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Abstract We give an algebro-geometric construction of the Hitchin connection, valid also in positive
characteristic (with a few exceptions). A key ingredient is a substitute for the Narasimhan–Atiyah–
Bott Kähler form that realizes the Chern class of the determinant-of-cohomology line bundle on the
moduli space of bundles on a curve. As replacement we use an explicit realisation of the Atiyah
class of this line bundle, based on the theory of the trace complex due to Beilinson–Schechtman and
Bloch–Esnault.

1. Introduction

1.1.

The Hitchin connection was originally introduced in [30], with a twofold motivation. The
first was an elucidation of the 2+1-dimensional topological quantum field theory proposed

by Witten to explain the polynomial Jones invariants for knots [59, 6]. The second was

the question of the dependency of the geometric quantisation of a symplectic manifold
on the choice of polarisation.

In a beautiful construction, Hitchin exhibited a flat projective connection on the bundles

of nonabelian theta functions over the base of a family of compact Riemann surfaces. For
a fixed Riemann surface, the corresponding vector space can be understood to be the

geometric quantisation of the moduli space of flat unitary connections on the underlying

surface. The latter carries a canonical symplectic structure, but the complex structure on

the surface also equips the moduli space with a Kähler polarisation, and the connection
indicates precisely how the quantisation varies.
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Even though the construction of the connection uses analytic and Kähler techniques
throughout, it was already observed by Hitchin that the end result could entirely be

interpreted in terms of algebraic geometry and should in fact hold in positive characteristic

as well (see [31, §5]). This in itself is not too surprising, bearing in mind that one of the
sources of inspiration for Hitchin was the work of Welters [58], which generalised the heat

equation that (abelian) theta functions had classically been know to satisfy to positive

characteristic. Welters work was probably the first in which a cohomological approach

to heat equations was developed; the nonabelian situation is quite a bit more involved,
however.

The aim of this paper now is to give a new, purely algebro-geometric, construction of the

Hitchin connection, without using any analytic or Kähler techniques. This construction
works as well in positive characteristic (apart from a few exceptions, see below), which as

far as we are aware is a first for either the Hitchin connection itself or any of the equivalent

connections (such as the KZB or TUY/WZW connection from conformal field theory –
see, however, [51] for a recent study of the KZ equation in positive characteristic). We

stress that the construction only involves (finite-dimensional) algebraic geometry and, in

particular, no infinite-dimensional representation theory – the only prerequisites needed

are covered by [27].
Key elements in our construction are a framework for connections coming from heat

operators in algebraic geometry, due to van Geemen and de Jong [57], as well as a

substitute for the Narasimhan–Atiyah–Bott Kähler form [42, 1], which according to
Quillen [45] realizes the Chern class of the determinant-of-cohomology line bundle. The

serendipitous similarity between this Kähler form and the quadratic part of the Hitchin

system were crucially used in [30] to obtain the Hitchin connection in the complex case.
We compensate for the absence of this Kähler form by interpreting the cohomology class

of the line bundle as an Atiyah class. This difference in guaranteeing the cohomological

conditions of the theorem of van Geemen and de Jong forms the bulk of our work.

An essential ingredient of our construction is the description of the Atiyah algebra of
the theta line bundle over the moduli space in terms of the first direct image of the Atiyah

algebra of a universal bundle (Theorem 4.4.1). A complete proof is given in section 5 and

in appendices A and B, whose aim is to give a simplified and self-contained presentation
of the results used in the proof of this theorem, i.e., the theory of the trace complex [16],

[9] and some additional inputs worked out in [50], describing the behaviour of the above

objects when replacing a universal bundle by its endomorphism bundle. We observe that
the paper [50] also describes a construction of the Hitchin connection, but the strategy in

[50] is different from ours: They construct the Hitchin connection by relying on another

argument from [21], whereas our approach seeks to verify directly the van Geemen–de

Jong criterion for the liftability of a symbol map to a heat operator.

1.2.

At this point, we would like to make a few comments on the relationship of this work

to the existing literature. As already mentioned, we will follow the algebro-geometric

framework of van Geemen and de Jong [57] for connections induced by heat operators.
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This provides a purely cohomological criterion for the existence of a heat operator with
a prescribed symbol map.

In [57, §2.3.8] van Geemen and de Jong show how their framework of connections

induced by heat operators easily recaptures Welters’ construction of the Mumford–Welters
projective connection on bundles of theta functions. The main point of their work is to

use this framework (which we resume below in Theorem 3.4.1) to construct a Hitchin

connection (in complex algebraic geometry) in the particular case of rank 2 bundles on

genus 2 curves (which was excluded from Hitchin’s original work and indeed from ours
as well). They do not reestablish the Hitchin connection in all other cases though, and in

this sense the present paper exactly complements their work.

We remark that several other algebro-geometric descriptions of connections on bundles
of nonabelian theta functions have appeared in the literature – e.g., [21, 46, 23, 47,

50, 18]. It is not always clear, however, exactly how these connections are related (see,

e.g., [4]), and for various reasons they are all restricted to characteristic zero. None
also directly use the framework of van Geemen and de Jong. We remark that many

of the properties of Hitchin’s original connection like, e.g., monodromy [37] or projective

flatness of strange duality maps [11] have been proved with representation-theoretical

methods, more precisely by using its equivalence, due to Laszlo [35], with the Tsuchiya-
Ueno-Yamada (TUY)/Wess-Zumino-Witten (WZW) connection on spaces of conformal

blocks [55, 54]. For most of the cited works, the relationship with conformal blocks is

undeveloped (they have of course other motivations: e.g., [50], which together with [23] is
probably closest to our approach, is particularly focused on the logarithmic description

of the connection as the curves degenerate to nodal singularities). We therefore thought

it useful to establish the Hitchin connection itself, in the original context (moduli of
bundles with trivial determinant over curves), in a purely algebro-geometric way that

nevertheless manifestly gives the same connection as Hitchin and to which Laszlo’s

theorem immediately applies. For completeness, we mention that there are several other

constructions in the literature of a differential geometric or Kähler nature, e.g., [3, 2, 49].
We want to mention that (because of Laszlo’s theorem) the term Hitchin connection is

often loosely employed to refer to any of a number of equivalent projective connections.

We shall use it in a much stricter sense, however, as a connection arising through a heat
operator with a prescribed symbol map (see below).

In this context, the terminology nonabelian theta functions is frequently used (including

by us), even though that is in fact slightly misleading. Our construction of the connection
only works for moduli spaces of bundles with trivial determinant, or equivalently, SL(r)-

principal bundles. At various places the (semi-)simplicity is crucial, and as far as we are

aware, there is currently no construction that works immediately for arbitrary reductive

groups. Indeed, a connection for moduli of GL(r)-principal bundles was crucially needed
in [11], but this was created out of an SL(r)-connection and an (abelian) Gm-connection.

1.3.

As a motivation for looking at the Hitchin connection from a purely algebro-geometric

point of view, we would like to highlight three contexts. The first is the Grothendieck–Katz
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p-curvature conjecture [33], which (roughly speaking) claims that every algebraic

connection which is formulated in sufficient generality and has vanishing p-curvature

when reduced mod p for almost all p should have finite monodromy in the complex case.
Presumably motivated by this conjecture, it was originally expected (see [13, §7]) that the
Hitchin connection would have finite monodromy. However, it was shown by Masbaum

in [40] that, for rank 2, the image of the corresponding projective representation of the
mapping class group will, for all genera and almost all levels, contain elements of infinite

order. This came somewhat as a surprise, as the connection for abelian theta functions

was well known to have finite monodromy from Mumford’s approach through theta
groups. Masbaum was working with a skein-theoretic approach to these representations,

but the equivalence of this picture with the Hitchin connection follows from the work

of Andersen and Ueno [7] combined with Laszlo’s theorem. Masbaum’s result was also

directly rederived in an algebro-geometric context by Laszlo, Sorger, and the fourth named
author [37]. We hope that our construction can be a starting point for investigating the

p-curvature of the Hitchin connection.

The second is the question of integrality of topological quantum field theories (TQFTs)
and the related topic of modular representations of the mapping class group. Various

results have been obtained here through a skein-theoretic approach, cfr. [22, 24, 25, 26],

but so far a geometric counterpart is missing. We again hope that the current work can
help shed light on these issues.

Finally, we would like to mention various generalisations of the connection constructed

here by looking at variations of the moduli problem of vector bundles on curves. A

minor variation is by looking at moduli spaces of G-principal bundles, where G is a
semisimple group. One could also equip the curve with marked points and look for

parabolic structures of the bundle at these points. All of these can be understood as special

cases of the moduli problem of G-torsors, where G is a parahoric Bruhat–Tits group scheme
over the curve (see, e.g., [44, 28, 17]). We hope to come back to the Hitchin connection

in this generality in the near future and expect that the construction developed in this

paper, bypassing the need for an explicit description of a Kähler form, will facilitate this.

1.4.

The rest of the paper is organised as follows. In Section 2 a summary of Hitchin’s work is

given, explaining the context of variation of Kähler polarisation in geometric quantisation.

There are essentially two parts to this: a general framework that gives conditions under
which a projective connection exists (Theorem 2.1.1) and a discussion of why these

conditions are satisfied in the case of moduli spaces of flat unitary connections on surfaces.

Though none of what follows later logically depends on this, we nevertheless wanted to
include a brief overview of Hitchin’s original construction to highlight the extent to which

our exposition parallels his.

The remainder of the paper is then concerned with our algebro-geometric construction
of the Hitchin connection. In Section 3, after a quick review of Atiyah sequences and

Atiyah classes, the notion of heat operators, their relations to connections and the main

framework of van Geemen and de Jong is given (Theorem 3.4.1). We present the latter
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as a counterpart to Theorem 2.1.1, and for completeness, we have included a proof of it
and of Hitchin’s flatness criterion (Theorem 3.5.1) to highlight that these results hold in

arbitrary characteristic, as the original discussion in [57] was strictly speaking just in a

complex context.
Section 4 then goes on to show that the conditions of Theorem 3.4.1 are indeed satisfied,

culminating in Theorem 4.8.1. The primary tool to this end is Proposition 4.7.1, and most

of the rest of the section is essentially a (necessarily lengthy) mise en place to obtain this

result. As stated above, the key element is Theorem 4.4.1, which realizes the Atiyah class
of the determinant-of-cohomology line bundle as a particular extension, given as the first

derived functor of the push down of the dual of the Atiyah sequence of the universal

bundle on the moduli space of bundles. This provides an analogue to the theorem of
Quillen that realizes the Chern class of the line bundle as a particular Kähler form. Just

as in Hitchin’s original approach, it is this particular realisation that allows us to verify

the cohomological conditions of Theorem 3.4.1. Theorem 4.4.1 is itself obtained from a
variation on the theory of the trace complex, of which we give a self-contained account in

Appendix A. The proof of Theorem 4.4.1 takes up Section 5. Finally, the other appendices

contain proofs of various facts we use in the main body of the article but for which we

could not find references in the generality we needed.

