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Abstract

Ross River virus (RRV) is the most common mosquito-borne infection in Australia. RRV dis-
ease is characterised by joint pain and lethargy, placing a substantial burden on individual
patients, the healthcare system and economy. This burden is compounded by a lack of effect-
ive treatment or vaccine for the disease. The complex RRV disease ecology cycle includes a
number of reservoirs and vectors that inhabit a range of environments and climates across
Australia. Climate is known to influence humans, animals and the environment and has pre-
viously been shown to be useful to RRV prediction models. We developed a negative binomial
regression model to predict monthly RRV case numbers and outbreaks in the Darling Downs
region of Queensland, Australia. Human RRV notifications and climate data for the period
July 2001 – June 2014 were used for model training. Model predictions were tested using
data for July 2014 – June 2019. The final model was moderately effective at predicting
RRV case numbers (Pearson’s r = 0.427) and RRV outbreaks (accuracy = 65%, sensitivity =
59%, specificity = 73%). Our findings show that readily available climate data can provide
timely prediction of RRV outbreaks.

Introduction

Ross River virus (RRV) disease is the most commonly reported arboviral disease in Australia
with approximately 5000 cases notified annually [1, 2]. This is likely an underestimate of the
true disease burden due to mild and non-specific disease symptoms. It is endemic to Australia
and Papua New Guinea with known outbreaks occurring in the Pacific and potential for
expansion into new geographic areas [3–6]. Approximately 25–45% of human RRV infections
lead to symptomatic disease characterised by fever, rash, lethargy and polyarthritis [7] with the
remaining 55–75% of infections resulting in asymptomatic responses. Managing RRV involves
significant healthcare costs and economic burden – including healthcare, mosquito manage-
ment and lost productivity – estimated to be AUD$ 15 million annually [7]. Current RRV
treatment is limited to management of symptoms.

The enzootic cycle of RRV alternates through largely macropod reservoir hosts and mos-
quito vectors, with human infection and disease occurring through spillover events [6, 7]. A
range of environmental, social and political factors such as urbanisation, income level and
recreational activities are linked to RRV disease ecology via their influence on behaviours,
biology and proximity of humans, reservoir hosts and vectors [8, 9]. Environmental factors
such as vegetation, water sources, topography and built environments also affect the density
and distribution of reservoir hosts and mosquito vectors involved in the transmission cycle
[5, 6, 10].

Climatic factors including temperature, rainfall and humidity play a key role in shaping
environments and thereby the RRV transmission cycle [4, 5, 11]. Climate is a key determinant
of mosquito biology, affecting aspects such as lifespan, reproduction rates, blood feeding and
extrinsic viral incubation periods [12, 13].

Climate has been a major focus of RRV research, particularly for predicting disease outbreaks
and cases [14–19]. The delay between climate and mosquito biological and behavioural
responses can be exploited to develop predictive models. Early warning systems for climate-
sensitive diseases, such as RRV, are identified as a key climate change adaptation strategy
[19]. The delay built into predictive models allows time for relevant public health action to
reduce the size and impact of the outbreak [20]. These public health actions could include public
health messaging to encourage mosquito avoidance behaviour such as use of insect repellents
and protective clothing as well as staying indoors [1]. Mosquito control programs using larvicide
in mosquito habitats could also be used to reduce the impact of predicted outbreaks [21].

In this study, we focused on the effect of climate and environment on RRV because of their
strong influence on mosquito vectors. We excluded entomological and human socioeconomic
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data to examine the predictive capacity of readily available, open-
access climate data alone. While most Australian research on the
relationship between climate and RRV has occurred in coastal
regions [16–19, 22], we focused on an inland region. We investi-
gated the predictive power of climatic and environmental data for
RRV disease in the Darling Downs, Queensland.

