUPAKUN PANASAWATWONG AND JOHN KENNETH TRUSS

lower bound (meet) in T+. A construction for this is given for example in [3]. It
can then be checked that any two members of T+ also have a meet in T+, so T+

is the least lower semilattice extending T, and all the ‘new’ points of T+ are of the
form a ∧ b for some a, b ∈ T . A ramification point is then a member of T+ which
is the meet of two incomparable members of T. At each ramification point x, there
is a natural equivalence relation on points above x under which y ∼ z if for some
t > x, y, z ≥ t. The equivalence classes are called cones at x, and the number of
cones is called the ramification order of x. In the 2-transitive case, the ramification
order of all ramification points is the same, but this is not true for weakly 2-transitive
trees.

Some complications are caused by ‘special’ ramification points, being those at
least one of whose cones has a least element. If this arises, then the maximal chains
of T+ will not be dense, but will contain consecutive pairs, of which the upper point
lies in T but the lower does not. In particular we need to take account of what we call
exceptional ramification points, being those special ones which have just one cone
having a least element. If a special ramification point has more than one cone with a
least element, then by weak 2-transitivity these cones can be interchanged. To make
life easier in Theorem 3.2 we shall assume that there are no special ramification
points at all, but for our first result in this section, Theorem 3.1 we do treat the
general case.

If A is a finite subset of a weakly 2-transitive tree then we write [A] for the set
of all members of T+ fixed by all elements of GA. This is also called the definable
closure dcl(A) of A. It may be explicitly described as the lower subsemilattice of T+

generated by A, together with the least points of cones at any exceptional ramification
points arising. This is also finite, and in fact is equal to A ∪ {a ∧ b : a, b ∈ A}
together with the least points of cones at exceptional ramification points of the form
a ∧ b for a, b ∈ A.

Now consider an FM-model induced by a weakly 2-transitive tree T. Let the set
of atoms be U = UT = {ut : t ∈ T}. Let G be the group of automorphisms of U
induced by the automorphism group of T, and let NT be the corresponding FM-
model with finite supports. We carry over the [A] notation to this situation. We
sometimes adjoin – ∞ below the tree, fixed by all automorphisms (which however
we do not include in [A], since we want that to be a subset of UT ).

Theorem 3.1. For any countable weakly 2-transitive tree T, |UT | ∈ Δ5 in NT , and
if T has infinitely many ramification orders, then |UT | �∈ Δ4.

Proof. Let f : UT → UT ∪ {∗} where ∗ �∈ UT be surjective in NT with finite
support A. We suppose that ∗ is fixed by all automorphisms (so it could be taken to
be 0 for instance).

We remark that for any x, y, if f(x) = y, then y ∈ [A ∪ {x}] ∪ {∗}. For since A
supports f, �(f) = f for all � ∈ GA. Then 〈x, y〉 ∈ f and so 〈�x, �y〉 ∈ �(f) = f.
Hence if �y �= y, then �x �= x since f is a function. If y �∈ [A ∪ {x}] ∪ {∗}, then by
definition of definable closure [ ], there is � ∈ GA∪{x} ⊆ GA such that �y �= y but
�x = x, contrary to what we have shown. Hence y ∈ [A ∪ {x}] ∪ {∗}. Also note
that [A ∪ {x}] is the union of [A] ∪ {x} and {x ∧ a : a ∈ A}, together with the
minimal points of cones at exceptional ramification points in this set.
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Now consider y ∈ UT \ [A] and let x be such that f(x) = y. We aim to show
that x = y. Now x ∈ [A] would imply that y ∈ [A], contrary to supposition, and
we deduce that x �∈ [A].

Case 1: y �≤ a for all a ∈ [A].
Then y �= x ∧ a for all a ∈ A, and also y is not the minimal point of a cone at

an exceptional ramification point of [A] (as this would lie in [A]). So if y �= x, then
y must be the minimal point of a cone at an exceptional ramification point of the
form x ∧ a for some a ∈ A.

Let z be such that f(z) = x. If x ≤ b for some b ∈ [A], then x ∧ a = b ∧ a,
which is impossible. Applying the same argument as above for x and z, x must be
the minimal point of a cone at an exceptional ramification point of the form z ∧ b
for some b ∈ A. But now again x ∧ a = b ∧ a which is impossible.

