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Abstract

Background. Delineation of changes in neural function associated with novel and established
treatments for social anxiety disorder (SAD) can advance treatment development. We exam-
ined such changes following selective serotonin reuptake inhibitor (SSRI) and attention bias
modification (ABM) variant – gaze-contingent music reward therapy (GC-MRT), a first-
line and an emerging treatments for SAD.
Methods. Eighty-one patients with SAD were allocated to 12-week treatments of either SSRI
or GC-MRT, or waitlist (ns = 22, 29, and 30, respectively). Baseline and post-treatment func-
tional magnetic resonance imaging (fMRI) data were collected during a social-threat process-
ing task, in which attention was directed toward and away from threat/neutral faces.
Results. Patients who received GC-MRT or SSRI showed greater clinical improvement relative
to patients in waitlist. Compared to waitlist patients, treated patients showed greater activation
increase in the right inferior frontal gyrus and anterior cingulate cortex when instructed to
attend toward social threats and away from neutral stimuli. An additional anterior cingulate
cortex cluster differentiated between the two active groups. Activation in this region increased
in ABM and decreased in SSRI. In the ABM group, symptom change was positively correlated
with neural activation change in the dorsolateral prefrontal cortex.
Conclusions. Brain function measures show both shared and treatment-specific changes fol-
lowing ABM and SSRI treatments for SAD, highlighting the multiple pathways through which
the two treatments might work. Treatment-specific neural responses suggest that patients with
SAD who do not fully benefit from SSRI or ABM may potentially benefit from the alternative
treatment, or from a combination of the two.
Trial Registration:. ClinicalTrials.gov, Identifier: NCT03346239. https://clinicaltrials.gov/ct2/
show/NCT03346239

Introduction

Social anxiety disorder (SAD), which involves fear of situations where one may be scrutinized
(American Psychiatric Association, 2013), is common (Baxter, Patton, Scott, Degenhardt, &
Whiteford, 2013; Kessler, Chiu, Demler, & Walters, 2005; Wittchen et al., 2011) and impairing
(Aderka et al., 2012; Stein et al., 2017). Serotonin reuptake inhibitors (SSRIs) pharmacotherapy
is an efficacious first-line treatment for SAD (Curtiss, Andrews, Davis, Smits, & Hofmann,
2017; Davis, Smits, & Hofmann, 2014; Mayo-Wilson et al., 2014), but many patients fail to
respond to treatment (Blanco et al., 2010; Davidson et al., 2004).

Novel treatments that exploit technology and cognitive-neuroscience knowledge may help
to address these challenges (Gober, Lazarov, & Bar-Haim, 2021; Mohr, Burns, Schueller,
Clarke, & Klinkman, 2013). One such treatment is gaze-contingent music reward therapy
(GC-MRT), an eye-tracking-based attention bias modification (ABM) protocol designed to
target threat-related attention in SAD (Armstrong & Olatunji, 2012; Bar-Haim, Lamy,
Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 2007; Lazarov, Abend, & Bar-Haim,
2016; Lazarov, Pine, & Bar-Haim, 2017; Pergamin-Hight, Naim, Bakermans-Kranenburg,
van IJzendoorn, & Bar-Haim, 2015). In GC-MRT, patients’ gaze is monitored during free
viewing of matrices consisting of disgusted and neutral faces. A music track selected by
each patient plays during fixations on neutral faces but stops during fixation on disgusted
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faces. Thus, via gaze-contingent operant conditioning, patients
gradually learn to allocate their attention to neutral over threat
faces. Compared to previous ABM protocols, applying variations
of the dot-probe task (MacLeod, Mathews, & Tata, 1986),
GC-MRT’s free-viewing matrix task holds better internal consist-
ency and test–retest reliability, offering clearer view of underlying
mechanisms and target engagement (Lazarov et al., 2016, 2017;
Shamai-Leshem et al., 2023). Importantly, GC-MRT shows favor-
able clinical outcomes: two open trials of GC-MRT in adults
(Umemoto et al., 2021) and children (Linetzky, Kahn, Lazarov,
Pine, & Bar-Haim, 2019) with SAD reported a significant
pre-to-post clinical improvement with large effect sizes
(h2

p = 0.29 and Cohen’s d = 1.43, respectively), high treatment
adherence, and treatment credibility. One randomized controlled
trial (RCT) (Lazarov et al., 2017) indicated greater efficacy of
GC-MRT relative to a stringent control, and a second RCT
(Arad et al., 2023) found comparably greater symptom reductions
in GC-MRT and SSRI relative to a waitlist control, with no differ-
ence in efficacy between them. These RCTs also demonstrated
cognitive target engagement (i.e. a reduction in dwell time on
threatening stimuli), and a near transfer-of-learning effect in
the presence of a new set of face stimuli not used in training.
Here, we examine treatment-related changes in brain function
during an implicit threat processing task in this second RCT
before and after GC-MRT, SSRI, or a wait period.

Prior work suggests that SSRI treatment alters neural responses
to social threats in the amygdala (Faria et al., 2012; Furmark et al.,
2005, 2002; Giménez et al., 2014; Gingnell et al., 2016; Klumpp &
Fitzgerald, 2018; Phan et al., 2013), insula (Giménez et al., 2014;
Schneier, Pomplun, Sy, & Hirsch, 2011), anterior cingulate cortex
(ACC) (Burkhouse et al., 2018; Giménez et al., 2014; Schneier
et al., 2011), medial prefrontal cortex (mPFC) (Burkhouse et al.,
2018; Giménez et al., 2014; Phan et al., 2013), hippocampus
(Pantazatos, Talati, Schneier, & Hirsch, 2014), and temporal cor-
tex (Pantazatos et al., 2014; Phan et al., 2013; Schneier et al.,
2011). These studies used various threat processing paradigms,
ranging from public speaking challenges to cognitive tasks apply-
ing visual presentations of socially threatening faces or words.
Within these tasks, a distinction is made between tasks involving
explicit emotion processing, where participants rate or respond to
an emotional feature of a stimulus (e.g. indicating whether two
faces express a similar emotion); and tasks involving implicit
emotion processing, where stimuli contain emotional features,
but participants do not rate or respond to these features.
Importantly, these two types of tasks engage different neuro-
cognitive processes (Critchley et al., 2000; Fusar-Poli et al.,
2009; Mathersul et al., 2009; Norman, Polyn, Detre, & Haxby,
2006; Pantazatos, Talati, Pavlidis, & Hirsch, 2012). Whereas
most of the above-mentioned studies applied explicit threat pro-
cessing tasks (Burkhouse et al., 2018; Gingnell et al., 2016; Phan
et al., 2013; Schneier et al., 2011), Pantazatos et al. (2014) used
a task involving implicit processing of social threat. The neural
findings associated with these two types of tasks may differ.
For example, Pantazatos et al. (2014) reported functional changes
in the hippocampus, not evident in studies applying explicit threat
processing tasks to test SSRI’s neural effects.

