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Abstract

This is an introduction to representation theory and harmonic analysis on finite
groups. This includes, in particular, Gelfand pairs (with applications to dif-
fusion processes à la Diaconis) and induced representations (focusing on the
little group method of Mackey and Wigner). We also discuss Laplace opera-
tors and spectral theory of finite regular graphs. In the last part, we present the
representation theory of GL(2,Fq), the general linear group of invertible 2×2
matrices with coefficients in a finite field with q elements. More precisely, we
revisit the classical Gelfand–Graev representation of GL(2,Fq) in terms of the
so-called multiplicity-free triples and their associated Hecke algebras. The pre-
sentation is not fully self-contained: most of the basic and elementary facts are
proved in detail, some others are left as exercises, while, for more advanced
results with no proof, precise references are provided.
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1.1 Introduction

The present text constitutes an expanded and more detailed exposition of the
lecture notes of a course on Representation Theory delivered by the first named
author at the International Conference and PhD-Master Summer School on
Groups and Graphs, Designs and Dynamics (G2D2) held in Yichang (China)
in August 2019.

One of the main features of Harmonic Analysis is the study of linear oper-
ators that are invariant with respect to the action of a group. In the classical
abelian setting, for instance, this is used to express the solutions of a constant
coefficients differential equation (such as the heat equation) in terms of infinite
sums of exponentials (Fourier series).

Here, we consider a finite (possibly non-abelian) counterpart. Let G be a fi-
nite group, let K ≤G be a subgroup, and consider the G-module L(G/K) of all
complex valued functions on the (finite) homogenous space G/K of left cosets
of K in G. The corresponding space of linear G-invariant operators we alluded
to above, the so-called commutant EndG(L(G/K)), bears a natural structure
of an involutive unital algebra that turns out to be isomorphic to the algebra
KL(G)K of all bi-K-invariant complex valued functions on G. When these al-
gebras are commutative, we say that (G,K) is a Gelfand pair: the terminology
originates from the seminal paper by I. M. Gelfand [40] in the setting of Lie
groups. Finite Gelfand pairs, when G is a Weyl group or a Chevalley group over
a finite field, or the symmetric group Sn = Sym({1,2, . . . ,n}), were studied by
Ph. Delsarte [25], motivated by applications to association schemes of coding
theory, Ch F. Dunkl [30, 31, 32, 33] and D. Stanton [67] with relevant contri-
butions to the theory of special functions, E. Bannai and T. Ito [3] who initi-
ated Algebraic Combinatorics, J. Saxl [59] in the study of Finite Geometries
and Designs, and A. Terras [69] with applications to number theory. A special
mention deserves the work in Probability Theory by P. Diaconis and collabora-
tors [26] with remarkable applications to the study of diffusion processes and
asymptotic behaviour of finite Markov chains. A. Okounkov and A. M. Ver-
shik [55] (see also [16]) used methods from the theory of finite Gelfand pairs
in order to give a new approach to the representation theory of the symmetric
groups. Further expositions of the theory of finite Gelfand pairs and association
schemes can be found in the monographs by R. A. Bailey [2], P.-H. Zieschang
[73], as well as in the survey paper [14] and in our first monograph [15]. We
conclude this bibliographical overview by mentioning the work of R. I. Grig-
orchuk [43] (see also [5, 23, 24]) in connection with the theory of the so-called
self-similar groups.

Given a Gelfand pair (G,K), the simultaneous diagonalization of all G-
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invariant operators can be achieved by means of a particular basis of KL(G)K .
The elements of this basis, called spherical functions, are the analogues of the
exponentials in the classical case and can be defined both intrinsically and as
matrix coefficients of particular representations (the spherical representations).
Besides the trivial though interesting case when the group G is abelian, an im-
portant example of a Gelfand pair is given by (G×G, G̃), with G̃ the diagonal
subgroup: in this case, the spherical functions are nothing but the normalized
characters of G, showing that the theory of central functions on a group can be
treated in the setting of the Gelfand pairs, as a particular case.

By virtue of the Ergodic Theorem, the rate of convergence to the station-
ary distribution of the n-step distributions µn of a finite (ergodic and sym-
metric) Markov chain can be estimated in terms of the second largest eigen-
value modulus of the corresponding transition matrix. An example of a Gelfand
pair is (Sn,Sk× Sn−k), where Sn = Sym({1,2, . . . ,n}) is the symmetric group
of degree n, and, for 1 ≤ k ≤ n/2, we regard Sk = Sym({1,2, . . . ,k}) and
Sn−k = Sym({k+1,k+2, . . . ,n}) as subgroups of Sn. In the 80s Diaconis and
Shahshahani [28] (see also [14, 15]), were able to use this Gelfand pair to find
very precise asymptotics of (µn)n∈N for the Bernoulli–Laplace model of dif-
fusion. In particular, they showed that an interesting phenomenon occurs: the
transition from order to chaos is concentrated in a relatively small interval of
time: this is the cut-off phenomenon. Other important examples, where the the-
ory of spherical functions plays a central role, are the Ehrenfest model of diffu-
sion (see Section 1.5.2) and the random transpositions model [26, 27, 14, 15].

The G-module L(G/K) can be seen as the representation space of the in-
duced representation IndG

K ιK of the trivial representation ιK of K, and we have
that (G,K) is a Gelfand pair if and only if IndG

K ιK decomposes without mul-
tiplicity. More generally, if θ is an irreducible K-representation, the algebra
EndG(IndG

K θ) of intertwiners is isomorphic to a suitable convolution algebra
H (G,K,θ) of complex valued functions on G, and we say that (G,K,θ) is
a multiplicity-free triple if these algebras are commutative; equivalently, if
IndG

K θ decomposes without multiplicity. Multiplicity-free triples were par-
tially studied by I. G. Macdonald [50], by D. Bump and D. Ginzburg [9],
and in [19, Chapter 13] when dimθ = 1; a generalization to higher dimen-
sions, with a complete analysis of the spherical functions, is treated in our
papers [61, 62, 63, 64] and the recent monograph [20]. An earlier application,
where a problem of Diaconis on the Bernoulli-Laplace diffusion model with
many urns was solved, was presented in the second named author’s PhD the-
sis and published in [60]. As pointed out in [19, Chapter 14], our theory of
multiplicity-free triples shed light on the representation theory of GL(2,Fq),
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the general linear group of 2× 2 matrices with coefficients in the field with q
elements, as developed by I. I. Piatetski-Shapiro in [57].

These lecture notes are organized as follows. In Section 1.2, we briefly recall
the basics of the representation theory of finite groups: this includes Schur’s
lemma, some character theory, and the Peter–Weyl theorem. In Sections 1.2.2,
1.2.3, and 1.2.4 we study Gelfand pairs in detail, focusing on spherical func-
tions, the spherical Fourier transform, and the harmonic analysis of invari-
ant operators. Then, in Sections 1.5.1 and 1.5.2 we present the applications
of Gelfand pairs to Markov chains, culminating in the celebrated Diaconis–
Shahshahani upper-bound lemma, and describe the asymptotics for the Ehren-
fest model of diffusion. In Sections 1.6.1 and 1.6.2 we study induced represen-
tations, Frobenius reciprocity, and Mackey theory, and then, in Section 1.6.3,
we apply this machinery to obtain the Mackey–Wigner little group method. In
Section 1.6.4 we introduce the Hecke algebras H̃ (G,K,θ) and H (G,K,θ)

and show that they are both isomorphic to the commutant EndG(IndG
K θ). In

Section 1.6.5 we then define multiplicity-free triples and present their general
theory. After a short overview of the basics of finite fields and their characters
(Section 1.7.1), as an application of the little group method of Mackey and
Wigner we describe all irreducible representations of Aff(Fq), the affine group
over the field with q elements. The last two sections are devoted to the general
linear group GL(2,Fq) and its representations: in relation with the latter, we
limit ourselves to the description of the decomposition of the Gelfand–Graev
representation.

Our presentation is mostly self-contained. However, for the sake of brevity,
some of the proofs are either omitted (but with clear references for a complete
exposition), or sketched, or left as an exercise to the reader. Several other ex-
ercises are proposed as complements and further developments.

Acknowledgments. We express our deep gratitude to Yaokun Wu and Da Zhao
for many valuable comments and remarks. We also thank Rosemary Bailey and
Peter Cameron for their most precious help and concern in the editing process.

1.2 Representation theory and harmonic analysis on finite
groups

In this section, we present the basics of the representation theory of finite
groups and we introduce and study the notion of a finite Gelfand pair, thus
providing a setting for a suitable extension of the classical Fourier analysis.

Our exposition is inspired by Diaconis’ book [26] and to Figà–Talamanca’s
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lecture notes [37] and our monographs [15, 19]. We also took a particular bene-
fit from the monographs by Alperin and Bell [1], Fulton and Harris [39], Isaacs
[46], Naimark and Stern [52], Serre [65], Simon [66], and Sternberg [68]. Ex-
positions of the theory of Gelfand pairs are also presented in the monographs
by J. Dieudonné [29], H. Dym and H. P. McKean [34] , J. Faraut [36], A. Figà-
Talamanca and C. Nebbia [38], S. Helgason [44] and J. Wolf [71] for the gen-
eral case of locally compact groups.

1.2.1 Representations

Let G be a finite group.

Definition 1.2.1 (Representation) A representation of G (also called a G-
representation) is a pair (ρ,V ), where V is a finite dimensional complex vector
space and ρ : G→ GL(V ) is a group homomorphism from G into the group
GL(V ) of all invertible linear transformations of V .

If (ρ,V ) is a representation of G, then one has:

• ρ(1G) = IV
• ρ(g1g2) = ρ(g1)ρ(g2)

• ρ(g−1) = ρ(g)−1

• ρ(g)(av+bw) = aρ(g)v+bρ(g)w

for all g,g1,g2 ∈G, v,w∈V , and a,b∈C, where 1G ∈G is the identity element
and IV : V →V is the identity transformation.

Equivalently, a representation can be viewed as an action α : G×V →V of
G on V by linear transformations by setting α(g,v) := ρ(g)v for all g ∈ G and
v ∈V .

In the following, for the sake of brevity, when a given representation (ρ,V )

is clear from the context, we shall denote it simply by either ρ or V .
The dimension dρ := dimV of the vector space V is called the dimension

of ρ .

Definition 1.2.2 (Sub-representation) Let (ρ,V ) be a G-representation. A
subspace W ≤ V is G-invariant if ρ(g)w ∈W for all g ∈ G and w ∈W . The
pair (ρW ,W ), where ρW (g) := ρ(g)|W for all g ∈ G, is a G-representation,
called a sub-representation of (ρ,V ). We shall then write (ρW ,W )≤ (ρ,V ).

Clearly, dρW ≤ dρ .

Definition 1.2.3 (Irreducible representation) A G-representation (ρ,V ) is ir-
reducible if V admits no nontrivial G-invariant subspaces, that is, the only G-
invariant subspaces W ≤V are W = {0} and W =V .
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We denote by Irr(G) the set of all irreducible representations of G.

The representation of dimension zero is considered to be neither reducible
nor irreducible, just as the number 1 is considered to be neither composite nor
prime.

It is obvious that every one-dimensional representation is irreducible.

Definition 1.2.4 (Equivalent representations) Two G-representations (ρ1,V1)

and (ρ2,V2) are equivalent if there exists a linear isomorphism T : V1 → V2

such that

T ◦ρ1(g) = ρ2(g)◦T

for all g ∈ G. We then write ρ1 ∼ ρ2. We shall refer to T as to an intertwining
isomorphism.

If (ρ1,V1) is equivalent to a sub-representation of (ρ2,V2) we write ρ1 ⪯ ρ2,
and we say that ρ1 is contained in ρ2.

Note that ∼ is an equivalence relation in the set of all G-representations,
which preserves irreducibility and dimension (exercise).

Definition 1.2.5 (Unitary representation) Suppose that a complex vector space
V is equipped with an inner product ⟨·, ·⟩V . A G-representation (ρ,V ) is uni-
tary if, for every g ∈ G, the linear operator ρ(g) is unitary, that is,

⟨ρ(g)v1,ρ(g)v2⟩V = ⟨v1,v2⟩V

for all v1,v2 ∈V .

Note that, if (ρ,V ) is a unitary representation, then

• ρ(g−1) = ρ(g)∗

for all g ∈ G, where ∗ denotes the adjoint operation.

Exercise 1.2.6 (Unitarizability of representations) Suppose that a complex
vector space V is equipped with an inner product ⟨·, ·⟩V . Let (ρ,V ) be a G-
representation. Then when equipping V with the new inner product (·, ·)V de-
fined by

(v1,v2)V :=
1
|G| ∑g∈G

⟨ρ(g)v1,ρ(g)v2⟩V

for all v1,v2 ∈V , the representation (ρ,V ) becomes unitary.
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By virtue of the previous exercise, from now on, we shall consider only
unitary representations. This will not affect equivalence as the next exercise
shows.

Exercise 1.2.7 Let (ρ1,V1) and (ρ2,V2) be two unitary G-representations.
Suppose that ρ1 ∼ ρ2. Then there exists a unitary operator U : V1 → V2 such
that

U ◦ρ1(g) = ρ2(g)◦U

for all g ∈ G.

Hint: Use the polar decomposition T =U |T | for an intertwining isomorphism
T : V1→V2 (for more details, see [19, Lemma 10.1.4]).

We can rephrase the result in the above exercise by saying that two equiva-
lent unitary representations are unitarily equivalent.

Definition 1.2.8 (Dual of a group) The dual of the group G is the quotient
Ĝ := Irr(G)/ ∼. In the following we shall also refer to Ĝ as to a complete set
of irreducible pairwise non-equivalent G-representations.

We shall see later (cf. Theorem 1.2.36) that |Ĝ|< ∞.

Definition 1.2.9 (Direct sum) Let (ρ1,V1) and (ρ2,V2) be two G-
representations. We equip V := V1⊕V2 with the inner product ⟨·, ·⟩V defined
by setting

⟨v1 + v2,v′1 + v′2⟩V := ⟨v1,v′1⟩V1 + ⟨v2,v′2⟩V2

for all v1,v′1 ∈V1 and v2,v′2 ∈V2. The (unitary) G-representation (ρ,V ) defined
by setting

ρ(g)(v1 + v2) := ρ1(g)v1 +ρ2(g)v2

for all g ∈ G and v1 ∈ V1, v2 ∈ V2, is called the direct sum of (ρ1,V1) and
(ρ2,V2) and is denoted by (ρ1⊕ρ2,V1⊕V2).

Note that dρ1⊕ρ2 = dρ1 +dρ2 and that ρi ⪯ ρ1⊕ρ2 for i = 1,2.

Definition 1.2.10 (Conjugate representation) Let (ρ,V ) be a G-representation
and let V ′ denote the dual vector space. The conjugate representation of ρ is
the unitary representation (ρ ′,V ′) defined by setting

[ρ ′(g) f ](v) := f (ρ(g−1)v)

for all g ∈ G, f ∈V ′, and v ∈V .

It is an exercise to check that ρ ′ is unitary (resp. irreducible) if and only if ρ

is unitary (resp. irreducible).
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Exercise 1.2.11 (Orthogonal complement) Suppose that (ρ,V ) is a (unitary)
G-representation and let W ≤ V be a nontrivial G-invariant subspace. Show
that

W⊥ = {v ∈V : ⟨v,w⟩V = 0 for all w ∈W}

is also G-invariant. Deduce that ρ = ρW ⊕ρW⊥ .

From the above exercise and an obvious inductive argument, one immedi-
ately deduces the following:

Theorem 1.2.12 Every G-representation is the direct sum of finitely many
irreducible G-representations.

The above theorem may be rephrased as follows. Suppose that (ρ,V ) is
a G-representation. Then there exist a positive integer n and (not necessarily
distinct) ρ1,ρ2, . . . ,ρn ∈ Ĝ such that ρ ∼ ρ1⊕ρ2⊕·· ·⊕ρn.

Example 1.2.13 (Trivial representation) The trivial representation of a group
G, denoted (ιG,C), is the one-dimensional representation defined by setting
ιG(g) = IdC for all g ∈ G.

Given a finite group G, we denote by L(G) the complex vector space of all
functions f : G→ C. We equip L(G) with the convolution product ∗ defined
by setting, for f1, f2 ∈ L(G),

( f1 ∗ f2)(g) = ∑
h∈G

f1(gh−1) f2(h) for all g ∈ G. (1.1)

With the product ∗, the space L(G) becomes an algebra, called the C-group
algebra of G. Note that L(G) is unital, with unity element δ1G . Moreover, the
map f 7→ f ∗, where f ∗(g) := f (g−1) for all g ∈ G, is an involution.

Example 1.2.14 (Regular representations) Let G be a finite group. Then the
left (resp. right) regular representation of G is the (unitary) representation
(λG,L(G)) (resp. (ρG,L(G))) defined by setting

[λG(g) f ](h) = f (g−1h) (resp. [ρG(g) f ](h) = f (hg))

for all g,h ∈ G and f ∈ L(G).

Exercise 1.2.15 Show that the left (resp. right) regular representation is uni-
tary when L(G) is endowed with the scalar product ⟨·, ·⟩L(G) defined by setting

⟨ f1, f2⟩L(G) := ∑
g∈G

f1(g) f2(g)

for all f1, f2 ∈ L(G).
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Example 1.2.16 (Representations of a cyclic group) Let

G =Cn = {1,a,a2, . . . ,an−1} ∼= Z/nZ

denote the cyclic group of order n. Consider the primitive nth root of unity ω :=
e2πi/n and, for k ∈ Z, let (ρk,C) denote the (unitary) representation defined by

ρk(ah) = ω
khIdC

for all h = 0,1, . . . ,n−1. Note that ρk = ρk′ if k ≡ k′ mod n and that ρk ̸∼ ρk′

if k ̸≡ k′ mod n. In fact, Ĉn = {ρk : k = 0,1, . . . ,n−1}.

Example 1.2.17 (Two particular representations of the symmetric group) Let
G = Sn = Sym({1,2, . . . ,n}) denote the symmetric group of degree n, that is
the group of all bijective maps (permutations) g : {1,2, . . . ,n}→ {1,2, . . . ,n}.

The sign representation of Sn is the one-dimensional representation (sign,C)
defined by

sign(g) =

{
IdC if g ∈ An

−IdC if g ∈ Sn \An

for all g ∈ Sn, where An ≤ Sn is the alternating subgroup (consisting of all
permutations which can be expressed as a product of an even number of trans-
positions).

Let V be an n-dimensional vector space equipped with a scalar product.
Fix an orthonormal basis {e1,e2, . . . ,en} ⊂V . The permutation representation
of Sn (cf. Definition 1.2.50) is the (unitary) representation (ρ,V ) defined by
setting

ρ(g)ei = eg(i)

for all g ∈ Sn and i = 1,2, . . . ,n.

Exercise 1.2.18 Let G = Sn be the symmetric group of degree n.
Show that the sign representation (sign,C) is indeed a unitary representa-

tion.
Show that the permutation representation (ρ,V ) is indeed a unitary repre-

sentation. Let W ≤ V denote the one-dimensional subspace spanned by the
vector e1 + e2 + · · ·+ en. Show that W is G-invariant. Show that

W⊥ = {
n

∑
i=1

αiei : αi ∈ C and α1 +α2 + · · ·+αn = 0}

is equal to the linear span of {ei−ei−1 : i = 2,3, . . . ,n}, and is irreducible. De-
duce that V =W ⊕W⊥ is the decomposition of V into irreducible components.
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Definition 1.2.19 (Commutant) The commutant of two G-representations
(ρ1,V1) and (ρ2,V2) is the vector space

HomG(V1,V2) :={T : V1→V2 : T is linear and T ρ1(g)=ρ2(g)T for all g∈G}.

We refer to its elements as to the intertwiners of ρ1 and ρ2. When V1 =V2 =V
we denote the commutant HomG(V,V ) by EndG(V ). It has a natural structure
of an algebra.

Exercise 1.2.20 Let (ρ1,V1), (ρ2,V2), and (ρ,V) be unitary G-representations.
Given T ∈ HomG(V1,V2), let T ∗ : V2 → V1 denote the adjoint operator. Show
that T ∗ ∈ HomG(V2,V1). Show that the commutant EndG(V ) has a natural
structure of a ∗-algebra.

The following is a celebrated, elementary but extremely useful result of
Schur.

Lemma 1.2.21 (Schur’s lemma) Let (ρ1,V1) and (ρ2,V2) be two irreducible
G-representations. If T ∈ HomG(V1,V2), then either T = 0 or T is an isomor-
phism (and ρ1 ∼ ρ2).

Proof The kernel kerT ≤ V1 and the image ranT ≤ V2 are G-invariant sub-
spaces, and by the irreducibility of ρ1 and ρ2 they must be trivial. If kerT =

{0}, then ranT =V2 and therefore T is an isomorphism; and if kerT =V1, then
T ≡ 0.

Corollary 1.2.22 Let (ρ,V ) be an irreducible G-representation and consider
T ∈ EndG(V ). Then T ∈ CIV .

Proof Let λ ∈C be an eigenvalue of T , so that T −λ IV cannot be an isomor-
phism. As T −λ IV ∈ EndG(V ), Schur’s lemma (Lemma 1.2.21) ensures that
T −λ IV ≡ 0, that is, T = λ IV .

Exercise 1.2.23 Let G be a group. Show that if G is abelian and (ρ,V ) is a G-
representation, then ρ is irreducible if and only if dρ = 1. Show that, vice versa,
if every irreducible G-representation is one-dimensional, then G is abelian.
Hint. For the converse implication, use the following steps:

• A representation (ρ,V ) of G is faithful provided that ρ(g) ̸= IV for all g ∈
G \ {1G}. Show that the regular representations (cf. Example 1.2.14) of G
are faithful.
• Apply Theorem 1.2.12 to the left regular representation of G and deduce that

for every g ∈ G\{1G}, there exists an irreducible representation (ρg,Vg) of
G such that ρg(g) ̸= IV .
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• If G is nonabelian, there exist g1,g2 ∈ G such that g1g2 ̸= g2g1. Use the
previous step, with g = g1g2g−1

1 g−1
2 ̸= 1G to show that (ρg,Vg) cannot be

one-dimensional.