The conclusion is that x = y.
Case 2: y ≤ a for some a ∈ [A].
If x �≤ b for all b ∈ [A], then by the argument in Case 1, f(x) = x, and x = y

again follows. Hence x ≤ b for some b ∈ A. Then for any c ∈ A, either x ∧ c = x
or x ∧ c ∈ [A]. Since x �∈ [A], no new ramification points are added in passing from
[A] to [A ∪ {x}], and therefore [A ∪ {x}] = [A] ∪ {x}. It follows that x = y.

From both cases, we havef(y) = y for all y ∈ UT \ [A]. Hencef[A] = [A] ∪ {∗}
which is a contradiction since f is surjective but [A] is finite. Therefore such f does
not exist in NT and so |UT | ∈ Δ5 in NT .

The final clause follows from the fact that T is not ℵ0-categorical. �

We are now able to deduce that there are many ‘essentially distinct’ examples of
this type. The sense in which we mean essentially distinct was introduced in [14],
in terms of a notion called ‘equivalence’. We say that sets X and Y are equivalent,
written X ≡ Y , if for any first-order structure in a countable language which has X
as its domain, there is an elementarily equivalent first-order structure having domain
Y, and vice versa. In the presence of AC, any two infinite sets are equivalent (as
follows from the Löwenheim–Skolem Theorems), but without choice this may not
be the case. The intuition is that a set may hide some structure, which is obscured in
the presence of the ability to well-order everything. For instance, if X ≡ Y and X is
Dedekind-finite, then so is Y, as was remarked in [14].

Let us first see that if |X | ∈ Δ5 and X ≡ Y , then |Y | ∈ Δ5. For if not, there is a
surjective but not injective functionf : Y → Y . In a first order language containing
a function symbol for f, one can express ‘f is a surjective but not injective function’,
and this is true in (Y,f). Since X ≡ Y , there must be an interpretation for the
function symbol making the same statement true in X, contrary to |X | ∈ Δ5.

Next we can show that there are 2ℵ0 inequivalent examples of sets in Δ5 \ Δ4 arising
from weakly 2-transitive trees. It is easiest for this purpose to consider just those
weakly 2-transitive trees in which the maximal chains in T+ are densely ordered.
The main complication in the classification given in [4] comes about when this is
not the case, which happens if there are special ramification points, ones having a
cone with a least element. A general description of all countable weakly 2-transitive
trees requires listing information about special ramification points. Since there are
2ℵ0 cases in which there are no special ramification points, we shall just deal with
the case in which there are none. To specify the countable weakly 2-transitive tree
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8 SUPAKUN PANASAWATWONG AND JOHN KENNETH TRUSS

having no special ramification points up to isomorphism, it suffices to state which
ramification orders arise, and whether or not the points of T themselves ramify
(with their ramification order also given). Thus we require an infinite subset of
{2, 3, ... ,∞}, and a statement of the ramification order of points of T (which will
be 1 if they do not ramify, and some member of {2, 3, ... ,∞} otherwise). We call
this list the code of T.

Theorem 3.2. For any countable weakly 2-transitive trees T1, T2 in which all
maximal chains of T+

1 , T+
2 are dense, having distinct infinite codes, |UT1 | and |UT2 |

are ≡-inequivalent members of Δ5 \ Δ4.

Proof. The point of the restriction we have made on our weakly 2-transitive
trees is that for any ramification point r and x, y > r in T, there is an automorphism
of T fixing r and taking x to y.

Suppose for a contradiction that |UT1 | ≡ |UT2 |. In NT1 there must therefore be a
structure ≺ on UT1 such that (UT1 ,≺) in NT1 is elementarily equivalent to (UT2 , <)
in NT2 . Let A be a finite support for (UT1 ,≺) in NT1 . Thus any automorphism of
(UT1 , <) that fixes A pointwise also fixes ≺. We may assume that A is a subtree of
UT1 .