Data on ABM-associated changes in neural responses to social
threats also indicate altered amygdala response (Britton et al.,
2014; Månsson et al., 2013; Taylor et al., 2013), and changes in
neural activation within the PFC (Browning, Holmes, Murphy,
Goodwin, & Harmer, 2010; Eldar & Bar-Haim, 2010; Shechner
& Bar-Haim, 2016; Taylor et al., 2013). Here too, the variability

in neural findings may be partly attributed to differences in meth-
ods applied to manipulate threat processing. For example,
whereas Månsson et al. (2013) and Taylor et al. (2013) used expli-
cit matching of facial expressions, Hariri et al. (2002), Britton
et al. (2014) and Eldar and Bar-Haim (2010) assessed neural
responses during performance on the dot-probe task, involving
implicit threat processing. Additionally, unlike the above-
mentioned tasks, in the dot-probe task the presentation of faces
is followed by a target, thus the faces and the target stimulus
are not processed simultaneously. Browning et al. (2010) used a
task in which implicit emotion processing took place. This task
also involved direct (respond to faces) and indirect (respond to
bars appearing alongside faces) processing. Importantly, this
combination of implicit emotion processing during allocation of
attention toward or away from faces makes it highly relevant for
testing neural correlates of GC-MRT – an ABM protocol facilitat-
ing the modification of attention toward and away from faces
using operant conditioning which is implicitly based on the
faces’ emotional valence.

Two studies specifically focused on neural correlates of
GC-MRT (Umemoto et al., 2021; Zhu et al., 2023). These studies,
however, examined pre-treatment predictors of clinical improve-
ment. To our knowledge, no studies reported on pre- to
post-GC-MRT treatment changes in neural activation during
threat processing.

The current study examines common and specific effects of
GC-MRT and SSRI pharmacotherapy on brain function during
implicit social threat processing in patients with SAD.
Functional magnetic resonance imaging (fMRI) data was col-
lected at baseline and post-treatment, or an equivalent waiting
period in a control group. To focus analyses on changes in neural
activation when participants perform task demands that either
match or contradict trained attentional patterns in GC-MRT,
we used a task adapted from (Browning et al., 2010), and followed
their analytic approach. Treatment-related changes in neural acti-
vation were tested by placing conflicting demands on attention.
To this end, a computation of a training incongruent v. training
congruent signal contrast was performed, reflecting brain
response to conditions that are incompatible with the GC-MRT
training direction. Compared to trials in which the direction of
patients’ attention conforms with their training, trials in which
the attentional demands conflict with the training are generally
expected to elicit greater activation in brain regions associated
with attention control (Bishop, Duncan, Brett, & Lawrence,
2004; Browning et al., 2010; MacDonald, Cohen, Andrew
Stenger, & Carter, 2000). The following hypotheses were tested
in relation to this contrast:

Hypothesis 1: We expected that relative to the waitlist control,
GC-MRT and SSRI would alter function within a neural circuit in
which aberrant functioning was previously reported in SAD, and
which has been suggested to be affected following SAD treatment
(Brühl, Delsignore, Komossa, & Weidt, 2014; Etkin & Wager,
2007). Specifically, considering existing evidence on neural activa-
tion during implicit emotion processing in SAD (Blair et al., 2011,
2008; Gentili et al., 2008; Klumpp, Post, Angstadt, Fitzgerald, &
Phan, 2013b), the effect of treatment on it (Britton et al., 2014;
Burkhouse et al., 2018, 2017; Eldar & Bar-Haim, 2010;
Pantazatos et al., 2014), and the relevance of the tested contrast
to visual processing and attention control functions (Browning
et al., 2010), we expected that these alterations would occur in
parieto-occipital regions, ACC, and PFC. Evidence on the direc-
tionality of change is inconsistent, with some studies reporting
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increases, others reporting decreases, and some reporting no
changes in activation within these regions. Given the diversity
of brain regions involved, the inconsistent findings concerning
change direction, and the limited previous evidence on
GC-MRT-related neural changes, we decided to use a conservative
whole brain analysis to identify treatment-related changes in the
current study.

Hypothesis 2: GC-MRT and SSRI would induce distinct
treatment-specific functional changes. Considering the reported
neural correlates of ABM for SAD (Browning et al., 2010; Eldar
& Bar-Haim, 2010; Taylor et al., 2013; Umemoto et al., 2021;
Zhu et al., 2023), and the role of attention control in the mechan-
isms underlying ABM (Shechner & Bar-Haim, 2016), we expected
that GC-MRT will be associated with alterations in the ACC and
PFC, two key areas associated with attention control. In addition,
based on Browning et al. (2010), we expected greater recruitment
of these areas at post-treatment in GC-MRT patients when they
are specifically required to direct attention opposite to their
trained direction (i.e. the incongruent>congruent contrast),
reflecting greater effort to control attention.

Hypothesis 3: Within the GC-MRT group, greater clinical
improvement would relate to greater functional change in areas
associated with attention control.