1.5.

To finish the introduction, we state the necessary restrictions on the characteristic p of

the base field k and their sources. The first limitation that we encounter is due to the use

of the trace and the trace pairing:

tr : End(E) O, Tr : End(E)×End(E) O.

We need these to behave similarly as they do in characteristic zero. In particular we
want the trace tr to split equivariantly, i.e., End(E) = End0(E)⊕O, where End0(E) is

the kernel of tr. This is induced from an SL(r)-equivariant splitting of the short exact

sequence of Lie algebras

0 sl(r) gl(r) k 0,

which requires p � r. Secondly, we want the trace pairing Tr, which is nondegenerate for

all possible characteristics p and r = rk(E), to remain nondegenerate when restricted to
End0(E)×End0(E). This is again true if and only if p � r.

The second limitation is due to the use of differential operators (cf. [27, IV, §16.8]) and
their symbols: In characteristic p > 0 one considers the algebra of differential operators

associated to the Atiyah algebra D(1)
M/S(L) and defined as a quotient of its universal

enveloping algebra—see [16, 1.1.3]. Up to order k = p− 1 these, however, coincide with

D(k)
M/S(L), and we have the symbol map to Symk TM/S with its usual properties at

our disposal. As the construction of connections via heat operators uses second-order

operators and their symbols, we exclude characteristic 2; in the flatness criterion also

third-order symbols appear; hence, there we also exclude p= 3.
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Furthermore, we also use trace complexes; the original reference avoids positive
characteristic, but as we use only part of the theory, we check in Appendix A that

everything works with the restrictions already in place: In order for the residue r̃es from

[16, p. 658] to be well defined, we need to avoid characteristic 2.
The third and last limitation is due to the formula in Theorem 4.8.1, where there is a

factor 1
r+k . Hence, we also need to assume that p � (r+k).
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2. Heat operators and connections—summary of the work of Hitchin

We outline in this section the original work of Hitchin that establishes the flat projective

connection on bundles of nonabelian theta functions. Hitchin’s motivation came from

geometric quantisation and Kähler geometry, and he mainly used analytic or Kähler
techniques.

2.1. Change of Kähler polarisation

Inspired by earlier work of Welters [58], the Hitchin connection was introduced in [30]

in the context of geometric quantisation: Given a compact (real) symplectic manifold
(M,ω), with prequantum line bundle L, Hitchin studied how the geometric quantisations

with respect to different Kähler polarisations were related. In particular, he gave the

following general criterion for the existence of a projective connection on the bundle of
quantisations:

Theorem 2.1.1 (Hitchin, [30, Theorem 1.20]). Given a family of Kähler polarisations
on M such that for each polarisation we have:

(a) The map

∪[ω] :H0(M,TM) H1(M,OM)

is an isomorphism (this means that there are no holomorphic vector fields which fix

L, i.e., H0(M,D(1)
M (L)) =H0(M,OM)).

(b) For each s ∈H0(M,L) and tangent vector
.

I to the base of the family there exists a

smoothly varying

A(
.

I,s) ∈H1(M,D(1)
M (L)

.s→ L)

such that the symbol −iσ1(A(
.

I,s)) equals the Kodaira–Spencer class [
.

I] in

H1(M,TM).
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Then this defines a projective connection on the bundle of projective spaces P(H0(M,L))

over the base of the family.

Here, D(1)
M (L) denotes the sheaf of first-order differential operators on L and σ1 its

symbol map to TM. The map .s :D(1)
M (L)→ L is just given by evaluating the differential

operators on the section s, and H1 stands for the first hypercohomology group of the

two-term complex.

Note that the space of infinitesimal deformations of the pair (M,L) is given by

H1(M,D(1)
M (L)), and likewise the space of infinitesimal deformations of the triple

(M,L,s), for s ∈H0(M,L), is given by H1(M,D(1)
M (L)

.s→ L) (cfr. [58, Proposition 1.2]).

2.2. Moduli spaces of flat unitary connections

Moreover, Hitchin then showed that the conditions of Theorem 2.1.1 are satisfied in the

case where (M,ω) is the space of flat, unitary, trace-free connections on the trivial rank
r bundle over a closed oriented surface C of genus g ≥ 2 (with the exception of the case

r = 2,g = 2), and L= Lk is a power of the positive generator L of its Picard group. This

space is not quite a manifold, but its smooth locus is canonically a symplectic manifold,
with ω the Goldman–Karshon symplectic form (which uses a Killing form on the Lie

algebra of SU(r)).

If C is equipped with the structure of a Riemann surface (or, equivalently, regarded as

a smooth complex projective curve), then M can be understood as the moduli space of
semi-stable rank r vector bundles with trivial determinant, which is a projective variety.

The symplectic form ω is then, moreover, a Kähler form, as discussed by Narasimhan

[42] and Atiyah-Bott [1]. By Quillen’s theorem [45], the inverse L of the determinant-of-
cohomology line bundle provides a prequantum line bundle.

In particular, we can understand the A(
.

I,s) as follows in this situation: We have the

short exact sequence of complexes

0 D(1)
M (Lk) D(2)

M (Lk) Sym2TM 0

0 Lk Lk 0 0.

.s .s
(1)

This gives a connecting homomorphism

δ :H0(M, Sym2(TM)) H1(M,D(1)
M (Lk)

.s→Lk). (2)

On the other hand, the quadratic part of the Hitchin system (which also uses the Killing

form) gives, for every holomorphic vector bundle E on C with trivial determinant, a map

Sym2H0(C,End0(E)⊗KC) H0(C,K2
C),

where KC is the canonical bundle of C. Dualizing this, and using Serre duality on C gives,
for each E, a map

H1(C,TC) Sym2H1(C,End0(E)),
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where End0(E) is the sheaf of trace-free endomorphisms of E. Since for each stable E the

space H1(C,End0(E)) is the tangent space to the moduli space (in casu M), we can write
this as a map

ρ :H1(C,TC) H0(M, Sym2TM). (3)

Composing this with (2) gives a linear map

A(.,s) :H1(C,TC) H1(M,D(1)
M (Lk)

s→Lk)

which depends smoothly on s, and which Hitchin shows (after a rescaling by 1
r+k ) to

satisfy the condition in (b) of Theorem 2.1.1.

Remark 2.2.1. Some key steps in Hitchin’s approach were fundamentally differential

geometric or Kähler in nature. In particular, the explicit description of the Narasimhan–
Atiyah–Bott Kähler form, and its similarity to the symmetric two-tensors given by the

symbol was crucially used.

3. Hitchin-Type Connections in Algebraic Geometry

An algebro-geometric framework for connections determined by a heat equation (like the

Hitchin connection) was developed by van Geemen and de Jong in [57]. Besides being set
in algebraic geometry as opposed to Kähler geometry, this description is also more local,

in contrast with the infinitesimal framework of Theorem 2.1.1 of Hitchin (the latter is

not a substantial difference, however, cfr. [57, §2.3.4]). We summarise the main parts and
some related prerequisites below.

From now on, everything will be defined over an algebraically closed field k of

characteristic different from 2. We have to exclude characteristic 2 for a variety of reasons

but, in particular, will also split the projection T⊗2
M → Sym2TM throughout. In this

general section, M→ S will be a smooth morphism of smooth schemes.

3.1. Atiyah algebroids, (projective) connections and Atiyah classes

Our approach to connections essentially follows Atiyah’s seminal exposition [5], but in

this context we will phrase everything in terms of vector bundles rather than work with

principal bundles.

Atiyah algebroids. Let D(n)
M (E) be the sheaf of differential operators of order at most

n on a vector bundle E over M. The associated symbol map will be denoted

σn :D(n)
M (E)→ SymnTM⊗End(E).
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Definition 3.1.1. The Atiyah sequence associated to a vector bundle E →M is the top
row of the following diagram:

0 End(E) A(E) TM 0

0 End(E) D(1)
M (E) TM⊗End(E) 0.

−⊗IdE

σ1

The middle termA(E) is called the Atiyah algebroid associated to E (or, strictly speaking,

to the frame bundle associated to E, which is a GL-principal bundle).

Definition 3.1.2. We will denote by AM/S(E), the relative Atiyah algebroid associated

to a vector bundle E → M, where M comes with a morphism π : M → S onto a base
scheme S. The associated relative Atiyah sequence is the top row of the following pull-back

diagram:

0 End(E) AM/S(E) TM/S 0

0 End(E) A(E) TM 0,

(4)

where TM/S is the subsheaf of vector fields tangent along the fibres, i.e.,

TM/S =Ker(TM → π∗TS).

Finally, we need to define the trace-free Atiyah algebroid for vector bundles with trivial

determinant. Pushing out the standard Atiyah sequence by the trace map End(E)→O
gives a morphism of the Atiyah sequene of E to that of det(E). If the latter is trivial, its
Atiyah sequence splits canonically, giving rise a morphism tr :A(E)→O. We define the

trace-free Atiyah algebroid A0(E) to be the kernel of this map. This all fits together in a

commutative diagram (with exact horizontal rows and left vertical row):

0 End0(E) A0(E) TM 0

0 End(E) A(E) TM 0

0 O A(det(E))∼=O⊕TM TM 0.

σ1

tr

σ1

tr+σ1

The algebroid A0(E) can be understood, in the language of principal bundles, as arising

from the SL(r)-principal frame bundle of E. Analogously, there is also a relative version
A0

M/S(E).

Assuming p � r, we have a direct sum decomposition End(E) = End0(E)⊕OM, and

we denote by q : End(E) → End0(E) the projection onto the first direct summand. In

this case, the trace-free Atiyah algebroid is also canonically isomorphic to the projective
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Atiyah algebroid, i.e., the push-out of the standard Atiyah sequence by the map q as
follows:

0 End(E) A(E) TM 0

0 End0(E) A0(E) TM 0.

q

We will make this identification throughout.