Methods

Study area

The Darling Downs (Fig. 1) is located in south-eastern
Queensland with a population of 300 000 people [23]. The mostly
agricultural region is characterised by a temperate climate with
hot summers and cool winters [24]. It was chosen due to high
case numbers inland location and small geographic area. High
case numbers ensure that investigating the disease in the area
will have a useful public health impact. Moreover, most studies
predicting RRV have occurred in coastal regions [14]. Inland
areas are likely to experience different dynamics of RRV due to
different mosquito species and environments. Finally, the small
area of the Darling Downs meant that climate was likely to be
consistent across the region and a single weather station could
be used to collect climate data.

Statistical methods

We implemented a modified version of the statistical methods of
Cutcher et al. [15] and Koolhof et al. [14]. This included, as out-
lined in Figure 2, the use of data transformations to normalise the
distribution of climate variables, the variable selection process
using climate groups, inspection of different time lags, use of
negative binomial regression and testing the model performance
using outbreak thresholds and Pearson’s correlation. Ethics
approval was not required because only publicly accessible, aggre-
gated data were used in the analysis.

Aggregated monthly case notification data (RRV data) were
obtained from the Queensland Department of Health from July
2001 to June 2019 for the Darling Downs Hospital and Health
Services area. Years were defined from July to June to capture a sin-
gle mosquito breeding season per year [15]. The proportion of
infections and subsequent disease notified to government databases
has remained consistently low overtime due to high proportions of
mild and/or non-specific symptoms. However, there have been
slight alterations to RRV disease case definitions over the study per-
iod. In 2013, more specific notification criteria were developed to
clearly distinguish cases of RRV disease from Barmah Forest
virus. Further, in 2016, the use of a single IgM to diagnose RRV
was removed and the case definition was expanded to include

Fig. 1. Map of the Darling Downs region.
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both confirmed and probable cases. In order to account for changes
in population size overtime, mid-year population data were sourced
from the Australian Bureau of Statistics (2001–2011) and the
Health of Queenslanders (2014, 2016, 2018), with derived averages
used for years with no population data available.

All climate and weather data were publicly available Australian
Bureau of Meteorology data (listed in Supplementary Table 1)
obtained from the Toowoomba Airport (041529) weather station
as the station nearest to the largest population centre in the
Darling Downs with the most complete dataset. Monthly and
daily climate data were obtained from January 2001 to June
2019. Daily climate data were used to derive other monthly cli-
mate variables such as number of days per month above or
below a certain level of precipitation or temperature. Climate
data were included up to six months before notification data to
account for the delayed effects that climatic conditions can have
on the RRV disease ecology cycle through incubation periods
(extrinsic and intrinsic), delays between infection and symptom
onset and indirect biological delays on the mosquito lifecycle.

A negative binomial regression model was chosen because it is
well suited to the positive skew and overdispersion of RRV data
[14, 15, 20, 25]. The model used lagged monthly climate data
as independent variables, monthly notified RRV data as the
dependent variable and yearly population data from the Darling
Downs as an offset value to account for variations in population
size [25–28]. A flowchart of methods is shown in Figure 2.

First, the RRV data and all climate variables were examined
using summary statistics and plotting distributions. Where pos-
sible, climate variables with non-normal distributions were trans-
formed so that they resembled an approximately normal
distribution [14] (Supplementary Table 1). Approximately normal
distributions are useful for analysis of seasonally driven variables
because they allow for seasonal variables to be treated with statio-
narity [14, 15].

The transformed climate data were merged with the RRV data
and separated into a 13-year ‘training dataset’ (July 2001–June
2014) and a 5-year ‘testing dataset’ (July 2014–June 2019). The
training dataset was used to develop the predictive negative bino-
mial model. Climate and population data from the testing dataset
were used to run the predictive model and observed RRV data
were compared to the predicted RRV cases.

Spearman’s rank correlation (rs) was used to determine climate
variables strongly associated with RRV cases occurring one to six
months later and identify the time lag at which the strongest asso-
ciation occurred [14–16]. These correlations were useful for

model development: they identify variables which were most use-
ful for prediction, but also reveal potentially important associa-
tions between climate and RRV [14–16].