For an alternative solution, see Remark 1.2.43.

Definition 1.2.24 (Matrix coefficient) Let (ρ,V ) be a G-representation and
v,w ∈ V . The matrix coefficient associated with the pair (v,w) is the function
uρ

v,w : G→ C defined by setting

uρ
v,w(g) = ⟨ρ(g)w,v⟩V for all g ∈ G.

If {v1,v2, . . . ,vdρ
} is a basis of V , the matrix coefficient uρ

vi,v j will be simply
denoted by uρ

i, j. Observe that the matrix (uρ

i, j)i, j is the matrix representing the
operator ρ(g) ∈ End(V ) with respect to the basis {v1,v2, . . . ,vdρ

}.

Lemma 1.2.25 (Orthogonality relations) Let (ρ1,V1) and (ρ2,V2) be two ir-
reducible G-representations and suppose that ρ1 ̸∼ ρ2. Then every matrix co-
efficient of ρ1 is orthogonal to every matrix coefficient of ρ2.

Proof Let v1,w1 ∈V1 and v2,w2 ∈V2 and define

L : V1 −→ V2

v 7→ ⟨v,w1⟩V1w2

and

L̃ = ∑
g∈G

ρ2(g−1)Lρ1(g).

It is easy to check that L̃ belongs to HomG(V1,V2) so that, by Schur’s lemma,
L̃ = 0. Thus

0 = ⟨L̃v1,v2⟩V2 = ∑
g∈G
⟨Lρ1(g)v1,ρ2(g)v2⟩V2

= ∑
g∈G
⟨ρ1(g)v1,w1⟩V1⟨w2,ρ2(g)v2⟩V2

= ∑
g∈G

uρ1
w1,v1

(g)uρ2
w2,v2(g)

= ⟨uρ1
w1,v1

,uρ2
w2,v2
⟩L(G).

This shows that the matrix coefficients uρ1
w1,v1 and uρ2

w2,v2 are orthogonal.

Lemma 1.2.26 Let (ρ,V ) be an irreducible G-representation. If {v1, . . . ,vdρ
}

is an orthonormal basis of V , then one has

⟨uρ

i, j,u
ρ

k,ℓ⟩L(G) =
|G|
dρ

δi,kδ j,ℓ
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for all 1≤ i, j,k, ℓ≤ dρ .

Proof We leave the proof as an exercise as a slight modification of the previ-
ous one. Note that in the present setting we have L̃ ∈ CIV .

Exercise 1.2.27 Let (ρ,V ) be a (not necessarily irreducible) G-representation
and fix an orthonormal basis {v1, . . . ,vdρ

} of V . Show that:

• uρ

i, j(g
−1) = uρ

j,i(g);

• uρ

i, j(g1g2) = ∑
dρ

k=1 uρ

i,k(g1)u
ρ

k, j(g2);

• ∑
dρ

j=1 uρ

j,i(g)u
ρ

j,k(g) = δi,k (dual orthogonality relations);

for all g,g1,g2 ∈ G and 1≤ i, j,k ≤ dρ .

Let V be a finite dimensional vector space. We recall that the trace is the
linear map tr : End(V )→ C that satisfies the following two properties:

(T1) tr(xy) = tr(yx) for all x,y ∈ End(V )

(T2) tr(IV ) = dimV .

Note that if {v1,v2, . . . ,vd} is an orthogonal basis of V , then tr(x)=∑
d
i=1⟨xvi,vi⟩V

for all x ∈ End(V ).

Definition 1.2.28 The character of a G-representation (ρ,V ) is the map
χρ : G→ C defined by setting

χ
ρ(g) = tr(ρ(g)) =

dρ

∑
i=1

uρ

i,i(g)

for all g ∈ G, where, for the last term, the diagonal matrix coefficients are
relative to an (= any) orthonormal basis of V .

Remark 1.2.29 Let ρ,σ be G-representations. We denote the unitary group
of complex numbers by T= {z ∈ C : |z|= 1} ⊂ C. Then:

• If dρ = 1, then χρ ≡ ρ : G→ T;
• if ρ ∼ σ , then χρ = χσ (cf. Corollary 1.2.35);
• χρ(1G) = dρ ;
• χρ(ghg−1) = χρ(h);
• χρ(g−1) = χρ(g),

for all g,h ∈ G.

Exercise 1.2.30 Show that |χρ(g)| ≤ dρ for all g ∈ G.
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Corollary 1.2.31 Let ρ1 and ρ2 be two irreducible G-representations. Then

⟨χρ1 ,χρ2⟩L(G) =

{
|G| if ρ1 ∼ ρ2

0 otherwise.

In other words, the characters constitute an orthogonal system in L(G).

Corollary 1.2.32 Let ρ and σ be two G-representations. Suppose that ρ =

ρ1⊕ρ2⊕·· ·⊕ρk is a decomposition of ρ into irreducible representations and
that σ is irreducible. Then, setting mρ

σ := |{i : σ ∼ ρi}|, we have that

mρ

σ =
1
|G|
⟨χρ ,χσ ⟩L(G).

Definition 1.2.33 The (nonnegative) integer mρ

σ is called the multiplicity of
σ in ρ .

Corollary 1.2.34 Let ρ and σ be two G representations. Suppose that ρ ∼
⊕

θ∈Ĝmρ

θ
θ and σ ∼⊕

θ∈Ĝmσ
θ

θ . Then

1
|G|
⟨χρ ,χσ ⟩L(G) = ∑

θ∈Ĝ

mρ

θ
mσ

θ .

Corollary 1.2.35 Let ρ and σ be two G-representations. Then

• ρ is irreducible if and only if 1
|G| ⟨χ

ρ ,χρ⟩L(G) = 1;
• ρ ∼ σ if and only if χρ = χσ .

The following is a fundamental result on the representation theory of finite
groups: it provides a complete description of the decomposition of the regular
representation. It was proved, in the more general setting of compact groups,
by Hermann Weyl and his student Fritz Peter [56].

Theorem 1.2.36 (Peter–Weyl) (1) Every irreducible representation (ρ,Vρ) ∈
Ĝ appears in the left regular representation (λG,L(G)) with multiplicity
equal to its dimension:

L(G)∼
⊕
ρ∈Ĝ

dρVρ .

(2) The set U= {uρ

i, j : 1≤ i, j≤ dρ ,ρ ∈ Ĝ} of matrix coefficients is a complete
orthogonal system in L(G).

(3) |G|= ∑
ρ∈Ĝ d2

ρ .
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Proof (1) Let g,h ∈ G. Since λG(g)δh = δgh we have

χ
λG(g) =

{
|G| if g = 1G

0 otherwise.

Therefore, if ρ ∈ Ĝ the multiplicity of ρ in λG is given by

mλG
ρ =

1
|G|
⟨χρ ,χλG⟩L(G) =

1
|G| ∑g∈G

χ
ρ(g)χλG(g) = χ

ρ(1G) = dρ .

(2) and (3) follow easily by observing that |G| = dimL(G) = ∑
ρ∈Ĝ d2

ρ and
|U|= ∑

ρ∈Ĝ d2
ρ .

Definition 1.2.37 Let G be a finite group. A function f ∈ L(G) is said to be
central if the following equivalent conditions hold:

(1) f is constant on each conjugacy class C (g) := {h−1gh : h ∈ G}, g ∈ G, of
G;

(2) f (gh) = f (hg) for all g,h ∈ G;
(3) f ∗ f ′ = f ′ ∗ f for all f ′ ∈ L(G).

Exercise 1.2.38 Let G be a finite group.

(1) Show that the conditions (1), (2), and (3) in Definition 1.2.37 are equiva-
lent.

(2) Show that the set A of all central functions in L(G) forms a ∗-subalgebra.
(3) Show that f ∗φ ∗ f ∗ ∈A for all f ∈ L(G) and φ ∈A .
(4) Show that χρ ∈A for all G-representations ρ .

Theorem 1.2.39 The characters constitute an orthogonal basis of the vector
space of central functions of L(G). In particular, |Ĝ| equals the number of
conjugacy classes of G.

Proof See [15, Theorem 3.9.10] and/or [19, Theorem 10.3.13.(ii)].

Definition 1.2.40 Let G be a finite group. A function φ : G→C is said to be
positive-definite if the following equivalent conditions hold:

(1) ∑g,h∈G φ(h−1g) f (g) f (h)≥ 0 for all f ∈ L(G);
(2) ∑

n
i, j=1 cic jφ(g−1

j gi) ≥ 0 for all c1,c2, . . . ,cn ∈ C, g1,g2, . . . ,gn ∈ G, and
n≥ 1;

(3) there exists a (unitary) representation (σφ ,Vφ ) of G and a cyclic vector
vφ ∈Vφ such that φ(g) = ⟨σφ (g)vφ ,vφ ⟩Vφ

for all g ∈ G.

In condition (3) above, the vector vφ ∈Vφ being cyclic means that the vectors
σφ (g)vφ , g ∈ G, span Vφ .
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Exercise 1.2.41 Let G be a finite group.

(1) Show that the conditions (1), (2), and (3) in Definition 1.2.40 are equiva-
lent.

(2) Show that a linear combination with positive coefficients of positive-definite
functions is positive-definite as well.

(3) Show that characters of G-representations are positive-definite functions.

Hint. For the implication (1) =⇒ (3), define φ̃ : L(G)→ C by setting

φ̃( f ) := ∑
g∈G

φ(g) f (g)

for all f ∈ L(G), and define≪·, ·≫ : L(G)×L(G)→ C by setting

≪ f1, f2≫ := φ̃( f ∗2 ∗ f1)≡ ∑
g,h∈G

φ(h−1g) f1(g) f2(h)

for all f1, f2 ∈ L(G). Show that ≪·, ·≫ defines a semi-definite sesquilinear
form on L(G). Show that the degenerate elements f ∈ L(G) which satisfy
≪ f , f≫ = 0 form a left ideal I of L(G). The quotient space Vφ := L(G)/I

is a complex vector space with an inner product defined by setting

⟨ f1 +I , f2 +I ⟩Vφ
:=≪ f1, f2≫

for all f1, f2 ∈ L(G): check that the above is well defined.
Finally, define the G-representation (σφ ,Vφ ) by setting

σφ (g)( f +I ) := λG(g) f +I

for all g ∈ G and f ∈ L(G), where λG is the left-regular representation of G,
and set

vφ := δ1G +I ∈Vφ ,

where δ1G ∈ L(G) is the Dirac function at the identity element 1G of G.

The triple (Vφ ,σφ ,vφ ) above is called the GNS-construction, after Israel M.
Gelfand, Mark A. Naimark, and Irving E. Segal.

The following is a finite group version of a celebrated theorem of Salomon
Bochner stating that the finite positive Borel probability measures on a locally
compact abelian group G (e.g., G =R) are the Fourier transform of continuous
positive-definite functions on the Pontryagin dual Ĝ of G (note that R̂ ∼= R)
which take value 1 at 1Ĝ (cf. [58, Theorem IX.9]).

Proposition 1.2.42 Let G be a finite group and let φ ∈ L(G). Then the fol-
lowing conditions are equivalent:

(1) φ is central, positive-definite, and φ(1G) = 1;
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16 T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli

(2) there exists (ασ )σ∈Ĝ, where ασ ∈ [0,1] and ∑
σ∈Ĝ ασ = 1, such that

φ = ∑
σ∈Ĝ

ασ

dσ

χ
σ .

Proof This is left as an exercise (see also [7, Proposition 1.6]).

Condition (2) above may be rephrased by saying that φ is a convex combi-
nation of normalized characters.

Remark 1.2.43 Let G be a group such that dρ = 1 for all (ρ,V ) ∈ Ĝ. It
follows from Theorem 1.2.36.(2) and Theorem 1.2.39 that L(G) is a commuta-
tive algebra. The latter is easily seen to be equivalent to G being abelian. This
constitutes an alternative (more advanced) solution to Exercise 1.2.23.

Definition 1.2.44 Let V1 and V2 be two complex vector spaces endowed with
scalar products. Their tensor product V1⊗V2 is the linear span of {v1⊗v2 : v1 ∈
V1,v2 ∈ V2}, where v1⊗ v2 denotes the anti-bilinear form on V1×V2 defined
by setting

(v1⊗ v2)(u1,u2) = ⟨v1,u1⟩V1⟨v2,u2⟩V2

for all (u1,u2) ∈V1×V2. We equip V1⊗V2 with the scalar product defined by

⟨v1⊗ v2,w1⊗w2⟩ := ⟨v1,w1⟩V1⟨v2,w2⟩V2 for all v1,w1 ∈V1,v2,w2 ∈V2.

If Ai ∈ End(Vi), i = 1,2, we define their tensor product A1⊗A2 ∈ End(V1⊗V2)

by setting (A1⊗A2)(v1⊗ v2) = (A1v1)⊗ (A2v2) for all v1 ∈V1 and v2 ∈V2.
Let (ρ1,V1) (resp. (ρ2,V2)) be a representation of a group G1 (resp. G2).

Their outer tensor product is the (G1×G2)-representation (ρ1 ⊠ρ2,V1⊗V2)

defined by setting

(ρ1 ⊠ρ2)(g1,g2) = ρ1(g1)⊗ρ2(g2) for all (g1,g2) ∈ G1×G2.

Similarly, if (ρ1,V1) and (ρ2,V2) are two representations of the same group
G, their internal tensor product is the G-representation (ρ1⊗ρ2,V1⊗V2) de-
fined by setting

(ρ1⊗ρ2)(g) = ρ1(g)⊗ρ2(g) for all g ∈ G.

After identifying G with the diagonal subgroup G̃ = {(g,g) : g ∈ G} of G×
G, we observe that ρ1⊗ρ2 = ResG×G

G̃
(ρ1 ⊠ρ2).

Exercise 1.2.45 Let ρ1,ρ
′
1 (resp. ρ2,ρ

′
2) be two G1 (resp. G2)-representations.

Show that

(1) χρ1⊠ρ2(g1,g2) = χρ1(g1)χ
ρ2(g2) for all (g1,g2) ∈ G1×G2;
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(2) ρ1 ⊠ρ2 is irreducible if and only if ρ1 and ρ2 are irreducible;
(3) ρ1 ⊠ρ2 ∼ ρ ′1 ⊠ρ ′2 if and only if ρ1 ∼ ρ ′1 and ρ2 ∼ ρ ′2.

From the above exercise one deduces the following:

Theorem 1.2.46 Let G1 and G2 be two groups. Then Ĝ1×G2 = Ĝ1⊠Ĝ2.

Exercise 1.2.47 Let (ρ,V ) be a unitary representation of a group G and let
(ρ ′,V ′) be its conjugate representation (cf. Definition 1.2.10). Show that the
trivial representation of G (cf. Definition 1.2.13) satisfies ιG ⪯ ρ⊗ρ ′.

If A is a (finite) abelian group, then there exist d1,d2, . . . ,dn ∈N with di|di+1,
i = 1,2, . . . ,n− 1 such that A ∼= Cd1 ×Cd2 ×·· ·×Cdn (recall that Cd ∼= Z/dZ
is the cyclic group of order d). The dual of an abelian group has a natural
structure of an abelian group and we have

Â∼= Ĉd1 ×Ĉd2 ×·· ·×Ĉdn
∼=Cd1 ×Cd2 ×·· ·×Cdn

∼= A.

The group isomorphism A ∼= Â is not canonical, but we have the canonical

Pontryagin duality between A and its bidual (the dual of the dual) ̂̂A:

A ∋ g 7→ ψg ∈
̂̂A, with ψg(χ) = χ(g) for all χ ∈ Â.

1.2.2 Finite Gelfand pairs

Let G be a finite group and let K ≤ G be a subgroup.
A function f ∈ L(G) is K-invariant on the right (resp. on the left) if f (gk) =

f (g) (resp. f (kg) = f (g)) for all g ∈ G and k ∈ K. Then f is bi-K-invariant
if it is K-invariant both on the left and the right. We denote by L(G)K (resp.
KL(G)) the subspace of L(G) of K-invariant functions on the right (resp. on the
left).

Let X = G/K = {gK : g ∈ G} be the homogeneous space of left cosets of
K in G and observe that we can identify L(G)K with L(X) = { f : X → C}:
indeed, the map L(X) ∋ f 7→ f̃ ∈ L(G)K , defined by

f̃ (g) := f (gK) for all g ∈ G

yields a linear isomorphism from L(X) onto L(G)K .
More generally, suppose that G acts transitively on a set X (that is, for all

x1,x2 ∈ X there exists g ∈ G such that gx1 = x2; equivalently, for all x ∈ X
the G-orbit Gx := {gx : g ∈ G} of x is all of X). Fix x0 ∈ X and denote by
K = StabG(x0) := {g ∈ G : gx0 = x0} the stabilizer of x0 in G. Then the map
X ∋ gx0 7→ gK ∈ G/K is a bijection.
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Similarly, if K\G/K = {KgK : g ∈G} denotes the set of double cosets of K
in G, then the space of bi-K-invariant functions

KL(G)K := { f ∈ L(G) : f (k1gk2) = f (g),∀k1,k2 ∈ K, g ∈ G}

is isomorphic to both L(K\G/K) and
KL(X) := { f ∈ L(X) : f (kx) = f (x), for all x ∈ X and k ∈ K};

the second isomorphism is given, again, by the map f 7→ f̃ restricted to KL(X).
Note that if f1, f2 ∈ L(X), then

⟨ f1, f2⟩L(X) =
1
|K|
⟨ f̃1, f̃2⟩L(G).

Exercise 1.2.48 Let G act transitively on a set X . Consider the diagonal action
of G on X×X given by g(x1,x2) := (gx1,gx2) for all g ∈G and x1,x2 ∈ X . Fix
x0 ∈ X and let K = StabG(x0). Show that the following quantities are all equal:

(1) the number of G-orbits on X×X ;
(2) the number of K-orbits on X ;
(3) |K\G/K|.

Hint. Show that the map that associates with a G-orbit Θ on X ×X the subset
Ω := {x ∈ X : (x,x0) ∈Θ} yields a bijection between the set of all G-orbits on
X ×X and the set of all K-orbits on X . Also show that the map KgK 7→ Kgx0

yields a bijection between the set of all double cosets of K in G and the set of
all K-orbits on X .

Exercise 1.2.49 (1) Show that for f1, f2 ∈ L(G) we have that f1 ∗ f2 is K-
invariant on the left (resp. right) if f1 (resp. f2) is K-invariant on the left (resp.
right). Deduce that KL(G)K is a two-sided ideal of L(G).

(2) Check that the map L(G) ∋ f 7→ f K ∈ L(G)K , with

f K(g) :=
1
|K| ∑k∈K

f (gk), ∀g ∈ G

is well defined and it is the orthogonal projection onto the subspace of right
K-invariant functions.

(3) Check that the map L(G) ∋ f 7→ K f K ∈ KL(G)K , with

K f K(g) :=
1
|K|2 ∑

k1,k2∈K
f (k1gk2), ∀g ∈ G

is well defined and it is a conditional expectation, that is, K( f1 ∗ f ∗ f2)
K =

f1 ∗K f K ∗ f2 for all f1, f2 ∈KL(G)K and f ∈ L(G).
(4) Show that ( f1 ∗ f2)

∗ = f ∗2 ∗ f ∗1 for all f1, f2 ∈ L(G).
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Definition 1.2.50 Suppose that G acts transitively on a set X . The permuta-
tion representation (λ ,L(X)) is the G-representation defined by setting

[λ (g) f ](x) = f (g−1x) for all f ∈ L(X),g ∈ G,x ∈ X .

Exercise 1.2.51 Show that the permutation representation (λ ,L(X)) is uni-
tary.

Proposition 1.2.52 Suppose that G acts transitively on a set X. Let x0 ∈
X and set K = StabG(x0). Then EndG(L(X)) and KL(G)K are isomorphic as
algebras.

Proof Given a linear map T : L(X)→L(X), there exists a matrix (r(x,y))x,y∈X

such that

[T f ](x) = ∑
y∈X

r(x,y) f (y) for all f ∈ L(X) and x ∈ X . (1.2)

We have that T ∈ EndG(L(X)) if and only if r(gx,gy) = r(x,y) for all g ∈ G
and x,y ∈ X , and this is in turn equivalent to saying that r is constant on the
G-orbits on X×X . Define ψ : X → C by setting

ψ(x) = r(x,x0) for all x ∈ X . (1.3)

Note that ψ is K-invariant: ψ(kx) = r(kx,x0) = r(kx,kx0) = r(x,x0) = ψ(x),
so that ψ̃ ∈KL(G)K . Moreover (1.2) becomes

[T̃ f ](g) = [T f ](gx0) =
1
|K| ∑h∈G

r(gx0,hx0) f (hx0)

=
1
|K| ∑h∈G

f (hx0)r(h−1gx0,x0) =
1
|K|

[ f̃ ∗ ψ̃](g), (1.4)

and we say that 1
|K| ψ̃ ∈

KL(G)K is the kernel of T .
However, if T1,T2 ∈ EndG(L(X)) and ψ̃1, ψ̃2 are the associated kernels, we

have that the kernel of T1 ◦T2 is 1
|K|2 ψ̃2 ∗ ψ̃1. Thus, if we set f ♯(g) = f (g−1)

for all f ∈ L(G) and g ∈ G, we deduce that the desired isomorphism is given
by T 7→ 1

|K| (ψ̃)♯.

Definition 1.2.53 (Gelfand pair) (G,K) is a Gelfand pair if the algebra KL(G)K

is commutative.

Exercise 1.2.54 (Symmetric Gelfand pairs) Let G be a finite group and let
K ≤ G be a subgroup. Suppose that

g−1 ∈ KgK for all g ∈ G. (1.5)
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Show that (G,K) is a Gelfand pair. We then say that (G,K) is a symmetric
Gelfand pair.