In order to handle this situation, we use the following notation, where A is
a finite subset of T and [A] is its definable closure, in this case just the lower
subsemilattice generated by A. If a is maximal in A (or if A = ∅, a can be – ∞),
we let Ua = {x ∈ T : a < x}, and if a < b are consecutive members of [A], then
Lab = {x ∈ T : a < x < b} (the linear piece between a and b; again here a can be
– ∞ in the case when b is minimal in A), and Sab = {x ∈ T : a < x, b �≤ x} (the
corresponding side piece). Now Lab is linear, and we may also consider L+

ab , which
is the same thing, but calculated in T+, that is, including ramification points too,
which are coloured according to which orbit they lie in. If x ∈ L+

ab , then Cx = {y ∈
T : b ∧ y = x}, which is the set of points which branch off from L+

ab at x. This is a
union of cones at x.

A key remark is that the pointwise stabilizer GA acts transitively on each Ua ,
Lab , and Cx (here heavily using the assumption that the maximal chains in T+ are
dense). But more is true. In fact for any b, c ∈ Ua , there is an automorphism of T
taking b to c which fixes A pointwise, and has support contained inUa , with a similar
statement holding forCx . The analogous statement also holds for weak 2-transitivity.
For instance, if a < b < c and a < d < e, then by weak 2-transitivity there is an
automorphism f fixing a and taking b to d, and applying weak 2-transitivity again,
there is an automorphism g fixing d and taking f(c) to e, and f, g may be chosen
fixing all points below a and d respectively. Then gf fixes a and takes b to d and c
to e.

Although not actually needed, we can describe the orbits of GA. They are of the
form Ua , and Lab , as well as the union of the cones in Sab which meet Lab at points
lying in some orbit of GA on L+

ab .
Now being a tree with dense chains is first order expressible, and so this must

be true of (UT1 ,≺). We shall show that on each set of the form Ua or Cx , ≺ is
equal to < or the empty set (in which case it would be an antichain, i.e., pairwise
≺-incomparable). We just treat Ua , as Cx is similar.
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First consider a maximal point a of A (and let a have a default value of – ∞
if A = ∅). First we note that if b, c ∈ Ua are <-incomparable, then they are also
≺-incomparable. This is because there is an element of GA swapping b and c. Since
GA preserves ≺, b ≺ c ⇔ c ≺ b, and since ≺ is antisymmetric, ¬b ≺ c ∧ ¬c ≺ b.

Next we show that there cannot be points b, c ∈ Ua such that b < c and c ≺ b.
For, if so, by weak 2-transitivity ofGA onUa , forx, y ∈ Ua ,x < y ⇒ y ≺ x. Choose
z > a and incomparable x, y > z. Thus x, y ≺ z. By the previous paragraph, x and
y are also ≺-incomparable, so this contradicts (UT1 ,≺) a tree.

Next suppose that there are b, c ∈ Ua such that b < c, and b and c are
≺-incomparable. By weak 2-transitivity of UT1 , a < x < y implies that x, y are
≺-incomparable. But also as shown above, if b and c are <-incomparable, they
are also ≺-incomparable, and we deduce that ≺ is the empty relation on Ua .

Otherwise, it follows that for x, y ∈ Ua , x < y ⇒ x ≺ y. Since also x, y
<-incomparable ⇒ x, y ≺-incomparable and y < x ⇒ y ≺ x, we deduce that
x < y ⇔ x ≺ y. In other words, < and ≺ agree on Ua .

Now let us consider Sab where a < b are consecutive members of A. First note
that by a proof similar to the above, if x, y are <-incomparable members of Cc
for a < c < b, then they are also ≺-incomparable, since there is a member of GA
which swaps x and y (and fixes c). We can deduce that if a < c < d < b, and
x ∈ Cc , y ∈ Cd , then x and y are ≺-incomparable. For suppose that x ≺ y (a
similar argument applying if y ≺ x). Choose x′ ∈ Cc which is<-incomparable with
x. Then by what we have just shown, x, x′ are ≺-incomparable. Furthermore, there
is a member of GA which swaps x and x′, and having support contained in Cc , and
so this also fixes y. Since GA preserves ≺, x′ ≺ y, but this contradicts ≺ a tree.

It follows that any ≺-comparabilities in Sab must hold between members of the
same Cc . Suppose then that x < y and x ≺ y hold for some x, y ∈ Cc . As GA acts
weakly 2-transitively on Cc , x < y ⇒ x ≺ y. Since we have also shown that x, y
<-incomparable implies that they are ≺-incomparable, we deduce that < and ≺
agree on Cc .