Additional separate exploratory analyses were conducted to
examine changes in neural response to threat compared to neutral
faces occurring during direct face processing (i.e. when patients
are instructed to process faces) and indirect face processing (i.e.
when patients are instructed to process bars appearing alongside
faces).

Methods and materials

Participants

For the full protocol, sample-size determination, randomization,
and blinding details see Arad et al. (2023) (ClinicalTrials.gov
Identifier: NCT03346239). Of the 105 enrolled patients, 8 were
ineligible for MRI procedures, 15 did not provide post-treatment
MRI data, and one was excluded due to low accuracy on the task
(<70%). Pre-to-post analyses (162 MRI scans) were conducted on
81 participants (mean [S.D.] age = 29.62 [7.05] years, 49 females):
GC-MRT (n = 29), SSRI (n = 22), and waitlist control [WL, n =
30] (see online Supplementary Fig. S4). Groups did not differ
in demographic or clinical characteristics at baseline (see online
Supplementary Table S3). No patients in the GC-MRT group
received SSRI treatment during their participation in the trial.
Participants provided a written informed consent as approved
by the local IRBs.

Treatments

SSRI treatment followed a standard 12-week protocol of
Escitalopram (Kasper, Stein, Loft, & Nil, 2005). This flexible
dose protocol started from 5mg and increased to 20 mg according
to patients’ response. Meetings with a psychiatrist occurred at
weeks 1, 3, 6, and 12 of treatment.

For a detailed description of the GC-MRT protocol see Arad
et al. (2023). Ten GC-MRT sessions were delivered – 8 twice-
weekly over four weeks and two additional sessions at weeks 8
and 11. For each session patients selected a music track they
wanted to listen to. Patients then viewed 30 matrices comprised
of 16 faces each – 8 disgust (threat) faces and 8 neutral faces.
Faces were taken from the Karolinska Directed Emotional Faces

database (KDEF; Lundqvist, Flykt, and Öhman, 1998). Gaze
was tracked throughout, and music was played only when fixating
on neutral faces and stopped when fixating on disgusted faces.
This gaze-contingent operant conditioning procedure induces
attentional preference for neutral over threat faces.

The WL group received 8 sessions of GC-MRT, delayed by 12
weeks.

Neuroimaging attention task

A task adapted from Browning et al. (2010) was used (Fig. 1).
Each trial began with a fixation cross (500 ms), followed by a
face flanked by two bars (200 ms). Participants’ attention was
manipulated by instructing them to either identify the gender of
the face (‘attend face’ blocks) or determine whether the flanking
bars are aligned (‘attend bars’ blocks). Eight blocks of 20 trials
each (160 total) were presented. In each block disgusted and neu-
tral faces appeared with equal frequency. Faces were taken from
the KDEF database (Lundqvist et al., 1998); importantly, actors
that appeared in the attention task were different from actors
that appeared in GC-MRT training. Task structure was factorial:
two levels of emotion (disgust/neutral) by two levels of attention
(toward/away from the presented face). This enabled an analysis
contrasting brain function during conditions congruent with
GC-MRT training (attending toward neutral faces and away
from threat faces) with brain function during conditions incon-
gruent with GC-MRT training (attending toward threat faces
and away from neutral faces). Participants had up to 3250 ms to
respond, followed by a jittered inter-trial interval ranging 50–
3050 ms (mean duration 1550 ms). Every two blocks (‘attend
face’/‘attend bars’ presented in a random order) were performed
within a single run with a short break between runs. The stimuli
set used in the fMRI task differed from the set used during
GC-MRT sessions to avoid a potential effect of familiarity on
neural response. The task was run using Presentation
(Neurobehavioral Systems Inc., USA, http://www.neurobs.com/).
For a pre-treatment manipulation check and test-retest reliability
of the task, see online Supplementary Material.

Image acquisition and preprocessing

MRI data was acquired on a Siemens Magnetom Prisma 3 T scan-
ner (Siemens, Erlangen, Germany), using a 64 channel phased
array head coil. The protocol comprised structural and functional
MRI scans as following: high resolution anatomical localizer
image (MPRAGE): TR = 1750 ms, TE = 2.61 ms, TI = 900 ms,
flip angle = 8o, isotropic resolution of 1mm3. Functional MRI was
obtained by multiband echo-plannar imaging (EPI, University of
Minnesota sequence) to acquire blood-oxygen-level-dependent
(BOLD) sensitive images: TR = 2000ms; TE = 30ms; flip angle =
82°; IPAT = 2, multiband factor = 2, isotropic resolution of 2mm3

and 66 axial slices 2 mm thick (no gap) to ensure full brain cover-
age. Additionally, field-maps were acquired using two opposite
coded (AP, PA) echo-plannar scans: TR = 8152ms; TE = 66ms;
flip angle = 90°; multiband factor = 1; isotropic resolution of
2mm3 and 66 axial slices 2 mm thick (no gap). All images were
acquired in the anterior commissure – posterior commissure
(AC–PC) line extending down from the top of the brain.

Functional images were pre-processed using the FMRIB
Software Library, version 6.0.0 (Oxford University, Oxford,
United Kingdom, http://www.fmrib.ox.ac.uk/fsl) (Jenkinson,
Beckmann, Behrens, Woolrich, & Smith, 2012). The following
steps were conducted: removal of non-brain structures using

Psychological Medicine 3

https://doi.org/10.1017/S0033291724001521 Published online by Cambridge University Press

http://www.neurobs.com/
http://www.neurobs.com/
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
https://doi.org/10.1017/S0033291724001521


BET (Smith, 2002); temporal high pass filtering with a cut off of
100s; fieldmap-based distortion-correction; rigid body motion
correction, aligned to middle volume as an initial template
image, using MCFLIRT (Jenkinson, Bannister, Brady, & Smith,
2002); spatial smoothing with a 5 mm isotropic Gaussian kernel.
To normalize images to the Montreal Neurological Institute
(MNI) template, low-resolution EPI images were first registered
to higher-resolution EPI reference images (expanded functional
images), then to a high resolution T1 images (using a linear, nor-
mal search registration) (Jenkinson et al., 2002; Jenkinson &
Smith, 2001), then to the 152T1 MNI template (using a non-
linear registration) (Andersson, Jenkinson, & Smith, 2007).