More generally, we have:

Exercise 1.2.55 Suppose that there exists τ ∈ Aut(G) such that

g−1 ∈ Kτ(g)K for all g ∈ G. (1.6)

Show that (G,K) is a Gelfand pair. We then say that (G,K) is a weakly sym-
metric Gelfand pair.

Exercise 1.2.56 Let G̃ = {(g,g) : g ∈ G} denote the diagonal subgroup of
G×G.

(1) Show that (G×G, G̃) is a Gelfand pair. (See [62] for a more general con-
struction.)

(2) Show that the Gelfand pair (G×G, G̃) is symmetric if and only if G is
ambivalent, that is, every element g ∈ G is conjugate in G to its inverse
g−1.

Exercise 1.2.57 Suppose that G acts transitively on a set X ; let x0 ∈ X , set
K = StabG(x0), and consider the diagonal action of G on X ×X . Show that
(G,K) is a symmetric Gelfand pair if and only if the G-orbits on X ×X are
symmetric, i.e. G(x,y) = G(y,x) for all x,y ∈ X .

Exercise 1.2.58 Let G act on a metric space (X ,d) and suppose that the action
is two-point homogeneous (or distance transitive) i.e., G(x1,y1) = G(x2,y2) if
d(x1,y1) = d(x2,y2). Show that (G,K) is a symmetric Gelfand pair.

Definition 1.2.59 A G-representation (ρ,V ) is multiplicity-free if it does not
contain two equivalent irreducible representations, in formulæ,

ρ =⊕
θ∈Ĝmρ

θ
θ ⇒ mρ

θ
≤ 1 for all θ ∈ Ĝ.

Theorem 1.2.60 The following conditions are equivalent:

(1) (G,K) is a Gelfand pair;
(2) EndG(L(X)) is commutative;
(3) (λ ,L(X)) is multiplicity-free.

Proof The equivalence between (1) and (2) follows from Proposition 1.2.52.
Suppose that (3) holds, i.e.

L(X) =⊕N
i=0Vi

with Vi irreducible and Vi ̸∼Vj if i ̸= j.
If T ∈ EndG(L(X)), then Ti = T |Vi is either trivial (Ti = 0) or injective (since
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kerTi is a G-invariant subspace of Vi). In the latter case ranTi ≤ L(X) is G-
invariant and isomorphic to Vi. Thus ran(Ti)∩Vj ≤ Vj is either 0 or Vj. This
holds only if j = i. Therefore, by Schur’s lemma there exists λi ∈ C such that
Ti = λiPVi (with PVi the orthogonal projection on Vi) and T = ∑

N
i=0 λiPVi . If

S ∈ EndG(L(X)) is another intertwiner, then S = ∑
N
i=0 µiPVi and therefore we

have ST = ∑
N
i=0 µiλiPVi = T S, showing the commutativity of EndG(L(X)).

Vice versa, suppose that (2) holds. If L(X) is not multiplicity-free, then
L(X) = V ⊕W ⊕U with V ∼W irreducible. Let R ∈ HomG(V,W ) be an iso-
morphism. Consider the linear operators S,T : L(X)→ L(X) defined by setting

S(v+w+u) = R−1w

T (v+w+u) = Rv

for all v ∈ V, w ∈W, u ∈ U . We have that T,S ∈ EndG(L(X)): indeed, for
v ∈V, w ∈W, u ∈U , and g ∈ G,

T λ (g)(v+w+u) = T (λ (g)v+λ (g)w+λ (g)u)

= Rλ (g)v

= λ (g)Rv

= λ (g)T (v+w+u).

The proof for S is completely analogous. Observe that ST v= v, while T Sv= 0,
thus showing that EndG(L(X)) is not commutative.

With the notation of the above proof, we have the following:

Corollary 1.2.61 The map EndG(L(X))∋ T 7→ (λ0,λ1, . . . ,λN)∈CN+1 is an
algebra isomorphism.

From the above results we deduce :

N +1 = |{irreducible sub-representations in L(X)}|
= dimEndG(L(X))

= dimKL(G)K

= |K\G/K|
= |{K-orbits on X}|.

1.2.3 Spherical functions

In this section we suppose that (G,K) is a Gelfand pair.

Definition 1.2.62 (Spherical function) A function φ ∈KL(G)K is spherical if
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• for every f ∈K L(G)K there exists λ f ∈ C such that f ∗φ = λ f φ ;
• φ(1G) = 1.

Note that if φ is a spherical function and f ∈KL(G)K , then λ f = [ f ∗φ ](1G).

Lemma 1.2.63 Let φ be a spherical function. Define Φ : L(G)→C by setting

Φ( f ) = ∑
g∈G

f (g)φ(g−1) (1.7)

for all f ∈ L(G). Then Φ is a linear multiplicative functional on KL(G)K , that
is, Φ( f1∗ f2)=Φ( f1)Φ( f2) for all f1, f2 ∈KL(G)K . Vice versa, every nontrivial
multiplicative linear functional on KL(G)K is determined by a unique spherical
function.

Proof We leave it to the reader to check that Φ is a multiplicative linear func-
tional.

Vice versa, suppose that Φ is a multiplicative linear functional on KL(G)K .
Then we can extend Φ to a linear functional Φ̃ on L(G) by setting Φ̃( f ) =
Φ(K f K) for all f ∈ L(G). By Riesz’ representation theorem there exists ψ ∈
L(G) such that Φ̃( f ) = ∑g∈G f (g)ψ(g−1). We leave it to the reader to check
that the function φ := KψK ∈ KL(G)K is spherical and satisfies (1.7) for all
f ∈KL(G)K .

Proposition 1.2.64 (Basic properties of spherical functions) Let φ and ψ be
two distinct spherical functions. Then:

• φ(g−1) = φ(g) for all g ∈ G;
• φ ∗ψ = 0;
• ⟨λ (g1)φ ,λ (g2)ψ⟩L(G) = 0 for all g1,g2 ∈ G (in particular φ ⊥ ψ).

Proof We leave it to the reader.

Theorem 1.2.65

|{spherical functions}|= |K\G/K|= dimKL(G)K .

In particular, the spherical functions constitute an orthogonal basis for the
space of all bi-K-invariant functions on G.

Proof By Proposition 1.2.52 and Corollary 1.2.61, the algebras KL(G)K and
CN+1 are isomorphic. The statement follows by observing that the only multi-
plicative linear functionals on CN+1 are the maps

Φ j : CN+1 → C
(α0,α1, . . . ,αN) 7→ α j

j = 0,1, . . . ,N.
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For f ∈ L(G)K define f̌ ∈ L(X) by setting f̌ (gx0) = f (g) for all g ∈ G (as
usual, x0 = K ∈ G/K; equivalently, x0 ∈ X and K = StabG(x0)).

Theorem 1.2.66 Let φ0,φ1, . . . ,φN ∈KL(G)K be the spherical functions. Set

Vi = span{λ (g)φ̌i : g ∈ G} ≤ L(X)

for i = 0,1, . . . ,N. Then

L(X) =
N⊕

i=0

Vi

is the decomposition of the permutation representation into irreducible sub-
representations.

Proof Each Vi is G-invariant and, being cyclic (that is, G-generated by a sin-
gle vector), is irreducible. Moreover Vi ⊥ Vj if i ̸= j (cf. Proposition 1.2.64).
Since there are exactly N + 1 irreducible components of L(X), we conclude
that the V ′i s exhaust all of L(X).

Definition 1.2.67 (λ |Vi ,Vi) is called the spherical representation associated
with φi.

We always choose φ0 ≡ 1 so that V0 is the trival representation.

Exercise 1.2.68 The spherical functions of the Gelfand pair (G×G, G̃) (cf.
Exercise 1.2.56) are the normalized characters of G, namely, the bi-G̃-invariant
functions ϕσ , σ ∈ Ĝ, defined by

ϕσ (g,h) =
1

dσ

χ
σ (g−1h)

for all g,h ∈ G.

Let (ρ,V ) be a G-representation. We denote by

V ρ,K = {v ∈V : ρ(k)v = v, for all k ∈ K}

the subspace of K-invariant vectors. If the representation ρ is clear from the
context we will simply write V K for V ρ,K . However, note that L(G)K =L(G)ρG,K

while KL(G) = L(G)λG,K (cf. Example 1.2.14) and we write KL(X) for L(X)λ ,K

(cf. Definition 1.2.50).
For the proof of Theorem 1.2.71 we need a couple of classical results from

the theory of group actions, namely the so-called Burnside lemma and the
Wielandt lemma. The first result is not due to Burnside himself, who merely
quotes it in his book [10], attributing it instead to Frobenius, although it was
already known to Cauchy (cf. [54, 72]). For a proof we refer to [6] (see also
[15, Lemma 3.11.1]).
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Exercise 1.2.69 (Burnside’s lemma) Let G be a finite group acting (not neces-
sarily transitively) on a finite set Ω. Denote by (λ ,L(Ω)) the permutation rep-
resentation, defined by setting [λ (g) f ](ω) = f (g−1ω) for all g∈G, f ∈ L(Ω),
and ω ∈Ω. Denote by χ = χλ the associated character. Show that

1
|G| ∑g∈G

χ(g) =
1
|G| ∑

ω∈Ω

|StabG(ω)|= number of G-orbits in Ω.

The result in the next exercise was surely known to Schur and, possibly,
even to Frobenius. A standard reference is the book by Helmut Wielandt [70]
(see also [15, Theorem 3.13.3]).

Exercise 1.2.70 (Wielandt’s lemma) Let K ≤ G be finite groups and set
X := G/K. Let L(X) =

⊕N
i=0 miVi be a decomposition into irreducible G-

subrepresentations of the associated permutation representation, where mi de-
notes the multiplicity of Vi. Then

N

∑
i=0

m2
i = number of G-orbits on X×X = number of K-orbits on X . (1.8)

Theorem 1.2.71 (G,K) is a Gelfand pair if and only if dimV ρ,K ≤ 1 for
all (ρ,V ) ∈ Ĝ. If this is the case, then dimV ρ,K = 1 if and only if (ρ,V ) is
equivalent to a spherical representation.

Proof Let (ρ,V ) ∈ Ĝ with dimV ρ,K ≥ 1. Pick u0 ∈V ρ,K and define T : V →
L(X)=L(G/K) by setting [T v](gK)=(⟨v,ρ(g)u0⟩V )̌. Now T∈HomG(V,L(X)),
and by Schur’s lemma we deduce that V ∼ Vı̄ for some 0 ≤ ı̄ ≤ N. Since
L(X) =⊕N

i=0Vi,

N +1 = dimL(X)λ ,K = (dimKL(G)K),

and L(X)λ ,K =⊕N
i=0V λ ,K

i , we deduce that dimV λ ,K
i ≤ 1 for all i = 0,1, . . . ,N.

This in turn implies that dimV ρ,K = dimV λ ,K
ı̄ ≤ 1.

Vice versa, suppose that dimV ρ,K≤1 for all (ρ,V )∈Ĝ. Let L(X)=⊕H
i=0miWi

be the decomposition of the permutation representation into irreducible com-
ponents. If N + 1 is the number of K-orbits on X we have (keeping in mind
(1.8))

H

∑
i=0

m2
i = N +1 =

H

∑
i=0

mi dimW λ ,K
i ≤

H

∑
i=0

mi. (1.9)

This forces mi = 1 for all i = 0,1, . . . ,H and H = N.
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1.2.4 Harmonic analysis of finite Gelfand pairs

Let (G,K) be a finite Gelfand pair and denote by φ0 = 1,φ1, . . . ,φN ∈KL(G)K

the associated spherical functions.

Definition 1.2.72 The linear map F : KL(X)→ CN+1 defined by setting

[F f ](i) = ⟨ f , φ̌i⟩L(X) = ∑
x∈X

f (x)φ̌i(x)

for all f ∈KL(X) and i = 0,1, . . . ,N, is called the spherical Fourier transform
associated with the Gelfand pair (G,K).

Exercise 1.2.73 (Inversion formula) Let f ∈KL(X). Show that

f (x) =
1
|X |

N

∑
i=0

di[F f ](i)φ̌i(x), (1.10)

where, as usual, di = dim(Vi) is the dimension of the ith spherical representa-
tion.

Proposition 1.2.74 Let T ∈ EndG(L(X)). Then, for all i = 0,1, . . . ,N,

T |Vi = λiIVi ,

where λi = [Fψ](i) and ψ ∈KL(X) is as in (1.2) and (1.3).

Proof Let x0 ∈ X be the point stabilized by K. Then, for all g ∈ G we have

[T φ̌i](gx0) =
1
|K|

[φi ∗ ψ̃](g)

=
1
|K|

[φi ∗ ψ̃](1G)φi(g)

=
1
|K|

(
∑

h∈G
φi(h−1)ψ̃(h)

)
φi(g)

=
1
|K|
⟨ψ̃,φi⟩L(G)φi(g)

= ⟨ψ, φ̌i⟩L(X)φ̌i(gx0)

= [Fψ](i)φ̌i(gx0).

As T is an intertwiner, we deduce that T v = λiv for all v ∈ Vi, where λi =

[Fψ](i).

Remark 1.2.75 Let Ω⊆ X be a K-orbit and denote by 1Ω ∈ L(X) its charac-
teristic function. Then

[F1Ω](i) = |Ω|φ̌i(x)
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where x ∈Ω is arbitrary (spherical functions are constant on K-orbits).

Definition 1.2.76 (Convolution in L(X)) Let G be a finite group acting tran-
sitively on a finite set X . Let x0 ∈ X and set K := StabG(x0). The convolution
of two functions f1, f2 ∈ L(X) is the function f1 ∗ f2 ∈ L(X) defined by setting

f1 ∗ f2 :=
1
|K|

( f̃1 ∗ f̃2)̌.

Given f ∈ L(X) we write f ∗1 := f and, for n ≥ 2, we recursively set f ∗n :=
f ∗ ( f ∗(n−1)).

Exercise 1.2.77 Let f1, f2 ∈KL(X). Show that f1 ∗ f2 ∈ KL(X) and

F ( f1 ∗ f2) = F ( f1)F ( f2). (1.11)

Exercise 1.2.78 Show that the orthogonal projection Pi : L(X)→Vi is given
by

[Pi f ](gx0) =
di

|X |
⟨ f ,λ (g)φ̌i⟩L(X)

for all f ∈ L(X).

1.3 Laplace operators and spectra of random walks on finite
graphs

In this section we present some elementary theory of finite regular simple
graphs and the spectral theory of their associated adjacency (resp. Markov,
resp. Laplace) matrices. A particular emphasis is given for a particular, yet sig-
nificant, subclass of such graphs, namely that of distance-regular graphs. We
refer to our monographs [15, 19] for other related aspects of finite graph theory.
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1.3.1 Finite graphs and their spectra

Definition 1.3.1 (Finite graph) A finite graph is a pair G = (X ,E), where X
is a finite set of vertices and E is a subset of {{x,y} : x,y ∈ X}, called the set
of edges. An edge of the form e = {x} ∈ E is called a loop at x.

Let G = (X ,E) be a finite graph. Given e = {x,y} ∈ E, we say that the
vertices x and y are adjacent (or neighbours) and we write x ∼ y. Given x ∈
X , we denote by deg(x) := |{y ∈ X : x ∼ y}| the number of adjacent vertices
(including x itself if there is a loop at x). If deg(x) = deg(y) =: k for all x,y∈ X ,
one says that G is regular of degree k.

Given a subset Y ⊂ X of vertices, the subgraph induced by Y is the graph
GY = (Y,EY ) where EY := {e = {x,y} ∈ E : x,y ∈ Y}.

A path in G is a sequence π = (x0,x1, . . . ,xn) of vertices xi ∈ X such that
xi ∼ xi+1 for all i = 0,1, . . . ,n−1. The vertices x0 and xn are termed the initial
and terminal vertices of π , and one says that π connects them. The integer n is
called the length of the path π , denoted ℓ(π).

We introduce an equivalence relation ≈ on X by declaring that x ≈ y if
there exists a path π = π(x,y) connecting them. The subgraph induced by an
≈ equivalence class is called a connected component of G . If there exists a
unique such connected component, one says that G is connected.

If G is connected, given two vertices x and y, the nonnegative integer d(x,y)
:= minπ ℓ(π), where π ranges among all paths π = π(x,y), is called the dis-
tance of x and y. The nonnegative integer diam(X) := max{d(x,y) : x,y ∈ X}
is called the diameter of the connected graph G = (X ,E).

This way, our finite graphs are simple, i.e., with no multiple edges, and undi-
rected.

Exercise 1.3.2 Let G = (X ,E) be a finite graph. Show that the map d : X ×
X → [0,+∞) is a distance function.

Definition 1.3.3 (Adjacency and Markov matrices and Laplacian) Let G =

(X ,E) be a finite graph. The matrix A = (A(x,y))x,y∈X where

A(x,y) :=

{
1 if x∼ y,

0 otherwise,

for all x,y ∈ X , is called the adjacency matrix of G .
If G is regular of degree k, the matrices

M :=
1
k

A and L := I−M ≡ I− 1
k

A, (1.12)
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where I = (δx,y)x,y∈X is the identity matrix, are called the Markov matrix and
the discrete Laplacian on G , respectively.

Note that the Laplacian can be defined for arbitrary graphs, not necessarily
regular: see Definition 3.2.11.

In the following we shall limit ourselves to the case where G is k-regular.
Recall that the spectrum σ(T ) of T ∈ End(L(X)) is the set of all eigenvalues

of T :

σ(T ) := {λ ∈ C : T −λ I is not invertible in End(L(X))}.

If T is symmetric, then the spectrum is real: σ(T ) =: {λ0,λ1, . . . ,λm} ⊆ R,
and, denoting by Vi the T -eigenspace associated with λi, i = 0,1, . . . ,m, we
have the decomposition

L(X) =
m⊕

i=0

Vi. (1.13)

In our setting, we have σ(A) ⊆ [−k,k], σ(M) ⊆ [−1,1], and σ(L) ⊆ [0,2].
Moreover, given the simple expressions (1.12) relating A, M, and L, the cor-
responding spectra are set-theoretically related by the expressions σ(M) =
1
k σ(A) and σ(L) = 1−σ(M) = 1− 1

k σ(A), and the corresponding eigenspaces
coincide (we leave it as an exercise to check the details). For this reason, we
limit ourselves to the analysis of the Markov matrix M.

We first note that λ0 := 1 is an eigenvalue of M: indeed, any constant func-
tion f ∈ L(X) (or, more generally, any function f ∈ L(X) which is constant
on each connected component of G ) is an M-eigenvector corresponding to the
eigenvalue 1, that is, M f = f . More precisely, we have the following:

Proposition 1.3.4 Let G = (X ,E) be a k-regular finite graph. Let V0 ≤ L(X)

denote the M-eigenspace corresponding to the eigenvalue λ0 = 1. Then dim(V0)

equals the number of connected components of G .

Proof Let Gi = (Xi,Ei), i = 1,2, . . . ,n, be the connected components of G . It
is obvious that if f is constant on each Gi, then M f = f . As the characteristic
functions χXi ∈ L(X) are linearly independent, this shows that dim(V0) ≥ n.
Conversely, suppose that M f = f with f ∈ L(X) non-identically zero and real
valued. Fix i ∈ {1,2, . . . ,n} and denote by xi ∈ Xi a maximum point for | f | in
Xi, i.e. | f (xi)| ≥ | f (y)| for all y ∈ Xi; we may suppose, up to passing to − f ,
that f (xi) ≥ 0. Then f (xi) = ∑y∈Xi m(xi,y) f (y) and as ∑y∈Xi m(xi,y) = 1 we
have ∑y∈Xi m(xi,y)[ f (xi)− f (y)] = 0. Since m(xi,y) ≥ 0 and f (xi) ≥ f (y) for
all y ∈ Xi, we deduce that f (y) = f (xi) for all y ∼ xi. Let now z ∈ Xi; then,
by definition, there exists a path p = (xi,x′i, . . . ,x

′′
i = z) connecting x0 to z. In
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the previous step we have established that f (x′i) = f (xi) ≥ f (y) for all y ∈ Xi

so that we can iterate the same argument to show that f (xi) = f (x′i) = · · · =
f (x′′i ) = f (z), i.e., f is constant in Xi. This shows that V0 is spanned by the
χXis. We deduce that dim(V0) = n.

Definition 1.3.5 A graph G = (X ,E) is bipartite if there exists a nontrivial
partition X = X0⊔X1 of the set of vertices such that every edge joins a vertex
in X0 with a vertex in X1; that is, E ⊆ {{x0,x1} : x0 ∈ X0,x1 ∈ X1}.

Note that a bipartite graph has no loops and that, if G is connected, then the
partition of the set of vertices is unique.

Example 1.3.6 Figure 1.1 shows the bipartite graph G = (X ,E) with ver-
tex set X = X0 ⊔X1, where X0 = {x,y} and X1 = {u,v,z}, and edge set E =

{{x,u},{x,v},{y,v},{y,z}}.

XXXXXXXX
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���
���

��

•

•
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y
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u

Figure 1.1 A bipartite graph

Exercise 1.3.7 Let G = (X ,E) be a connected graph. Show that the following
conditions are equivalent:

(1) G is bipartite;
(2) G is bicolorable, i.e., there exists a map φ : X → {0,1} such that x ∼ y

implies φ(x) ̸= φ(y) for all x,y ∈ X ;
(3) every closed path in G has even length;
(4) there exists x0 ∈ X such that every closed path containing x0 has even

length;
(5) given x,y ∈ X , then for all paths p connecting x and y one has |p| ≡ d(x,y)

mod 2, that is |p|−d(x,y) is even.