The main remaining point is to show that there is some a or c such that ≺ is
non-empty on Ua or Cc . Suppose not. Then each Ua is an antichain, and since
the members of distinct Ccs for a < c < b are incomparable, each Sab is also an
antichain. Consider the possible relationship between a ∈ A and members of Ub
under ≺. The group GA acts transitively on Ub , and so if any member of Ub is
≺-less than a, they all are, which violates ≺ a tree. Similarly, for members of Cc .
The same argument applies to the possible relationship between members of distinct
Uas, or Ccs, or between members of Ua and Cc . We deduce that the union of all
the Uas and Sabs is an antichain, and all its members are either incomparable with
every member of A, or above some member of a. However, since (UT1 ,≺) is a tree
satisfying the same first order sentences as (UT1 , <), all its chains are infinite, so this is
impossible.

We deduce that there is a or c such that < and ≺ agree on Ua or Cc . We just treat
the first case, and show that for any b ∈ Ua , for x ∈ T1, b < x ⇔ b ≺ x. From left
to right is already known. Suppose for a contradiction that there are some b ∈ Ua
and x such that b ≺ x but not b < x. Since < and ≺ agree on Ua , x �∈ Ua . Choose
c ∈ Ua incomparable with b. Then there is a member of GA taking b to c and with
support contained in Ua . This preserves ≺, and fixes x, and hence c ≺ x. Since
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≺ is a tree, b and c are ≺-comparable, and as they both lie in Ua , they are also
<-comparable, which gives a contradiction.

Finally we choose any b ∈ Ua , and observe that the ramification orders arising
above b in < and ≺ are equal to those arising in T1 and T2 respectively. Since these
are determined by first order formulae, it follows that |UT1 | and |UT2 | have equal
codes after all. �

§4. Balanced trees. To study Dedekind finite sets not lying in Δ5 by using FM
constructions, in view of Lemma 2.1, we are naturally led to consider possible tree
structures with � levels and no leaves. We note that we didn’t say that our X was
Dedekind-finite, though that is actually what we had in mind. To achieve this, it is
convenient to insist at the very least, if we are trying to use the tree as the set of
atoms in a Fraenkel–Mostowski model, that the group of automorphisms of the tree
act transitively on each level. This is captured by the idea of ‘balanced tree’, which
was introduced in [5], and can be extended. We start by recalling the simplest case,
of finite levels. A classical result about this situation is König’s Lemma, which says
that an infinite tree with � levels, all finite, has an infinite branch (maximal linearly
ordered subset). This requires the axiom of choice in its proof, and in [5, 12] the
versions of the axiom of choice needed for various special cases are studied.

A finite-branching tree T is called balanced if the sets of immediate successors of
each vertex x, denoted by succ(x), in the same level are of equal cardinality. The
case that T branches infinitely is more complicated so we shall deal with that in the
later part of this section.

For now, by subtree of a tree we understand a downwards closed subset under the
induced ordering. Note that this is also a tree, and the level that an element of the
subtree lies in does not alter from the original tree. The proof of the next lemma is
included in the proof of Lemma 3.1 in [5]. We give a more explicit version of the
argument, since a generalization is required in the proof of Theorem 4.2.

Lemma 4.1. Any tree (T,≤) with � levels, all finite, has a balanced subtree, having
no leaves, and also having � levels.

Proof. Let S be a sequence of natural numbers such that every number occurs
infinitely often, say S = 〈kn : n ∈ �〉. We construct a decreasing sequence Tn of
subtrees of T, each having � levels, such that for each n, Tn is pruned on level kn so
that every member has the same degree (number of immediate successors) on that
level. Let Ln be the nth level of T.