Atiyah classes. We will also need a relative version of the Atiyah class for a line bundle
L. There are a number of ways this can be defined; perhaps the easiest is by taking the

top sequence of equation (4), tensoring it with Ω1
M/S , and applying π∗ to obtain a long

exact sequence (of course for line bundles we have canonically End(L)∼=O).

Definition 3.1.3. The image of the identity π∗ Id ∈ π∗
(
Ω1

M/S ⊗ TM/S

)
under the

connecting homomorphism yields a global section of R1π∗
(
Ω1

M/S ⊗End(E)
)
, which we

shall refer to as the relative Atiyah class, and denote by [L].

Note that the connecting homomorphism in the long exact sequence obtained by
applying π∗ to the top sequence of equation (4) is given by cupping with [L] and

contracting. In the absolute case, the Atiyah class is the obstruction to the existence

of a connection on L; a similar interpretation holds in the relative case, though we will

not use this. If M is complex Kähler, [L] is just the relative Chern class.
The following lemma probably dates back to [5]; see, e.g., [36, p. 431].

Lemma 3.1.4. Let X be a smooth algebraic variety, L a line bundle, k a positive integer,

then we have an isomorphism of short exact sequences

0 OX A(L⊗k) TX 0

0 OX A(L) TX 0.
1
k

Projective connections.

Definition 3.1.5. Given a vector bundle E on a variety M, a (Koszul) connection ∇
on E is a OM-linear splitting of the Atiyah algebroid:

0 End(E) A(E) TM 0.

∇

The connection is said to be flat (or integrable) if ∇ preserves the Lie brackets (where

the Lie bracket on A(E) is just the commutator of differential operators).

The Hitchin connection is a projective connection. There are a number of ways one
can encode what a projective connection is: One could think in terms of PGL principal

bundles, or work with the projectivisation P(E) of E, or work with twisted D-modules

(cfr. [12], [36, §1]). In our context, the most useful one is the following.
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Definition 3.1.6. Given a vector bundle E on M as before, a projective connection is
a splitting

0 End(E)/OM A(E)/OM TS 0.

∇

It is again flat if ∇ preserves the Lie brackets.

3.2. Heat operators

Consider a smooth surjective morphism of smooth schemes π :M→ S, and a line bundle

L→M such that π∗L is locally free, hence a vector bundle. The connection we construct
will live on the projectivisation Pπ∗L, but everything below will be expressed in terms of

vector bundles, not projective bundles.

We will denote by D(n)
M/S(L) the subsheaf of D

(n)
M (L) consisting of differential operators

of order at most n that are π−1(OS) linear. The symbol maps

σn :D(n)
M/S(L) SymnTM/S

take values in SymnTM/S .

We are now interested in the sheaf

WM/S(L) =D(1)
M (L)+D(2)

M/S(L)⊂D(2)
M (L).

Besides the second-order symbol map

σ2 :WM/S(L) Sym2TM/S,

on this sheaf of differential operators, there is a subprincipal symbol

σS :WM/S(L) π∗TS, 〈σS(D),d(π∗f)〉s=D(π∗fs)−π∗fD(s), (5)

where s is a local section of L and f a local section of OS ; both well-definedness and the

Leibniz rule follow from the property of the second-order symbol

D(fgs) = 〈σ2(D),df ⊗dg〉s+fD(gs)+gD(fs)−fgD(s).

Thus, we have a short exact sequence

0 D(1)
M/S(L) WM/S(L) π∗(TS)⊕Sym2TM/S 0.

σS⊕σ2

(6)

We can now define:

Definition 3.2.1 ([57, 2.3.2]). A heat operator D on L is a OS-linear map of coherent
sheaves

D : TS π∗WM/S(L)

such that σS ◦ D̃ = Id, where D̃ is the equivalent (by adjunction) OM-linear map

D̃ : π∗TS →WM/S(L).
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Similarly, a projective heat operator is a map

D : TS

(
π∗WM/S(L)

)
/OS .

Given such a heat operator, we refer to

π∗(σ2)◦D : TS π∗Sym
2TM/S

as the symbol of the heat operator. Also, a projective heat operator has a well-defined

symbol.

3.3. Heat operators and connections

Any heat operator gives rise to a connection on the locally free sheaf π∗L, as follows
(cfr. [57, §2.3.3]). Given an open subvariety U ⊂ S, and θ ∈ T (U), we want a first-order

differential operator

∇θ : π∗L π∗L.

If s ∈ π∗L(U), we denote by s and π−1(θ) the corresponding sections of L(π−1(U)) and

π−1(TS)(π
−1(U)), respectively. We can now put

∇θs=D(π−1(θ))(s) (7)

since the latter indeed corresponds to a section of π∗L(U). Moreover, the Leibniz rule is

satisfied since the subprincipal symbol of D(π−1θ) is π−1θ so that for any f ∈OS(U) we

have

∇θ(fs) =D(π−1(θ))(π∗(f)s) = π∗(θ(f))s+π∗(f)D(π−1(θ))(s) = θ(f)s+f∇θs,

so ∇θ is indeed a first-order differential operator with symbol θ, and hence, ∇ is indeed

a Koszul connection.
The connection ∇ will be flat if D preserves the Lie brackets. If we have a projective

heat operator, we still get a projective connection, with the same comment for flatness.

3.4. A heat operator for a candidate symbol

As an algebro-geometric counter-part to Hitchin’s Theorem 2.1.1, van Geemen and de

Jong investigated under what conditions a candidate symbol map

ρ : TS π∗Sym
2TM/S

actually arises as a symbol of a heat operator, i.e., whether it was possible to find a
(projective) heat operator D such that ρ = π∗(σ2) ◦D. Before we can state their result,

we need to recall two maps. The canonical short exact sequence

0 TM/S TM π∗TS 0

gives rise to the Kodaira–Spencer map

κM/S : TS R1π∗TM/S . (8)
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Similarly, the short exact sequence

0 TM/S D(2)
M/S(L)/OM Sym2TM/S 0 (9)

gives rise to the connecting homomorphism

μL : π∗Sym
2TM/S R1π∗TM/S . (10)

We can now state:

Theorem 3.4.1 (van Geemen–de Jong, [57, §2.3.7]). With L and π :M→ S as before,

we have that if, for a given ρ : TS → π∗Sym
2TM/S,

(a) κM/S +μL ◦ρ= 0,

(b) cupping with the relative Atiyah class

∪[L] : π∗TM/S R1π∗OM

is an isomorphism and

(c) π∗OM =OS,

then there exists a unique projective heat operator D whose symbol is ρ.

Note that even though the context of this theorem is entirely algebro-geometric and

makes no reference to a symplectic form, the conditions are closely matched with those

in Hitchin’s Theorem 2.1.1: The requirement of cupping with the Chern class being an
isomorphism is identical in both cases, whereas from a quadratic symbol ρ satisfying

condition (a) we recover an element of the hypercohomology group in 2.1.1.(b) via the

long-exact sequence of hypercohomology obtained from equation (1). Finally, (c) is an
appropriate weakening of the premise that M is compact (and connected) in Theorem

2.1.1.

Proof. Consider the long exact sequence associated to the short exact sequence (6),

0 π∗D(1)
M/S(L) π∗WM/S(L) TS ⊕π∗Sym

2TM/S

R1π∗D(1)
M/S(L) R1π∗WM/S(L) . . .

π∗σS⊕π∗σ2

δ

As ∪[L] is the connecting homomorphism in the long exact sequence associated with

the first-order symbol map on D(1)
M/S(L), condition (b) guarantees that OS = π∗OM =

π∗D(1)
M/S(L), i.e., all global first-order operators on L along the fibres of π are of order

zero. Using condition (c), we obtain a commutative diagram with exact rows and columns
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0 0

0 π∗OM π∗OM 0

0 π∗D(1)
M/S(L) π∗WM/S(L) Kerδ 0

0 0
(
π∗WM/S(L)

)
/OS Kerδ 0

0 0

and therefore an isomorphism
(
π∗WM/S(L)

)
/OS → Kerδ. It remains to show that our

hypotheses imply that the image of the morphism

TS TS ⊕π∗Sym
2TM/S, θ (θ,ρ(θ))

is contained in the kernel of the connecting homomorphism δ. In order to do this, let us
decompose δ = δ1+ δ2 into its two components:

δ1 : TS R1π∗D(1)
M/S(L) and δ2 : π∗Sym

2TM/S R1π∗D(1)
M/S(L).

It is then straightforward to check that

R1π∗(σ1)◦ δ1 = κM/S and R1π∗(σ1)◦ δ2 = μL.

Finally, we observe that σ1 induces an injective map

R1π∗(σ1) :R
1π∗D(1)

M/S(L) R1π∗TM/S,

as the previous map in the long exact sequence

. . . π∗TM/S R1π∗OM R1π∗D(1)
M/S(L) R1π∗TM/S . . .

∪[L]

is surjective by condition (a). Thus, (θ,ρ(θ)) ∈Kerδ if and only if (κM/S+μL ◦ρ)(θ) = 0,

for any local vector field θ on S.

3.5. A flatness criterion

To complete our outline of the general part of the theory, we discuss a general flatness

condition for connections constructed via Theorem 3.4.1. It is a verbatim translation of

Hitchin’s original reasoning [30, Thm. 4.9] to the algebro-geometric setting, its central
ingredient being the requirement that the symbols should Poisson-commute when viewed

as homogeneous functions on the relative cotangent bundle.

Theorem 3.5.1. Under the conditions of Theorem 3.4.1 and over a base field of

characteristic different from 3, the projective connection constructed from a symbol ρ

is projectively flat if
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(a) for all local sections θ,θ′ of TS,

{ρ(θ),ρ(θ′)}T∗
M/S

= 0,

(b) the morphism μL is injective and

(c) there are no vertical vector fields, π∗TM/S = 0.

Remark 3.5.2. In the statement and the proof of this theorem, we use the fact that the

natural morphism

π∗Sym
k TM/S → π∗OT∗

M/S

is an isomorphism of Poisson algebras onto the weight k part under the natural Gm-
action for k ≤ p−1; here, the Poisson structure on the left is the one inherited from the

commutator bracket on operators of order at most k, and the one on the right is the

natural one on the cotangent bundle.