Potential predictors were sorted into nine groups measuring
similar climatic aspects (henceforth referred to as ‘climate groups’):
temperature, precipitation, relative humidity, vapour pressure, evap-
oration, evapotranspiration, solar radiation, mean sea level pressure
and Southern Oscillation Index (Supplementary Table 1). The vari-
able/lag combination with the strongest association with RRV data
was selected from each climate group [14, 15]. To ensure minimal
correlation between predictor variables, a requirement of negative
binomial regression [25], Spearman’s rank correlation matrix was
used to control and check for collinearity between the variables
selected from each climate group [14–16]. When correlation was
strong (defined as |rs| > 0.8) between any two variables, the variable
with the strongest association with RRV was retained [14, 15]. This
occurred progressively until a set of variables with the strongest
association with RRV data and low correlation to each other
remained for use in model development. Backward-stepwise selec-
tion was used to develop the predictive negative binomial model
with a threshold P-value of 0.2 [14, 15, 29].

The model fit was inspected using Pearson’s correlation (r)
and a scatterplot of model-fitted and observed values.
Diagnostic plots of scaled residuals (difference between observed
and model-predicted values) were run to check that model
assumptions (such as distribution and dispersion) were met [15,
30, 31] (Supplementary Figures 1a & 1b).

Model performance was tested by comparing model-predicted
RRV cases with observed RRV cases from the testing dataset
using Pearson’s correlation [14, 15]. The ability of the model to pre-
dict monthly outbreaks was determined through the creation of a
moving outbreak threshold to which observed and predicted case
numbers were compared [14, 15]. We defined an outbreak
month as a month with RRV cases exceeding the 5-year rolling
mean plus one standard deviation for that month, with known out-
break years excluded from the calculation [14, 15]. This definition
captures the epidemiological definition of outbreaks which refers to
an increase in disease in excess of what is normally expected in a
given time, population and area [15, 32]. The purpose of the
threshold was to determine if the model could predict the occur-
rence and timing of outbreaks. Capturing the magnitude of out-
breaks is unlikely given the large variation between baseline and
outbreak case numbers used to train the model and because climate
variables only act as indirect predictors of disease transmission
[15]. A moving threshold was chosen to account for the impact

Fig. 2. Flowchart of methods.
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of seasonal variations and long-term climate change on disease
transmission [14, 15]. The threshold was calculated using RRV
case notification data for the entire study period. RRV data for out-
break years were substituted with RRV data from the previous year.
For the first five years of the dataset, the outbreak threshold was
calculated using cumulative means and standard deviations.

This threshold was used to identify the number of true posi-
tives, true negatives, false positives and false negatives based on
comparing model predicted outbreaks and non-outbreaks with
observed outbreaks and non-outbreaks. We evaluated the overall
model effectiveness and model accuracy (% of months correctly
identified), specificity (% of non-outbreak months correctly iden-
tified) and sensitivity (% of outbreak months correctly identified).
High specificity and sensitivity help avoid adverse consequences
from not taking action when needed (low sensitivity) or financial
costs from unnecessary action (low specificity).

Results

There were 2071 RRV notifications over the study period in the
Darling Downs. Outbreak years were experienced in 2003/2004,
2005/2006 and 2014/2015 with 283, 257 and 247 cases respect-
ively. Cases were notified year-round, but March had the highest
monthly average RRV notifications while August had the lowest.

Monthly RRV data were most strongly correlated with climate
at a one-, two- or three-month lag (Supplementary Table 2).
Seven climate variables had strong correlations (|rs| > 0.50) with
RRV data: vapour pressure (mean and maximum), temperature
(minimum, mean minimum and numbers of days with minimum
temperature below 15 °C) and sea level pressure (maximum and
mean). RRV was weakly to moderately correlated (0.20 ⩽ |rs|⩽
0.50) with 48 of the 59 climate variables examined. Only five vari-
ables had very weak or negligible correlation with RRV at all lags.
Despite the large number of variables strongly correlated with
monthly RRV data, the correlation matrix (Fig. 3) showed that
many of these climate variables were strongly correlated with
each other. This resulted in the removal of five variables from
the pool of variables considered in the predictive model.

