SOME ELEMENTARY CONVERSE PROBLEMS IN
ORDINARY DIFFERENTIAL EQUATIONS*

D.E. Seminar

(received April 11, 1968)

1. Introduction. In studying differential equations, the usual
task is to determine properties of the solutions of such equations from
a knowledge of the coefficient functions. The converse question, namely,
of determining the coefficient functions from properties of solutions,
also has significance. It has been studied especially in the case of
Sturm- Liouville equations.

A discussion of the inverse Sturm-Liouville problem can be found
in [8, Chapter 8], where references are given to the work of
W.A. Ambarzumiam, G. Borg, I.M. Gelfand, M.G. Krein, B.M. Levitan,
N. Levinson and W.A. Marchenko on this problem. Work of a quite
different character, but dealing also with questions of a converse type
arising from Sturm- Liouville equations, has been done by O. Boruvka
and his colleagues and students [2].

Here we are concerned with far more elementary considerations
than the foregoing. The problems discussed arise from [6] and [7].
There it was necessary to prove [6, §9] that two linearly independent
solutions, yi(x), yz(x), of a Sturm- Liouville equation y'" + f(x)y =0

2
could have y21(x) + YZ(X) equal to a constant only if f(x) were also

constant¥** , The proof given [6, p. 72] was based on the general method
used throughout that paper and was quite brief.

*The results arose from discussions in a seminar on differential equations
at Aarhus University, Denmark, during 1964-65. The participants were
Jytte Bretlau, Villy K. Christensen, Jens J¢rgen Holst, Margrethe Jgrgen-
sen, Tove Lund Jprgensen, Karen Skov Larsen, Lee Lorch,

Niels Wendell Pedersen, Per Amdal Steffensen, Leif Hautop Sérensen,
and Preben Dahl Vestergaard.

*%In [6, p. 72] it is stated that if yi + yg equals a (non-zero) constant X,

-2
then f(x) =X . Actually, it should be said instead that f(x) = (W/X )2 ,
where W = y1yé - YZYli’ the Wronskian of Yy Yy is a constant

[3, p. 16]. See §2, Remark 3.
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A still simpler proof can be based on a different approach, namely
Appell's differential equation [1; 9, p. 298, example 10]% . This
differential equation is satisfied, under certain conditions (see Theorem 2

2
below), by z(x) = Ay1 + By1y2 + Cyg, where A,B, C are arbitrary

constants. These conditions are satisfied trivially in the applications
of the result involved to [6; 7], so that the Appell equation can be used
to show in an obvious fashion that f(x) is constant when z(x) is
constant (see §2, Remark 2 following Theorem 2).

This approach suggests the additional problems which are
investigated here, and in which we consider partly the general second
order linear homogeneous differential equation rather than only the
Sturm- Liouville equation.

We establish first (§2) circumstances under which the Appell
equation is valid (Appell assumed, apparently, that all derivatives used
exist; less stringent hypotheses suffice), and apply this equation to the
case of constant z. The case of polynomial z is discussed for Sturm-
Liouville equations in §3. For quite general z, further converse
questions are considered in §4.

2. The Appell differential equation. Consider the differential equation

(1) y"+p,y tp,y =0,

2

in an interval I, where the real functions pi(x) and pz(x) are continuous.
For A,B and C arbitrary (real) numbers, and y1,y2 solutions of (1),

we define
(2) (x) = Ay> +B + cyl
2XPEAY, TRV Y, T MY,

and get our first remark:

THEOREM 1. In the notation of (1) and (2) we have

2 2
(3) P,z = Aly))” +Byjyl + Cy,)" - 3 p,2' -3 2"
and
2 2 2 2
(4) P,z = %(z') - %p1zz' - % zz" - +(B"- 4AC)W",

* We became aware of the Appell equation from a reference to it by
P. Hartman [4, p. 182].
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where W is the Wronskian of Yy and Y, -

Proof. Clearly, z'' exists. Computing it from (2) and replacing
y'1’ and y'z’ by means of (1), we get (3). Furthermore, direct

calculation shows that
s2[Aly})® + Byly, + Clyy)®] = (0% - (87 - 420w,

and, using (3) we get (4).

Remarks. 1. The function pz(x) is completely determined by
z(x) and pi(x), except possibly for the term - %(B2 - 4AC)(W/z)2,

provided =z(x) is not identically zero.