To reduce artifacts, Independent Component Analysis (ICA)
was performed using Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC).
Components from ten participants were hand classified as
‘noise’ or ‘signal’ (Griffanti et al., 2017). Then, using this hand-
classified training dataset, data was cleaned with FMRIB’s
ICA-based Xnoiseifier (FIX, version 1.066). This procedure also
included motion confounds cleanup with highpass filtering.

An event-related design was used for the task. 500 ms events
(‘attend toward threat’, ‘attend toward neutral’, ‘attend away
from threat’, ‘attend away from neutral’) were convolved with a
canonical double-gamma HRF to generate the model regressors.

Social anxiety

The primary clinical outcome was total score on the
clinician-administered Liebowitz Social Anxiety Scale (LSAS)
(Liebowitz, 1987). Cronbach’s alphas in the current study were
0.86 and 0.92 at pre- and post-treatment, respectively.

General procedure

Following a baseline clinical evaluation, participants completed an
MRI session consisting of structural, resting state, and the atten-
tion task. Then, participants were randomly assigned to 12
weeks of SSRI, GC-MRT, or WL. In week 13, a clinical evaluation
and a second MRI session with the same parameters as the base-
line session took place. The study was conducted from July 2018
to December 2021.

Figure 1. During the fMRI task, participants were instructed to indicate either the gender of the face or whether the flanking bars are aligned. In each block, half of
the trials included a disgusted face and half of the trials included a neutral face. fMRI, functional magnetic resonance imaging.
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Statistical analyses

Clinical effects were tested using a repeated-measures analysis of
variance (ANOVA) with group (GC-MRT, SSRI, WL control) as a
between-subjects factor and time (baseline, post-treatment) as a
within-subject factor. Significant ANOVA results were followed
by pairwise corrected independent samples t tests.

The effects of group, time, congruency with GC-MRT training,
and group-by-time-by-congruency interaction on task accuracy
and reaction-time (RT), were tested using repeated-measures
ANOVAs with group (GC-MRT, SSRI, WL control) as a between-
subjects factor and time (baseline, post-treatment) and congru-
ency (incongruent trials, congruent trials) as within-subject
factors. The task was designed to be behaviorally insensitive
(Browning et al., 2010) and therefore allowed interpretation of
the imaging data not confounded by behavioral differences
between groups or time-points.

Imaging data analyses used FMRIB Software Library (FSL), ver-
sion 6.0.0 (Oxford University, Oxford, United Kingdom, http://www.
fmrib.ox.ac.uk/fsl) (Jenkinson et al., 2012). Incongruent>congruent
blood-oxygen-level-dependent (BOLD) signal contrast maps were
computed: training-incongruent trials were ‘attend face’ trials with
disgusted faces and ‘attend bars’ trials with neutral faces, and
training-congruent trials were ‘attend face’ trials with neutral faces
and ‘attend bars’ trials with disgusted faces. This contrast probed
specific alterations in threat-related attentional processes – the target
of GC-MRT. Specifically, following the logic of Browning et al.
(2010), the selected contrast enabled testing neural activation asso-
ciated with attention allocation patterns that are opposite to the pat-
tern to which GC-MRT patients were trained (Browning et al.,
2010), and presumably requiring greater neural recruitment to
oppose. Contrast images were calculated individually for each par-
ticipant in each run, and then collapsed across all four runs to gen-
erate post>pre contrast maps.

The statistical analyses used to test hypotheses 1 and 2 were
modeled after a recently published paper by Goldin et al. (2021),
using a similar design to address similar questions. To test hypoth-
esis 1, treated patients (GC-MRT/SSRI) were compared to WL par-
ticipants on the post>pre contrast maps. To test hypothesis 2,
GC-MRT patients were compared to SSRI patients on the post>pre
contrast maps. For hypothesis 3, the correlations between
pre-to-post clinical change (total LSAS difference score) and
pre-to-post activation change (incongruent>congruent contrast dif-
ference maps) were tested. Although our hypotheses suggest poten-
tial effects in specific brain regions, given the scarcity of evidence
on neural changes following GC-MRT and the possibility that
this new treatment may affect additional unpredicted brain regions,
we opted to apply a conservative whole-brain analytic approach
and bidirectional hypotheses testing. Of note, although we defined
the post>pre as the positive contrast when computing brain maps,
the opposite direction of change, i.e., pre>post contrast, could also
be represented in clusters with negative z values. This way, both
contrasts were tested, and a bidirectional approach was maintained
both for the group and time variables. Whole brain analyses were
corrected for multiple comparisons using parametric cluster-based
correction. A cluster forming threshold of z > 2.3 was applied at the
voxel level, followed by an FWE correction at a significance level of
p < 0.05 that was applied to the resulting clusters. This approach,
combining voxel-level thresholding and FWE correction, is widely
used in fMRI studies. It is also the default correction approach in
FSL. Similar thresholds for cluster forming and FWE correction
(z > 2.3; p < 0.05) have been applied in a number of fMRI studies

in psychopathology (e.g. Aghajani et al., 2016; Foerde, Steinglass,
Shohamy, & Walsh, 2015; Walsh et al., 2019; White et al., 2013),
and specifically by Browning et al. (2010) from whom the task
used in the current study was adapted.

Two additional contrasts were used to explore changes in
neural response to threat during direct (i.e. when patients are
instructed to process the faces) or indirect (i.e. when patients
are instructed to process the bars) face processing. Threat v. neu-
tral contrasts were computed separately for ‘attend face’ trials (i.e.
contrasting toward threat trials v. toward neutral trials) and
‘attend bars’ trials (i.e. contrasting away from threat trials v.
away from neutral trials). An additional contrast, toward neutral
v. away from threat, was also tested. Group comparisons (treated
patients v. WL patients and GC-MRT v. SSRI patients) of
pre-to-post changes were performed using these separate con-
trasts as described for the ‘incongruent v. congruent’ contrast.