Proposition 1.3.8 Let G = (X ,E) be a k-regular connected graph and de-
note by M the associated Markov matrix. Then the following conditions are
equivalent:

(1) G is bipartite;
(2) the spectrum σ(M) is symmetric: λ ∈ σ(M) if and only if −λ ∈ σ(M);
(3) −1 ∈ σ(M).
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Proof Suppose that G is bipartite with X = X0⊔X1 and that M f = λ f . Define
f̃ ∈ L(X) by setting f̃ (x) := (−1) j f (x) for all x ∈ X j, j = 0,1. Then, for x ∈ X j

we have:

[M f̃ ](x) = ∑
y:y∼x

m(x,y) f̃ (y)

= (−1) j+1
∑

y:y∼x
m(x,y) f (y)

= (−1) j+1
λ f (x)

=−λ f̃ (x).

We have shown that if λ is an eigenvalue for f , then −λ is an eigenvalue for
f̃ ; this gives the implication (1) =⇒ (2).

Since we always have 1 ∈ σ(M) (cf. Proposition 1.3.4), the implication (2)
=⇒ (3) is obvious.

Finally suppose that M f =− f with f ∈ L(X) nontrivial and real valued. De-
note by x0 ∈ X a point of maximum for | f |; then, up to switching f to − f , we
may suppose that f (x0)>0. We then have that − f (x0)=∑y:y∼x0

m(x0,y) f (y)
implies ∑y:y∼x0

m(x0,y)[ f (x0)+ f (y)] = 0. Since f (x0)+ f (y) ≥ 0 we deduce
f (y) = − f (x0) for all y ∼ x0. Set X j := {y ∈ X : f (y) = (−1) j f (x0)} for j =
0,1. We claim that X =X0⊔X1: indeed G is connected and if p=(x0,x1, . . . ,xm)

is a path, then f (x j) = (−1) j f (x0). Finally, if y ∼ z we clearly have f (y) =
− f (z) so that G is bicolorable, that is, it is bipartite.

Definition 1.3.9 (Distance-regular graphs) (See also Definition 2.5.4.) A fi-
nite graph G = (X ,E) with no loops is called distance-regular if there ex-
ist two sequences of constants, called the G -parameters, b0,b1, . . . ,bN and
c0,c1, . . . ,cN , where N = diam(G ), such that, for any pair of vertices x,y ∈ X
with d(x,y) = i one has

|{z ∈ X : d(x,z) = 1,d(y,z) = i+1}|= bi

|{z ∈ X : d(x,z) = 1,d(y,z) = i−1}|= ci

for all i = 0,1, . . . ,N. In other words, if d(x,y) = i, then x has bi neighbors at
distance i+ 1 from y and ci neighbors at distance i− 1 from y. In particular,
taking x = y we get b0 = |{z ∈ X : d(x,z) = 1}|, for all x ∈ X , that is, G is
regular of degree b0.

Exercise 1.3.10 Let G be a distance-regular graph. Show that the following
hold:

(1) bN = 0 = c0;
(2) c1 = 1;
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(3) for x,y ∈ X with d(x,y) = i one has |{z ∈ X : d(x,z) = 1,d(y,z) = i}| =
b0−bi− ci;

(4) for any x ∈ X , the cardinality ki := |{y ∈ X : d(x,y) = i}| of the sphere
of radius i centered at x is given by ki = b0b1 · · ·bi−1/c2c3 · · ·ci, for i =
2,3, . . . ,N.

Let G = (X ,E) be a distance-regular graph. For j = 0,1, . . . ,N, we define
the matrix A j = (A j(x,y))x,y∈X by setting

A j(x,y) :=

{
1 if d(x,y) = j

0 otherwise.
(1.14)

Note that A0 = I and A1 is the adjacency matrix of G . We denote by A the
subalgebra of End(L(X)) generated by A0,A1, . . . ,AN . It is called the Bose–
Mesner algebra associated with G (see [3, 4] and [2]).

Proposition 1.3.11 Let G = (X ,E) be a distance-regular graph as in Defini-
tion 1.3.9. Then the following hold.

(1) For j = 0,1, . . . ,N,

A jA1 = b j−1A j−1 +(b0−b j− c j)A j + c j+1A j+1, (1.15)

where AN+1 = 0.
(2) For j = 0,1, . . . ,N there exists a real polynomial p j of degree j such that

A j = p j(A1). (1.16)

In particular, A = {p(A1) : p polynomial over C} is commutative, and its
dimension is N + 1. In fact, A0,A1, . . . ,AN constitute a vector space basis
for A .

(3) Let

L(X) =⊕n
i=0Vi (1.17)

denote the decomposition into distinct eigenspaces of A1, with V0 the one-
dimensional space of constant functions. Then n = N and each Vi is invari-
ant for all operators A ∈ A . Moreover, if V0 is the subspace of constant
functions, the eigenvalue λ0 of A1 corresponding to V0 is equal to the de-
gree of X, that is, λ0 = b0.

(4) Denote by Ei the orthogonal projection onto Vi and let λi denote the eigen-
value of A1 corresponding to Vi. Then,

A j =
N

∑
i=0

p j(λi)Ei, (1.18)

where p j is the polynomial in (1.16). Similarly, the projection Ei := qi(A1)

for some polynomial qi.
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Proof (1) For f ∈ L(X) and y ∈ X one clearly has

(A jA1 f )(y) = ∑
z∈X :

d(z,y)= j

(A1 f )(z) =

= ∑
z∈X :

d(z,y)= j

∑
x∈X :

d(x,z)=1

f (x) =

= ∑
z∈X :

d(z,y)= j

 ∑
x∈X :

d(x,z)=1
d(x,y)= j−1

f (x)+ ∑
x∈X :

d(x,z)=1
d(x,y)= j

f (x)+ ∑
x∈X :

d(x,z)=1
d(x,y)= j+1

f (x)

=

= b j−1 ∑
x∈X :

d(x,y)= j−1

f (x)+

+(b0−b j− c j) ∑
x∈X :

d(x,y)= j

f (x)+

+ c j+1 ∑
x∈X :

d(x,y)= j+1

f (x) =

= b j−1
(
A j−1 f

)
(y)+(b0−b j− c j)(A j f )(y)+ c j+1

(
A j+1 f

)
(y)

because for any x with d(x,y) = j− 1 there exist b j−1 elements z ∈ X such
that d(x,z) = 1 and d(z,y) = j, and therefore f (x) appears b j−1 times in the
above sums. A similar argument holds for d(x,y) = j or j+ 1 (also recall (3)
in Exercise 1.3.10). This shows (1.15).

(2) From (1) we get

A2
1 = b0A0 +(b0−b1− c1)A1 + c2A2 (1.19)

that is

A2 =
1
c2

A2
1−

b0−b1− c1

c2
A1−

b0

c2
I =: p2(A1),

and the general case follows by induction (note that as X is connected, one al-
ways has c2,c3, . . . ,cN > 0). In particular, A is commutative. Moreover {A0 =

I,A1, . . . ,AN} is a vector space basis for A . Indeed, for any polynomial p one
has that p(A1) is a linear combination of A0 = I,A1, . . . ,AN (this is a converse
to (1): as in (1.19), it follows from a repeated application of (1.15)). Moreover,
if α0,α1, . . . ,αN ∈ C and x,y ∈ X , one has(

N

∑
j=0

α jA jδy

)
(x) = αd(x,y)
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thus showing that A0,A1, . . . ,AN are also independent. We deduce that dim(A )

= N +1.
(3) Since A j = p j(A1) we have that Vi is also an eigenspace of the self-

adjoint operator A j with corresponding eigenvalue p j(λi) (below we shall prove
that n = N). The fact that the eigenvalue λ0 corresponding to the eigenspace V0

equals the degree of X is nothing but a reformulation of the fact that, a graph X
is connected (if and) only if 1 is an eigenvalue of multiplicity 1 of the Markov
operator M = 1

b0
A1 (see Proposition 1.3.4).

(4) Denote by Ei the orthogonal projection onto Vi. From the preceding facts
we deduce that A j = ∑

n
i=0 p j(λi)Ei for all j = 0,1, . . . ,N. As the spaces Vi’s

are orthogonal, the corresponding projections Ei’s are independent. Moreover,
they belong to A as they are expressed as polynomials in A1:

Ei =
∏ j ̸=i(A1−λ jI)

∏ j ̸=i(λi−λ j)
. (1.20)

As a consequence, the operators E0,E1, . . . ,En constitute another vector space
basis for A , and therefore n = N.

Let G = (X ,E) be a distance-regular graph and set di := dimVi (cf. (1.17)).
From the above theorem it follows that there exist real coefficients φi( j), i, j =
0,1, . . . ,N such that

Ei =
di

|X |

N

∑
j=0

φi( j)A j (1.21)

for i = 0,1, . . . ,N.

Definition 1.3.12 (Spherical function on a distance-regular graph) The func-
tion φi ∈ L({0,1, . . . ,N} is called the spherical function of X associated with
Vi.

The factor di
|X | in (1.21) is just a normalization constant.

The matrices

P = (p j(λi)) j,i=0,1,...,N

and

Q =

(
di

|X |
φi( j)

)
i, j=0,1,...,N

are called the first and the second eigenvalue matrix of X , respectively.

Lemma 1.3.13 (1) P−1 = Q (that is di
|X | ∑

N
j=0 φi( j)p j(λh) = δi,h);

(2) φi( j) = 1
k j

p j(λi), where k j is as in Exercise 1.3.10.(4), for all i, j = 0,1,
. . . ,N;

(3) φ0( j) = 1 for all j = 0,1, . . . ,N;
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(4) φi(0) = 1 for all i = 0,1, . . . ,N;
(5) λi = b0φi(1).

Proof We leave the proof as an exercise (see [15, proof of Lemma 5.1.8]).

Theorem 1.3.14 (1) The spherical functions satisfy the following orthogonal-
ity relations:

N

∑
j=0

k jφi( j)φh( j) =
|X |
di

δi,h (1.22)

for all i,h = 0,1, . . . ,N.
(2) We have the following finite difference equations:

c jφi( j−1)+(b0−b j− c j)φi( j)+b jφi( j+1) = λiφi( j) (1.23)

for all i, j=0,1, . . . ,N (we use the convention that φi(−1)=φi(N+1)=0).

Proof (1) This is easily established by explicitly writing the coefficients in
QP = I and then using Lemma 1.3.13 in order to express p j(λi) = k jφi( j).

(2) From (1.18) and Lemma 1.3.13 we deduce

A j =
N

∑
i=0

k jφi( j)Ei. (1.24)

From Proposition 1.3.11 and (1.24) we deduce

A1A j = b j−1A j−1 +(b0−b j− c j)A j + c j+1A j+1 =

=
N

∑
i=0

[
b j−1k j−1φi( j−1)+(b0−b j− c j)k jφi( j)+

+c j+1k j+1φi( j+1)
]

Ei.

(1.25)

On the other hand, as A1Ei = EiA1 = λiEi (recall that A1 = ∑
N
i=0 λiEi), multi-

plying both sides of (1.24) by A1 we obtain

A1A j =
N

∑
i=0

k jφi( j)λiEi. (1.26)

Equating the two expressions of A1A j in (1.25) and (1.26) we obtain

b j−1
k j−1

k j
φi( j−1)+(b0−b j− c j)φi( j)+ c j+1

k j+1

k j
φi( j+1) = λiφi( j).

Then (1.23) follows from Exercise 1.3.10.(4).
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In the monograph [53] one may find several examples of orthogonal poly-
nomials satisfying systems of equations such as (1.23).

Example 1.3.15 (The discrete circle) As a first example of distance-regular
graph, we examine the discrete circle Cn on n≥ 3 vertices. The vertex set X :=
{0,1, . . . ,n− 1} and the edges are e = {x,x+ 1} with x ∈ X with summation
modulo n. Clearly its diameter is given by diam(Cn) = [n/2], the integer part
of n/2. We leave it as an exercise to check that Cn is distance-regular with
N = [n/2] and parameters b0 = 2,b1 = b2 = . . . = bN−1 = 1, c1 = c2 = . . . =

cN−1 = 1 and, finally, cN = 1 if n is odd and cN = 2 if n is even.
In the present setting, the difference equations (1.23) become

φi( j−1)+φi( j+1) = 2φi(1)φi( j) for 1≤ j ≤ N−1

φi(N−1)+φi(N) = 2φi(1)φi(N) if n is odd

2φi(N−1) = 2φi(1)φi(N) if n is even

for all i = 0,1, . . . ,N. Recalling the prosthaphæresis formula

cosα + cosβ = 2cos((α +β )/2)cos((α−β )/2)

we deduce that φi( j) = cos(2πi j/n) for all 0≤ i, j ≤ N.
Keeping in mind the decomposition (1.13) (where now “m” is replaced by

“N”), we compute the dimension di of the subspaces Vi, for i = 0,1, . . . ,N.
Suppose first that n is even, so that N = n/2. We have k0 = 1 and, from the
orthogonality relations (1.22), the parameters yield (cf. Exercise 1.3.10.(4))

ki = b0b1 · · ·bi−1/c2c3 · · ·ci = 2

for all 1≤ i≤ N−1, and

kN = b0b1 · · ·bN−1/c2c3 · · ·cN = 1.

We have dim(V0) = 1 (this is the dimension of the constant valued functions).
Moreover, for 1≤ i≤ N−1 we have

n/2

∑
j=0

k jφ
2
i ( j) = φ

2
i (0)+2

n/2−1

∑
j=1

cos2(2πi j/n)+φ
2
i (n/2)

= 2+2
n/2−1

∑
j=1

1+ cos(4πi j/n)
2

= 2+(n/2−1)+
n/2−1

∑
j=1

cos(4πi j/n)

= n/2≡ N,
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where, denoting by ω a primitive Nth root of unity, we used the equality

n/2−1

∑
j=1

cos(4πi j/n) =
N−1

∑
j=1

cos(2πi j/N) = ℜ(ω +ω
2 + · · ·+ω

N−1) =−1.

We deduce that di = n/(∑
n/2
j=0 k jφ

2
i ( j)) = n/(n/2) = 2. Finally, as φ 2

n/2( j) = 1
for all j = 0,1, . . . ,n/2, we deduce that dN = 1.

We leave it as an exercise to check that, for n odd, one has d0 = 1 and di = 2
for all i = 1,2, . . . ,N = (n−1)/2.

Example 1.3.16 (Complete graph) The complete graph Kn = (X ,E) on n
vertices is defined by setting X := {1,2, . . . ,n} and

E := {{x,y} : x,y ∈ X , x ̸= y}

(Figure 1.2). It is clear that N := diam(Kn) = 1 and that Kn is a distance regular
graph with parameters b0 = n−1, b1 = bN = 0, c0 = 0, and c1 = 1.

• •

•

�
�
�
��

A
A
A
AA

• •

••

�
�
�
��@

@
@
@@ • •

• •

•

�
�
�
��

A
A
A
AA

�
��
��

@
@@

PPPPPPP

H
HH

HH

�
��

�������

Figure 1.2 The complete graphs K3, K4, and K5.

The decomposition (1.13) becomes L(X) = ∑
N
i=0 Vi = V0 ⊕V1, where, as

usual V0 is the one-dimensional subspace of constant valued functions on X ,
and V1 = { f ∈ L(X) : ∑x∈X f (x) = 0} is the (orthogonal) (n−1)-dimensional
subspace of 0-mean-valued functions on X . The spherical functions φ0,φ1 ∈
L({0,1}) are given by φ0( j) = 1 for j = 0,1, and φ1(0) = 1 and φ1(1) =
−1/(n− 1), as one easily deduces (exercise) from the orthogonality relations
(1.22).

Example 1.3.17 (Hamming scheme and hypercube) Set Xn,m+1 := {0,1,2,
. . . ,m}n. The map d : Xn,m+1×Xn,m+1→ N defined by setting

d(x,y) := |{k : xk ̸= yk}|

for all x = (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn) ∈ Xn,m+1, is easily seen to be a
metric on Xn,m+1, called the Hamming distance on Xn,m+1.

We define a graph G H
n,m+1 = (Xn,m+1,En,m+1) by setting

En,m+1 := {{x,y} : x,y ∈ Xn,m+1 such that d(x,y) = 1}.
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Then G H
n,m+1 is a distance regular graph with diameter n and parameters

ci = i, i = 1,2, . . . ,n

bi = (n− i)m, i = 0,1, . . . ,n−1.

In particular, its degree is b0 = nm. We leave it as an exercise to check for the
details. See also page 134.

Note that for n = 1, the graph G H
1,m+1 coincides with the complete graph

Km+1 on m+ 1 vertices. Moreover, in this case, we always have bi + ci = b0

(cf. Exercise 1.3.10).
For m= 1, the graph G H

n,2 is called the n-hypercube, denoted Qn (Figure 1.3).
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Figure 1.3 The 3-hypercube Q3.

We refer to [15, Section 2.6 and Section 5.3] for the expressions of the spher-
ical functions and the computation of the dimensions of the corresponding
eigenspaces for Qn and G H

n,m+1, respectively. Note that the spherical functions
constitute an important family of orthogonal polynomials, called the
Krawtchouk polynomials.

Example 1.3.18 (Johnson scheme) Let n be a positive integer. For 0≤m≤ n
denote by Ωm,n the set of all m-subsets of {1,2, . . . ,n}. The map d : Ωm,n×
Ωm,n→ N defined by setting

d(A,B) := m−|A∩B|

for all A,B ∈ Ωm,n is easily seen to be a metric on Ωm,n, called the Johnson
distance on Ωm,n.

We define a graph G J
m,n = (Ωm,n,Em,n) by setting

Em,n := {{A,B} : A,B ∈Ωm,n such that d(A,B) = 1}.
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We leave it as an exercise to check that G J
m,n is a distance regular graph with

diameter min{m,n−m} and parameters ci = i2 and bi = (n−m− i)(m− i) for
i = 0,1, . . . ,min{m,n−m}.

We refer to [15, Section 6.1] for the expression of the spherical functions
and the computation of the dimensions of the corresponding eigenspaces.

The book by Brouwer, Cohen, and Neumaier [8] is an encyclopedic treat-
ment of distance-regular graphs.

1.3.2 Strongly regular graphs

This section is devoted to an interesting subclass of distance regular graphs
(see also Section 2.5 for asymptotic aspects as well as Sections 3.2 and 3.4 for
more combinatorial aspects of distance regular graphs).

Definition 1.3.19 A finite simple graph G = (X ,E) without loops is called
strongly regular with parameters (v,k,λ ,µ) if

(1) it is regular of degree k and |X |= v;
(2) for all {x,y} ∈ E there exist exactly λ vertices adjacent to both x and y;
(3) for all x,y ∈ X with x ̸= y and {x,y} /∈ E there exist exactly µ vertices

adjacent to both x and y.

It is customary to exclude graphs which satisfy the definition trivially, namely
those graphs which are the disjoint union of one or more equal-sized complete
graphs, and their complements (cf. Exercise 1.3.23 below). But we warn the
reader that this convention is not adopted in Section 3.1.8, where these exam-
ples play an important role.

Note that, in the above definition, 0≤ λ ≤ k−1 and 0 ≤ µ ≤ k. Moreover,
if µ > 0 then G is connected. In the following we shall always assume that
µ > 0.

Remark 1.3.20 Let G = (X ,E) be a strongly regular graph with parameters
(v,k,λ ,µ) such that µ > 0. By our assumptions on µ , given any two non-
adjacent vertices there exists z∈ X such that x∼ z and z∼ y, so that d(x,y) = 2.
It follows that N := diam(G ) = 2. Then, it is easy to check that G is a distance
regular graph with parameters (b0,b1,b2) = (k,k−1−λ ,0) and (c0,c1,c2) =

(0,1,µ).

Proposition 1.3.21 Let G = (X ,E) be a connected strongly regular graph
with parameters (v,k,λ ,µ) and denote by A its adjacency matrix. Let L(X) =
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V0⊕V1⊕V2 denote the decomposition (1.13), where, as usual V0 is the one-
dimensional subspace of constant-valued functions on X. The associated spher-
ical function φ0,φ1, and φ2 are given by

• φ0( j) = 1 for all j = 0,1,2;

• φ1(0) = 1, φ1(1) =
λ−µ+

√
∆

2k , and φ1(2) =− µ(2+λ−µ+
√

∆)
2k(k−1) ;

• φ2(0) = 1, φ2(1) =
λ−µ−

√
∆

2k , and φ2(2) =− µ(2+λ−µ−
√

∆)
2k(k−1) ,

where ∆ = (λ − µ)2 + 4(k− µ). The dimensions di = dim(Vi), i = 0,1,2 are
given by

• d0 = 1;
• d1 =

1
2

[
(v−1)− 2k+(v−1)(λ−µ)√

∆

]
;

• d2 =
1
2

[
(v−1)+ 2k+(v−1)(λ−µ)√

∆

]
.

Proof Formula (1.15) for j = 1 becomes (recall that A = A1):

A2 = kI +λA+µ(J− I−A)

which is equivalent to

A2 +(µ−λ )A+(µ− k)I = µJ,

where J is the X ×X matrix consisting only of ones (Jx,y = 1 for all x,y ∈ X).
Since the operator J, restricted to the subspace

L(X)⊖V0 := { f ∈ L(x) : ∑
x∈X

f (x) = 0}

is the 0 operator, we deduce that the eigenvalues t1, t2 ∈ σ(A)\{k} satisfy the
equation

t2 +(µ−λ )t +(µ− k) = 0.

Therefore, up to a transposition of the indices, we have

t1 :=
λ −µ +

√
∆

2
and t2 :=

λ −µ−
√

∆

2
.

From Lemma 1.3.13(5), we obtain the above values φi(1) for i = 1,2. Finally,
the values of φi(2) for i = 1,2 are easily deduced from the orthogonality rela-
tions (1.22).

For the dimensions of the eigenspaces, as usual we have d0 = dim(V0) = 1.
Moreover, from the identities d1 +d2 = dim(L(X))−1 = |X |−1 = v−1 and
0 = tr(A) = k+ t1d1 + t2d2 one deduces the corresponding expressions for d1

and d2.

https://doi.org/10.1017/9781009465939.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009465939.002


40 T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli

Exercise 1.3.22 Let m ≥ 4 and denote by X the set of all 2-element subsets
of {1,2, . . . ,m}. The triangular graph T (m) is the finite graph with vertex set
X and such that two distinct vertices are adjacent if they are not disjoint.