Proof. As the connection is defined by projective heat operators (7), its flatness is

equivalent to the vanishing of the operator

[D(θ),D(θ′)]−D([θ,θ′]) ∈ πe∗
(
D(3)

M/S(L
k)+D(2)

M (Lk)
)/

OS . (11)

Now, it follows from the preceding remark and condition (a) that

σ3([D(θ),D(θ′)]) = {σ2(D(θ)),σ2(D(θ′))}T∗
M/S

= {ρ(θ),ρ(θ′)}T∗
M/S

= 0.

Therefore, the operator (11) is actually at most second order, and we furthermore claim

that it really acts only along the fibres of M→ S,

[D(θ),D(θ′)]−D([θ,θ′]) ∈ πe∗
(
D(2)

M/S(L
k)
)/

OS .

This happens for the same reason the curvature [∇X,∇Y ]−∇[X,Y ] of a connection is of
degree zero as a differential operator: One checks (using the subprincipal symbol (5)) that

equation (11) is π−1OS-linear.

Now, we look at the short exact sequence (9), and apply π∗. As μL is injective by

condition (b) and there are no vertical vector fields by (c), we get

π∗D(2)
M/S(L)

/
OS

∼= π∗TM/S = 0,

thus concluding the proof.

3.6. The map μL

Finally, we need to get a better understanding of the map μL from equation (10), for

which we could simply refer to [8, Cor. 2.4.6]. As the proof is not too complicated and
uses only a fraction of the machinery of that paper, we thought it worthwile to include

it here. We thank an anonymous referee for pointing out considerable simplifications to

our previous proof.
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Proposition 3.6.1. In the context outlined above (with π : M → S is a smooth

morphism of smooth schemes and L a line bundle on M), we can write the connecting

homomorphism (10) as

μL = ∪[L]+∪
(
−1

2
[KM/S ]

)
,

where KM/S is the relative canonical bundle of π :M→ S.

Note that ‘half’ of this statement (μL = ∪[L] +μOM) appears in [58, Lemma 1.16],
except that Welters uses the extension class of the sheaf of principal parts P(1)(L) of

order ≤1 instead of D(1)
M/S(L) to define [L] and hence has a minus sign on the right-hand

side. In a Kähler context, with L a polarizing line bundle, the statement of Proposition
3.6.1 is implied in [30, p. 364]. In the general complex analytic setting, a Dolbeault-

theoretic approach is descibed in [14, Appendix A.2]1.

Proof. The proof follows from the identification of the opposite of the algebra of
differential operators on L with that of L−1⊗KM/S via the adjoint differential operator

D◦, as discussed, for example, in [16, 1.1.5.(iv)]. Due to the identity μL = ∪[L] +μOM

observed already by Welters (in arbitrary characteristic), it suffices to show that

μL =−μL−1⊗K . (12)

For this, consider the adjoint map between sheaves of differential operators AM/S(E) �
D �→D◦ ∈ AM/S(E

∗⊗KM/S) defined by the identity

〈e,D◦e◦〉= 〈De,e◦〉−Lσ1D〈e,e◦〉,

where e and e◦ are arbitrary local sections of E and E◦ :=E∗⊗KM/S , respectively, and

L is the Lie derivative on the relative canonical bundle. It is straightforward to verify
that D◦ has symbol σ1(D

◦) =−σ1(D) and that for any regular local function φ

(φD)◦ = φD◦−〈σ1D,dM/Sφ〉

so that D �→ D◦ is in particular π−1OS-linear. This zeroth-order deviation from OM-

linearity may appear inconvenient at first sight, but it actually permits to extend the
adjoint to second-order operators, as

(φD2)
◦ ◦D◦

1 =D◦
2 ◦ (φD1)

◦+(〈σ1D1,dφ〉D2)
◦.

In this way, we obtain a π−1OS-linear isomorphism of short exact sequences

0 D(1)
M/S(L) D(2)

M/S(L) Sym2TM/S 0

0 D(1)
M/S(L

−1⊗KM/S) D(2)
M/S(L

−1⊗KM/S) Sym2TM/S 0,

D �→D◦

σ2

D �→D◦ Id

σ2

1The formulas in [8] and [14] are more general expressions that both specialise to the one given
in Proposition 3.6.1 but appear different from each other in general.
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whose push-out along σ1 gives

0 TM/S D(2)
M/S(L)/OM Sym2TM/S 0

0 TM/S D(2)
M/S(L

−1⊗KM/S)/OM Sym2TM/S 0,

−Id

σ2

D �→D◦ Id

σ2

which proves the necessary identity (12).

Remark 3.6.2. Note that the preceding result remains true in characteristic p > 0 with

p �=2 since we only use the isomorphism induced byD �→D◦ between differential operators

of order ≤ 2.

4. An algebro-geometric approach to the Hitchin connection for nonabelian

theta functions

In this section, we construct the Hitchin connection in algebraic geometry. We want to

invoke Theorem 3.4.1, using the symbol ρ from equation (3) on page 456. In order to

verify that this theorem applies, we need to begin by examining the various ingredients
of condition (a).

Note that, compared to the situation of families of abelian varieties (cfr. [58], [57,

§2.3.8]), we need a much more detailed knowledge of our candidate symbol in order to

establish flatness of the connection later on (which is done via other means for abelian
varieties).

4.1. Basic facts about the moduli space of bundles

At this point, we can turn our attention to the particular context we are interested in:

the moduli theory of bundles on curves. In the rest of Section 4, we shall denote by
πs : C → S a smooth family of smooth projective curves of genus g ≥ 2. This gives rise

for any integer r ≥ 2 to a (coarse) relative moduli space of stable bundles of rank r with

trivial determinant over the same base, which we shall denote by πe :M→ S. If g = 2 we
will assume that r ≥ 3. We shall denote the fibred product by the diagram

C ×S M M

C S

πw

πn

πe

πs

and will simply put

πc = πe ◦πn = πs ◦πw.

Unfortunately, M is only a coarse moduli space, and a universal bundle over C×SM does

not exist (one could argue that it exists over the stack of stable bundles M→ S, but does

not descend to M). Nevertheless, one can speak both of the Atiyah algebroid and Atiyah
sequence of the virtual bundle (since these do descend to the coarse moduli space). There

exists a unique line bundle L over M, called the theta line bundle, which is mapped to

the relatively ample generator of the relative Picard variety Pic(M/S) (see [19, 32]). In
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order to avoid making our notations heavier than needed, we shall henceforth pretend a
universal bundle E → C×S M exist. Note that this universal bundle is only unique up to

tensor product with a line bundle coming from M.However the trace-free endomorphism

bundle End0(E) is unique. Similarly, the determinant-of-cohomology line bundle on M
associated to a universal bundle E , defined as in [34]

λ(E) := detR•πn∗(E),

will depend on the choice of the universal bundle E . We will use two well-known properties
when considering vector bundles with trivial determinant.

• For any universal bundle E and any line bundle ζ on C → S of degree g− 1, we
have the equality [19, 32]

L−1 = λ(E ⊗π∗
wζ). (13)

• For any universal bundle E , we have the equalities [38]

L−2r =KM/S = λ(End0(E)). (14)

At various places, we shall use the trace pairing

Tr : End0(E)×End0(E) OC×SM

to identify End0(E) with its dual End0(E)∗.
We will need a few other standard facts about the moduli space M as well:

Proposition 4.1.1. We have

(a) πn∗End0(E) = {0},
(b) TM/S =R1πn∗End0(E),
(c) πe∗TM/S = {0},
(d) R1πe∗OM = {0}.

The first two of these follow from basic deformation theory. For the last two, which

are also well-known, we include a proof (due to Hitchin) using the Hitchin system in
Appendix C.

4.2. The Kodaira–Spencer Map

Our aim in this section is to give a description of the map

Φ :R1πs∗TC/S R1πe∗TM/S

(relating deformations of the curve to deformations of the moduli space) which makes the

diagram of sheaves on S

R1πs∗TC/S

TS

R1πe∗TM/S

Φ

κC/S

κM/S

(15)
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commute, where κC/S and κM/S are the Kodaira–Spencer maps, as in equation (8). This

is a line of reasoning that essentially goes back to Narasimhan and Ramanan [43].

On C ×S M we have the trace-free relative Atiyah sequence

0 End0(E) A0

C×SM
/
M
(E) TC×SM

/
M 0. (16)

As we have that πn∗

(
T
C×SM

/
M

)
= 0 and R2πn∗End0(E) = 0, applying R1πn∗ gives the

short exact sequence on M

0 R1πn∗End0(E) R1πn∗A0

C×SM
/
M
(E) R1πn∗TC×SM

/
M 0.

(17)

In order to describe the Kodaira–Spencer map κM/S , we need to start from the short

exact sequence

0 TM/S TM π∗
eTS 0,

which is given (see, e.g., [48, §3.3.3] for the case of a line bundle–vector bundles are a
straightforward generalisation of the description there and are discussed in [39, §2.3]) by
the pull-back of equation (17) along the map

π∗
eκC/S : π∗

eTS R1πn∗TC×SM
/
M

∼= π∗
e

(
R1πs∗TC/S

)
.

If we apply πe∗ to this, we obtain finally:

Lemma 4.2.1. The Kodaira–Spencer map κM/S is given by the composition of κC/S
with Φ, the connecting homomorphism of equation (17):

R1πs∗TC/S ∼= πe∗
(
R1πn∗TC×SM

/
M

)
TS

R1πe∗TM/S
∼=R1πe∗

(
R1πn∗End0(E)

)
.

Φ

κC/S

κM/S

4.3. The Hitchin Symbol

We have already briefly encountered the Hitchin symbol in equation (3); we shall clarify

the precise definition here in the appropriate relative setting. We start from the quadratic
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part of the Hitchin system, relative over S and its associated symmetric bilinear form
(temporarily denoted B)

T ∗
M/S T ∗

M/S ⊗T ∗
M/S

πn∗K
⊗2

C×SM
/
M

diag

B

Recall that the bilinear form B is, in the explicit description of the relative cotangent
bundle via Higgs fields T ∗

M/S = πn∗(End0(E)⊗KC×SM
/
M), given by the trace

B(φ,ψ) = tr(φ◦ψ).

In particular, it factors further through the symmetric square Sym2T ∗
M/S . Notice as

well that, since we assume the characteristic of the base field to be different from 2, the

symmetric square is canonically identified with the symmetric 2-tensors, and in particular

there is also a canonical identification(
Sym2T ∗

M/S

)∗ ∼= Sym2TM/S .