First let T0 = T . Now suppose that Tn has been constructed. Let Xn be the set
of members x of height kn in Tn such that {y ∈ Tn : x ≤ y} is infinite, and subject
to this have minimum degree (since Tn has � levels, at least one node on that level
has infinitely many points above it). Let Tn+1 be the subtree obtained by removing
all members of Tn ≥ some member of Lkn \ Xn. Then Tn+1 is a subtree of Tn also
having � levels. Let T ∗ =

⋂
n∈� Tn. It remains to show that T ∗ is balanced and has

no leaves.
Consider any n. Since each member of � is listed infinitely often, {m : km = n}

is infinite. Let Lmn be the nth level of Tm. Then L0
n ⊇ L1

n ⊇ L2
n ... is a decreasing

sequence of non-empty finite sets, so is eventually constant, and clearly this equals
the nth level of T ∗. Furthermore every x in the nth level of T ∗ has at least one
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successor in every Tm, and hence also in T ∗, so is not a leaf, and for the same
reason, its degree is constant among nodes on that level. Hence T ∗ is a balanced
subtree of T. �

Note that it is tempting to try to prove this in a ‘simpler’ way, by pruning the
tree successively in � steps, at step 1 pruning branches above nodes on level 1 to
ensure that all nodes on level 1 now have the same degree (the original minimum),
then repeating this on level 2 and so on. The drawback is that one has to choose
which branches to remove at each stage, so AC has been used. It is easy to show by
a Fraenkel–Mostowski model that this method cannot work in general.

Now let us see how we can refine the method given in the lemma. The aim here
is to show that any finitely branching tree can be written in a canonical way as a
union of balanced subtrees. The change in the method is that at the induction step,
we retain all nodes, but partition them according to degrees of nodes on the next
level up, and also higher levels.

Theorem 4.2. Let (T,≤) be a tree with � levels, all finite, with kth level Lk . Then
there is a sequence of ordered partitions ((�k,<) : k ∈ �) such that �k is a partition
of Lk , and such that for any X ∈ �k and Y ∈ �k+1 there is n(X,Y ) ∈ � such that for
each x ∈ X the number of successors of x lying in Y is equal to n(X,Y ).

Proof. We use the same sequence (kn) as in the previous proof, in which each
member of � appears infinitely often, and for each k we find a refining sequence of
partitions ((�nk,<) : n ∈ �) of Lk , which here is taken to mean that each member
of �nk is a union of a convex subset of �n+1

k . We start with each �0
k being the trivial

partition of Lk into just one piece.
Now assume that (�nk,<) has been chosen for each k. If k �= kn, then �n+1

k = �nk .
So we just have to define �n+1

k (and a suitable ordering of it) in the case that
k = kn. For each x ∈ Lk , and X ∈ �nk+1, consider the sequence of natural numbers
(|X ∩ succ(x)| : X ∈ �nk+1) of length the cardinality of �nk+1 and let x ∼ y if the
sequences corresponding to x and y are equal. We then take �n+1

k to be the least
common refinement of �nk and the partition determined by ∼. We can (definably)
linearly order the finite sequences of natural numbers and hence extend the ordering
of �nk to �n+1

k � X for each X ∈ �nk which will thus form a convex subset.
Since (�nk : n ∈ �) is a refining sequence and Lk is finite, it must be eventually

constant, at �k say. The relationship between �k and �k+1 may now be described.
Clearly as the sequence has stabilized, ∼ must be trivial on each member of �k . So
if X ∈ �k , (|Y ∩ succ(x)| : Y ∈ �k+1) is the same sequence for each x ∈ X . Since
|succ(x)| is the sum of this sequence, this means in particular that each x ∈ X has
the same number of successors. And for each Y ∈ �k+1, each x ∈ X has the same
number of successors in Y, which we write as n(X,Y ) (which is allowed to be 0). �

From the construction just given, we form what we call a template (T ∗,≺) from T,
which is also a finitely branching�-tree, but with extra structure added. The nth level
ofT ∗ is just �n, and ifX ∈ �n andY ∈ �n+1, thenX ≺ Y provided that n(X,Y ) �= 0
(and ≺ on the whole of T ∗ is the transitive closure of these individual relations).
The additional structure that T ∗ has is first of all the linear ordering of each level
(which was defined in the above construction), and in addition the sequence of
positive integers (n(X,Y ) : Y a ≺-successor of X ) (with ordering derived from that
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of �n+1). We note that x is a leaf of T if and only if n(X,Y ) = 0 for all Y on the
next level, where x ∈ X .

Now since (T ∗,≺) with the ordering of the levels is a finitely branching �-tree,
we can apply König’s Lemma to obtain an infinite branch. We note that this is
legitimate, since we can invoke the ordering of each level to avoid appealing to AC.
Alternatively, we can remark that in fact the set of all nodes of the template can
be well-ordered (for essentially the same reason), so it actually has cardinality ℵ0.
Thus, even though the role of the template is to help describe potentially non-well-
orderable phenomena (the possible (T,<)), it can itself be well-ordered.