2. In a Sturm- Liouville equation (i.e., where p1(x) =0 for x¢l),
pz(x) is completely determined, except for a constant, by z(x), provided

z(x) is not identically zero.

3. When z(x) =0, nothing can be inferred concerning pz(x).

These remarks are obvious from (4), except for values of x for
which z(x) = 0. Suppose that z(§) =0, £ ¢ I. It will be shown that §
is not a limit-point of zeros of z(x). Suppose it were. Then

z(E) =2z'(¢) =0 and, from (4), (B2 - 4AC)W2 = 0. Thus, either
(i) B% - 4AC=0, or (ii) W=o.
. 2 .
In case (i), where B - 4AC =0, z(x) is a perfect square, say
(cviy1 +a2y2)2, and so equals the square of a solution Y(x) of (1).

Clearly, the zeros of Y(x) coincide with those of z(x) so that £ is
a limitpoint also of zeros of Y(x), and so Y(f) = Y'(§) = 0. Hence
Y(x), as a solution of (1), is identically zero [3, p. 13, §6], and so
also is z(x), contrary to the hypothesis.

In case (ii), where W = 0, the solutions yi(x), yz(x) of (1) are
linearly dependent. Hence z(x) is a multiple of the square of one of
them. Thus it follows, as in case (i), that £ is an isolated zero of z(x).

Knowing now that any zero, £, in I, of z(x) is isolated, we
observe that pz(x) is determined by z(x) (up to a constant) for all x
sufficiently close to £, x # £ . Thus, pz(g), being equal to
lim pz(x), is determined as well.

x>
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From (4) we obtain:
COROLLARY 1. (a) I p'z(x) and {pi(x)z'}' exist, then
2 (x) exists.

(b) X p'Z(x) and z'''(x) exist, then {pi(x)z'}' exists.

(c) At points where z(x) # 0, the existence of {pi(x)z'}' and of

z'"'(x) jointly imply the existence of p'z(x).

In the important special case of Sturm- Liouville equations, where
pi(x) =0, x ¢I, Part (b) of Corollary 1 becomes vacuous. Parts (a)

and (c) become

COROLLARY 2. In a Sturm-Liouville equation, the existence of
p"z(x) implies that of z'''"(x) and, when z(x) # 0, conversely.

It is natural to ask if the requirement z(x) # 0 can be eliminated
from Part (c) of Corollary 1 and from the converse part of Corollary 2.
The answer is no:

Example. The differential equation

3 1
y" - 3{25x" + |x|?}y =0, -o<x< +,

in which p'z(O) does not exist, has linearly independent solutions

ﬂdt.

If we put z(x) = yg(x), we see that z'''(x) and {pi(x)z'} ' both

N o

5
- - x
Yi(x) = exp tlxlz} , yz(x) = y1(x) {) [exp {-th’

exist for all x, so that the failure of p.'Z(O) to exist must be blamed on

the fact that z(0) = 0.

COROLLARY 3. If the function z(x) is a non-zero constant, say

X » then

PZ(X) = -% X_Z(B2 - 4AC)W2(XO) exp

P

}
~

A ; .

-2 j p()dt b, x_ oI,
x

. (6]
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In particular, for the Sturm-Liouville equation where pi(x) =0, xel,

PZ(X) = -3 )(—Z(B2 - 4AC)W2 = constant.

Next follow conditions under which the Appell differential equation
is valid:

THEOREM 2. If p'z(x) exists and if either (p1z')' or z''' exists,

then z(x) satisfies the Appell equation in the form

2
"n + n e + + 1
(5) z 2piz + (p,2") (2py +4p, )z
' =
+ (Zp2 + 4p1p2)z 0.

If, in addition, p'i(x) exists, then (5) may be written in the more

usual form
2
e " '+ + '+ '+ = 0.
(6) z 3piz + (p1 2p1 4p2)z : (Zp2 4p1p2)z 0

Proof. From Corollary 3 it follows that, if either (p1z')‘ or

z'""!" exists, so too must the other.

Differentiating (3), then replacing y'i, y'é from (1) gives

2"+ 2p,[2Ay,y) + Bly,y,)' +2Cy,y}]

2 2
1 ) '
+ 4p1[A(y1) + BY1Y2 + C(YZ) ]

" 1 1 -0,
+ (p1zi) + szz + 2p2z

The first bracket equals z'. The second is seen, using (3), to be
%z" +%p1z' + pzz . These substitutions made, (5) and (6) follow.