Between-group and between-time differences in framewise dis-
placement were tested to verify that significant effects emerged
from the above-mentioned analyses were not related to head
motion differences (see online Supplementary Material).
Localization of significant clusters was based on peak coordinates
reported in previous studies. For further specification, distinct
clusters within the ACC were numbered from rostral (specified
as ‘ACC1’) to caudal (specified as ‘ACC3’).

To interpret significant results and explore significance and
direction of change within each group and time-point, post-hoc
analyses were performed using the average percent signal change
within each significant cluster (Anticevic et al., 2014; Su et al.,
2016). For hypotheses 1 and 2, these analyses were performed
as follows: First, simple effects of group and time were tested
using independent samples t tests and paired samples t tests,
respectively. For completeness, exploratory time-simple-effect
tests for each of the treatment groups (GC-MRT, SSRI) were per-
formed for the clusters extracted from the treatment v. WL main
analysis; and a time-simple-effect was tested within the WL group
for the cluster extracted from the GC-MRT v. SSRI main analysis.
Finally, for clusters in which there were significant baseline
between-group differences in mean BOLD signal change, we con-
ducted additional analyses controlling for baseline BOLD signal
change as a covariate; these tests for baseline group differences
and subsequent covariate analyses are described in the online
Supplementary Material. For hypothesis 3, exploratory post-hoc
analysis included averaging the percent signal change within the
examined cluster both at baseline and at post-measurement,
then calculating the difference between the two time-points for
each participant. A simple correlation coefficient was used to
test the association between this activation change and change
in total LSAS scores. Fisher’s r-to-Z transformations were used
to compare the magnitude of these correlations between groups.
To test whether activation-symptom correlation specifically char-
acterized brain regions that emerged as sensitive to intervention in
the current study, we also applied this analysis using the mean
activation change within the significant clusters that emerged
from analyses performed for hypotheses 1 and 2. All these
follow-up analyses were conducted using IBM SPSS Statistics, ver-
sion 28.0.

Results

Data analysis included 81 patients (GC-MRT: n = 29; SSRI:
n = 22; WL: n = 30).
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Demographics and clinical outcomes

Clinical outcomes in MRI-completers resembled those noted in
the full sample (Arad et al., 2023). This involved a significant
Time-by-Group interaction (F[2, 78] = 10.00, h2

p = 0.20 [90%
CI 0.07 to 0.32]). Follow-up analyses indicated that both
GC-MRT and SSRI were associated with lower symptoms post-
treatment compared to the WL control group (GC-MRT: t[57]
=−3.56. p < 0.001, d = −0.93 [95% CI −1.46 to −0.38]; SSRI:
t[50] =−3.49. p < 0.001, d =−0.98 [95% CI −1.56 to −0.39]).
No significant difference in LSAS scores was noted between
GC-MRT and SSRI post-treatment ( p = 0.95). For detailed clin-
ical results of the full sample, including Clinically Significant
Change and Reliable Change, see Arad et al. (2023). Also see
Arad et al. (2023) for a description of cognitive target engagement
(i.e. changes in dwell time on threat faces) among GC-MRT
patients.

Neuroimaging

Task behavioral performance

Per design, the attentional task was behaviorally insensitive
(Browning et al., 2010) with high accuracy at pre- (M = 91%,
S.D. = 8%) and post-treatment (M = 92%, S.D. = 9%). There were
no significant effects of time, group, congruency, or
time-by-group-by-congruency interaction on accuracy ( ps>
0 .22). As expected, there was a significant main effect of time
on RT, with lower RTs at post-treatment scans compared to base-
line scans (F[1, 78] = 23.43, h2

p = 0.23 [90% CI 0.10 to 0.35]).
There were no significant effects of group, congruency, or
time-by-group-by-congruency interaction on RT ( ps > 0.17).
For additional analyses of behavioral performance conducted sep-
arately for all four task conditions, see online Supplementary
Material.

Treatments v. waitlist control (hypothesis 1)

When required to direct attention contrary to GC-MRT training
(incongruent>congruent contrast), treated patients showed
greater pre-to-post increase in BOLD signal change in ACC2

(one of the two more rostral of the significant ACC clusters)
and the right inferior frontal gyrus (rIFG), compared to WL par-
ticipants (Table 1 and Fig. 2). In ACC2, a significant activation
increase was noted among treated patients (t[50] = −4.34,
p < 0.001, d =−0.61 [95% CI −0.90 to −0.31]) whereas WL
patients showed a significant decrease in activation (t[29] = 3.36,

p = .002, d = 0.61 [95% CI 0.22 to 1.00]). In the rIFG, WL parti-
cipants showed an activation decrease (t[29] = 4.19, p < 0.001,
d = 0.76 [95% CI 0.35 to 1.17) whereas treated patients showed
no change in activation (t[50] = −1.59, p = 0.12, d =−0.22 [95%
CI −0.50 to 0.06]).

Simple effects analyses performed separately for the two treat-
ment groups revealed that for both ACC2 and rIFG clusters,
activation increased in the GC-MRT group (ACC2: t[28] =−3.96,
p < 0.001, d =−0.73 [95% CI −1.14 to −0.32]; rIFG: t[28] =
−2.35, p = 0.03, d =−0.44 [95% CI −0.81 to −0.05]). For SSRI
patients, ACC2 activation increase was marginally significant (t
[21]=−2.02, p = 0.056, d =−0.43 [95% CI −0.86 to 0.11]),
and rIFG activation did not significantly change (t[21] = 0.75,
p = 0.46, d = 0.16 [95% CI −0.26 to 0.58]) (Fig. 2).