In fact, if � = (X0, X1, X2, ...) is such an infinite branch, meaning that Xn ≺ Xn+1

for each n and Xn lies in the nth level of T ∗, then the tree induced from T on⋃
n∈� Xn is a balanced tree (noting that X0 is trivial since |L0| = 1, so it only admits

the trivial partition). The intuition is that T ∗ somehow collects together all the
different possibilities for balanced subtrees of T.

Abstracting from the above, a template is a finitely branching �-tree in which
each level is linearly ordered, and such that each node is assigned a finite sequence
of positive integers whose entries are in bijective correspondence with its set of
successors. A template encodes a finitely branching �-tree T if it arises as T ∗ from
T in the above construction. We may spell this out more precisely by saying that
T ∗ encodes T if there are ordered partitions �n of the levels of T which correspond
to the levels of T ∗, and for each x ∈ X ∈ �n labelled by the sequence (ni), and
Y ∈ �n+1 such that Y is the ith ≺-successor of X, there are ni members of Y greater
than x.

If (T ∗,≺) is a template, and (X0, X1, X2, ...) is an �-branch, then there is a
sequence of positive integers whose nth entry is the label at Xn corresponding to
Xn+1. This is called an eventually singleton branch if for all but finitely many n, this
label is 1.

For trees T1 and T2 having � finite levels, we say that T1 is locally embeddable in
T2 if for each n, the union of the first n levels of T1 is embeddable as a subtree of the
first n levels of T2. If T1 is locally embeddable in T2, and vice versa, we say that T1

and T2 are locally isomorphic.

Lemma 4.3. (i) For any template (T ∗,≺) there is a finitely branching �-tree
(T,<) encoded by (T ∗,≺).

(ii) Any two trees encoded by (T ∗,≺) are locally isomorphic.
(iii) If (T ∗,≺) has an eventually singleton �-branch, then (T,<) has an infinite

branch.
(iv) If (T ∗,≺) is a template having no eventually singleton branch, then in a suitable

Fraenkel–Mostowski model, there is a tree encoded by (T ∗,≺) having no infinite
branch.

Proof. (i) Let (T ∗,≺) be a template with nth level Pn and positive integers
attached as in the definition. We build (T,<) level by level, using induction. There
will be a bijection between Pn and a partition �n of Ln. Choose any root for T, and
let �0 be the trivial singleton partition of L0 which just contains the root, and P0

corresponds to �0.
Assuming thatLn has been chosen, as has a partition �n ofLn which corresponds

to Pn under some bijection, for X ∈ Pn let Y1, ... , Yk be the members of Pn+1 above
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X under ≺, with positive integers n1, ... , nk attached. Under the bijection given by
the induction hypothesis, X may be viewed as a subset of Ln. For each x ∈ X , and i
between 1 and k, choose ni new points which together (as i varies) will form succ(x)
in T. Doing this for all x determines Ln+1. The (n + 1)th level Pn+1 of T ∗ is now
identified with a partition �n+1 of Ln+1 by placing y1 and y2 in the same piece of
�n+1 provided that for some X ∈ �n, x1, x2 ∈ X , and i between 1 and k, y1 and y2

are adjoined corresponding to that value of i.
(ii) We observe that we have the freedom to choose the new points adjoined with

or without an ordering. Thus if we are (secretly) thinking of them as ordered, then
the whole of the tree can be well-ordered, and has cardinality ℵ0. If we make no
attempt to order them, then there is no reason why this should be true. So we do
not expect the two possibilities to give rise to isomorphic trees. It is clear however
that they will be locally isomorphic, since their behaviour is identical up to any finite
stage.

(iii) As remarked above, a branch of the template corresponds to a balanced
subtree of T, and saying that this is eventually singleton just says that this subtree is
eventually just a single branch.