Taking the dual B∗ of B, using Serre duality relative to πn on the domain (where in

particular KC×SM/M = π∗
wKC/S) and pushing down via πe∗ we obtain a map πe∗ (B

∗)

πe∗R
1πn∗π

∗
wTC/S πe∗Sym

2TM/S .
πe∗B

∗

Combining this with flat base change

R1πn∗π
∗
wTC/S ∼= π∗

eR
1πs∗TC/S,

we make the following definition.

Definition 4.3.1. The Hitchin symbol ρHit is defined as

ρHit := πe∗ (B
∗) :R1πs∗TC/S πe∗Sym

2TM/S .

The morphism ρHit is in fact an isomorphism. As we do not need this fact directly, we

have relegated it to the appendix; see Lemma C.2.2.

For our purpose of comparing the symbol map with the Kodaira–Spencer morphism
in the general context of Theorem 3.4.1, we need the following alternative description:

Consider first the surjective evaluation map on C ×S M:

π∗
nπn∗(End0(E)⊗π∗

wKC/S) End0(E)⊗π∗
wKC/S .

ev (18)

Dualizing equation (18), we get a morphism

End0(E)∗⊗π∗
wTC/S π∗

n

(
πn∗

(
End0(E)⊗π∗

wKC/S
))∗
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so that swapping the first tensor factor and composing with relative Serre duality for πn

we obtain a OC×SM-linear morphism

π∗
wTC/S End0(E)⊗π∗

n(R
1πn∗(End0(E)∗)).ev∗

(19)

We also use the trace pairing to identify Tr : End0(E)
∼=→ End0(E)∗. Now, we apply πe∗ ◦

R1πn∗ to equation (19), and by the isomorphism R1πn∗End0(E)∗ ∼= R1πn∗End0(E) ∼=
TM/S , the projection formula and base change, we obtain a map

R1πs∗(TC/S) πe∗
(
TM/S ⊗TM/S

)
. (20)

Lemma 4.3.2. The map (20) coincides with the Hitchin symbol 4.3.1.

Proof. The claimed identity follows from commutativity of the diagram

R1πn∗π
∗
wTC/S

R1πn∗End0(E)⊗R1πn∗
(
End0(E)∗

)
TM/S ⊗TM/S .

R1πn∗(ev
∗) B∗

Id⊗(R1πn∗Tr−1)∗

This follows if we in turn dualize, apply Serre duality, for which

(
R1πn∗(ev

∗)
)∗

= πn∗ (ev⊗Id),

(and similarly for the other arrow, where additionally Tr = Tr∗) and observe that the
natural pairing on End0(E)∗⊗End0(E) coincides with B ◦ (Tr−1⊗Id) by the definition of

B and Tr.

4.4. The theta line bundle and its Atiyah algebroid

Next, we need some observations about the Atiyah algebroid of the theta line bundle L
(see Section 4.1). We recall that L is mapped to the ample generator of Pic(M/S) and

that L is related to the determinant-of-cohomology line bundle as in equations (13) and

(14).

In this setting, the Atiyah sequence for L relative to S has a remarkably direct
description in terms of the Atiyah sequence of the trace-free relative Atiyah algebroid

of E ,

0 End0(E) A0

C×SM
/
M
(E) π∗

wTC/S ∼= TC×SM
/
M 0. (21)

Note that, since End0(E) is uniquely defined, also is A0

C×SM
/
M
(E). Indeed, we have
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Theorem 4.4.1. The relative Atiyah sequence of the theta line bundle L is isomorphic
to the first direct image R1πn∗ of the dual of equation (21):

0 R1πn∗(KX/M)∼=OM R1πn∗
(
A0

X/M(E)∗
)

R1πn∗
(
End0(E)∗

)
0

0 OM AM/S(L) TM/S 0.

IdOM ∼= ∼=
σ1

(22)

For a single fixed curve, this result was stated (without proof) in the announcement

[23] (see Theorem 9.1), where it is attributed to Beilinson and Schechtman (even though

it does not seem to appear in [16]); it can also be derived from results contained in [50].
We give an independent proof in Section 5.

4.5. A comment on extensions of line bundles

Let X be a scheme, V and L, respectively, a vector and a line bundle on X. Let, moreover,
F be an extension of L by V

0 V F L 0.i π

By taking the dual and tensoring with V ⊗L, we get

0 V F ∗⊗V ⊗L V ∗⊗V ⊗L 0.

Consider now the injective natural map

ψ : L→ V ∗⊗V ⊗L

 �→ IdV ⊗.

Lemma 4.5.1. There exists a canonical injection φ :F ↪→F ∗⊗V ⊗L so that the diagram

0 V F L 0

0 V F ∗⊗V ⊗L V ∗⊗V ⊗L 0

i

φ

−π

ψ (23)

commutes.

Proof. We consider the natural OX -linear map α : F ⊗F → F ⊗L defined by

α(f1⊗f2) = f1⊗π(f2)−f2⊗π(f1)

for local sections f1,f2 of F. Then it is easy to check that the image of α is the subbundle

V ⊗L ⊂ F ⊗L. Now, the map α naturally corresponds to an OX -linear map φ : F →
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F ∗⊗V ⊗L, which can be described locally in terms of a basis of local sections {ei} of F

and the dual basis {e∗i } of F ∗ as

φ(f) =

rkF∑
i=1

(e∗i ⊗f ⊗π(ei)− e∗i ⊗ ei⊗π(f)) .

It is now straightforward to check that this φ makes the above diagram commute.

4.6. Locally freeness of πe∗(L)
We will be assuming that the direct image πe∗(Lk) on S is locally free. In characteristic

zero, this follows trivially from Kodaira vanishing, but in positive characteristic, it is not
known in general (but of course it will always trivally be true for large enough k). For

r = 2, this is, however, proven in [41].

Note that, in characteristic zero, a coherent sheaf with a flat projective connection will
necessarily be locally free, but this need not be true in general.

4.7. The relation between ρHit,Φ and L
We can now state the final ingredient we will need to prove the existence of the Hitchin

connection:

Proposition 4.7.1. The sheaf morphism Φ from equation (15) equals minus the

composition (∪[L]) ◦ρHit of the Hitchin symbol and the characteristic class [L], i.e., the
following diagram of sheaves on S commutes:

R1πs∗TC/S R1πe∗TM/S .

πe∗Sym
2TM/S

−Φ

ρHit ∪[L]

Proof. We begin with the trace-free Atiyah sequence on C ×S M for E , relative to πn,

as introduced in Section 3.1. To keep the notation light, we shall denote in this proof
the Atiyah algebroid A0

C×SM
/
M
(E) simply by A. By using the evaluation maps, as in

equation (18), dualizing and tensoring with π∗
wTC/S ⊗End0(E), we obtain the following

natural map of exact sequences:

0 End0(E) End0(E)⊗
A∗⊗π∗

wTC/S

End0(E) ⊗
End0(E)∗⊗π∗

wTC/S
0

0 End0(E) End0(E) ⊗
π∗
n(πn∗(A⊗π∗

wKC/S))
∗

End0(E) ⊗
π∗
n(πn∗(End0(E)⊗π∗

wKC/S))
∗ 0.

(24)
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By relative Serre duality for πn, the lower exact sequence is equal to the following:

0
End0(E) ⊗

π∗
n(R

1πn∗π
∗
wKC/S)

End0(E) ⊗
π∗
n(R

1πn∗A∗)
End0(E) ⊗

π∗
n(R

1πn∗End0(E)∗)
0.

(25)

By plugging V = End0(E), L= π∗
wTC/S and F =A in Lemma 4.5.1, we get a map of exact

sequences

0 End0(E) A π∗
wTC/S 0

0 End0(E) End0(E) ⊗
A∗⊗π∗

wTC/S

End0(E) ⊗
End0(E)∗⊗π∗

wTC/S
0.

(26)

Hence, by composing the short exact sequence maps (26) and (24) and using the

isomorphism of the target exact sequence with that of equation (25), we get a new map

of exact sequences:

0 End0(E) A π∗
wTC/S 0

0
End0(E) ⊗

π∗
n(R

1πn∗(π
∗
wKC/S))

End0(E) ⊗
π∗
n(R

1πn∗A∗)
End0(E) ⊗

π∗
n(R

1πn∗(End0(E)∗))
0.

(27)

By taking the direct image R1πn∗ of both sequences, they remain exact and we obtain
the commutative diagram

0 R1πn∗End0(E) R1πn∗A R1πn∗π
∗
wTC/S 0

0 R1πn∗End0(E)
R1πn∗End0(E)
⊗ (R1πn∗A∗)

R1πn∗End0(E) ⊗
(R1πn∗(End0(E)∗))

0.

(28)
We now apply πe∗ to both exact sequences in equation (28). The claimed equality is proven

once we consider the commutative diagram given by the connecting homomorphisms:

R1πs∗(TC/S) R1πe∗(TM/S)

πe∗(TM/S ⊗TM/S) R1πe∗(TM/S).

−Φ

ρHit

∪[L]

(29)

Since the bottom row of equation (28) is given by tensoring equation (22) by

R1πn∗End0(E), by Theorem 4.4.1 the connecting homomorphism for the bottom row

is given by the relative Atiyah class of L. By Lemma 4.3.2, the left vertical map is given
by the Hitchin symbol ρHit. Since the upper exact sequence of equation (27) is the same

as the sequence (16) but with one sign changed (as in equation (23)), by Lemma 4.2.1

the connecting homomorphism for the top row of equation (29) is given by −Φ.
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4.8. Existence and flatness of the connection

We can now summarize the algebro-geometric construction of the Hitchin connection:

Theorem 4.8.1. Let k be a positive integer. Suppose a smooth family πe : C → S of
projective curves of genus g ≥ 2 (and g ≥ 3 if r = 2) is given as before, defined over an

algebraically closed field of characteristic different from 2, not dividing r and k+ r and

such that πe∗(Lk) is locally free. Then there exists a unique projective connection on the
vector bundle πe∗(Lk) of nonabelian theta functions of level k, induced by a heat operator

with symbol

ρ=
1

r+k

(
ρHit ◦κC/S

)
.