GC-MRT v. SSRI (hypothesis 2)

Compared to SSRI patients, GC-MRT patients showed a greater
pre-to-post increase in incongruent>congruent signal change in
ACC3 (the more caudal of the significant ACC clusters; see
Table 1 and Fig. 3). Follow-up analyses indicated a significant
pre-to-post increase in neural activation within this cluster among
GC-MRT patients (t[28] =−4.24, p < 0.001, d =−0.79 [95% CI
−1.20 to −0.36), whereas the opposite pattern emerged in SSRI
patients (t[21] = 3.61, p = 0.002, d = 0.77 [95% CI 0.28 to 1.24]).

Applying a simple effect analysis on the same cluster in the
WL control group indicated no significant pre-to-post change
in mean signal change (t[29] = 1.07, p = 0.29, d = 0.19 [95% CI
−0.17 to 0.55]) (Fig. 3).

Neural change – clinical change association (hypothesis 3)

Whole brain analysis revealed that in the GC-MRT group, a posi-
tive correlation was noted between pre-to-post symptom change
and incongruent>congruent activation change, within a single
cluster in the dorsolateral prefrontal cortex (dlPFC) (see Table 1
and Fig. 4). Follow-up analysis indicated a strong correlation
between symptom change and this cluster’s averaged activation
change (r = 0.75, p < 0.001, R2 = 0.56 [95% CI 0.34 to 0.78])
(Fig. 4). For the SSRI and WL groups, the correlations between
symptom change and averaged activation change within this clus-
ter were not significant (all ps > 0.39); r-to-Z transformations
showed that the observed correlation in the GC-MRT group
was greater than the correlations in the SSRI and WL groups
(r-to-Zs = 3.29 and 4.13, ps < 0.001, respectively). No significant
clusters emerged for clinical and neural change correlations in

Table 1. Significant clusters emerged for the incongruent>congruent contrast and the attend-threat>attend-neutral contrast (direct threat processing), in group
comparisons of pre-to-post BOLD activation increase and correlation tests of clinical improvement and pre-to-post BOLD activation increase association

Contrast Analysis Region MNI coordinates Voxels Z-score (peak)

Incongruent to training >
Congruent to training

Between-group comparisons
Treatment v. WL

ACC2 2 26 16 245 4.62

rIFG 52 28 4 263 3.68

GC-MRT v. SSRI ACC3 2 8 28 259 3.67

Correlation with clinical
improvement (GC-MRT)

dlPFC 30 50 20 346 3.70

Attend threat > Attend neutral Between-group comparisons Treatment v. WL ACC1 2 32 18 1152 4.12

BOLD, blood-oxygen-level-dependent; WL, waitlist; GC-MRT, gaze contingent music reward therapy; SSRI, serotonin reuptake inhibitors; ACC, anterior cingulate cortex; rIFG, right inferior
frontal gyrus; dlPFC, dorsolateral prefrontal cortex; MNI, Montreal neurological institute.
Clusters within the ACC are numbered from rostral (ACC1) to caudal (ACC3).
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the SSRI or WL groups. No significant correlations were found
between symptom change and activation change within brain
regions in which significant clusters were found in hypothesis 1
and 2 (See online Supplemental Table S4).

Direct and indirect threat processing

Treated patients showed greater pre-to-post increase in BOLD
signal change in ACC1 compared to WL participants (Table 1
and Fig. 5) during direct processing of threat faces. In ACC1,
a significant increase in attend threat > attend neutral activation
increase was noted among treated patients (t[50] = −2.69,
p < 0.01, d =−0.38 [95% CI −0.66 to −0.09]) whereas WL par-
ticipants showed a significant decrease in activation (t[29] =
4.85, p < 0.001, d = 0.88 [95% CI 0.46 to 1.30). A separate simple

effects analyses for the two treatment groups showed a non-
significant trend level increase in both GC-MRT and SSRI
groups (GC-MRT: t[28] =−1.90, p = 0.068, d =−0.35 [95% CI
−0.72 to 0.03]; SSRI: t[21] = −1.89, p = 0.073, d = −0.40 [95%
CI −0.83 to 0.04]) (Fig. 5). In this brain region, there were no
significant pre-to-post activation changes during indirect threat
processing (attend threat > attend neutral contrast) (see online
Supplement Fig. S5). No group differences were evident during
indirect threat processing or for the toward neutral v. away
from threat contrast.

Discussion

We investigated common and specific effects of GC-MRT and
SSRI treatments on brain function during social threat processing.

Figure 2. ACC2 and rIFG clusters in which pre-to-post increase in BOLD signal change (incongruent>congruent contrast) was different between treatment (GC-MRT
and SSRI) and WL patients; and the mean BOLD signal change within every significant cluster, by group and time. Separate post-hoc analyses for GC-MRT and SSRI
patients are also presented (striped bars). For simplicity, only time simple-effects significance is labeled (*** p < 0.001; ** p < 0.01; *p < 0.05; † p = 0.056). BOLD,
blood-oxygen-level-dependent; GC-MRT, gaze contingent music reward therapy; SSRI, serotonin reuptake inhibitors; WL, waitlist. Error bars represent standard
errors.

Figure 3. An ACC3 cluster in which pre-to-post increase in BOLD signal change (incongruent>congruent contrast) was different between GC-MRT and SSRI patients;
and the mean BOLD signal change within this significant cluster, by group and time. Post-hoc analysis within this region is also presented for WL participants
(striped bars). For simplicity, only time simple-effects significance is labeled (*** p < 0.001; ** p < 0.01). BOLD, blood-oxygen-level-dependent; GC-MRT, gaze con-
tingent music reward therapy; SSRI, serotonin reuptake inhibitors; WL, waitlist. Error bars represent standard errors.
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Three key findings emerged: (a) activation changes in a rostral
region of the ACC and in the rIFG differentiated between treated
(GC-MRT/SSRI patients) and non-treated waitlist patients; (b)
activation changes in a distinct, caudal cluster within the ACC,
differentiated between GC-MRT and SSRI patients; and (c)
GC-MRT patients showed a strong association between clinical
improvement and dlPFC activation change when required to act
against the action they were trained for in treatment (i.e. attend
threat rather than neutral faces). Together, these results suggest
both common and unique treatment effects of attention bias
modification and SSRI on brain function.