(iv) What we really want to say is that (T,<) has an infinite branch if and only if
its template has an eventually singleton branch, but for the reasons explained this
is too strong. Suppose then that (T ∗,≺) is a template and that it encodes (T,<).
We form a Fraenkel–Mostowski model in which U is indexed by the members of T,
and we let G be the group of automorphisms of U induced by tree automorphisms
of (T,<) which fix each member of T ∗, and we let N be the FM-model defined
using finite supports. One sees that G acts on each subtree obtained as above from
an �-branch of T ∗. This is a balanced tree which has infinitely many non-singleton
entries, and so as for the simplest construction given from just one balanced tree,
has no infinite branch in N. Since any infinite branch of T would have to arise in
this way, there cannot be any at all. �

We note that in the absence of AC, two non-isomorphic trees may arise from
isomorphic templates (for instance as in Lemma 4.3(iv) there can be two trees
arising from T ∗, one of which can be well-ordered, and the other cannot). In the
next result we give a more precise result explaining what happens.

Lemma 4.4. (i) Assuming the axiom of choice, for any two �-trees with finite
levels, T1 is locally embeddable in T2 if and only if it is embeddable in T2.

(ii) Assuming the axiom of choice, T1 and T2 are locally isomorphic if and only if
they are isomorphic.

(iii) T1 and T2 are locally isomorphic if and only if they are elementarily equivalent.

Proof. (i) Let T1 be locally embeddable in T2. Let Pn be the family of all
embeddings of the union of the first n levels of T1 into the union of the first n levels
of T2. Let P =

⋃
n∈� Pn be partially ordered by extension. Then P is a tree with nth

level Pn, each of which is finite, and by assumption non-empty. By König’s Lemma,
P has an infinite branch, and the union of this branch provides an embedding of T1

into T2.
(ii) This follows by the same proof.
(iii) Assume first that T1 and T2 are elementarily equivalent. For any n there is

a first order sentence capturing the first n levels of T1 up to isomorphism. More
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precisely, if N is the number of nodes in these levels (clearly a finite number), the
sentence says that there exist N points, which are ordered in the correct way, and any
other n points which are linearly ordered and form an initial segment are contained
in the N first mentioned. Since T1 and T2 are elementarily equivalent, there must
be corresponding N points of T2, which are ordered in the same way as those in T1,
and which form the union of the first n levels. Hence the unions of the first n levels
of T1 and T2 are isomorphic.

Conversely, if T1 and T2 are locally isomorphic, then we can use back-and-forth
(an Ehrenfeucht–Fraı̈ssé game) to see that they are elementarily equivalent. Suppose
that this has n moves. Then player II has a winning strategy, in which he uses given
isomorphisms between the unions of finitely many levels to decide what to do
next. �

Now we shall allow levels to be infinite, and for this we have to modify the
definition of ‘balanced’. The levels will certainly be Dedekind finite, and usually
weakly Dedekind finite, but the point is that they will or can carry some structure.
The problem here is that in the not AC situation, the isomorphisms which one might
wish to exist between different successor sets may be absent, even though we want
to view them as the same. For this we use the notion of ‘equivalence’, introduced
above.

We now say that a tree with � levels and no leaves is balanced if at each level,
the sets of successors of the nodes on that level are equivalent. Ideally we would
like to show that any tree with � levels all of which are weakly Dedekind finite has
a balanced subtree with the same properties (analogously to Lemma 4.1). In the
absence of this, we give some examples and constructions which illustrate what can
happen. First of all we analyze the circumstances under which a tree of this kind
can be shown to be Dedekind finite.

Let X be a countably infinite set, and G a group of permutations of X. Recall,
as introduced just before the statement of Theorem 3.1, that for any A ⊆ X , its
definable closure dcl(A) is the set of all x ∈ X fixed by the pointwise stabilizer GA
of A in X. We say that dcl is locally finite if A finite implies that dcl(A) is finite.

Lemma 4.5. Let G be a group of permutations of the set U of atoms in a model
M of FMC , and let N be Fraenkel–Mostowski model thereby determined using finite
supports. Then |U | ∈ Δ in N if and only if dcl for G on U is locally finite.

Proof. If (xn) is a sequence of distinct members of U in N it is supported by a
finiteA ⊆ U . Thus any member of G fixing A pointwise also fixes the sequence (xn),
and hence each xn. Therefore every xn lies in dcl(A), and so dcl is not locally finite.