Show that T (m) is strongly regular with parameters v =
(m

2

)
, k = 2(m−2),

λ = m−2, and µ = 4.

Exercise 1.3.23 (Complement of a graph) Let G = (X ,E) be a finite simple
graph without loops. The complement of G is the graph G with vertex set X
and edge set E = {{x,y} : x,y ∈ X ,x ̸= y,{x,y} /∈ E}.

(1) Show that if G is strongly regular with parameters (v,k,λ ,µ), then G is
strongly regular with parameters (v,v− k−1,v−2k+µ−2,v−2k+λ ).

(2) From (1) deduce that the parameters of a strongly regular graph satisfy the
inequality v−2k+µ−2≥ 0.

(3) Suppose that G is strongly regular. Show that G and G are both connected
if and only if 0 < µ < k < v− 1. If this is the case, one says that G is
primitive.
Hint: show that µ = 0 implies λ = k− 1 and write µ < k in the form
v−2k+µ−2 < (v− k−1)−1.

Example 1.3.24 (Petersen graph) The complement of the triangular graph
T (5) (see Exercise 1.3.22) is the celebrated Petersen graph (see Figure 1.4). It
is a connected strongly regular graph with parameters (10,3,0,1). The mono-
graph [45] is entirely devoted to this graph which turned out to serve as a
counterexample to several important conjectures.
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Figure 1.4 The Petersen graph

Example 1.3.25 (Clebsch graph) The Clebsch graph (see Figure 1.5) is de-
fined as follows. The vertex set X consists of all subsets of even cardinality of
the set {1,2,3,4,5}. Moreover, two vertices A,B∈X are adjacent if |A△B|= 4
(here△ denotes the symmetric difference of two sets). We leave it as an exer-
cise to show that it is a strongly regular graph with parameters (16,5,0,2).
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Figure 1.5 The Clebsch graph

For more on strongly regular graphs we refer to the monographs by van Lint
and Wilson [49] and Godsil and Royle [42].

1.4 Association schemes

In this section we give the definition of an association scheme and discuss
some examples. Association schemes constitute a central notion in Algebraic
Combinatorics, which is “the approach to combinatorics – formulated in Ph.
Delsarte’s monumental and epochal thesis [25] in 1973 – enabling us to look at
a wide range of combinatorial problems from a unified viewpoint” [3]. There
are several beautiful books devoted to this subject: we mention, among others,
those by Eiichi Bannai and Ito [3] and the new edition, written in collaboration
with Etsuko Bannai and Rie Tanaka [4], Bailey [2], Godsil [41], van Lint and
Wilson [49], Cameron [11], Cameron and van Lint [12], MacWilliams and
Sloane [51], and by P.-H. Zieschang [73].

We finally present a generalization expressed in terms of hypergroups. We
refer to the monograph [22] by Corsini and Leoreanu for a comprehensive
treatment of the theory of hypergroups.

Definition 1.4.1 Let X be a finite set. An association scheme on X is a parti-
tion

X×X = C0⊔C1⊔ . . .⊔CN ,

where the sets Ci (called the associate classes) satisfy the following properties:

(1) C0 = {(x,x) : x ∈ X} is the diagonal;
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(2) for each i = 1,2, . . . ,N, there exists i′ with 1 ≤ i′ ≤ N such that Ci′ = C ∗i ,
where C ∗i := {(y,x) ∈ X×X : (x,y) ∈ Ci};

(3) there exist nonnegative integers (called the parameters of the scheme) pk
i, j,

i, j,k = 0,1, . . . ,N, such that

|{z ∈ X : (x,z) ∈ Ci,(z,y) ∈ C j}|= pk
i, j

for all (x,y) ∈ Ck.

Moreover, the association scheme is called commutative (resp. symmetric)
provided pk

i, j = pk
j,i (resp. Ci = C ∗i ; equivalently, i′ = i) for all 1≤ i, j,k ≤ N.

Note that symmetry implies commutativity.
Let X be a finite set and let (C j)

N
j=0 be an association scheme on X . For

j = 0,1, . . . ,N, we define the matrix A j = (A j(x,y))x,y∈X by setting

A j(x,y) :=

{
1 if (x,y) ∈ C j

0 otherwise.
(1.27)

Note that A0 = I. The subalgebra A ⊆ End(L(X)) generated by A0,A1, . . . ,AN

is called the adjacency algebra (or, when it is commutative, the Bose–Mesner
algebra) associated with the association scheme (C j)

N
j=0 on X (see [3, 4, 2]).

We remark that condition (3) in Definition 1.4.1 is equivalent to the following
condition on A :

AiA j =
N

∑
k=0

pk
i, jAk (1.28)

for all 0≤ i, j ≤ N.

Example 1.4.2 (Groups as association schemes) Every finite group naturally
gives rise to an association scheme over its underlying set. Indeed, given a
finite group G, for g ∈ G set

Cg := {(h,k) ∈ G×G : h−1k = g}.

We then have, C1G = {(g,g) : g ∈G} is the diagonal. Moreover, C ∗g = Cg−1 , in
other words, g′ = g−1, for all g ∈ G. Finally, the parameters

pk
g,h :=

{
1 if k = gh

0 otherwise,

for all g,h,k ∈ G, trivially satisfy (3).
Note that G is commutative if and only if the corresponding association

scheme is commutative. Also the association scheme is symmetric exactly if
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every nontrivial element in G has period 2 (that is, G is an elementary abelian
2-group).

We leave it as an easy exercise to check that the associated adjacency algebra
A is isomorphic to the group algebra L(G)= { f : G→C} of G (equipped with
the convolution product (1.1)).

Example 1.4.3 (Association scheme associated with a group action) Let G
be a finite group acting transitively on a set X . Consider the diagonal action of
G on X ×X and denote by C0,C1, . . . ,CN (with C0 = {(x,x) : x ∈ X}) the cor-
responding orbits. Let us show that C0,C1, . . . ,CN form an association scheme
over X . The fact that C0,C1, . . . ,CN form a partition of X ×X and that C0 is
the diagonal (cf. Definition 1.4.1(1)) immediately follows from the definitions.
Let 1 ≤ i ≤ N and let (x,y) ∈ Ci. Then denoting by Ci′ the G-orbit of (y,x),
we clearly have C ∗i = Ci′ . This shows (2). Finally, let 1 ≤ i, j,k ≤ N and sup-
pose that (x,y),(x′,y′)∈Ck. Let Xx,y := {z∈ X : (x,z)∈Ci and (z,y)∈C j} and
Xx′,y′ := {z′ ∈ X : (x′,z′) ∈ Ci and (z′,y′) ∈ C j}. Let g ∈G such that (gx,gy) =
g(x,y) = (x′,y′). Then the map ϕ : Xx,y→ Xx′,y′ defined by setting ϕ(z) := gz
for all z ∈ Xx,y is well defined and bijective. Indeed, we have (x,z) ∈ Ci (resp.
(z,y) ∈ C j) if and only if (x′,ϕ(z)) = g(x,z) ∈ Ci (resp. (ϕ(z),y′) = g(z,y) ∈
C j), and the inverse map is ϕ−1(z′) := g−1z′ for all z′ ∈ Xx′,y′ . This shows that
the parameter pk

i, j is well defined, and (3) follows as well.
Let x0 ∈ X and denote by K = StabG(x0) its stabilizer in G. We leave to the

reader the following exercise:

(1) Show that the associated Bose–Mesner algebra A is isomorphic to the
algebras EndG(L(X)) and KL(G)K (cf. Proposition 1.2.52 and its proof).

(2) Show that the association scheme in (1) is commutative if and only if
(G,K) is a Gelfand pair.

(3) Show that the association scheme in (1) is symmetric if and only if (G,K)

is a symmetric Gelfand pair (cf. Exercise 1.2.57).

Example 1.4.4 (Association scheme associated with conjugacy classes on a
finite group) Let G be a finite group. Given g∈G, denote by C(g) := {h−1gh :
h ∈G} its conjugacy class. Let C := {C(g) : g ∈G} be the set of all conjugacy
classes of G and denote by c0 := C(1G) = {1G} the conjugacy class of the
identity element of G. Note that C(g−1) = {h−1g−1h : h ∈ G}= {(h−1gh)−1 :
h ∈ G}=C(g)−1 for all g ∈ G. For c ∈C we then set

Cc := {(x,y) ∈ G×G : x−1y ∈ c}.

We have C0 := Cc0 = {(g,g) : g ∈ G} is the diagonal. Moreover, C ∗c = Cc−1 ,
in other words, c′ = c−1, for all c ∈C. Let now c1,c2,c3 ∈C and suppose that
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(x1,y1),(x2,y2) ∈ Cc1 , that is, x−1
i yi ∈ c1. Let also z1 ∈ G. Then (x1,z1) ∈ Cc2

and (z1,y1) ∈ Cc3 if and only if x−1
1 z1 ∈ c2 and z−1

1 y1 ∈ c3; equivalently,

z1 ∈ x1c2∩ y1(c3)
−1 = x1(c2∩ x−1

1 y1(c3)
−1).

Analogously, for z2 ∈ G one has (x2,z2) ∈ Cc2 and (z2,y2) ∈ Cc3 if and only if
z2 ∈ x2(c2∩ (x2)

−1y2(c3)
−1). As x−1

1 y1,(x2)
−1y2 ∈ c1, there exists t ∈ G such

that (x2)
−1y2 = t−1(x−1

1 y1)t. We deduce that

|x1(c2∩ x−1
1 y1(c3)

−1)|= |c2∩ x−1
1 y1(c3)

−1|
= |t−1(c2∩ x−1

1 y1(c3)
−1)t|

= |c2∩ (x2)
−1y2(c3)

−1|
= |x2(c2∩ (x2)

−1y2(c3)
−1)|.

This shows that the parameter pc1
c2,c3 = |c2 ∩ x−1y(c3)

−1| is well defined, that
is, it does not depend on the choice of (x,y)∈ c1. This completes the proof that
the Ccs form an association scheme.

It is easy to see that the association scheme is commutative. Clearly, it is
symmetric if and only if every g∈G is conjugate to its inverse g−1, a condition
which is usually expressed by saying that the group G is ambivalent.

We leave it as an easy exercise to check that the associated Bose–Mesner
algebra A is isomorphic to the subalgebra

Lc(G) := { f ∈ L(G) : f (g) = f (h−1gh) for all g,h ∈ G}

of conjugacy-invariant functions on G (equipped with the convolution product
(1.1)).

Another interesting class of association schemes is provided by distance-
regular graphs:

Proposition 1.4.5 (Distance-regular graphs are association schemes) Let
G = (X ,E) be a distance-regular graph with diameter N, and set

Ci := {(x,y) ∈ X×X : d(x,y) = i},

for i = 0,1, . . . ,N. Then C0,C1, . . . ,CN form a symmetric association scheme
over X.

Proof We clearly have (1) C0 = {(x,x) : x ∈ X} is the diagonal and (2) Ci

is symmetric for i = 1,2, . . . ,N. Consider the matrices A0,A1,A2, . . . ,AN de-
fined in (1.14). Recall that these constitute a vector space basis for the corre-
sponding Bose–Mesner algebra A ⊂ End(L(X)) (cf. Proposition 1.3.11(2)).
These are exactly the matrices defined in (1.14). In this setting, (1.28) (which
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is equivalent to condition (3) in Definition 1.4.1) follows from Proposition
1.3.11(2).

As a consequence, the Hamming scheme (cf. Example 1.3.17) and the John-
son scheme (cf. Example 1.3.18) are symmetric (and therefore commutative)
association schemes.

A peculiarity of a distance-regular graph is that, as remarked above (cf.
Proposition 1.3.11(2)), its Bose–Mesner algebra is singly generated, namely
by A1. This is no longer true for general symmetric association schemes: see,
for instance, [15, Chapter 7].

The following definition yields a generalization of the notion of an associa-
tion scheme.

Definition 1.4.6 (Hypergroups) A finite (algebraic) hypergroup is a pair
(X ,∗), where X is a nonempty finite set equipped with a multi-valued map,
called hyperoperation and denoted ∗, from X × X to P∗(X), the set of all
nonempty subsets of X , satisfying the following properties:

(1) (x∗ y)∗ z = x∗ (y∗ z) for all x,y,z ∈ X (associative property);
(2) x∗X = X ∗ x = X for all x ∈ X (reproduction property),

where, for subsets Y,Z ⊂ X , one defines Y ∗Z =
⋃

y∈Y,z∈Z y∗ z⊂ X .
If, in addition one has

(3) x∗ y = y∗ x for all x,y ∈ X (commutative property)

one says that (X ,∗) is commutative.
Also, an element e ∈ X is called a unit provided that

(4) x ∈ (e∗ x)∩ (x∗ e) for all x ∈ X .

Finally, given x ∈ X , an element y ∈ X such that there is a unit e with

(5) e ∈ (x∗ y)∩ (y∗ x)

is called an inverse of x.

For another equivalent definition, under the name of functional hypergroup,
we refer to [30, 31, 48] (see also [20, Appendix 3.3 and Example A.1]).

We remark that conditions (1), (4), and (5) imply condition (2). Suppose
indeed that the hyperoperation ∗ is associative, that a unit e ∈ X exists, and
every element x ∈ X has an inverse. Given x,z∈ X , let y∈ X be an inverse of x.
Then x∗X ⊃ x∗ (y∗ z) = (x∗ y)∗ z⊃ (e∗ z) ∋ z, and, similarly, X ∗ x ∋ z. As z
was arbitrary, this proves (2).
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Example 1.4.7 (Association schemes are hypergroups) Let X be a finite set
and let C0,C1, . . . ,CN be an association scheme on X . Set X := {C0,C1, . . . ,

CN}. For 0≤ i, j ≤ N we set

Ci ∗C j := {Ck : pk
i, j ̸= 0}.

Let us show that ∗ is a hyperoperation turning (X ,∗) into a hypergroup. Let
A j, j = 0,1, . . . ,N denote the matrices as in (1.27). Keeping in mind (1.28), the
associative property of ∗ is easily deduced from the associative property of the
product of matrices. Moreover, the element e := C0 is, clearly, a unit. Finally,
it is straightforward that, for every 0≤ j ≤ N, the class C j′ = C ∗j is an inverse
of C j. It follows from the above remark that (X ,∗) is a hypergroup.

Example 1.4.8 (Dual of a finite group as hypergroup) Let G be a finite group.
Then X = Ĝ, the dual of the group G, is an algebraic hypergroup after setting
x∗ y = {z ∈ X : z⪯ x⊗ y} for all x,y ∈ X . Moreover, the trivial representation
ιG ∈ X serves as a unit for the hypergroup and, given any x ∈ X , the conjugate
representation x′ ∈ X (cf. Definition 1.2.10) serves as an inverse (cf. Exercise
1.2.47).

Finally in this section, we note that symmetric association schemes reappear
in the definition of partially balanced designs in Section 3.1.8.

1.5 Applications of Gelfand pairs to probability

In this section, we illustrate the methods developed by Persi Diaconis and his
collaborators which use representation theory of finite groups to determine
the asymptotic behaviour of several mixing processes (typically finite Markov
chains, e.g., random walks, invariant under the action of a finite group of sym-
metries). We illustrate this focusing on the Ehrenfest diffusion model which
presents the so-called cut-off phenomenon. The standard reference is Diaco-
nis’ book [26]. We also based our exposition on our own monograph [15].

1.5.1 Markov chains

Definition 1.5.1 A finite Markov chain is a triple (X ,P,ν0), where X is a finite
set, called the state space, P = (p(x,y))x,y∈X , called the transition matrix, is a
stochastic matrix, i.e.,{

p(x,y)≥ 0 for all x,y ∈ X

∑y∈X p(x,y) = 1 for all x ∈ X ,
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and ν0 : X → [0,1], called the initial distribution, is a probability distribution
on X , i.e., {

ν0(x)≥ 0 for all x ∈ X

∑x∈X ν0(x) = 1.

In the standard definition, a (discrete-time) Markov chain is a sequence of
random variables X1,X2,X3, . . . with the so-called Markov property, namely
that the probability of moving to the next state depends only on the present
state and not on the previous states, but, for our purposes, Definition 1.5.1
suffices. We can interpret a finite Markov chain (X ,P,ν0) as a random walk on
X : at time t = 0 the random walker is in state x = x(0) with probability ν0(x).
If at time t he or she is in state x = x(t) ∈ X , then at time t +1 he or she moves
to state y ∈ X with probability p(x,y). Then, for m ∈ N, the mth power matrix
Pm =

(
p(m)(x,y)

)
is still stochastic and p(m)(x,y) is the probability of reaching

state y at time t +m given that at time t the random walker is in state x.

Definition 1.5.2 (mth iterate and uniform distributions) Let (X ,P,ν0) be a
finite Markov chain. For m ∈N, the probability distribution ν(m) := ν0Pm, that
is,

ν
(m)(x) := ∑

y∈X
ν0(y)p(m)(y,x)

for all x ∈ X , is called the mth iterate distribution.
The probability distribution u : X → [0,1] defined by setting u(x) := 1

|X | for
all x ∈ X is called the uniform distribution on X .

Remark 1.5.3 Note that the 0th iterate distribution satisfies ν(0) ≡ ν0. More-
over, µ ∗ u = u for all probability distributions µ on X , where ∗ denotes the
convolution product (cf. Example 1.2.13).

Definition 1.5.4 A stochastic matrix P = (p(x,y))x,y∈X is called ergodic (or
primitive) if there exists m0 such that p(m0)(x,y)> 0 for all x,y ∈ X .

Note that if a stochastic matrix P is ergodic and p(m0)(x,y)> 0 for all x,y ∈
X , then for all m≥ m0 one has p(m)(x,y)> 0 for all x,y ∈ X .

Given a finite Markov chain (X ,P,ν0), a probability distribution π is called a
stationary distribution for P provided that πP = π , that is, ∑y∈X π(y)p(y,x) =
π(x) for all x ∈ X .

Theorem 1.5.5 (Ergodic theorem) Let (X ,P,ν0) be an ergodic Markov chain.
Then there exists a unique, strictly positive, stationary distribution π for P and
it is given as the limit of the mth iterate distributions, in formulæ,

lim
m→∞

ν
(m) = π.
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Proof We shall not prove this theorem in its full generality. The interested
reader may find a complete proof in [15, Theorem 1.4.1]. However, we shall
present a proof for two particular, yet significant, cases where equivalent con-
ditions for ergodicity of the Markov chain are exploited (cf. Theorem 1.5.7 and
Theorem 1.5.16).

Definition 1.5.6 (Simple random walk on a finite regular graph) Let G =

(X ,E) be a k-regular finite graph. Given an initial distribution ν0 on X , the
associated simple random walk (SRW, for short) on G is the Markov chain
(X ,P,ν0) where

p(x,y) :=

{
1/k if x∼ y

0 otherwise

for all x,y ∈ X .

We remark that the simple random walk can be defined on any graph, not
necessarily regular; the more general case has applications such as Jerrum’s
Markov chain for choosing a random orbit in a finite group action, or a random
conjugacy class in a finite group [47].

Theorem 1.5.7 (Ergodic theorem for SRW on a regular graph) Let G =

(X ,E) be a k-regular finite graph. Suppose that G is connected and not bipar-
tite. Let (X ,P,ν0) denote the Markov chain associated with the simple random
walk on G and initial distribution ν0 on X. Then the mth iterate distributions
converge to the uniform distribution u on X:

lim
m→∞

ν
(m) = u.

Proof Let λ0 ≥ λ1 ≥ λ2 ≥ ·· · ≥ λN , where N = |X |−1, denote the eigenval-
ues of P = (p(x,y))x,y∈X . Recall that λ0 = 1 > λ1 by Proposition 1.3.4, since
G is connected, and λN > −1 by Proposition 1.3.8, since G is not bipartite.
Since P is symmetric, we can find an orthogonal matrix O and a diagonal ma-
trix D (whose diagonal entries are the eigenvalues) such that P = ODOt . As
a consequence, Pn = ODnOt , where the diagonal matrix Dn has, as diagonal
entries, the nth powers of the eigenvalues λ0,λ1, . . . ,λN . Also recall that the
columns of the orthogonal matrix O are exactly the normalized eigenvectors
v0,v1, . . . ,vN ∈ RN+1 corresponding to the eigenvalues λ0,λ1, . . . ,λN . In par-
ticular, v0 = (1/

√
|X |,1/

√
|X |, . . . ,1/

√
|X |). As λ m

i → 0 as m→ ∞ for all
i = 1,2, . . . ,N, then denoting by Q the diagonal matrix with 1 at position (0,0)
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and vanishing elsewhere, we deduce that

lim
m→∞

Pm = lim
m→∞

ODmOt

= O( lim
m→∞

Dm)Ot

= OQOt

= Π

where Πx,y = 1/|X | for all x,y ∈ X .

Note that, since u(x) > 0 for all x ∈ X , from the sign-permanence theorem
we deduce that the Markov chain P in the theorem above is ergodic.

Definition 1.5.8 Let X be a finite set and let G be a finite group acting on X .
A stochastic matrix P = (p(x,y))x,y∈X is G-invariant provided that p(gx,gy) =
p(x,y) for all x,y ∈ X and g ∈ G.

Exercise 1.5.9 Let (X ,d) be a metric space. Let G be a finite group acting
isometrically on (X ,d). Show that a stochastic matrix P = (p(x,y))x,y∈X is G-
invariant if and only if p(x,y) depends only on d(x,y) for all x,y ∈ X .