Remarks 1. For the Sturm-Liouville differential equation
y'" o+ pz(x)y = 0, Corollary 3 shows that if z(x) is a constant # 0, then

so too is pz(x). This provides an alternative proof of the result in

[6, §9, p. 72], which treats the special case of z(x) in which
A=C=1, B=0.
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2. For the cases to which the result of [6, §9] is actually applied
in [6, 7], a very simple direct proof of that result can be given via
Appell's equation, since, in these cases, p'z(x) = f'(x) is known a priori

to exist. Direct calculation then shows that z(x) = yi(x) + yg(x) satisfies
(6). With z(x) constant # 0 and pi(x) = 0, it is then obvious that

p'z(x) = 0, and the proof is complete.

3. The value of the constant ¢, to which pz(x) of the previous

remark is equal, is clearly seen by Corollary 3 to be (W/)()2 (cf. foot-
note ¥*). This constant value of pz(x) is positive. But pz(x) could

also be either (identically) zero or a negative constant, depending on the
2 2
sign of the discriminant B - 4AC. I 2z(x) = vy = constant, then

pz(x) =0. If z(x)-= y1y2 = constant, then pz(x) is a negative constant.

3. The Sturm-Liouville equation with polynomial z. Here we
consider the special case of (1) with p1(x) =0 and determine the form

of pz(x) when z(x) is a prescribed polynomial. This is a natural

generalization of the case in which z(x) is constant, discussed in §2.

THEOREM 3. Suppose that p1(x) =0, x¢lI, andthat z is a

n 2 2
lynomial, i.e., x)=a +ax+...1ta R here a + ...+ > 0.
polynomial, e z(x) o 1 L X W o a_

Then_

2n-2

-2
l = ot
(7) p.(x) =z T[4 +cox CZn—BX

’ ]

for those x for which z(x) # 0, where the constant d has the value

2 2 2
- 1B - 4AC)W + % a, - 3 a a,, and
c = - i(p+1)'1 g (p-it+3)(p-i+2)(p-iti)a.a
p 2 o P i“p-i43”

I

where ai:O for i>n, p=0,..., 2n-3.

Proof. This is a straightforward consequence of Theorem 1. The
coefficients ¢ can be determined by noting
P

2

=-3(B" - 4AC)W2 - Szz" +%(z')2.
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Differentiating both sides gives

2n-3
<, + 2c1x + ...+ (Zn-Z)czn_3x = - %zz"'

n-3

]

n
= - %[ao tax ... +anx ][6a3+ ce +n(n-1)(n—2)anx

and Cp can now be obtained by equating coefficients, following (Cauchy)

multiplication of the last m=mber.

Remarks. 1. I z(x) is quadratic or less, i.e., if
-2
= = ... = =0, = , i.e., = = ... = = 0.
a; =a, a_ then pz(z) dz i.e €, =<y o3

This shows again that pz(z) is a constant when z(x) is.

2. For z(x) of degree n, with n at least 3, then the numerator

of pz(x) is of degree 2n-2. In fact, CZn—3 = - %n(n-i)(n-Z)aIZ1 4 0.

4. Possible forms of z. Here we consider the relations between
solutions of (1) and (6) and note that z(x) can range over the entire class
of non-vanishing, twice differentiable functions. But first a lemma is
needed; it can be verified by direct calculation.

LEMMA 1. Let W(qi, cee Qs x) denote, as usual, the Wronskian

of the n functions CVERERTIC I each of which is assumed to be differentiable

n-1 times. X u(x), v(x) are arbitrary twice differentiable functions, then

W(uz, uv, vz;x) = 2[W(u, v;x)]3 .

THEOREM 4. Let z(x) be a given twice differentiable function,
such that z(x) # 0, x ¢ I. Then there exists a function pz(x) such that

for any pair u(x), v(x) of linearly independent solutions of the Sturm-
Liouville differential equation

(8) y' o+ p,(xly = 0, xe I,

there exist constants A, B, C such that

z=Au2+Buv+Cv2, xecl.
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Proof. Define

(9) pZ(X) = _% Z'Z[Zzn _ % (Z.)Z] .

The (non-vanishing) function z(x) may clearly be assumed to be
1

positive, so we may define w(x) = [z(x)]z. Thus w(x) is a solution of
(8) with pz(x) defined by (9) and therefore w(x) = Aiu(x) +B1V(x).

Hence

2 2 2 2 2 2
z = Aiu + 2A1B1uv +B1v = Au + Buv + Cv . q.-e.d.