Proof. We establish the existence of the projective connection by invoking Theorem 3.4.1

for the line bundle Lk over M. We recall from equation (14) the equality KM/S = L−2r.
From Proposition 3.6.1 we therefore have that

μLk = ∪(r+k)[L],

and hence, (using Proposition 4.7.1 and equation (15)) we have

μLk ◦ρ= μLk ◦ 1

r+k

(
ρHit ◦κC/S

)
= (∪[L])◦ρHit ◦κC/S =−Φ◦κC/S =−κM/S,

which establishes condition (a) of Theorem 3.4.1. Condition (b) is trivially satisfied

because of Proposition 4.1.1, and condition (c) follows from the algebraic Hartogs’s

theorem [56, Lemma 11.3.11], together with the well-known fact that the relative coarse
moduli space Mss of semi-stable bundles with trivial determinant (which is singular but

normal) is proper over S, and if g > 2 or r > 2, the complement ofM will have codimension

greater than one in Mss.

As for the curvature of the connection, we have:

Theorem 4.8.2. Suppose furthermore that the characteristic of the base field is different
from 3. Then the projective connection constructed in Theorem 4.8.1 is flat.

Proof. We apply Theorem 3.5.1: Condition (a) holds since by definition of the Hitchin
symbol the corresponding homogeneous functions on T ∗

M/S are the quadratic components

of the Hitchin system and, hence, Poisson commute,{
ρHit(θ),ρHit(θ′)

}
T∗
M/S

= 0.

Condition (b) is satisfied as μLk is injective (see Lemma C.2.7 in Appendix C), and (c)
holds by Proposition 4.1.1.

5. Proof of Theorem 4.4.1

We shall need the theory of the trace complex, due to Beilinson and Schechtman, or

rather a variation thereon due to Bloch and Esnault—see [16] and [9]. In Appendix A, a
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summary of this theory is given, and we refer to it for definitions of the complexes trA•,
B• and 0B•. We will be applying the trace complex in our particular setting here, where

M is as in Section 4.1, X = C ×S M and f = πn. In this context, we find that the trace
complex simplifies significantly, to give Theorem 4.4.1.

Before proving Theorem 4.4.1 we need to prove a few auxiliary results.

Lemma 5.0.1. Following the above notation:

(a) the direct image πn∗
0B0(E) equals 0;

(b) the natural map R1πn∗End0(E)→R1πn∗
0B0(E) is zero.

Proof. Recall from Section A.2.2 that we have a short exact sequence

0 End0(E) 0B0(E) π−1
n TM/S 0.

By applying the direct image πn∗, we get

0 πn∗End0(E) πn∗
0B0(E) TM/S R1πn∗End0(E) R1πn∗

0B0(E) · · · .

Now, by Proposition 4.1.1 (a) and (b), πn∗End0(E) = 0, and the map TM/S →
R1πn∗End0(E) is an isomorphism. The two claims follow.

Proposition 5.0.2. There exists an isomorphism φ :R1πn∗
0B−1(E)→R0πn∗B•(End0(E))

that makes the following diagram commute.

0 R1πn∗(KX/M)∼=OM R1πn∗
0B−1(E) R1πn∗

(
End0(E)

)∼= TM/S 0

0 R0πn∗KX/M[1]∼=OM R0πn∗B•(End0(E)) TM/S 0.

2r·IdOM φ∼= ∼=

In particular, φ induces 2r · IdOM on OM.

This proposition is already proved by combining [50, Thm. 3.7 and Cor. 3.12]. For the

sake of self-containedness, here, we give a complete but slightly different proof of this
statement.

Proof. We construct φ in several steps, notably as the composition of three maps. First
of all, let us define a map

φ1 :R
1πn∗

0B−1(E) R0πn∗
0B•(E).
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For the sake of clarity, we recall the definition of the 0th direct image R0πn∗
0B•(E). We

choose an acyclic resolution of the complex 0B•(E) as follows

0B−1(E) 0B0(E)

C0(0B−1(E)) C0(0B0(E))

C1(0B−1(E)) C1(0B0(E))

δ0

δ1

We push this diagram forward through πn and consider the following one:

πn∗C0(0B−1(E)) πn∗C0(0B0(E))

πn∗C1(0B−1(E)) πn∗C1(0B0(E))

R1πn∗
0B−1(E) R1πn∗

0B0(E)

δ0

d−1 d0

δ1

Remark that the lower horizontal arrow factors as

R1πn∗
0B−1(E)→R1πn∗End0(E)→R1πn∗

0B0(E).

By definition, we have that R0πn∗
0B−1(E) := Ker(B)/ Im(A), where

πn∗C0(0B−1(E)) πn∗C0(0B0(E))⊕πn∗C1(0B−1(E)) πn∗C1(0B0(E))
(γ) (δ0(γ),d−1(γ))

(α,β) d0(α)− δ1(β).

A B

Hence, we can define a map

φ̃ : πn∗C1(0B−1(E))→Ker(B);

β �→ (α,β),

where α ∈ πn∗C0(0B0(E)) is uniquely defined by the formula d0(α) = δ1(β). In fact, we

observe that Lemma 5.0.1 implies that d0 is injective and that Im(δ1)⊆ Im(d0). The map

φ̃ descends to the first of our three maps:

φ1 :R
1πn∗

0B−1(E)→R0πn∗
0B•(E);

β̄ �→ (α,β),

where the overline should be intended as just taking the corresponding classes.
The second map is defined as follows (see Appendix B for the precise definitions of âd

and ãd):

φ2 :R
0πn∗

0B•(E)→R0πn∗(
0B−1(End0(E))→B0(End0(E)));

(α,β) �→ (ãd(α),âd(β)),
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where we abuse once more of the notation (and of the reader’s patience) by denoting by

âd and ãd also the maps on the direct images. Note also that here we consider ãd as

defined on the quotient 0B0(E) of the subsheaf B0(E) ⊂ A(E), and we are allowed to do

so since the trivial sheaf is in Ker(ãd). Moreover, we can consider B0(End0(E)) as the

target space of ãd the image of 0B0(E) via ãd is contained in B0(End0(E))⊂A(End0(E)).
The third map is induced on R0πn∗(

0B−1(End0(E)) → B0(End(E))) by the natural

inclusion 0B−1(End0(E)) ↪→B−1(End(E)). Hence, this gives a natural map

φ3 :R
0πn∗(

0B−1(End0(E)) B0(End0(E))) R0πn∗B•(End0(E)).

It is a standard check that these three maps are well defined and pass to the quotient in

cohomology.

The situation is now the following: We have two exact sequences and a map φ :=
φ3 ◦φ2 ◦φ1 between extensions:

0 R1πn∗(KX/M)∼=OM R1πn∗
0B−1(E) R1πn∗(End0(E))∼= TM/S 0

0 R0πn∗(KX/M)[1])∼=OM R0πn∗B•(End0(E)) TM/S 0.

φ

Now, suppose we have a class β̄ in R1πn∗
0B−1(E), and let us consider β a local section of

πn∗C1(0B−1(E)) representing β̄. If we denote as above by α ∈ πn∗C0(0B0(E)) the uniquely
defined local section as in the definition of φ̃, then φ sends β on (ãd(α),âd(β)).
By Proposition B.0.3 we have a commutative diagram

0 KX/M
0B−1(E) End0(E) 0

0 KX/M
0B−1(End0(E)) End0(End0(E)) 0.

·2r ̂ad ad0

which implies the claim about the restriction of φ to OM. Thus, φ also descends to a
OX -linear map φT : TM/S → TM/S . Remark in fact that, again by Appendix B and the

observations on ãd made here above, φT is induced by the adjoint map between the

following exact sequences.

0 End0(E) 0B0(E) π−1
n (TM/S) 0

0 End(End0(E)) B0(End0(E)) π−1
n (TM/S) 0.

ad ˜ad0 Id∼=

Proof of Theorem 4.4.1. The isomorphism of exact sequences claimed in the theorem

will follow by composing the following isomorphisms. In the diagram below, they will

be composed vertically from the first to the fifth. First, we apply R1πn∗ to the second
identification from Theorem A.2.6. Then we compose with the map from Proposition

5.0.2. The third map is the isomorphism from Theorem A.2.4 applied to End0(E) (recall
that λ(End0(E)) = L−2r). The fourth and fifth maps are the canonical isomorphism
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A(L−1) ∼= A(L−2r) obtained by scaling appropriately the extension as in Lemma 3.1.4

with k = 2r and L = L−1. Finally, the last vertical isomorphism A(L−1)→A(L) is the
canonical map between the Atiyah algebra of L−1 and its dual L (with the opposite

symbol map). Hence, we obtain the following commutative diagram:

0 OM R1πn∗(A0
X/M(E)∗) R1πn∗(End0(E)∗) 0

0 OM R1πn∗(
0B−1(E)) R1πn∗(End0(E)) 0

0 OM R1πn∗B•(End0(E)) TM/S 0

0 OM A(L−2r) TM/S 0

0 OM A(L−1) TM/S 0

0 OM A(L) TM/S 0.

∼=IdOM ∼=˜Res
∼=−Tr

∼=2r·IdOM φ ∼=

∼= ∼= ∼=

∼=

σ1

∼= ∼=

∼=

1
2r

∼=

σ1

∼=
1
2r −σ1

Note that the first vertical right-hand-side map is −Tr. This means that the extension
class defining the upper short exact sequence is equal to the standard Atiyah sequence of

L as claimed in the theorem.

Appendix A. The trace complex, following Beilinson–Schechtman and

Bloch–Esnault

We give here a presentation of the parts of the theory of trace complexes (due to Beilinson

and Schechtman [16, §2], see also [20]) that we need. We then describe an alternative

approach to the trace complexes, suggested by Bloch and Esnault [9, §5.2].
In fact, to suit our purposes, we make two minor variations: First, we make some small

changes to ensure that the construction works in positive characteristic (apart from 2),

and second, we phrase everything in a relative context. The latter is trivial on a technical

level, but we do it as the Bloch–Esnault approach requires an extra condition, which,
when we invoke it in the main part of the article, is only satisfied in a relative setting.

Section A.1 below covers the original trace complex and is just expository. In Section

A.2, where the alternative of Bloch–Esnault is explained, we also give proofs for various
assertions merely stated in [9].

For the purpose of this appendix, we consider a family of smooth projective curves

f : X →M of genus g ≥ 2, relative to a smooth base scheme S,

X M

S,

f

together with a vector bundle E → X . We shall write E◦ for E∗⊗KX/M.
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The trace complex we are interested in describes the Atiyah algebroidAM/S(detR
•f∗E)

(remark that our notation differs from Beilinson and Schechtman’s: our M is their S, and

our S is just a point in [16]).