Proposition 1.5.10 Let X be a finite set and let G be a finite group acting on
X. Let P = (p(x,y))x,y∈X be a G-invariant stochastic matrix. Let x0 ∈ X and
set K := StabG(x0). Then the map ν : X → [0,1] defined by ν(x) = p(x0,x) for
all x ∈ X is a K-invariant probability distribution on X and (cf. the notation in
Definition 1.2.76)

p(m)(x0,x) = ν
∗m(x)

for all x ∈ X and m ∈ N.

Proof We limit ourselves to show the equality for the case m = 2. Let x ∈ X
and let g ∈G such that x = gx0. Then, using G-invariance of P in lines 4 and 7,
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and y = hx0 in line 5,

ν
∗2(x) = [ν ∗ν ](x)

=
1
|K| ∑h∈G

ν̃(gh)ν̃(h−1)

=
1
|K| ∑h∈G

p(x0,ghx0)p(x0,h−1x0)

=
1
|K| ∑h∈G

p(g−1x0,hx0)p(hx0,x0)

= ∑
y∈X

p(g−1x0,y)p(y,x0)

= p(2)(g−1x0,x0)

= p(2)(x0,gx0)

= p(2)(x0,x).

We leave it to the reader to prove the general case.

The following is immediate.

Corollary 1.5.11 Let (X ,P,ν0) be a finite Markov chain and let G be a finite
group acting on X. Suppose that P is G-invariant. Fix x0 ∈ X and set K =

StabG(x0). Then the map ν : X→ [0,1] defined by ν(x) = p(x0,x) for all x ∈ X
is a K-invariant probability distribution on X and

ν
(m) = ν0 ∗ν

∗m (1.29)

for all m≥ 1 (cf. Definitions 1.5.2 and 1.2.76). □

Proposition 1.5.12 Let (X ,P,ν0) be a Markov chain. Let G be a finite group
acting on X. Let x0 ∈ X and set K = StabG(x0). Suppose that (G,K) is a
Gelfand pair and denote by φ0 = 1,φ1, . . . ,φN and by d0 = 1,d1, . . . ,dN the
spherical functions and the dimensions of the corresponding spherical repre-
sentations. Then

ν
∗m =

1
|X |

N

∑
i=0

di [(Fν)(i)]m φ̌i (1.30)

and

∥ν∗m−u∥2
L(X) =

1
|X |

N

∑
i=1

di [(Fν)(i)]2m , (1.31)

where u denotes the uniform distribution on X.
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Proof Formula (1.30) follows immediately from the inversion formula (1.10)
and the property (1.11).

We now observe that u = φ̌0
|X | so that, by (1.30), we have

ν
∗m−u =

1
|X |

N

∑
i=1

di [(Fν)(i)]m φ̌i.

Formula (1.31) then follows from the orthogonality relations for the spherical
functions.

Definition 1.5.13 Let X be a finite set. The total variation distance of two
probability measures µ and ν on X is

∥µ−ν∥TV := max
A⊆X

∣∣∣∣∣∑x∈A
(µ(x)−ν(x))

∣∣∣∣∣= max
A⊆X
|µ(A)−ν(A)|.

Exercise 1.5.14 Given f ∈ L(X) we denote by ∥ f∥L1(X) := ∑x∈X | f (x)| its
L1-norm. Show that ∥µ−ν∥TV = 1

2∥µ−ν∥L1(X).

The following is the celebrated upper bound lemma of Diaconis and Shahsha-
hani.

Corollary 1.5.15 (Upper bound lemma) With the same notation as in Propo-
sition 1.5.12,

∥ν∗m−u∥2
TV ≤

1
4

N

∑
i=1

di |Fν(i)|2m ,

where u is the uniform distribution on X.

Proof Using the Cauchy–Schwarz inequality in the second line and (1.31) in
the third,

∥ν∗k−u∥2
TV =

1
4
∥ν∗m−u∥2

L1(X)

≤ 1
4
∥ν∗m−u∥2 · |X |

=
1
4

N

∑
i=1

di |Fν(i)|2m .

We define the support of f ∈ L(X) as the subset of X given by supp( f ) :=
{x ∈ X : f (x) ̸= 0} ⊆ X .

Theorem 1.5.16 Let (X ,P,ν0) be a Markov chain. Let G be a finite group act-
ing on X and suppose that P is G-invariant. Let x0 ∈ X and set K = StabG(x0).
Suppose that (G,K) is a Gelfand pair and denote by φ0 = 1,φ1, . . . ,φN ∈KL(X)
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the associated spherical functions. Suppose that there exists m0 ≥ 1 such that
supp(ν∗m0) = X. Then the mth iterates ν(m) converge to the uniform distribu-
tion u on X.

Proof By virtue of the upper bound lemma (cf. Corollary 1.5.15) and (1.29)
combined with Remark 1.5.3, it suffices to show that |Fν(i)| < 1 for all i =
1,2, . . . ,N. Since Fν∗m =(Fν)m for all m∈N (cf. Exercise 1.2.77), the above
condition is clearly equivalent to |Fν∗m0(i)| < 1 for all i = 1,2, . . . ,N. Since
supp(ν∗m0) = X , this follows from the expression of Fν∗m0 after observing
that the spherical functions φi with i≥ 1 satisfy (i) |φi(x)| ≤ 1, (ii) φi(x0) = 1,
and (iii) there exists y ∈ X such that ℜφi(y) < 0 (the latter follows from (ii)
and ∑x∈X φi(x) = 0).

1.5.2 The Ehrenfest diffusion model

The Ehrenfest model of diffusion was proposed by Paul and Tatiana Ehrenfest
in 1907 [35] to explain the second law of thermodynamics. We are given two
urns numbered 0 and 1 and n balls numbered 1,2, . . . ,n. A configuration is a
placement of the balls into the urns: there are 2n configurations (2 choices for
each ball).

The configuration space is X = P({1,2, . . . ,n}), the set of all subsets of
{1,2, . . . ,n}: a subset A ⊆ {1,2, . . . ,n} corresponds to the balls contained in
urn 0 (the remaining balls, namely those in {1,2, . . . ,n}\A, are in urn 1).

The initial configuration is A0 = {1,2, . . . ,n}: at time t = 0 all balls are in
urn 0, while urn 1 is empty (Figure 1.6).
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1 2 3 4
��
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5 6 7
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8 9
��
��
10

urn 0 urn 1

Figure 1.6 The initial configuration for the Ehrenfest diffusion model
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Then, at each time t, a ball is randomly chosen (each ball might be chosen
with probability 1/n) and it is moved to the other urn (Figures 1.7 and 1.8).
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Figure 1.7 A configuration at time t in the Ehrenfest diffusion model
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Figure 1.8 The configuration at time t +1 if the chosen ball is i3

This process can be seen as a Markov chain on X with initial probability
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distribution ν0 = δA0 , the Dirac delta at A0, and transition matrix P′ given by

p′(A,B) =

{
1
n if |A△B|= 1

0 otherwise

for all A,B ∈ X , where A△B = (A\B)∪ (B\A) is the symmetric difference of
A and B. Since the above stochastic matrix is not ergodic ((p′)(2n+1)(A,A) = 0
for all A ∈ X), we will consider a slight variation, namely the stochastic matrix
P defined by

p(A,B) =


1

n+1 if |A△B|= 1
1

n+1 if A = B

0 otherwise;

in other words at each time t we allow the possibility (with probability 1
n+1 ) to

remain in the same state (i.e., to not change the configuration at time t).
Define the Hamming distance dH on {0,1}n by setting

dH((a1,a2, . . . ,an),(b1,b2, . . . ,bn)) = |{k ∈ {1,2, . . . ,n} : ak ̸= bk}|

for all (a1,a2, . . . ,an),(b1,b2, . . . ,bn) ∈ {0,1}n (cf. Example 1.3.17). The met-
ric space Qn = ({0,1}n,dH) is called the n-dimensional hypercube. We then
regard Qn as an undirected graph with loops, with vertex set {0,1}n and edges
the pairs of vertices with Hamming distance equal to either 0 or 1. (This is the
usual hypercube graph with a loop at each vertex.) We then identify X and Qn

via the bijection Φ : X → Qn given by

Φ(A) = (a1,a2, . . . ,an), where ak =

{
1 if k ∈ A

0 if k /∈ A.

Note that |A△B| = dH(Φ(A),Φ(B)) for all A,B ∈ X . This way, the Ehrenfest
diffusion model (with n balls) can be seen as the simple random walk on the
hypercube Qn.

The wreath product G = S2 ≀ Sn = (S2× S2× ·· · × S2)⋊ Sn acts on Qn by
setting

(σ1,σ2, . . . ,σn;θ)(a1,a2, . . . ,an) = (σ1aθ−1(1),σ2aθ−1(2), . . . ,σnaθ−1(n))

for all σi ∈ S2, θ ∈ Sn, ai ∈ {0,1}, and i = 1,2, . . . ,n.

Exercise 1.5.17 Show that the above action is isometric and two-point homo-
geneous.

Let x0 = (0,0, . . . ,0) ∈ Qn and set K = StabG(x0) ∼= Sn. From the above
exercise we deduce that (G,K) = (S2 ≀Sn,Sn) is a symmetric Gelfand pair.
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Set

V0={ f ∈ L({0,1}) : f is constant} and V1={ f ∈ L({0,1}) : f (0)+ f (1) = 0}.

Then we have the orthogonal decomposition L({0,1}) = V0 ⊕V1 into S2-
irreducible representations and, in turn,

L(Qn) = L({0,1}n)≡ (L({0,1}))⊗n = (V0⊕V1)
⊗n .

Setting Wj=span{ f1⊗ f2⊗·· ·⊗ fn : fi ∈V0∪V1, |{i : fi ∈V1}|= j}, for j =
0,1, . . . ,n, we have:

Theorem 1.5.18 L(Qn) =
⊕n

j=0 Wj is the decomposition into (S2 ≀ Sn)-
irreducible pairwise inequivalent sub-representations.

The jth spherical function φ j ∈Wj is

φ j(g) =
1(n
j

) min{ℓ, j}

∑
t=max{0, j−n+ℓ}

(−1)t
(
ℓ

t

)(
n− ℓ

j− t

)
,

where ℓ= dh(gx0,x0), for all g ∈ G.

Proof See [15, Proposition 5.4.3].

We refer to [13, 18] for a far-reaching generalization of the decomposition
of L(Qn) in the above theorem.

Remark 1.5.19 The functions φ j are the so-called Krawtchouk polynomials.

The following theorem describes a very interesting feature for the asymp-
totics of the Ehrenfest diffusion process.

Theorem 1.5.20 (Diaconis–Shahshahani) With the above notation we have
the following.

(1) For k = 1
4 (n+1)(logn+ c) with c > 0

∥ν∗k−u∥2
TV ≤

1
2
(ee−c −1).

(2) For k = 1
4 (n+1)(logn− c) with c ∈ (0, logn) and n large

∥ν∗k−u∥TV ≥ 1−20e−c.

Proof See [15, Theorem 2.4.3]. Note that the Upper bound lemma (Corollary
1.5.15) plays a crucial role.
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The above theorem shows that k∗ = 1
4 (n+1) log(n) steps are necessary and

sufficient to reach the uniform distribution in the Ehrenfest model of diffu-
sion. Moreover, the so-called cut-off phenomenon occurs (see Figure 1.9): the
transition from order to chaos is concentrated in a small neighborhood of time
t = k∗.

-

6

r r

r∥ν∗k−u∥TV

k1
4 (n+1) log(n)

Figure 1.9 The cut-off phenomenon.

1.6 Induced representations and Mackey theory

This section is devoted to the basic theory of induced representations. We re-
formulate the classical Mackey theory, developed by Mackey in the setting
of locally compact groups, in the finite group case. In particular, we present
the Little Group Method due to Mackey and Wigner. Standard references for
induced representations are the monographs by: Alperin and Bell [1], Fulton
and Harris [39], Isaacs [46], Naimark and Stern [52], Serre [65], Simon [66],
and Sternberg [68]. See also our monographs [16, 18, 19, 20] as well as the
research-expository paper [17]. Finally, we generalize the notion of a finite
Gelfand pair by introducing the reader to the theory of multiplicity-free triples
developed in [20], where the role of the classical commutant EndG(L(G/K))

is now played by a so-called Hecke algebra.

1.6.1 Induced representations

Definition 1.6.1 Let G be a finite group and let K ≤ G be a subgroup. The
induced representation of a K-representation (σ ,V ) is the G-representation
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(IndG
K σ , IndG

K V ) defined by setting

IndG
K V = { f ∈V [G] : f (gk) = σ(k−1) f (g), for all g ∈ G,k ∈ K},

where V [G] is the complex vector space of all functions f : G→V , and

[IndG
K σ(g1) f ](g2) = f (g−1

1 g2), for all g1,g2 ∈ G and f ∈ IndG
K V. (1.32)

In the following, to simplify notation, we write λ = IndG
K σ .

Exercise 1.6.2 With the above notation, prove the following.

• λ is a representation. (In particular, check that λ (g) f ∈ IndG
K V for all g ∈G

and f ∈ IndG
K V ).

• Suppose that V is equipped with a scalar product ⟨·, ·⟩V and that σ is unitary.
Define a scalar product in IndG

K V by setting

⟨ f1, f2⟩IndG
K V =

1
|K| ∑g∈G

⟨ f1(g), f2(g)⟩V

for all f1, f2 ∈ IndG
K V . Show that λ is unitary.

Remark 1.6.3 The following yields an alternative approach to the definition
of an induced representation. For v ∈V define fv ∈V [G] by setting

fv(g) =

{
σ(g−1)v if g ∈ K

0 otherwise.
(1.33)

It is straightforward to check that fv ∈ IndG
K V . Moreover, the set

Ṽ = { fv : v ∈V} ⊆ IndG
K V

is a K-invariant subspace of IndG
K V and (λ |K ,Ṽ )∼ (σ ,V ): indeed,

λ (k) fv = fσ(k)v

for all k ∈ K and v ∈V . Moreover, if T ⊆ G denotes a complete set of repre-
sentatives for the left cosets of K in G, so that

G = ⊔t∈T tK, (1.34)

then we have

IndG
K V =

⊕
t∈T

λ (t)Ṽ . (1.35)

It follows immediately from (1.35) and the equality |T |= [G : K], the index
of K in G, that

dimIndG
K V = [G : K]dimV. (1.36)
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Exercise 1.6.4 (Induction in stages) Let K ≤ H ≤ G be three groups and let
(σ ,V ) be a K-representation. Then

IndG
K σ ∼ IndG

H IndH
K σ .

Hint: use the equivalence (V [H])[G]∼V [G×H].

Example 1.6.5 Suppose that G acts transitively on a set X , let x0 ∈ X , and set
K = StabG(x0). Recall (cf. Definition 1.2.50) that the permutation representa-
tion (λ ,L(X)) is the G-representation defined by setting

[λ (g) f ](x) = f (g−1x)

for all g ∈ G, x ∈ X , and f ∈ L(X). Then, denoting by (ιK ,C), the trivial rep-
resentation of the group K, we have

IndG
K C= { f ∈ L(G) : (∀g ∈ G,k ∈ K) f (gk) = ιK(k) f (g)≡ f (g)}= L(G)K .

So the map taking f ∈ L(X) to f̃ ∈ L(G)K establishes an equivalence between
(λ ,L(G/K)) and (IndG

K ιK , IndG
K C).

Example 1.6.6 Let N ⊴ G be a normal subgroup of G. Then, the corre-
sponding homogeneous space X = G/N has a natural structure of a group.
Let (λG/N ,L(G/N)) be the G-representation defined by setting λG/N(g) =
λG/N(gN) for all g ∈ G, where λG/N denotes, as usual, the left regular rep-
resentation of the group G/N. Then

(λ ,L(X))≡ (λG/N ,L(G/N)).

Remark 1.6.7 More generally, if (σ ,V ) is a G/N-representation, its inflation
(σ ,V ) is the G-representation defined by setting

σ(g) = σ(gN) (1.37)

for all g ∈ G.

Theorem 1.6.8 (Matrix coefficients) Let K ≤ G and let T ⊆ G as in (1.34).
Given a K-representation (σ ,V ), take an orthonormal basis {e1,e2, . . . ,ed}
of V . Then

{ ft, j := λ (t) fe j : t ∈T , j = 1,2, . . . ,d}

constitutes an orthonormal basis of IndG
K V . Moreover, the corresponding ma-

trix coefficients are given by

〈
λ (g) ft, j, fs,i

〉
IndG

K V =

{〈
σ(s−1gt)e j,ei

〉
V if s−1gt ∈ K

0 otherwise,

for all s, t ∈T , 1≤ i, j ≤ d, and g ∈ G.
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Corollary 1.6.9 (Frobenius character formula) With the notation of the above
theorem, we have

χ
IndG

K σ (g) = ∑
t∈T :

t−1gt∈K

χ
σ (t−1gt)

for all g ∈ G.

Theorem 1.6.10 Let (θ ,W ) be a G-representation and let (σ ,V ) be a K-
representation, where K ≤ G. Then

W ⊗ IndG
K V ∼= IndG

K(ResG
K W ⊗V ).

Proof Define φ : W ⊗ IndG
K V → IndG

K(ResG
K W ⊗V ) by setting

φ(w⊗ f )(g) = θ(g−1)w⊗ f (g)

for all g ∈ G,w ∈W and f ∈ IndG
K V . We leave it as an exercise to check that

φ is bijective, and furthermore that it is an intertwiner between θ ⊗ IndG
K σ and

IndG
K(ResG

K θ ⊗σ).

From the above theorem, with (σ ,V ) = (ιK ,C) and setting X = G/K, we
immediately deduce the following important relation between induction and
restriction:

Corollary 1.6.11

W ⊗L(X)∼= IndG
K ResG

K W.

1.6.2 Mackey theory

Theorem 1.6.12 (Frobenius reciprocity) Let (θ ,W ) be a G-representation
and let (σ ,K) be a K-representation, where K ≤ G. Then, as vector spaces,

HomG(W, IndG
K V )∼= HomK(ResG

K W,V ).

Proof For T∈HomG(W, IndG
K V ), define T̂ : W→V by setting T̂ w= [Tw](1G)

for all w ∈W . We leave it as an exercise to check that T̂ ∈ HomK(ResG
K W,V ).

Vice versa, for S ∈ HomK(ResG
K W,V ), we define Š : W → V [G] by setting

[Šw](g) = S(θ(g−1w) for all g ∈ G and w ∈W . Again, it is easy to check that
Š ∈ HomG(W, IndG

K V ). Moreover, (T̂ )ˇ = T and (Š)̂ = S. These facts, and the
obvious linearity of the maps ˆ and ˇ, end the proof.

Remark 1.6.13 Let (ρ1,V1) and (ρ2,V2) be two G-representations and sup-
pose that ρ1 is irreducible. Then the multiplicity mρ2

ρ1 of ρ1 in ρ2 equals the
dimension of HomG(V1,V2). See [19, Lemma 10.6.1.(i)].
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From the remark and Frobenius reciprocity we immediately deduce:

Corollary 1.6.14 Let (θ ,W ) ∈ Ĝ and let (σ ,K) ∈ K̂. Then

mIndG
Kσ

θ
= mResG

K θ

σ .

Let G be a group and let H,K ≤ G be two subgroups of G. Denote by S

a complete set of representatives of the double cosets H\G/K so that G =

⊔s∈S HsK. We suppose that 1G ∈S . For s ∈S we set Gs = H ∩ sKs−1.

Exercise 1.6.15 Let h1,h2 ∈ H, k1,k2 ∈ K, and s ∈ S . Show that h1sk1 =

h2sk2 if and only if there exists x ∈ Gs such that h2 = h1x and k2 = s−1x−1sk1.
Deduce that |HsK|= |H| · |K|/|Gs|.

Let (σ ,V ) be a K-representation and let (ν ,U) be an H-representation. We
define a Gs-representation (σs,Vs) by setting Vs =V and σs(x) = σ(s−1xs) for
all x ∈ Gs, and we set

S0 = {s ∈S : HomGs(ResH
Gs ν ,σs) ̸= 0}.

We have the following fundamental results:

• (Mackey’s formula for invariants)

HomG(IndG
H ν , IndG

K σ)∼=
⊕

s∈S0

HomGs(ResH
Gs ν ,σs).

• (Mackey’s intertwining number theorem)

dimHomG(IndG
H ν , IndG

K σ) = ∑
s∈S0

dimHomGs(ResH
Gs ν ,σs).

• (Mackey’s irreducibility criterion)

IndG
K σ is irreducible ⇔

{
σ is irreducible and

(∀s ∈S \{1G}) HomGs(ResK
Gs

σ ,σs) = 0.

Remark 1.6.16 For a complete proof of Mackey’s formula for invariants, see
[19, Corollary 11.4.4]. When H = K we shall revisit it in Section 1.6.5. Ob-
serve that it reduces to Frobenius reciprocity when H = G and θ = ν . More-
over, both Mackey’s intertwining number theorem and Mackey’s irreducibility
criterion are almost immediate consequences of Mackey’s formula for invari-
ants: we leave it to the reader to check the corresponding details.

Finally, we consider the counterpart of Corollary 1.6.11, namely the case
when we restrict after inducing.
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Theorem 1.6.17 (Mackey’s lemma)

ResG
H IndG

K σ ∼
⊕
s∈S

IndH
Gs σs.

Proof See [19, Theorem 11.5.1].

1.6.3 The little group method of Mackey and Wigner

In this section we present a method, due to Mackey and Eugene Paul Wigner, to
obtain all irreducible representations of a group G admitting a normal abelian
subgroup A ⊴ G and satisfying a suitable condition. We first observe that G
acts on Â by conjugation: if χ ∈ Â and g ∈ G we define gχ ∈ Â by setting

g
χ(a) = χ(g−1ag) (1.38)

for all a ∈ A (we leave it to the reader to check that the map (g,χ) 7→ gχ is an
action).

Let χ ∈ Â. The inertia group of χ is the subgroup Kχ defined by Kχ =

StabG(χ) = {g ∈ G : gχ = χ}. Note that since A is abelian we have A ≤ Kχ .
Moreover, an extension of χ to Kχ is a one-dimensional Kχ -representation χ̃

such that χ = ResKχ

A χ̃ .