Within the regions that differentiated between treated and
non-treated patients (ACC1, ACC2, and rIFG), patients in the
WL group exhibited decrease in activation in the second session,
possibly reflecting habituation to the previously encountered
stimuli. In contrast, activation in these areas increased signifi-
cantly among treated patients, suggesting a treatment-related
effect. The ACC has been associated with downregulation of

emotional responses and mediation of cognitive influences on
emotion (Bush, Luu, & Posner, 2000; Holroyd & Umemoto,
2016; Segalowitz & Dywan, 2008; Stevens, Hurley, & Taber,
2011). The current findings converge with previous reports on
functional changes within these brain regions following clinically
effective pharmacological and cognitive-behavioral interventions
for SAD (Carlson et al., 2022; Giménez et al., 2014; Goldin,
Manber, Hakimi, Canli, & Gross, 2009a; Goldin, Manber-Ball,
Werner, Heimberg, & Gross, 2009b; Klumpp, Fitzgerald, &
Phan, 2013a; Månsson et al., 2013). The ACC is a part of the sali-
ence network, a neural network attuned to the salience of external
and internal stimuli (Seeley, 2019; Seeley et al., 2007). The salience
network is also specifically involved in detecting changes in facial
emotion expressions (Luo et al., 2014; Rosen et al., 2018).
Irregular function of the salience network was reported in patients
with SAD (see: Kim and Yoon, 2018). Therefore, the current find-
ings may represent treatment-related changes in salience network
function.

Figure 4. A dlPFC cluster in which pre-to-post increase in BOLD signal change (incongruent>congruent contrast) was significantly correlated with clinical improve-
ment among GC-MRT patients. The scatter plot presents the correlation between the mean BOLD signal change within this cluster and the clinical change (GC-MRT:
r = 0.75, p < 0.001, R2 = 0.56; SSRI and WL: ps > 0.39). BOLD, blood-oxygen-level-dependent; GC-MRT, gaze contingent music reward therapy.

Figure 5. An ACC1 cluster in which pre-to-post increase in BOLD signal change during direct threat processing (toward threat > toward neutral) was different
between treatment (GC-MRT and SSRI) and WL patients; and the mean BOLD signal change within this cluster, by group and time. Separate post-hoc analyses
for GC-MRT and SSRI patients are also presented (striped bars). For simplicity, only time simple-effects significance is labeled (*** p < 0.001; ** p < 0.01;
GC-MRT: † p = 0.068; SSRI: † p = 0.073). BOLD, blood-oxygen-level-dependent; GC-MRT, gaze contingent music reward therapy; SSRI, serotonin reuptake inhibitors;
WL, waitlist. Error bars represent standard errors.

8 Omer Azriel et al.

https://doi.org/10.1017/S0033291724001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724001521


The rIFG has been associated with inhibitory control, includ-
ing the intention to stop or slow action, or to suppress an urge for
action (Aron, Robbins, & Poldrack, 2004, 2014; Rubia, Smith,
Brammer, & Taylor, 2003; Shadli et al., 2020; Verbruggen &
Logan, 2008); this may suggest that the two active treatments
for SAD applied in the current study are related to enhanced
recruitment of inhibitory brain functions when patients are
instructed to divert their attention away from neutral stimuli
and toward threatening ones. Such change in inhibitory functions
may be particularly relevant for patients in the GC-MRT group,
due to the requirement in the applied task to respond contrary
to the pattern they had practiced repeatedly during treatment.
Considering that the interaction effect for the rIFG was partially
driven by a decrease in activation in the WL group, it may be
argued that these changes are also related to habituation to the
task in this group. According to this interpretation, it is possible
that treatment countered this basic habituation effect. Notably,
follow-up analyses indeed suggest that whereas GC-MRT patients
show significant increases in both ACC2 and rIFG activations
from pre- to post-treatment, SSRI patients showed only a trend
level increase in ACC2 and a non-significant change in rIFG.
The similar pattern of treatment-related ACC2 activation increase
in both treated groups potentially reflect a change in general
threat monitoring mechanisms tapped into by both the
GC-MRT (see results from Browning et al. (2010)) and SSRI pro-
tocols, and that the rIFG may be more specifically affected by
GC-MRT than by SSRI. This interpretation is also in line with
the results of the exploratory analysis indicating a similar pattern
of change in a close and overlapping region of the rostral ACC
(ACC1) during direct, but not indirect, threat processing. Thus,
the noted activation changes in the rostral ACC could reflect
changes in a more general response to direct threat processing fol-
lowing treatment, that potentially drives the findings that emerged
in ACC2 in training incongruent v. congruent activation.

Importantly, the direct comparison between the two active
treatments in the current study revealed treatment-specific
changes. Patients receiving GC-MRT showed pre- to post-
treatment increase in ACC3 activation, whereas the opposite pat-
tern was noted for SSRI patients. Post-hoc analyses further indi-
cate that within this specific cluster, activation among WL
participants did not significantly change and was similar in pat-
tern to that of the SSRI group. While the cluster differentiating
between treated to non-treated patients in general was located
more rostral within the ACC (ACC2), the cluster distinguishing
pre-to-post treatment changes between GC-MRT and SSRI was
found more caudal (ACC3). The rostral section of the ACC is
often described as the ‘affective’ ACC division, and has been asso-
ciated with emotional conflict and emotion suppression in
healthy individuals, and with symptom provocation in anxiety
(Bush et al., 2000; Drevets & Raichle, 1998; Etkin, Egner,
Peraza, Kandel, & Hirsch, 2006; Polli et al., 2005). The caudal
ACC is typically considered as the ‘cognitive’ sub-region, reported
to be activated when reduction of cognitive conflict is required in
divided-attention and working-memory tasks (Bush et al., 2000;
Drevets & Raichle, 1998; Kerns et al., 2004; Polli et al., 2005). It
is conceivable that GC-MRT patients, who deliberately practiced
diverting their gaze away from threat faces and toward neutral
faces, needed to recruit more caudal-ACC resources when faced
with the opposite requirement in the fMRI task (i.e. attending
toward threatening faces and away from neutral faces).