The final model consisted of the Southern Oscillation Index
(1-month lag), number of days per month with less than 1 mm

of rainfall (2-month lag), mean vapour pressure (2-month lag)
and mean relative humidity at maximum daily temperature
(1-month lag) as well as a population offset term (log of the popu-
lation size) (Table 1). Diagnostic plots of the final model
(Supplementary Figures 1a & 1b) indicate that there were signifi-
cant deviations from the uniformity and dispersion assumptions
of the negative binomial regression.

Overall, the model was moderately effective at predicting RRV
case numbers, with a Pearson’s correlation (r = 0.427, 95% CI
0.195–0.615, P-value <0.001) between predicted and observed
monthly RRV case numbers for the period of July 2014 to June
2019 (Fig. 4). In addition, the model was also moderately effective
at predicting the occurrence (not magnitude) of monthly RRV
outbreaks and non-outbreaks. The observed and predicted
monthly RRV case numbers as well as the calculated outbreak
threshold are shown in Figure 5. In 39 of 60 test months (accuracy
of 65%), the predicted outcome (outbreak or non-outbreak
month) matched the observed outcome (outbreak or non-
outbreak month). The model had 59% sensitivity and 73% speci-
ficity (see Table 2).

Discussion

This study is one of only a few to investigate whether climatic and
environmental variables are useful predictors of RRV cases and
outbreaks in an inland region [15, 26, 27]. The model was mod-
erately effective at predicting monthly RRV case numbers and
outbreaks in the Darling Downs, consistent with the role that cli-
mate and environment play in the disease ecology cycle and trans-
mission of RRV. In the final model, which included the Southern
Oscillation index and variables measuring precipitation, vapour
pressure and relative humidity, predicted cases moderately corre-
lated with observed case numbers over the testing period (r =
0.427). In addition, the model was moderately successful at pre-
dicting outbreak and non-outbreak months with an accuracy of
65%, sensitivity of 59% and specificity of 73%. This means the
model is slightly skewed towards false positives instead of false
negatives and may sometimes indicate that public health action
is needed when it is not. Direct inclusion of factors such as reser-
voir and vector population dynamics may improve model efficacy
if such data were available.

All of the climate variables included in the final negative bino-
mial regression model are similar to those included in previous
RRV research [10, 14–16, 18, 19, 26, 27, 33–35]. For example,
many variables related to vapour pressure were strongly associated
with RRV cases and monthly mean vapour pressure was present
in the final predictive model. In particular, higher mean vapour
pressure was strongly associated with, and used to predict, higher
RRV case numbers occurring two months later. This result is sup-
ported by previous research including Cutcher et al. [15] which
also included vapour pressure as a key predictor of RRV cases
in the inland Victorian region of Mildura. Vapour pressure was
also present in models from Woodruff et al. [35] and Koolhof
et al. [14]. The importance of vapour pressure, as it measures
atmospheric water content, is linked to humidity which greatly
influences mosquito biology and behaviour [14, 15]. Increased
humidity leads to increased blood-feeding frequency and longev-
ity, increasing the chance of RRV transmission between mosqui-
tos, humans and reservoir hosts [3, 12].

Despite the link between vapour pressure and humidity, both
mean vapour pressure and mean relative humidity at maximum
daily temperature were included in the final model because the
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collinearity was not sufficient to need to drop one of variables (ρs =
0.427, P-value <0.001). This may be due to the different optimal
time lags selected for each variable (2 months for mean vapour pres-
sure and 1 month for relative humidity). However, it is also probable
that the key difference between the two measures may explain the
relevance and inclusion of both within the final RRV model.
Vapour pressure is an absolute measure of atmospheric water con-
tent while relative humidity takes temperature into account due to
its impact on the maximum atmospheric water vapour capacity
[36]. Therefore, vapour pressure and relative humidity may have dif-
ferent interactions with RRV disease ecology [3, 12]. The inclusion
of both variables in the final model differs to previous RRV research
which has considered both vapour pressure and relative humidity
and included only one in the final model [14, 15, 35].