We recall that given a ψ ∈ K̂χ/A, we denote by ψ its inflation (see (1.37)).

Theorem 1.6.18 Suppose that χ ∈ Â admits an extension χ̃ to Kχ . Then

IndKχ

A χ =
⊕

ψ∈K̂χ/A

dψ(χ̃⊗ψ). (1.39)

Moreover, if every χ ∈ Â admits an extension χ̃ to Kχ , then

Ĝ =
{

IndG
Kχ
(χ̃⊗ψ) : ψ ∈ K̂χ/A,χ ∈ X

}
, (1.40)

where X denotes a complete set of representatives of the orbits of G on Â.

Proof

IndKχ

A χ = IndKχ

A (χ⊗ ιA)

= IndKχ

A (ResKχ

A χ̃⊗ ιA)

= χ̃⊗ IndKχ

A ιA = χ̃⊗λ

by Corollary 1.6.11, where λ denotes the inflation of the regular representation
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λ = λKχ/A of Kχ/A. By the Peter-Weyl Theorem (cf. Theorem 1.2.36), λ =⊕
ψ∈K̂χ/A

dψ ψ so that

λ =
⊕

ψ∈K̂χ/A

dψ ψ,

from which (1.39) follows.
The proof of the other statement is more involved. Let S be a complete

set of representatives for the double cosets Kχ\G/Kχ with 1G ∈S . Set Gs =

Kχ ∩sKχ s−1 and (χ̃⊗ψ)s(x) = (χ̃⊗ψ)(s−1xs) for all s∈S and x∈Gs. Since
A is abelian, we have (χ̃⊗ψ)s(a) = sχ(a)ψ(A) for all a ∈ A, so that

ResGs
A (χ̃⊗ψ)s ∼ dψ

s
χ

which in turn implies that, for s ̸= 1G ResKχ

Gs
(χ̃ ⊗ψ) and (χ̃ ⊗ψ)s cannot

have common irreducible subrepresentations (otherwise, restricting to A would
give equivalent representations, violating the fact that sχ ̸= χ if s ̸= 1G). From
Mackey’s irreducibility criterion, we deduce that IndG

Kχ
(χ̃⊗ψ) is irreducible.

Finally, from Mackey’s lemma we deduce that

ResG
Kχ

IndG
Kχ
(χ̃⊗ψ)∼

⊕
s∈S

IndKχ

Gs
(χ̃⊗ψ)s.

We leave it as an exercise to deduce, from the above expression, that ψ is
uniquely determined by IndG

Kχ
(χ̃⊗ψ).

In the next theorem we apply the little group method in the case of a semi-
direct product G = A⋊H, with A abelian. When both subgroups A and H are
abelian, a simpler approach is presented in [21].

Theorem 1.6.19 Let G = A⋊H and suppose that A is abelian. For all χ ∈ Â,
let Hχ = StabH(χ) = {h ∈ H : hχ = χ}. Then:

(1) the inertia group of χ is Kχ = A⋊Hχ ;
(2) there exists an extension χ̃ of χ to A⋊Hχ .

Moreover,

Ĝ = {IndG
A⋊Hχ

(χ̃⊗ψ) : χ ∈ X ,ψ ∈ Ĥχ}, (1.41)

where X denotes a complete set of representatives of the orbits of H on Â.

Proof

(1) Given a ∈ A and h ∈ H, we have ahχ = χ ⇔ hχ = χ ⇔ h ∈ Hχ .
(2) Define χ̃ : A⋊Hχ → T by setting χ̃(ah) = χ(a) for all a ∈ A and h ∈ Hχ .
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We have

χ̃(a1h1 ·a2h2) = χ̃(a1h1a2h−1
1 ·h1h2) = χ(a1h1a2h−1

1 )

= χ(a1)χ(h1a2h−1
1 ) = χ(a1)χ(a2) = χ̃(a1h1)χ̃(a2h2),

showing that χ̃ ∈ Â⋊Hχ . Finally, (1.41) follows immediately from (1.40).

1.6.4 Hecke algebras

This section is based on our recent work [20] (see also [15, Chapter 13] for the
particular case when the K-representation is one-dimensional).

Let G be a finite group, let K ≤ G be a subgroup, and let (θ ,V ) be a K-
representation. We set H̃ (G,K,θ) equal to

{F : G→ End(V ) : F(k1gk2) = θ(k−1
2 )F(g)θ(k−1

1 ),∀g ∈ G and ∀k1,k2 ∈ K}.

Given F1,F2 ∈ H̃ (G,K,θ) we define their convolution product F1 ∗F2 : G→
End(V ) by setting

[F1 ∗F2](g) = ∑
h∈G

F1(h−1g)F2(h)

for all g ∈ G, and their scalar product as

⟨F1,F2⟩H̃ (G,K,θ)
= ∑

g∈G
⟨F1(g),F2(g)⟩End(V ).

Finally, for F ∈ H̃ (G,K,θ) we define the adjoint F∗ : G→ End(V ) by setting

F∗(g) = [F(g−1)]∗

for all g ∈G, where [F(g−1)]∗ is the adjoint of the operator F(g−1) ∈ End(V ).

Exercise 1.6.20 Let F1,F2,F ∈ H̃ (G,K,θ). For g ∈ G, set

1
H̃
(g) =

1
|K|

1K(g)θ(g−1),

where 1K denotes the characteristic function of K. Show that

• F1 ∗F2 ∈ H̃ (G,K,θ);
• F∗ ∈ H̃ (G,K,θ);
• (F1 ∗F2)

∗ = F∗2 ∗F∗1 ;
• 1

H̃
∈ H̃ (G,K,θ), and F ∗1

H̃
= 1

H̃
∗F = F , for all F ∈ H̃ (G,K,θ),

and deduce that H̃ is a unital ∗-algebra.
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We refer to H (G,K,θ) as the Hecke algebra associated with the triple
(G,K,θ).

As in Section 1.6.2 (with H = K), we denote by S ⊆ G (with 1G ∈ S )
a complete set of representatives for the double K-cosets in G so that G =⊔

s∈S KsK. For s ∈S we set Ks = K ∩ sKs−1 and denote by (θ s,Vs) the Ks-
representation defined by setting Vs = V and θ s(x) = θ(s−1xs) for all x ∈ Ks.
Finally, we set S0 = {s ∈S : HomKs(ResK

Ks
θ ,θs) ̸= 0}.

Exercise 1.6.21 Choose s ∈ S . For each T ∈ HomKs(ResK
Ks

θ ,θ s), define
LT : G→ End(V ) by setting

LT (g) =

{
θ(k−1

2 )T θ(k−1
1 ) if g = k1sk2 for some k1,k2 ∈ K

0 if g /∈ KsK.

Let F ∈ H̃ (G,K,θ). Show that

(1) LT is well defined and belongs to H̃ (G,K,θ);
(2) F(s) ∈ HomKs(ResK

Ks
θ ,θ s) for all s ∈S ;

(3) F = ∑s∈S0
LF(s) and the nontrivial elements in this sum are linearly inde-

pendent.

For F ∈ H̃ (G,K,θ) we define ξ (F) : IndG
K V →V [G] by setting

[ξ (F) f ](g) = ∑
h∈G

F(h−1g) f (h)

for all f ∈ IndG
K V and g∈G. Also, for T ∈EndG(IndG

K V ) we define Ξ(T ) : G→
End(V ) by setting

Ξ(T )(g)v =
1
|K|

[T fv](g),

for all g ∈ G and v ∈V , where fv is as in (1.33).

Exercise 1.6.22 (1) Show that ξ (F) ∈ EndG(IndG
K V ) for all F ∈ H̃ (G,K,θ).

(2) Show that ξ (F1 ∗F2) = ξ (F1)ξ (F2) and ξ (F∗) = ξ (F)∗ for all F1,F2,F ∈
H̃ (G,K,θ).

(3) Show that Ξ(T ) ∈ H̃ (G,K,θ) for all T ∈ EndG(IndG
K V ).

(4) Show that the normalized map F 7→ 1√
|K|

ξ (F) is an isometry.

(5) Show that
1
|K| ∑h∈G

[λ (h) f f (h)] = f , (1.42)

for all f ∈ IndG
K V .
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Theorem 1.6.23 The map ξ : H̃ (G,K,θ)→End(IndG
K V ) is a ∗-isomorphism

of unital ∗-algebras with inverse the map Ξ : EndG(IndG
K V )→ H̃ (G,K,θ).

Proof Having established the results in Exercise 1.6.22, we only need to
check that Ξ is a right-inverse of ξ .

Given T ∈ EndG(IndG
K V ), f ∈ IndG

K , and g ∈ G, we have

[(ξ ◦Ξ(T ) f ] (g) = ∑h∈G[Ξ(T )(h−1g)] f (h)
= 1

|K| ∑h∈G
[
T f f (h)

]
(h−1g)

= 1
|K| ∑h∈G

[
λ (h)T f f (h)

]
(g)

= 1
|K| ∑h∈G

[
T λ (h) f f (h)

]
(g)

=
[
T
(

1
|K| ∑h∈G λ (h) f f (h)

)]
(g)

= [T f ] (g)

by (1.42). This shows that ξ (Ξ(T )) = T , as desired.

The Hecke algebra as a subalgebra of L(G). Let (θ ,V ) be a K-representation
as in the first part of this section, but we now assume that θ is irreducible. We
fix v∈V with ∥v∥= 1 and we consider an orthonormal basis {v1 = v,v2, . . . ,vdθ

}
of V .

We define (everything depending on the choice of the fixed vector v ∈V ):

• ψ ∈ L(G) by setting

ψ(g) =

{
dθ

|K| ⟨v,θ(k)v⟩V if g = k ∈ K

0 otherwise;
(1.43)

• the convolution operator P : L(G)→ L(G) by setting P f = Tψ f = f ∗ψ for
all f ∈ L(G);
• the linear operator T : IndG

K V → L(G) by setting

[T f ](g) =
√

dθ/|K|⟨ f (g),v⟩V

for all f ∈ IndG
K V and g ∈ G, and denote its range by

I (G,K,θ) = T
(
IndG

K V
)
⊆ L(G);

• the map S : H̃ (G,K,θ)→ L(G) by setting

[SF ](g) = dθ ⟨F(g)v,v⟩V

for all F ∈ H̃ (G,K,θ) and g ∈ G;
• the subspace

H (G,K,θ) = {ψ ∗ f ∗ψ : f ∈ L(G)}≡ { f ∈ L(G) : f = ψ ∗ f ∗ψ}≤ L(G).

(1.44)
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Exercise 1.6.24 (1) Show that T ∈ HomG(IndG
K V,L(G)) and is an isometry.

(2) Deduce that I (G,K,θ) is a λG-invariant subspace of L(G), which is G-
isomorphic to IndG

K V .
(3) Show that ψ ∗ψ = ψ and ψ∗ = ψ and deduce that P is the orthogonal

projection of L(G) onto I (G,K,θ).
(4) Show that S(F)∈H (G,K,θ) and S(F1∗F2)= S(F2)S(F1) for all F,F1,F2 ∈

H̃ (G,K,θ).
(5) Show that 1√

dθ

S is an isometry.

(6) Show that every f ∈H (G,K,θ) is supported in
⊔

s∈S0
KsK.

Combining the results from the above exercise we establish the following:

Theorem 1.6.25 H (G,K,θ) is an involutive subalgebra of L(G), and the
map S : H̃ (G,K,θ) → H (G,K,θ) is a ∗-anti-isomorphism of ∗-algebras.

1.6.5 Multiplicity-free triples and their spherical functions

This section is also based on [20] and [15, Chapter 13].
Let G be a finite group, let K ≤ G be a subgroup, and let (θ ,V ) ∈ K̂.

Definition 1.6.26 We say that (G,K,θ) is a multiplicity-free triple if the al-
gebra H (G,K,θ) (cf. (1.44) and Theorem 1.6.25) is commutative.

Theorem 1.6.27 The following conditions are equivalent:

(1) (G,K,θ) is a multiplicity-free triple.
(2) IndG

K θ decomposes without multiplicity.
(3) The algebra H̃ (G,K,θ) is commutative.
(4) The algebra EndG(IndG

K(V )) is commutative.

(5) The multiplicity of θ in ResG
K ρ satisfies mResG

K ρ

θ
≤ 1, that is, we have

dimHomK(V,ResG
K W )≤ 1

for every (ρ,W ) ∈ Ĝ.

Proof The equivalences between (1), (2), and (3) follow from Theorem 1.6.23
and Theorem 1.6.25. The equivalence with (4) is obtained by arguing as in the
proof of Theorem 1.2.60. The equivalence with the remaining condition fol-
lows from Frobenius reciprocity: we leave the details to the reader.

The following provides a simple condition guaranteeing multiplicity-
freeness:
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Proposition 1.6.28 Suppose there exists an anti-automorphism τ of G such
that f (τ(g)) = f (g) for all f ∈H (G,K,θ) and g ∈ G. Then (G,K,θ) is a
multiplicity-free triple.

Proof Let f1, f2 ∈H (G,K,θ) and g ∈ G. We have

[ f1 ∗ f2](g) = ∑
h∈G

f1(gh) f2(h−1)

= ∑
h∈G

f1(τ(gh)) f2(τ(h−1))

= ∑
h∈G

f1(τ(h)τ(g)) f2(τ(h−1))

= ∑
h∈G

f2(τ(h−1)) f1(τ(h)τ(g))

= ∑
t∈G

f2(t−1) f1(tτ(g))

= [ f2 ∗ f1](τ(g)) = [ f2 ∗ f1](g).

(setting t = τ(h) in the penultimate line). Thus f1 ∗ f2 = f2 ∗ f1, showing that
H (G,K,θ) is commutative.

Remark 1.6.29 When θ = ιK , the trivial representation of the subgroup K,
we recover the case of a Gelfand pair (see Theorem 1.2.60). Note that in this
context the algebra H (G,K, ιK) coincides with the algebra H̃ (G,K, ιK) and
the criterion in Proposition 1.6.28 reduces to the condition of a weakly sym-
metric Gelfand pair (see Exercise 1.2.55).

For the rest of this section we consider a multiplicity-free triple (G,K,θ).
Generalizing the case of Gelfand pairs, we show that also in this setting it is
possible to develop a complete theory of spherical functions.

Definition 1.6.30 A function φ ∈H (G,K,θ) is spherical if{
φ ∗ f = λφ , f φ for all f ∈H (G,K,θ)

φ(1G) = 1.

The proof of the next results follow the same lines of the analogous results
in the setting of Gelfand pairs (cf. Section 1.2.2) and we leave it to the reader
(for more details, we refer to [20, Section 4.2]; see also [19, Section 13]).

Lemma 1.6.31 A function φ ∈ L(G)\{0} is spherical if and only if

∑
k∈K

φ(gkh)ψ(k) = φ(g)φ(h)

for all g,h ∈ G, where ψ ∈ L(G) is as in (1.43).
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Theorem 1.6.32 Let φ be a spherical function and define Φ : L(G)→ C by
setting Φ( f )=[ f ∗φ ](1G). Then Φ is a multiplicative functional on H (G,K,θ).
Conversely, every multiplicative functional on H (G,K,θ) comes from a spher-
ical function as above.

We denote by J ⊆ Ĝ the set of all irreducible G-represetations that are con-
tained in IndG

K θ . Note that (ρ,W )∈J if and only if dimHomK(V,ResG
K W ) =

1 (cf. Theorem 1.6.27). We then have:

Corollary 1.6.33

|{spherical functions}|= |J |= dimH (G,K,θ).

Proposition 1.6.34 Let φ ,φ ′ be distinct spherical functions. Then

• φ ∗ = φ ;
• φ ∗φ ′ = 0;
• ⟨λG(g1)φ ,λG(g2)φ

′⟩L(G) = 0 for all g1,g2 ∈ G. In particular φ ⊥ φ ′.

Theorem 1.6.35 Let Uφ = span{λG(g)φ : g ∈ G}. Then

I (G,K,θ) =
⊕

φ∈J
Uφ .

We denote φ σ the spherical function associated with σ ∈J .

Definition 1.6.36 The map F : H (G,K,θ)→ CJ defined by setting

[F f ](σ) = ⟨ f ,φ σ ⟩L(G) = [ f ∗φ
σ ](1G)

for all f ∈H is the spherical Fourier transform.

Theorem 1.6.37 (Properties of the spherical Fourier transform) The spher-
ical Fourier transform is an algebra isomorphism between the commutative
algebras H (G,K,θ) and CJ . Moreover, for f , f1, f2 ∈H (G,K,θ) we have:

• (Convolution property)

F [ f1 ∗ f2] = F ( f1) ·F ( f2);

• (Inversion formula)

f =
1
|G| ∑

σ∈J
dσ [F f ](σ)φ σ ;

• (Parseval identity)

⟨ f1, f2⟩L(G) =
1
|G| ∑

σ∈J
dσ [F f1](σ)[F f1](σ).
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1.7 Representation theory of GL(2,Fq)

This final section is devoted to the study of the representation theory of the
general linear group GL(2,Fq) over a finite field with q elements. It is based
on part IV of our monograph [19], which sheds light on the results and the
calculations in the beautiful exposition of Piatetski–Shapiro [57] by framing
them in a more comprehensive theory. We start with some elementary facts
on finite fields and their characters, and determining, as intermediate steps,
the irreducible representations of the affine group Aff(Fq). We also describe
the subgroup structure of GL(2,Fq) by analyzing a few important subgroups,
notably the Borel subgroup B and the unipotent subgroup U , as well as its
Bruhat decomposition. We then determine all irreducible representations and
their characters of GL(2,Fq): these are of two types, parabolic (that can be
obtained by inducing up characters of the Borel subgroup) and cuspidal (whose
space of U-invariant vectors is trivial).

1.7.1 Finite fields and their characters

Let F be a finite field. We denote by F[x] the ring of all polynomials in the
indeterminate x with coefficients in F, and by ∂ p(x) := n the degree of a poly-
nomial p(x) = a0 +a1x+ · · ·+anxn ∈ F[x], an ̸= 0.

Recall that the characteristic char(F) of F, that is, the additive order of 1∈F,
is a prime number. Indeed, the map Φ : Z→ F defined by Φ(±n) =±(1+1+
· · ·+1) for all n ∈N, is a ring homomorphism so that Z/ker(Φ) is isomorphic
to Φ(Z) ⊂ F. Now, Φ(Z), being a finite integral domain, it is itself a field
(exercise). We deduce that ker(Φ) = pZ for a unique prime number p, and
therefore char(F) = p.

An extension of F is a field E such that F ⊂ E. It then follows that E is a
vector space over F. We denote by [E :F] = dimFE the degree of this extension.

Since Z/pZ∼= Φ(Z)⊂ F, we deduce that |F|= pn, where n = [F : Φ(Z)].
Given an extension F ⊂ E, an element α ∈ E is said to be algebraic over

F if there exists a polynomial p(x) ∈ F[x] such that p(α) = 0. If α ∈ E is
algebraic over F, then the set Iα = {p(x) ∈ F[x] : p(α) = 0} is an ideal of F[x].
Since F[x] is a principal ideal domain, there exists a monic polynomial q(x) ∈
F[x] such that Iα = q(x)F[x]. Such a polynomial q(x), which is unique and
irreducible (over F), is called the minimal polynomial of α (over F). Consider
the ring homomorphism Φ : F[x]→ E defined by setting Φ(p(x)) = p(α) for
all p(x) ∈ F[x]. Then Iα = kerΦ and

F[x]/q(x)F[x]∼= Φ(F[x]) = F[α]≤ E,
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where F[α], the subfield obtained by adjoining α to F, satisfies [F[α] : F] =
∂q(x), the degree of the minimal polynomial of α .

Exercise 1.7.1 Let F⊂ E be an extension of fields. Show that if [E : F]< ∞,
then every α ∈ E is algebraic over F.

Let p(x) ∈ F[x] of degree ∂ p(x) = n. The smallest (i.e., of minimal degree)
field extension E of F such that there exist α1,α2, . . . ,αn ∈ E and c ∈ F such
that p(x) = c(x−α1)(x−α2) · · ·(x−αn), is called a splitting field for p(x)
over F.

Theorem 1.7.2 (Existence and uniqueness of finite fields)

(1) The splitting field of any polynomial p(x) ∈ F[x] exists and is unique up to
isomorphism.

(2) Suppose that q = pn for some integer n ≥ 1. Then the splitting field of the
polynomial p(x) = xq−x over Z/pZ has exactly q elements, which consist
of all the roots of p(x).

(3) For every prime number p and integer h ≥ 1 there exists a unique (up to
isomorphism) finite field Fq of order q = ph. It is isomorphic to

Fp[x]/ℓ(x)Fp[x],

where ℓ(x) = (x−α)(x−α p)(x−α p2
) · · ·(x−α ph−1

) and α is any gener-
ator of the cyclic group F∗q.

(4) The (multiplicative) group F∗q of invertible elements of Fq is cyclic (of order
q−1).

Proof See, for instance [19, Theorem 1.1.21 and Theorem 6.3.3].

The Galois group of an extension F⊂ E is the group

Gal(E : F) = {ξ ∈ Aut(E) : ξ (x) = x for all x ∈ F}

of automorphisms of E fixing all elements of F pointwise.
Suppose that char(F) = p. Then the map σ : F→ F defined by σ(x) = xp

for all x ∈ F is an automorphism of F, called the Frobenius automorphism of
F. Then if |F|= pn, the Galois group Gal(F : Fp) is cyclic of order n, indeed it
is generated by the Frobenius automorphism, and equals Aut(F).

More generally, suppose E= Fqh = Fpnh and F= Fq = Fpn . Then Gal(E : F)
is cyclic of order h, indeed generated by σ = σn (thus σ(x) = xpn = xq for all
x ∈ E). The trace and the norm are the maps TrE/F : E→ F and NE/F : E→ F
given by

TrE/F(α) =
h

∑
k=1

σ
k(α) and NE/F(α) =

h

∏
k=1

σ
k(α) (1.45)

https://doi.org/10.1017/9781009465939.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009465939.002


Topics in representation theory of finite groups 71

for all α ∈ E.