Moreover, GC-MRT patients showed a strong association
between clinical improvement and dlPFC activation change

when faced with this requirement. These findings join the results
of an earlier study (Browning et al., 2010) using the same task, in
which hyperactivation of the dlPFC was noted among individuals
who were requested to act contrary to the attentional pattern they
had trained for in a manual reaction-time-based ABM interven-
tion (Browning et al., 2010). Of note, the dlPFC is also involved
in emotion categorization (Cacioppo, Crites, Berntson, & Coles,
1993; Freedman, Riesenhuber, Poggio, & Miller, 2003; Zwanzger
et al., 2014). It is possible that GC-MRT uniquely affected
dlPFC function leading to the use of a different categorization
strategy during the attention task. This difference could be man-
ifested in the noted association between symptom change and
dlPFC activation during task performance. Although the findings
in Browning et al., (2010) suggest that the dlPFC may be sensitive
to cognitive changes following ABM, interpreting the activation-
symptom correlation found in the dlPFC in the current study
may be challenging, considering that this brain region did not
emerge as sensitive to shared (hypothesis 1) or distinct (hypoth-
esis 2) treatment effects.

The current results also correspond with a study describing
heightened error-related negativity (ERN) as a predictor of
GC-MRT clinical efficacy for SAD (Umemoto et al., 2021). The
ERN is thought to be generated in the caudal part of the ACC
(Cavanagh & Shackman, 2015; Holroyd & Umemoto, 2016;
Yeung, Botvinick, & Cohen, 2004). It is therefore possible that
GC-MRT specifically elevates threat-related attention processing
in this brain region assisting patients with SAD to down-regulate
their predisposed hypersensitivity to social threats, gain better
ability to disengage from such threats, and subsequently experi-
ence relief in SAD symptoms.

A few limitations of the current study should be noted. First,
although the use of a waitlist control affords an important read
of the effects of repeated assessments on brain function, this con-
dition limits the capacity to differentiate specific neural effects of
active treatment components from those of non-specific treat-
ment effects. Future studies on the neural correlates of these treat-
ments may wish to test their effects on brain function in
comparison to placebo pills and a sham computerized training
control, for the SSRI and GC-MRT treatments, respectively
(Lazarov et al., 2017). Future studies may also wish to compare
GC-MRT to CBT. Whereas we decided to contrast GC-MRT
with a treatment that potentially relies on different mechanisms
of actions, it may also be valuable to examine whether
GC-MRT and CBT – both targeting cognitive processes and
attentional patterns specifically – have common neural mechan-
isms. Second, differential drop-out rates between the groups
may affect the generalizability of the current findings; specifically,
the higher drop-out in the SSRI group could have affected the
characteristics of the final sub-sample on which analyses were
performed. Third, fMRI scans took place at baseline and post-
treatment. An addition of interim mid-treatment scans could
shed additional light on potential between-treatments differences
in the trajectories of neural changes over time. However, it is
worth noting that the clinical effect of GC-MRT has been
shown to last at least three months (Lazarov et al., 2017), and
that the rate of clinical improvement over time in the current
sample closely overlapped in GC-MRT and SSRI treatment (see:
Arad et al., 2023). Fourth, the current study was not powered to
test for all possible main and interaction effects using an omnibus
whole-brain mixed ANOVA. Future studies could use larger sam-
ples to enable such an analysis. Fifth, the currently reported
decrease in activation among WL patients, interpreted here as
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reflecting a habituation effect, may suggest that the attention task
has low test-retest reliability. Although the accuracy and RT mea-
sures derived from the task indicate adequate reliability, correla-
tions between pre- and post-scans in WL patients suggest low
reliability. Unfortunately, low test-retest reliability often charac-
terizes fMRI tasks, and call for the development of more stable
and reliable measures (Bennett & Miller, 2010; Elliott et al.,
2020; Noble, Scheinost, & Constable, 2019, 2021). Future studies
may wish to test long-term functional changes of GC-MRT using
additional follow-up measurements. Previous findings indicate
long-term clinical effects for GC-MRT (Lazarov et al., 2017),
which could be mirrored by certain sustained neural effects over
time. Lastly, considering that SAD has been associated with aber-
rant patterns of neural connectivity during social threat process-
ing (Evans, Bar-Haim, Fox, Pine, & Britton, 2020; Gold et al.,
2016; Gorka et al., 2015; Pantazatos et al., 2014; Sequeira et al.,
2021), future studies could extend the current findings by testing
whether GC-MRT induces changes in the functional associations
between different brain regions. Such studies may focus on the
connectivity between the regions described here as functionally
changing following GC-MRT, their connectivity with the limbic
system (Brühl et al., 2014; Etkin & Wager, 2007; Sylvester et al.,
2012; Xu et al., 2019), and the relations between these connectiv-
ity patterns and SAD symptom change.

In conclusion, the current study shows that both GC-MRT and
SSRI are effective treatments for SAD and lead to changes in brain
function during implicit social threat processing. These changes
take place in brain regions associated with attention control
and inhibitory functions, supporting the role of such basic cogni-
tive processes in the maintenance of SAD symptoms. The results
also highlight the potential of targeting these neuro-cognitive
processes through focused therapeutic interventions. The results
further suggest treatment-specific neural pathways of clinical
change in the ACC and dlPFC, suggesting that patients with
SAD who do not fully benefit from SSRIs or GC-MRT may
potentially benefit from the alternative treatment, or from a
combination of the two.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291724001521.
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