Precipitation has also been widely highlighted as a key pre-
dictor of RRV incidence and outbreaks [14–16, 19, 26, 37].
In our study, less than 1 mm of total monthly rainfall was asso-
ciated with low RRV case numbers two months later and was
included in the final model for the Darling Downs. This reaffirms
the importance of precipitation to RRV transmission via the mos-
quito lifecycle and has been supported consistently by previous
RRV research and modelling in other regions of Australia [11].
For example, a precipitation-related variable was included in six

of the eleven models developed to predict RRV cases and out-
breaks in a number of Victorian local government areas [14].

The Southern Oscillation Index (SOI) was the final variable
included in the negative binomial regression model. SOI was posi-
tively associated with RRV occurring one month later in the
Darling Downs. This variable is a measure of the El Niño
Southern Oscillation (ENSO), the regional coupling of atmos-
pheric and oceanic circulation affecting temperature and precipi-
tation in the region [22, 34, 38]. In Australia, El Niño conditions
(negative SOI) lead to cold and dry weather while La Niña (posi-
tive SOI) leads to warm and wet weather conditions [22, 34, 38].
Despite this link between ENSO, precipitation and temperature,
SOI was not strongly correlated with temperature or precipitation
within the Darling Downs. This may be due to the broad and
complex influence of ENSO on the Australian climate and subse-
quently on RRV transmission, which is yet to be fully researched
and understood. Nevertheless, previous studies in Australia have
also associated La Niña conditions, or positive SOI values, with
RRV outbreaks and incidence and used SOI as a predictor vari-
able in modelling [15, 22, 34, 38, 39].

Many other predictive models for RRV have included mea-
sures of temperature, evaporation and evapotranspiration [14,
16, 26, 37]. The absence of these variables in our final model

Table 1. Negative binomial regression model

Independent variable Lag (months) Coefficient IRR (95% CI) P-value Relationship

Southern Oscillation Index 2 0.02 1.02 (1.00, 1.03) 0.03 Positive

Number of days with less than 1 mm of precipitation 1 −0.03 0.97 (0.92, 1.02) 0.16 Negative

Mean vapour pressure 1 2.94 18.92 (8.39, 43.55) <0.001 Positive

Mean relative humidity at maximum daily temperature 2 −0.02 0.98 (0.96, 1.01) 0.18 Negative

Coefficients, incidence rate ratios (IRR) and corresponding 95% confidence intervals and P-values for independent variables included in final negative binomial regression model.

predicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observedpredicted = observed

r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001r = 0.427, p value < 0.001
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may reflect their reduced importance in RRV transmission in the
Darling Downs. However, it is more likely that their absence is
due to the high level of multicollinearity amongst climate vari-
ables, meaning only one variable can be chosen. In fact, variables
measuring temperature, evaporation, evapotranspiration and sea
level pressure were strongly correlated with RRV in the Darling
Downs despite their exclusion from the model.

Temperature, particularly minimum temperature, has been pre-
sent in a great number of RRV models [16, 19, 27, 35, 39].
Temperature is crucial to mosquito survival with temperatures
below or above thermal thresholds leading tomosquito death curtail-
ing RRV transmission [3, 12, 13]. Despite the exclusion of tempera-
ture from the final model for the Darling Downs, most temperature
variables were strongly correlated with RRV cases. Similarly, tem-
perature is also related to relative humidity and the SOI, both of
which were included in our model for the Darling Downs [3].