Exercise 1.7.3 Show that TrE/F(α) (resp. NE/F(α)) is indeed in F for every
α ∈ E.

Theorem 1.7.4 (Hilbert Satz 90) (1) TrE/F is a surjective F-linear map from
E onto F and

ker(TrE/F) = {α−σ(α) : α ∈ E}.

(2) NE/F yields (by restriction) a surjective homomorphism from the multi-
plicative group E∗ of E into the multiplicative group F∗ of F and

ker(NE/F) = {ασ(α)−1 : α ∈ E∗}.

Quadratic extensions From now on we suppose that p is odd. An extension
F⊂ E with [E : F] = 2 is called quadratic: it is a generalization of the familiar

extension R⊂ C and the matrix representation z = a+ ib↔
(

a −b
b a

)
for all

a,b ∈R. Let q = ph. Then Gal(Fq2 : Fq) is cyclic of order 2 and it is generated
by σ , where σ(x) = xq for all x ∈ Fq2 . Moreover, there exists an irreducible
monic polynomial of degree 2 over Fq (in fact, there are (q2 − q)/2 such)
x2 +ax+b, say with roots α and β .

Exercise 1.7.5 With α and β as above, show that σ(α) = β (and σ(β ) = α).

Theorem 1.7.6 Suppose that p is odd, and q = ph. Let η be a generator of
the cyclic group F∗q and denote by ±i the square roots of η . Then ±i /∈ Fq and
{1, i} is a vector space basis for Fq2 over Fq. Moreover, Fq2 is isomorphic (as
an Fq-algebra) to the algebra M2(Fq,η)⊆M2(Fq) consisting of all matrices
of the form (

α ηβ

β α

)
with α,β ∈ Fq. The isomorphism is provided by the map M2(Fq,η)→ Fq2

given by (
α ηβ

β α

)
7→ α + iβ (1.46)

for all α,β ∈ Fq. Moreover σ(α + iβ ) = α− iβ for all α,β ∈ Fq.

The conjugate of an element α ∈ Fq2 is defined as α = σ(α). Then

TrFq2/Fq(α) = α +α and NFq2/Fq(α) = αα
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for all α ∈ Fq2 . Moreover, α = α if and only if α ∈ Fq.

Characters of finite fields Let Fq be a finite field. An additive character of Fq

is a character of the finite abelian group (Fq,+), that is, a map χ : Fq→ T (see
Remark 1.2.29) such that χ(x+ y) = χ(x)χ(y) for all x,y ∈ Fq. The additive
characters constitute a (multiplicative) abelian group, denoted by F̂q, called the
dual group of Fq.

We have the orthogonality relations:

⟨χ,ξ ⟩L(Fq) ≡ ∑
x∈Fq

χ(x)ξ (x) =

{
q if χ = ξ

0 otherwise,

for all χ,ξ ∈ F̂q.
The principal additive character of Fq is defined by setting, for all x ∈ Fq,

χprinc(x) = exp[2πiTr(x)/p], (1.47)

where Tr = TrFq/Fp denotes the trace (cf. (1.45)) and we identify Fp with
{0,1, . . . , p−1} to compute the exponential. Since Tr is a surjective Fp-linear
map from Fq onto Fp, the principal character χprinc is indeed a nontrivial ad-
ditive character.

Exercise 1.7.7 Let χ be a nontrivial additive character of Fq. For each y∈ Fq

define χy : Fq→ T by setting

χy(x) = χ(xy)

for all x ∈ Fq (see Remark 1.2.29). Show that χy ∈ F̂q, and that the map

Ψ : Fq → F̂q

y 7→ χy

is a group isomorphism.

Exercise 1.7.8 Show that F̂q2 = {χs,t : s, t ∈ Fq}, where

χs,t(x,y) = χprinc(sx+ ty) (1.48)

for all s, t,x,y ∈ Fq.

A multiplicative character of Fq is a character of the finite cyclic group
(F∗q, ·), that is, a map

ψ : F∗q→ T

such that ψ(xy) = ψ(x)ψ(y) for all x,y ∈ F∗q. The set F̂∗q of all multiplicative
characters is a (multiplicative) cyclic group, called the dual group of F∗q.
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We have the orthogonality relations:

⟨ψ,φ⟩= ∑
x∈F∗q

ψ(x)φ(x) =

{
q−1 if ψ = φ

0 otherwise.

Let x be a generator of F∗q. The principal multiplicative character of F∗q
associated with x is the multiplicative character ψprinc defined by setting

ψprinc(xk) = exp
(

2πik
q−1

)
(1.49)

for all k = 1,2, . . . ,q−1.

Exercise 1.7.9 Show that ψprinc is a generator of F̂∗q.

Decomposable and indecomposable characters
Let ν be a character of F∗q2 .
One says that ν is decomposable if there exists a character ψ of F∗q such that

ν(α) = ψ(αα) (1.50)

for all α ∈ F∗q2 . If this is not the case, ν is called indecomposable.
Moreover, the conjugate of ν is the character ν defined by ν(α) = ν(α) for

all α ∈ F∗q2 .

Exercise 1.7.10 A character ν ∈ F̂∗q2 is decomposable if and only if ν = ν .

1.7.2 Representation theory of the affine group Aff(Fq)

Let p be a prime number and let q = pn. The (general) affine group (of degree
one) over Fq is the subgroup Aff(Fq) of GL(2,Fq) defined by

Aff(Fq) =

{(
a b
0 1

)
: a ∈ F∗q, b ∈ Fq

}
.

Exercise 1.7.11 Show that the action of Aff(Fq) on the set
{(

x
1

)
: x ∈ Fq

}
by left multiplication is doubly transitve.

Consider the following abelian subgroups of Aff(Fq):

A =

{(
a 0
0 1

)
: a ∈ F∗q

}
∼= F∗q

and

U =

{(
1 b
0 1

)
: b ∈ Fq

}
∼= Fq.
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Exercise 1.7.12 (1) The inverse of
(

a b
0 1

)
∈ Aff(Fq) is

(
a b
0 1

)−1

=

(
a−1 −a−1b
0 1

)
;

(2) the subgroup U is normal and one has

Aff(Fq)∼=U ⋊A≡ Fq ⋊F∗q; (1.51)

(3) the conjugacy classes of the group Aff(Fq) are the following:

• C0 =

{(
1 0
0 1

)}
;

• C1 =

{(
1 b
0 1

)
: b ∈ F∗q

}
;

• Ca =

{(
a b
0 1

)
: b ∈ Fq

}
, where a ∈ F∗q, a ̸= 1.

Since Aff(Fq) is a semidirect product with an abelian normal subgroup (cf.
(1.51)), we can apply the little group method (Theorem 1.6.19) in order to get
a complete list of all irreducible representations of Aff(Fq).

Exercise 1.7.13 After identifying A with the multiplicative group F∗q and
U with the additive group Fq, show that the conjugacy action (cf. (1.38)) of
A≡ F∗q on Û ≡ F̂q is given by

a
χ(b) = χ(a−1b) (1.52)

for all χ ∈ Û ,b ∈ Fq, and a ∈ F∗q.

Exercise 1.7.14 Denote by χ0 ≡ 1 the trivial character of U .

(1) Show that the action of A on Û has exactly two orbits, namely {χ0} and
F̂q \{χ0}.

(2) Show that the stabilizer of χ ∈ Û is given by

StabA(χ) =

{
{1A} if χ ̸= χ0

A if χ = χ0.

Theorem 1.7.15 The group Aff(Fq) has exactly q−1 one-dimensional repre-
sentations, obtained by associating with each ψ ∈ Â the group homomorphism
Ψ : Aff(Fq)→ T defined by

Ψ

(
a b
0 1

)
= ψ(a) (1.53)
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for all
(

a b
0 1

)
∈ Aff(Fq), and one (q−1)-dimensional irreducible represen-

tation, given by

π = IndAff(Fq)
U χ, (1.54)

where χ is any nontrivial character of U.

Proof By Exercise 1.7.14, the inertia group of the trivial character χ0 ∈ Û
is Aff(Fq). This provides the q− 1 one-dimensional representations simply
by taking any character ψ ∈ Â. Moreover, the inertia group of any nontrivial
character χ ∈ Û is U since, by Exercise 1.7.14, StabA(χ) = {1A}. We conclude
by applying Theorem 1.6.19.

1.7.3 The general linear group GL(2,Fq)

Let q = pn with p an odd prime. We consider five important subgroups of
GL(2,Fq):

B =

{(
α β

0 δ

)
: α,δ ∈ F∗q,β ∈ Fq

}
(the Borel subgroup)

D =

{(
α 0
0 δ

)
: α,δ ∈ F∗q

}
(the diagonal subgroup)

U =

{(
1 β

0 1

)
: β ∈ Fq

}
(the unipotent subgroup)

Z =

{(
α 0
0 α

)
: α ∈ F∗q

}
(the center)

C =

{(
α ηβ

β α

)
: α,β ∈ Fq,(α,β ) ̸= (0,0)

}
(the Cartan subgroup),

where, as usual, F∗q denotes the multiplicative subgroup of Fq consisting of all
nonzero elements, and η is a generator of F∗q; cf. Theorem 1.7.6

We have the following:

• B =U ⋊D∼= Aff(Fq)×Z.
• U = [B,B] = B′ is abelian.

• Let w =

(
0 1
1 0

)
∈ GL(2,Fq), then (Bruhat decomposition):

GL(2,Fq) = B⊔BwU = B⊔UwB = B⊔BwB.

• Aff(Fq) =U ⋊A.

Exercise 1.7.16 Show that |GL(2,Fq)|= (q2−1)(q2−q) = q(q+1)(q−1)2.
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Theorem 1.7.17 The following table describes the conjugacy classes of the
group GL(2,Fq).

TYPE RE NC NE NAME C(RE)

(a)
(

λ 0
0 λ

)
, q−1 1 central GL(2,Fq)

λ ̸= 0

(b1)
(

λ1 0
0 λ2

)
,

(q−1)(q−2)
2

q2 +q hyperbolic D

λ1 ̸= λ2

(b2)
(

λ 1
0 λ

)
, q−1 q2−1 parabolic ZU

λ ̸= 0

(b3) C \Z
q(q−1)

2
q2−q elliptic C

where

• TY PE indicates type of the conjugacy class
• RE indicates representative element: for each (conjugacy) class we indicate

a representative element;
• NC indicates number of conjugacy classes: this equals the number of repre-

sentative elements;
• NE indicates the number of elements in each class;
• NAME indicates the denomination of this type of class;
• C(RE) indicates the centralizer in GL(2,Fq) of the representative element.

Proof We leave it as an exercise. The main point is to observe that two ma-
trices are conjugate if and only if they have the same minimal and character-
istic polynomials (for nonscalar matrices, the characteristic polynomial suf-
fices).

The representation theory of the Borel subgroup B may be then easily de-
duced from Theorem 1.7.15 and the isomorphism

B = Aff(Fq)×Z ∼= Aff(Fq)×F∗q,

which gives (see Theorem 1.2.46)

B̂ = Âff(Fq)⊠ Ẑ ∼= Âff(Fq)⊠ F̂∗q.

Theorem 1.7.18 The Borel subgroup B has:
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• (q− 1)2 one-dimensional representations, namely Ψ1 ⊠Ψ2, where Ψ1 is a
one-dimensional representation of Aff(Fq) and Ψ2 ∈ Ẑ;
• q−1 irreducible (q−1)-dimensional representations, namely π ⊠Ψ, where

π is the unique irreducible representation of Aff(Fq) of dimension q−1 and
Ψ ∈ Ẑ.

Using the correspondence between characters of Aff(Fq) and those of F∗q,
given by (1.53), these representations are explicitly given by

(Ψ1 ⊠Ψ2)

(
α β

0 δ

)
= ψ1(αδ

−1)ψ2(δ ) for all
(

α β

0 δ

)
∈ B,

with ψ1,ψ2 ∈ F̂∗q, and

(π ⊠Ψ)

(
α β

0 δ

)
= π

(
αδ−1 βδ−1

0 1

)
ψ(δ ) for all

(
α β

0 δ

)
∈ B,

with ψ ∈ F̂∗q.

Notation Rearranging the parametrization we set

χψ1,ψ2

(
α β

0 δ

)
= ψ1(α)ψ2(δ ) and χψ,ψ = ψ(det(b))

for all ψ1,ψ2,ψ ∈ F̂∗q and
(

α β

0 δ

)
,b ∈ B. Also, we shall make no distinction

between ResB
D χψ1,ψ2 and χψ1,ψ2 .

If χ ∈ D̂, let wχ be defined by wχ(d)= χ(wdw) for all w∈D. Then wχψ1,ψ2 =

χψ2,ψ1 .

1.7.4 Representations of GL(2,Fq)

In the first part of this section we determine the irreducible representations of
GL(2,Fq) that may be obtained by inducing up the characters of the Borel
subgroup B. First we give a general principle.

Proposition 1.7.19 Let G be a group and N ⊴ G a normal subgroup. Then
the map (ρ,U) 7→ (ρ̃,U) defined by

ρ̃(gN)u = ρ(g)u (1.55)

for all g ∈ G and u ∈U, is a bijection between the set of all G-representations
(ρ,U) such that ResG

N ρ is trivial and the set of all G/N-representations.

Proof We leave it to the reader to check that ρ̃ is well defined, and that the
inverse map is given by the inflation.
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Exercise 1.7.20 Let H be a finite group and denote by H ′ its derived sub-
group. Deduce from the previous proposition that there exists a bijective corre-
spondence between the set of all (irreducible) one-dimensional representations
of H and the characters of H/H ′.

Proposition 1.7.21 Let (ρ,V ) be an irreducible representation of a group G.
Then, if H ≤ G and V H ′ denotes the subspace of all H ′-invariant vectors in V
(this is called the Jacquet module), we have

V H ′ ̸= {0}⇔ there exists χĤ such that dχ = 1 and ρ is contained in IndG
H χ .

Proof The H-representation (ResG
H ρ,V H ′) when restricted to H ′ is trivial.

Therefore it yields a representation of the abelian group H/H ′ which is a direct
sum of characters. By Exercise 1.7.20 it therefore corresponds to a direct sum
of one-dimensional H-representations.

If V H ′ ̸= 0, then there exists a one-dimensional H-representation χ such that
(χ,C) ⪯ (ResG

H ρ,V H ′) ⪯ (ResG
H ρ,V ). By Frobenius reciprocity we deduce

that ρ ⪯ IndG
H χ .

Notation

• We set G = GL(2,Fq).
• If χ is a one-dimensional representation of B, we denote by (χ̂,V ) the G-

representation (IndG
B χ, IndG

B C) (note that dimV = q+1).
• Since D = B/B′, there exists a bijection between one-dimensional repre-

sentations of B and characters of D: given χ ∈ D̂, we denote by wχ the
one-dimensional representation of B corresponding to the character χ ∈ D̂.

Proposition 1.7.22 Let χ be a one-dimensional representation of B. Then

(ResG
B χ̂,VU )∼ (χ⊕w

χ,C2).

Proof By our definitions, VU ≤ IndG
B C and, by the Bruhat decomposition,

f ∈VU only depends on f (1G) and f (w). We then leave it to the reader to com-
pute the corresponding matrix coefficients (for more details see [19, Proposi-
tion 14.5.5]) and complete the proof.

Notation For ψ ∈ F̂∗q, we define a one-dimensional G- representation by setting

χ̂
0
ψ(g) = ψ(det(g))

for all g ∈ G.

Theorem 1.7.23 (1) Let ψ1,ψ2,ξ1,ξ2 ∈ F̂∗q. If ψ1 ̸= ψ2, then χ̂ψ1,ψ2 is an ir-
reducible G -representation of dimension q+1. Moreover,

χ̂ψ1,ψ2 ∼ χ̂ξ1,ξ2
⇔{ψ1,ψ2}= {ξ1,ξ2}.
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In particular, {
χ̂ψ1,ψ2 : ψ1 ̸= ψ2 ∈ F̂∗q

}
are (q−1)(q−2)

2 pairwise nonequivalent irreducible representations of G.

(2) For each ψ ∈ F̂∗q there exists an irreducible G-representation χ̂1
ψ of dimen-

sion q such that

χ̂ψ,ψ = χ̂
0
ψ ⊕ χ̂

1
ψ .

Moreover, {
χ̂

1
ψ : ψ ∈ F̂∗q

}
and

{
χ̂

0
ψ : ψ ∈ F̂∗q

}
is a set of (q−1) pairwise nonequivalent q-dimensional G-representations,
and the set of all one-dimensional G-representations, respectively.

Proof By the Bruhat decomposition G = B⊔BwB we have that S = {1G,w}
is a complete set of representatives for the double coset B\G/B. Moreover
Gw = B∩wBw = D and Mackey’s formula for invariants gives, for all one-
dimensional representations χ,ξ of B:

HomG(χ̂, ξ̂ )=HomB(χ,ξ)⊕HomD(ResB
D χ,wξ)=HomB(χ,ξ)⊕HomD(χ,

w
ξ ).

We deduce that

• if ξ = χ and χ ̸=wχ , then χ̂ is irreducible;
• if χ ̸=wχ , ξ ̸=wξ and {χ,wχ} ̸= {ξ ,wξ}, then χ̂ ̸∼ ξ̂ ;
• if χ =wχ , then dimHomG(χ̂, χ̂) = 2 so χ̂ = σ1⊕σ2, with σ1,σ2 ∈ Ĝ.

We observe that χ̂0
ψ ⪯ χ̂ψ,ψ : if f (g) = ψ(detg), with g ∈ G, we have

f (gb) = ψ(detgb) = ψ(detgb) = ψ(detg)ψ(detb) = χψ,ψ(b) f (g)

for all b ∈ B. As a consequence,

[χ̂ψ,ψ(g) f ](g0) = f (g−1g0) = χ̂
0
ψ f (g0),

so there exists χ̂1
ψ ⪯ χ̂ such that χ̂ = χ̂0

ψ ⊕ χ̂1
ψ . We leave it to the reader to

check that if ψ ̸= φ , then χ̂1
ψ ̸∼ χ̂1

φ
.

Definition 1.7.24 A G-representation (ρ,V ) is called cuspidal if the space
VU = {v ∈ V : ρ(u)v = v,∀u ∈ U} of all U-invariant vectors is trivial. We
denote by Cusp = Cusp(GL(2,Fq)) ⊂ ̂GL(2,Fq) a complete set of pairwise
nonequivalent irreducible cuspidal representations.
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Theorem 1.7.25 Let χ ∈ Û be a nontrivial character. Then IndG
U χ is

multiplicity-free, does not depend on χ , and its decomposition is

IndG
U χ =

⊕
ψ∈F̂∗q

χ̂
1
ψ

⊕
 ⊕

ψ1 ̸=ψ2∈F̂∗q

χ̂ψ1,ψ2

⊕[ ⊕
ρ∈Cusp

ρ

]

so that IndG
U χ contains all the irreducible G-representations of dimension

greater than one.

Proof We have that U ⊴ B and B = ⊔d∈DdU = ⊔d∈DUdU so that from the
Bruhat decomposition we get

G = B⊔UwB =

(⊔
d∈D

UdU

)
⊔

(⊔
d∈D

UwdU

)
.

We deduce the following facts.

• S = D⊔wD is a complete set of representatives for the double U-cosets in
G.
• dUd−1∩U =U and wdUd−1w∩U = {1G} for all d ∈ D.
• S0 = Z⊔wD = S \ (D\Z).
• f ∈ H (G,K,ψ) vanishes on ⊔d∈D\ZdU ; equivalently f is supported in
⊔s∈Z⊔wDUsU .

Define τ : G→ G by setting

τ

(
α β

γ δ

)
=

(
δ β

γ α

)

for all
(

α β

γ δ

)
∈ G. It is immediate to check that τ is an involutive anti-

automorphism of G. We claim that, if f ∈H (G,U,χ), then f τ = f , where
f τ(g) = f (τ(g)) for all g ∈ G .

Indeed, supp( f ) ⊆ U(Z ⊔wD)U and it obvious that τ|U (resp. τ|Z) is the
identity on U (resp. on Z). Since

τ(wd) = τ

((
0 1
1 0

)(
α 0
0 β

))
= τ

((
0 β

α 0

))
=

(
0 β

α 0

)
= wd

for all d =

(
α 0
0 β

)
∈ D, the claim follows.

We deduce from Proposition 1.6.28, that the Hecke algebra H (G,U,χ) is
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commutative and therefore (cf. Theorem 1.6.27) IndG
U χ is multiplicity-free.

By transitivity of induction we have

IndG
U χ = IndG

Aff(Fq)
IndAff(Fq)

U χ = IndG
Aff(Fq)

π (1.56)

which implies that also IndG
Aff(Fq)

π is multiplicity-free.

The explicit decomposition of IndG
U χ follows from the following observa-

tions.

• The multiplicity of χ̂1
ψ and χ̂ψ1,ψ2 in IndG

U χ is one, for all ψ1,ψ2,ψ ∈ F̂∗q
(exercise; hint: use (1.56)).
• If ρ is a cuspidal representation, then ResG

Aff(Fq)
ρ cannot contain a one-

dimensional representation of Aff(Fq). Otherwise, the restriction to U (which
equals the derived subgroup of Aff(Fq)) of a one-dimensional representa-
tion of Aff(Fq) being trivial would provide nontrivial U-invariant vectors,
contradicting ρ being cuspidal. It follows that ResG

Aff(Fq)
ρ = mπ for some

integer m≥ 1. But, by Frobenius reciprocity and (1.56),

1≥ m
IndG

U χ

ρ = m≥ 1,

showing that the multiplicity of ρ in IndG
U χ is exactly one.
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Università di Roma “La Sapienza”.
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