Conversely, if dcl is not locally finite, there is finite A ⊆ U for which dcl(A) is
infinite. Let xn be distinct members of dcl(A). Then GA fixes each xn and so the
sequence (xn) lies in N and therefore |U | �∈ Δ in N. �

We now want to apply this result to study models in which there are cardinals
in Δ \ Δ5. Let (Xn : n ∈ �) be a sequence of countably infinite sets, and for each n
let Gn be a transitive group of permutations of Xn. We let the set of atoms U be
(indexed by) the finite sequences of the form (xi : i < n) for xi ∈ Xi , n ∈ �. Then U
becomes a tree with � levels under the relation of extension, and for each � ∈ U of
length n, the set succ(�) of successors of � is a copy ofXn, so we may allowGn to act
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on it. In fact, more generally,Gn acts on U by fixing all sequences of length ≤ n, and
permuting longer sequences just by the (n + 1)th entry. In the Fraenkel–Mostowski
model determined from this sequence of sets and group actions, we let G be the
group of tree automorphisms of U generated by the actions of all the Gns as just
described. (This is an iterated wreath product of the sequence of groups.)

Theorem 4.6. In the Fraenkel–Mostowski model N determined from a sequence of
countably infinite sets Xn and transitive group actions Gn, |U | ∈ Δ in N if and only if
dcl is locally finite for each Gn on Xn.

Proof. If dcl for the action of some Gn is not locally finite on Xn, then using the
method of Lemma 4.5 gives a countably infinite subset of U in the model.

Otherwise we have to show that if dcl is locally finite for each Gn on Xn, then so
is dcl for G on U (and then appeal again to Lemma 4.5). Let A ⊆ U be finite. We
can see that dcl(A) contains the subtree generated by A (i.e., its downward closure),
and this is still finite. So now assuming that A actually is this subtree, we observe
that its definable closure is just the union of the definable closures of its intersections
with the successor sets arising. This follows since the transitivity of each Gn and the
non-triviality of Xn guarantee that no members of the definable closure of A appear
above the levels involving members of A. By hypothesis these are all finite, and hence
so is dcl(A). �

We remark that all the trees arising in such models N are balanced. We now give
some examples.

In the first case, each succ(x) is finite. This was fully analyzed earlier in the section.
Usually all the groups Gn will be equal, but this is not necessary for the

construction. In [9], a construction was given in which each Xn equals the ordered
set of rational numbers under the group of all order-preserving permutations. This
was specifically constructed to provide an example of a dense rigid chain (meaning it
has no non-trivial order-automorphisms) admitting a non-trivial order-preserving
surjection. In this case, definable closure is trivial (i.e., dcl(A) = A).

The ‘simplest’ case is where eachGn is the full symmetric group. All the individual
successor sets are strictly amorphous (which means that all partitions of the set into
infinitely many subsets have just finitely many non-singletons). Again definable
closure is trivial.

In the cases so far described, the levels are all weakly Dedekind-finite, and one’s
hope that more complicated objects can be somehow described in terms of simpler
constituents is realized. We can however give further examples to show that this
doesn’t always happen. Returning to themes given earlier in the paper, each successor
set can be the union of an �-sequence of pairs. The definable closure of a finite set
is just the union of the pairs that it intersects. If instead of an �-sequence, we just
consider the set of pairs, which amounts to allowing the group to permute the pairs
(another wreath product) then we instead revert to the amorphous case (this time
the successor sets are bounded amorphous sets of gauge 2, in the terminology of
[13]). In both these cases, definable closure is non-trivial.

If we take all successor sets to be a weakly 2-transitive tree, then we obtain many
more examples in which these sets also lie in Δ5 \ Δ4. Finally, if we ‘recycle’ one
of our trees having � levels as itself forming the levels of a new such tree, then we
obtain a 2-step example, where the levels lie in Δ \ Δ5.
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We conclude this section by posing questions arising. In the first place, can one
prove the analogues of Lemma 4.1 and Theorem 4.2 for general weakly Dedekind
finite level sets? And can one find an example of a set lying in Δ \ Δ5 which cannot
be written as a tree with � levels and ‘simpler’ successor sets (that is, even applying
the final method mentioned iteratively)?

Acknowledgment. This paper is an amplified version of part of the first author’s
PhD thesis at the University of Leeds.
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