1
Remark. Obviously A>0, C>0 and B = 2(AC)® with z positive.
A converse to Theorem 2 is also valid:

THEOREM 5. I u(x), v(x) are three-times differentiable functions

2
such that uz, uv and v are linearly independent solutions of the Appell

equation (6), then u and v are linearly independent solutions of (1),
xel.

. 2 .
Proof. In (6), put first z = u . On suitable rearrangement of the
resulting expression, this becomes

(10) uf(u" +p1u' +p2u)'] + (3u’ +2p1u) (u" +p1u' +p2u) =0 .
Similarly, we obtain also
" 1 1 1 " 1 -
(11) v[ (v +p1v +p2v) ] + 3v +2p1v) (v +p1v +p2V) 0.
Putting z = uv in (6) gives

Sv[(u“ +p1u' +p2u)'] +uf(v'+ P,V +p2V)']

(12)
+ (3v! +2p1v) (u" +p1u' +p2u) + (3u' +2p1u) (v +p1v' +p2V) = 0.
Multiplying (12) by u-v, and using (10) and (11) gives
(13) 3(uv! - u'v)[v(u"+p1u' +p2u) - u(v"+p1v' +pzv)] =0.
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From the lemma
3 2
2[W(u, v;x)]” = W(u", uv, VZ; x) #0,
" 1 - 1" 1
v(u +p1u +p2u) u(v +p1v +p2v) .

Assume now that the zeros of, say, u have a limit point % inside I.

. . 00
That is, there exists a sequence {x }n such that x -+x , as n-— o,
n'n= n "o

1
and u(xn) =0 for all n.

Then u(x )=ul(x ) =0, and W(u,v;x )=u(x v (x )-u'(x )v(x )=0
o o o o o o o
2 2 . . . 2 2
and so W(u , uv,v ;xo) = 0 . But this is impossible, since u , uv and v
are linearly independent solutions of the differential equation (6).

Thus, the zeros of both u(x) and v(x) are isolated.

Consider now those intervals where u and v are different from
zero. In these intervals we define the function k(x) as follows:

ut'(x)4p, (x)u'(x)4p, (x)ulx)  v!(x)+p, (x)v'(x)+p, (x)v(x)
(14) k(x) = oy = ) ’

Clearly k(x) is differentiable in these intervals. We show now that
k(x) =0 for all x for which it is defined.

From (14) we get:

1

u' + piu' + p,u ku ,

" 1
v o+ P,V + P,V kv .
Substitute this in (10), (41) and (12):

Zk(uz)' + (k! +2p1k)u2 =0
(15) 2y, ' 2 _
2k(v)' + (k +2p1k)v =0

2k(uv)! + (k’+2p1k)uv = 0.

There are two cases to consider:
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1°: There exists an X such that k(xo) # 0 and

1
k (xo) + 2p1(xo)k(xo) #0.
2°: For all x, either k(x) =0 or k'(x) + 2p, (x)k(x) = 0.

In case 10:

From (15) we get:

I

Zk(xo)[uz(xo)]' [Kx ) + 2p1(xo)k(xo)]u2(xo)

Zk(xo)[vz(xo)]' ) + 2p1(xo)k(xo)]vz(xo)

so that
(v )] Pix) ’
u'(x ) u(x )
o ~ o
v'(xo) - v(xo)
But this says that v'(xo)u(xo)—u'(xo)v(xo) = W(u, v; Xo) = 0, which, as the

. 2
lemma shows, contradicts the linear independence of u , uv, v

o
In case 2 :

Let us suppose that there exists an xy such that

k(xﬁ) # 0. Then
k'(xi) + Zpi(xi)k(x1) =0 .

Then from (15),

Zk(xi)[uz(x1)]' -0  or [uz(x1)]' -0,

2k(x )[vi(x ) = 0 or [Pl = 0,

2 )uGe Jv(x )]' = 0 or  [abevlx)]' = 0.
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. 2 2 ..
Thus, we have again that W(u , uv, v ; x,) = 0, a contradiction.

1
Thus, k(x) =0 for all x such that u(x)v(x) # 0, thatis, for such
x we have

(16) u''(x) +p1(x)u'(x) +p2(x)u(x) = v'(x) +p, (x)v'(x) +p2(x)v(x) = 0.

1

By continuity (u'" and v' are both continuous, since they are both
differentiable) we see now that (16) is true for all x. But this shows
that u and v are solutions of (1), as asserted.