A.1. The Beilinson–Schechtman trace complex trA•(E)
A.1.1. Overview. The relative tangent bundle TX/S contains as subsheaves TX/M ⊂
Tf/S ⊂ TX/S , where (with df : TX/S → f∗TM/S)

Tf/S := (df)−1f−1TM/S,

and corresponding Atiyah algebroids

AX/M(E) ↪→Af/S(E) ↪→AX/S(E).

The Beilinson–Schechtman trace complex is a three-term complex:

trA•(E) =
{

trA−2(E) trA−1(E) trA0(E)
}
,

where trA−2(E) = OX , trA0(E) = Af/S(E) and trA−1(E) is an extension (to be defined

below in Section A.1.2))

0 KX/M
trA−1(E) AX/M(E) 0,res (30)

which fits into the following commutative diagram:

OX
trA−2(E)

0 KX/M
trA−1(E) AX/M(E) 0

trA0(E) Af/S(E).

dX/M dX/M
res

res

(31)

The main use of the trace complex trA•(E) is the following:

Theorem A.1.1 ([16, Thm. 2.3.1]). The relative Atiyah sequence of the determinant-of-

cohomology line bundle

λ(E) = detR•f∗E := detf∗E ⊗
(
detR1f∗E

)∗
of E with respect to f is canonically isomorphic to the short exact sequence

0 R0f∗
(
Ω•

X/M[2]
)

R0f∗(
trA•(E)) R0f∗

⎛
⎝
⎛
⎝AX/M(E)

↓
Af/S(E)

⎞
⎠ [1]

⎞
⎠ 0

0 OM AM/S(λ(E)) TM/S 0.

∼= ∼= ∼=
σ1

A.1.2. Construction of trA−1(E). Let Δ∼= X ⊂ X ×MX denote the diagonal and p1
and p2 the two projections of X ×MX to X . For each of the projections p1,p2, we have a
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residue map Res1 ,Res2 along the fibres (cfr. [52, 10, 15]). The following is a key ingredient

for us:

Lemma A.1.2 ([16, §2.1.1.1]). There exists a map

R̃es :KX/M�KX/M(3Δ)→OX ,

which vanishes on KX/M �KX/M(Δ), is symmetric with respect to transposition and

such that dR̃es = Res1−Res2. The restriction of r̃es to KX/M�KX/M(2Δ) gives a short

exact sequence

0 KX/M�KX/M(Δ) KX/M�KX/M(2Δ)

KX/M�KX/M(2Δ)|Δ ∼=OX 0,

resΔ=˜Res

where the second map is r̃es and coincides with the restriction to the diagonal Δ.

We shall also need a particular description of the sheaf of (relative) first-order

differential operators D(1)
X/M(E) (see [16, 2.1.1.2] or the introduction of [20], from which

we borrow the notation). Here and in what follows, we identify sheaves supported on the
diagonal Δ with sheaves on X . The next lemma is easily deduced from the definition of

the “pole at Δ” map.

Lemma A.1.3. The symbol short exact sequence for first-order differential operators on
E relative to f is isomorphic to the exact sequence

0 E�E◦(Δ)
E�E◦

E�E◦(2Δ)
E�E◦

E�E◦(2Δ)
E�E◦(Δ) 0

0 End(E) D(1)
X/M(E) TX/M⊗End(E) 0,

∼= δ ∼=
σ1

(32)

where δ is the “pole at Δ” map defined by

δ(ψ)(e) = Res2(〈ψ,p∗2(e)〉),

for any local section ψ of E�E◦(2Δ)
E�E◦ and any local section e of E. Here, 〈−,−〉 is the natural

pairing E◦×E →KX/M.

We consider now the natural exact sequence

0 E�E◦

E�E◦(−Δ)
E�E◦(2Δ)
E�E◦(−Δ)

E�E◦(2Δ)
E�E◦ 0

End(E)⊗KX/M D(1)
X/M(E).

(33)

https://doi.org/10.1017/S1474748022000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000196


480 M. Bolognesi et al.

Then the construction that defines the short exact sequence (30) is obtained by taking

first the pull-back of equation (33) to AX/M(E)⊂D(1)
X/M(E) and then the push-out under

the trace map End(E)⊗KX/M
Tr→KX/M,

0 E�E◦

E�E◦(−Δ)
E�E◦(2Δ)
E�E◦(−Δ)

E�E◦(2Δ)
E�E◦ 0

0 End(E)⊗KX/M
trÃ−1(E) AX/M(E) 0

0 KX/M
trA−1(E) AX/M(E) 0.

Tr

(34)

A.2. The quasi-isomorphic Bloch–Esnault complex B•

Following [9], we will now construct a subcomplex B•(E)⊂ trA•(E) that allows for more

handy computations. Its construction relies on the existence of a splitting of the short
exact sequence

0 TX/M Tf/S f−1TM/S 0.
df

(35)

Remark A.2.1. Note that this condition is in particular satisfied whenever X is a fibred
product X =Y×SM and f = π2 the projection since then TX/S

∼= π∗
1TY/S⊕π∗

2TM/S and

in particular

Tf/S
∼= π∗

1TY/S ⊕f−1TM/S .

A.2.1. Construction of B•(E). The definition of B−1(E) is analogous to that of
trA−1(E) via the subquotient (34). One starts once again from the short exact sequence

(33) but pulls it back all the way to End(E) ↪→D(1)
X/M(E) and then pushes out along the

trace

0 E�E◦

E�E◦(−Δ)
E�E◦(2Δ)
E�E◦(−Δ)

E�E◦(2Δ)
E�E◦ 0

0 End(E)⊗KX/M B̃−1 End(E) 0

0 KX/M B−1 End(E) 0.

Tr

(36)

Similarly, we define B0(E) via the pull-back of the symbol exact sequence of trA0(E) =
Af/S(E) under the inclusion f−1TM/S ↪→ Tf/S arising through the splitting condition on
equation (35) so that we have the following diagram:

0 End(E) B0(E) f−1TM/S 0

0 End(E) trA0 =Af/S(E) Tf/S 0.
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Hence, B•(E) is a subcomplex of trA•(E), and the following holds true.

Proposition A.2.2 ([9, Sect. 5.2]). If the short exact sequence (35) is split, the complex

B•(E) is quasi-isomorphic to trA•(E).

Corollary A.2.3. The short exact sequence of complexes (31) is quasi-isomorphic to

OX B−2(E)

0 KX/M B−1(E) End(E) 0

B0(E) B0(E).

dX/M

Moreover, since we are considering only 0th direct images, we can drop the degree −2

part of the first two complexes. Hence, we obtain a short exact sequence of complexes,

0→KX/M[1]→B•(E)→C•(E)→ 0,

where C−1(E) := End(E) and C0(E) := B0(E). We also observe that C•(E) is quasi-

isomorphic to f−1TM/S since this is exactly the cokernel of End(E) → B0(E). Thus,

Theorem A.1.1 now simplifies to

Theorem A.2.4. We have an isomorphism of short exact sequences

0 R0f∗(KX/M[1]) R0f∗(B•(E)) R0f∗(End(E)→B0(E))∼= TM/S 0

0 OM AM/S(λ(E)) TM/S 0.

∼= ∼= ∼=

Remark A.2.5. We observe that both sides of the central vertical isomorphism depend

on E .

A.2.2. Traceless version 0B•(E) of B•(E). As expected, we define the subsheaf
0B−1(E) ⊂ B−1(E) via the pull-back of the short exact sequence defining B−1(E) in

equation (36) along the inclusion of traceless endomorphisms End0(E) ↪→End(E),

0 KX/M
0B−1(E) End0(E) 0

0 KX/M B−1(E) End(E) 0.

As we did before, we introduce also a quotient sheaf 0B0(E) of B0(E), obtained as push-out

through End(E)→End0(E), that is,

0 End(E) B0(E) f−1TM/S 0

0 End0(E) 0B0(E) f−1TM/S 0.
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A.2.3. Identification of B−1(E) and 0B−1(E). The duality

AX/M(E)∗ ∼= B−1(E)

was already stated in [9] formula (5.31). We give a proof here, in particular to include
a discussion of the traceless case and to control the necessary restrictions on the

characteristic of the ground field.

Theorem A.2.6. There is a canonical identification between the natural short exact

sequences

0 T ∗
X/M AX/M(E)∗ End(E)∗ 0

0 KX/M B−1(E) End(E) 0.

∼= ∼=−Tr

There is also a traceless analogue:

0 T ∗
X/M A0

X/M(E)∗ End0(E)∗ 0

0 KX/M
0B−1(E) End0(E) 0.

∼= ∼=−Tr

Remark A.2.7. Note that the vertical maps on the right-hand side are given by the
opposite of the isomorphism induced by the trace pairing.

Proof. Following [16, Sect. 2.1.1.3], let us define a pairing

E�E◦(2Δ)×E�E◦(Δ)→OX ;

(ψ1,ψ2) �→ r̃es(ψ1 ·tψ2),

where tψ2 denotes the transposition of ψ2, that is the pull-back under the map that

exchanges the two factors of the fibred product X ×M X . This means that tψ2 is a

section of E◦�E(Δ). Then we observe that the product ψ1 ·tψ2 is a section of KX/M�
KX/M(3Δ), after taking the trace Tr : E ⊗E◦ →KX/M on each factor. Since r̃es is zero
on KX/M�KX/M(Δ), the pairing descends to a pairing on the quotients

〈−,−〉 : E�E◦(2Δ)

E�E◦ × E�E◦(Δ)

E�E◦(−Δ)
→OX .
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We claim that this pairing is nondegenerate. In order to check this, observe that it is
defined on the central terms of the two short exact sequences (32) and (33),

End(E)∼= E�E◦(Δ)
E�E◦

E�E◦

E�E◦(−Δ)
∼= End(E)⊗KX/M

D(1)
X/M(E)∼= E�E◦(2Δ)

E�E◦
E�E◦(Δ)
E�E◦(−Δ) OX

End(E)⊗TX/M ∼= E�E◦(2Δ)
E�E◦(Δ)

E�E◦(Δ)
E�E◦

∼= End(E).
σ1

× 〈−,−〉

Using the fact that r̃es vanishes on KX/M �KX/M(Δ), we note that the pairing is

identically zero when restricted to the product of the kernels E�E◦(Δ)
E�E◦ × E�E◦

E�E◦(−Δ) .
Therefore, it induces pairings on the products of the kernel of one sequence with the

quotient of the other one, that is, on End(E)×End(E) and End(E)⊗TX/M×End(E)⊗
KX/M.