Another climate group which was strongly negatively asso-
ciated with RRV in the Darling Downs but excluded from the
final model was mean sea level pressure. Prior studies have asso-
ciated low sea level pressure and low sea surface temperature with
high RRV case numbers [14, 15, 33, 35]. In particular, Koolhof

et al. [14] were the first to include sea level pressure as a variable
within RRV predictive models. Though it is unclear how these
oceanic variables affect the disease dynamics of an inland region,
it is hypothesised that sea level pressure and sea surface tempera-
ture are indicators of the broader ENSO phenomenon [34, 38],
included in our model through the SOI.

Solar radiation is the only climate data type investigated in this
study which has not previously been reported as associated with
RRV cases. Our study found that maximum solar radiation in
the Darling Downs was moderately correlated with RRV cases.
However, maximum solar radiation was also strongly correlated
with measures of temperature, evaporation and evapotranspir-
ation. Therefore, the association with RRV cases may reflect its
indirect relationship with other climate variables which directly
affect RRV, rather than solar radiation having a direct effect on
RRV ecology and transmission.

Models developed for other regions of Australia have provided
greater accuracy using a variety of methods including negative
binomial regression, linear regression, logistic regression and (sea-
sonal) autoregression moving average models [14, 19, 33]. While
alternate methods may provide a better predictive model, our

Fig. 5. Time-series plot of observed and predicted monthly RRV case numbers.
Time series plot showing model fitted (training period) and predicted (testing period) (purple) and observed (training and testing period) (grey) monthly Ross River
virus case numbers as well as the moving outbreak threshold (orange). The black vertical line represents the division between training and testing periods. The plot
highlights the seasonality of Ross River virus and three large outbreaks which occurred in 2003/2004, 2005/2006 and 2014/2015.

Table 2. Confusion matrix values

Observed

Outbreak month Non-outbreak month

Predicted Outbreak month True positive (TP)
20

False positive (FP)
14

Non-outbreak month False negative (FN)
7

True negative (TN)
19

True positives, false negatives, false positives and true negatives displayed in the table are used to calculate accuracy, sensitivity and specificity. Accuracy = (TP + TN)/ (TP + TN + FP + FN).
Sensitivity rate = TP/(TP + FN). Specificity rate = TN/(TN + FP).
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findings may indicate a greater complexity of predicting RRV in
inland areas. However, our methodological decisions were based
on previous research methods, informed by existing RRV research
and evaluated after their employment through model testing and
diagnostic plots [14–16, 31, 37]. The greatest strength of this
model is that it was developed based solely on open-access climate
data which is less resource and cost intensive data to collect and
analyse. In addition, the Darling Downs, Queensland was selected
due to its high case numbers. In choosing an area with high case
numbers the final model was more likely to be statistically and
practically important. A weakness is that it is difficult for statis-
tical models to capture the magnitude of variability present in
the number of RRV cases notified year-to-year and
month-to-month. Moreover, the slight changes to the RRV case
definition over the study period, may have influenced the consist-
ency and accuracy of the model. Finally, there is potential for out-
break years to have strongly influenced model development.

This research demonstrates that a moderately effective predict-
ive model for RRV case numbers and outbreaks can be developed
for an inland region using solely climate data and confirms the
importance of climate to RRV prediction. Future research should
include a wider array of variables (e.g. sea surface temperature, sea
level, river flow, river height) and compare a broad range of ana-
lytical methods. In particular, machine learning and artificial
intelligence could be used to automate more robust prediction
models [40]. Moreover, this research did not examine interactions
between climate variables (e.g. optimal rain and temperature con-
ditions) which may be important for mosquito population and
RRV disease ecology. Future research should include a pre-
planned, disciplined and rigorous exploration of which climate
and environment interactions may be useful for predictive mod-
elling. The development of predictive models – that make use
of available climatic, environmental, demographic and entomo-
logical data – is important in monitoring and managing vector-
borne diseases such as RRV in which a capacity to predict out-
breaks can support timely population action.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268823000365.
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