. 2 2 .
Remark. In supposing that u , uv, v are solutions of (6) we
have, of course, assumed that p'i, p'2 exist. Theorem 5 remains valid

if we assume somewhat less and work with equation (5) instead of (6).
Therefore our calculations remain valid if we require only that
(piu)', (piv)' and pfz exist.

Finally, we establish a converse to Theorem 1:

THEOREM 6. Let u(x)e C' for x in the open interval I. Suppose

that u''(x) exists for x ¢l whenever u(x) # 0 and that z(x) = uz(x)
satisfies the differential equation

pz(x.)z2 = i—(z')z - %pi(x)zz' - %zz”, xel,

whenever u(x) # 0, where pi(x), pz(x) are continuous for x ¢ I. Then

u(x) satisfies the differential equation (1) for all x ¢ L.

Proof. A straightforward calculation shows that
3
u [u" +p1(x)u' +p2(x)u] = 0, so that the assertion is established for

those x¢ I for which u(x) # 0. To show that it holds also for those
x ¢ I for which u(x) = 0, we must demonstrate that u''(x) exists and
equals —pi(x)u'(x)-pz(x)u(x) for such x.

Two lemmas are needed.

LEMMA 2. Suppose that g(x) is continuous, a<x< b, that

g'(x) exists for a < x<b except possibly for x=§, a<§ <b, and

that g'(E+) = lim g'(x) and g'(€-) = lim g'(x) both exist and are
x>+ x> -

equal. Then g'(f) exists and equals this common value.

A proof of this lemma is given in [5, Theorem 190, pp. 132-133].
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The next lemma can be established for a class of differential
equations broader than (1), as A. Meir remarked in conversation, and
is phrased in a general form.

LEMMA 3. Let u(x) e C', xel and suppose that u'(x) exists
and equals f(x, u, u') whenever u(x) # 0. Suppose further that
f(x, 0, 0) =0, x¢I; that f(x, w, w') is_continuous in x, w, W'
and such that the differential equation w'" =f(x, w, w') has a unique
solution when w(§), w'(§) are specified for a fixed £ ¢ I. Then
u''(x) exists and equals f(x, u, u') for all xe I.

Remark. The uniqueness condition obtains, e.g., when f(x, w, w')
satisfies a Lipschitz condition in w and w' separately [3, p. 12, Theorem
3], and, all the more, when, as in our intended application, f(x, w, w') =
—pi(x)w' - pz(x)w, with p1(x), pz(x) continuous [3, p. 13, §6].

Proof of Lemma 3. The trivial case u(x) =0, x ¢ I, aside, it will
be shown (i) that each zero of u(x) in I is isolated and (ii), that at an
isolated zero of u(x), the function has a second derivative and satisfies
the differential equation.

(i) There exists x € I such that u(xo) # 0 . Define

go = 1.u.b.{x|x> X s u(x) # 0, xel}

If go is an endpoint of I, then nothing more need be proved for
the subinterval x > X . Xe I. Let go be an interior point of I. Then

u(go) = 0, since u(x), being differentiable, is continuous. If u'(éo)

were also zero, then it would follow from our uniqueness assumption
that u(x) =0, xos x <& . But u(x)£0, xo_<_x < go . Hence

W ) #0. -

Thus, go is not a limit-point of zeros of u(x) . It can therefore
be surrounded by a neighbourhood throughout which u(x) # 0 for x # go.
In this neighbourhood we can select X, > go, u(xi) # 0, and, repeating
the above construction, arrive at §1 > X, > go , where gi is either the

right-hand endpoint of I or is an isolated zero. Thus, we see that any
zero of u(x) greater than X in I is isolated.

A similar argument establishes the same property for any zero
of u(x) less than LR in 1.
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(ii) Let £ ¢ I be an isolated zero of u(x). Then

lim {u'(x)} = lim f(x, u, u') = (€, w(£), u'(£))

x—> £+ x—=>£+
= lim f(x, u, u') = lim {u"(x)} ,
x = g— X—»g -
since u" = f(x, u, u') when u(x) # 0, and f(x, u, u'), u(x) and u'(x)

are all continuous.

Applying Lemma 2 now, with g(x) = u'(x), shows that u'(§)
exists and equals f(§, u(§), u'(§)) . This proves Lemma 3.

The proof of Theorem 6 is completed on noting that the differential
equation (1) possesses the uniqueness property hypothesized in Lemma 3,
[3, p. 13, §6].
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