Lemma A.2.8. The residue pairing 〈−,−〉 factorizes through the trace pairings −Tr on
End(E)×End(E) and +Tr on End(E)⊗TX/M×End(E)⊗KX/M.

Proof. Consider ψ1 a local section of E�E◦(Δ)
E�E◦ ⊂ E�E◦(2Δ)

E�E◦ and ψ2 a local section of
E�E◦(Δ)
E�E◦(−Δ) . As explained above, 〈ψ1,ψ2〉 depends only on 〈ψ1,ψ2〉, where ψ2 is the class

of ψ2 in E�E◦(Δ)
E�E◦ . It will be enough to do the computations locally. Choose (as in [20]) a

local coordinate x at a point p ∈ X , and let (x,y) be the induced local coordinate at the
point (p,p) ∈ Δ. Then the local equation of Δ is x− y = 0. Let ei be a local basis of E
and e∗j its dual basis. Then we can write the local sections ψ1 and ψ2 as

ψ1 =
∑
i,j

ei⊗ e∗j
αij(x,y−x)

y−x
dy and ψ2 =

∑
k,l

ek⊗ e∗l
βkl(x,y−x)

y−x
dy

for some local regular functions αij and βkl. Then the local sections φ1 and φ2 of End(E)
associated to ψ1 and ψ2 are given by

φ1 =
∑
i,j

ei⊗ e∗jαij(x,0) and φ2 =
∑
k,l

ek⊗ e∗l βkl(x,0).

Then we compute

〈ψ1,ψ2〉= r̃es

⎛
⎝∑

ijkl

ei⊗ e∗l ·ek⊗ e∗j
αij(x,y−x)βkl(y,x−y)

−(x−y)2
dxdy

⎞
⎠

= r̃es

⎛
⎝∑

ij

αij(x,y−x)βji(y,x−y)

−(x−y)2
dxdy

⎞
⎠

=−
∑
ij

αij(x,0)βji(x,0) =−Tr(φ1φ2).

The computations for the second case are similar.
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Since the trace pairing Tr is nondegenerate, we deduce from the above lemma that the
pairing 〈−,−〉 is also nondegenerate.

Now, we observe that AX/M(E)⊂ E�E◦(2Δ)
E�E◦ and that E�E◦(Δ)

E�E◦(−Δ) � B−1(E). We want to

prove that the restriction 〈AX/M(E),−〉 descends to B−1(E), but this follows from the

definition of AX/M(E) by pull-back via TX/M⊗End(E) and the definition of B−1(E) by
push-out via End(E)⊗KX/M

Tr�KX/M, and the duality between these two maps. Hence,
we obtain a nondegenerate pairing

〈−,−〉 :AX/M(E)×B−1(E)−→OX .

The same argument yields nondegeneracy of the traceless version of this pairing:

〈−,−〉 :A0
X/M(E)× 0B−1(E)−→OX .

Remark A.2.9. The duality between AX/M(E) and B−1(E) was constructed by Sun–

Tsai in [50, Lemma 4.11.2] using a local description of B−1(E). Note that their claim

involves the Atiyah algebroid AX/M(E∗), which is isomorphic to AX/M(E) but has
opposite extension class.

Remark A.2.10. We note that

E�E◦(Δ)

E�E◦(−Δ)
∼=D(1)

X/M(E)⊗KX/M.

Thus, the pairing 〈−,−〉 described in the above proof induces a natural isomorphism

between D(1)
X/M(E)∗ and D(1)

X/M(E)⊗KX/M.

Appendix B. The splitting of the adjoint map

In this appendix, we collect some representation-theoretical facts needed in the proof of
Proposition 5.0.2. We will work in the following framework. We will denote by E a rank

r vector bundle on a smooth algebraic variety X and as usual End0(E) will denote the

traceless endomorphisms of E . We need the characteristic p of the field k to be 0 or not

dividing r.
First, we observe that we have two nondegenerate pairings induced by the trace,

Tr : End(E)×End(E)→OX, (37)

Tr : End(End(E))×End(End(E))→OX, (38)

which allow us to identify End(E) with End(E)∗ and End(End(E)) with End(End(E))∗.
Moreover, we denote by

ad : End(E)→End(End(E))
α �→ (β �→ [α,β])

(39)

the OX -linear map given by the adjoint for any local sections α,β of End(E).
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Lemma B.0.1. Let α,β be local sections of the vector bundle End(E). The OX-linear

map

s : End(End(E))∼= End(E)⊗End(E)→End(E)

α⊗β �→ 1

2r
[β,α]

satisfies s◦ad(α) = α− tr(α)
r IdE , i.e., s is a splitting of the restriction of ad to End0(E).

Proof. It will be enough to check the equality pointwise. The statement then reduces to

check that for an r× r matrix A ∈ Mr(k) we have the equality s ◦ ad(A) = A− tr(A)
r Ir.

We consider the canonical basis {Eij} with 1≤ i,j ≤ r of Mr(k). The dual basis of {Eij}
under the trace pairing (37) is given by {Eji}. The claim then follows by straightforward

computation:

s◦ad(A) = s

⎛
⎝∑

i,j

Eji⊗ [A,Eij ]

⎞
⎠=

1

2r

∑
i,j

AEijEji−EijAEji−EjiAEij +EjiEijA

=
1

2r
(2rA−2tr(A)Ir).

Lemma B.0.2. Using the identifications (37) and (38) given by the trace pairings, we

denote by s∗ : End(E)→End(End(E)) the dual of s. Then we have the equality

s∗ =
1

2r
ad.

Proof. As in the previous lemma, we will check the equality pointwise. By the definition
of the dual map s∗ and the trace pairings (37) and (38), it is easily seen that the claimed

equality is equivalent to the equality

tr(ad(A).B⊗C) = tr(A[C,B])

for any matrices A,B,C ∈Mr(k). Note that the trace on the left-hand side is the trace

on End(Mr(k)) ∼= Mr(k)⊗Mr(k). Again, this equality is proved by straightforward

computation:

tr(ad(A).B⊗C) =
∑
i,j

tr(Eji⊗ [A,Eij ]⊗B⊗C) =
∑
i,j

tr(EjiC)tr([A,Eij ]B)

=
∑
i,j

(tr(EjiC)(tr(BAEij)− tr(EijAB)) = tr(BAC)− tr(ABC)

= tr(A[C,B]).

We will also abuse slightly of notation and denote also by ad the OX -linear map

End(E) → End(End0(E)) induced by the one defined in equation (39). We will write

instead ad0 : End0(E)→End0(End0(E)) for the restriction to End0(E).
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Proposition B.0.3.
(a) There exists a OX-linear map

ãd :A(E)→A(End0(E)),

extending, respectively, ad inducing the identity on TX . Note that ãd factorizes

through A0(E). We shall denote by

ãd0 :A0(E)→A(End0(E))

the factorized map.

(b) There exists a OX-linear map

s̃ :A(End0(E))→A0(E),

extending s : End(End0(E))→ End0(E), inducing the identity on TX and such that

s̃◦ ãd0 = IdA0(E).

(c) With the notation of Appendix A, there exists a OX -linear map

âd : 0B−1(E)→ 0B−1(End0(E)),

lifting ad0 and inducing 2r Id on the line subbundle KX/M.

Proof. Part (a) is proved in [5] pp. 188–189.

Part (b): We define s̃ as the push-out of the exact sequence

0→End0(End0(E))→A0(End0(E))→ TX → 0

under the OX -linear map s. Then, by Lemma B.0.1, since s is a splitting of ad0, we see

that the extension class of the push-out is the same as the extension class of A0(E); hence,
these two vector bundles are isomorphic (see, e.g., [5] pp. 188–189).

Part (c): We recall from Theorem A.2.6 that there exist isomorphisms

δE :A0
X/M(E)∗ → 0B−1(E) and δEnd0(E) :A0

X/M(End0(E))∗ → 0B−1(End0(E)).

We then construct the map âd as the composition

âd = (2r)δEnd0(E) ◦ s̃∗ ◦ δ−1
E .

Then âd induces (2r)Id on KX/M and, by Lemma B.0.2, âd lifts the map ad0.

Remark B.0.4. Proposition B.0.3 coincides with [50, Prop. 3.10]. Our proof is different
since we give a global construction of the liftings of the adjoint maps.

Appendix C. Basic facts about the moduli space M through the Hitchin

system

In this appendix, we give proofs for some of the basic facts about the moduli space of
stable bundles M (as in Section 4.1) that we use in the main body of the paper. These are

essentially all well known, but we were unable to find references for them in the generality

we need (outside the complex case). We therefore show here how they can all be obtained
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using the Hitchin system—a strategy once again due to Hitchin (cfr. [29, §6] and [30,

§5])—via some minor adaptations to the algebro-geometric setting.

C.1. The moduli space of Higgs bundles and the Hitchin system

We will denote by MH, ss the moduli space of semi-stable Higgs bundles with trivial

determinant (and trace-free Higgs field)—all still relative over S as before. This space is

singular but normal and comes equipped with the Hitchin system, a projective morphism
φ to the vector bundle πH : H → S associated to the sheaf ⊕r

i=2πs∗K
i
C/S over S. This

morphism is equivariant with respect to the Gm-action that scales the Higgs fields and

acts with weight i on πs∗K
i
C/S . The fibres of πH :MH, ss → S have a canonical (algebraic)

symplectic structure on their smooth locus, which extends the one on T ∗
M/S . Closed points

in H give rise to degree r spectral covers of C. The locus whose spectral curve is smooth

is denoted by Hreg.

C.2. Proofs

Proposition C.2.1 (Proposition 4.1.1(c)). There are no global vector fields on M:

πe∗TM/S = {0}.

Proof. Elements of πe∗TM/S would give rise to global functions on T ∗
M/S . As the

complement of M in MH, ss has sufficiently high codimension, these would extend by

Hartogs’s theorem to all of MH, ss. As they have weight 1 under the Gm-action, they

have to be pulled back from functions on H of the same weight, but there are no such
functions.

Proposition C.2.2. The Hitchin symbol ρHit is an isomorphism.

Proof. Elements of πe∗Sym
2TM/S can be understood as regular functions on the total

space of T ∗
M/S , of degree 2 on all tangent spaces. In turn, these extend, by Hartogs’s

theorem, to MH, ss, where they are of degree 2 with respect to the Gm-action that scales

the Higgs field. As the Hitchin system is equivariant, they are moreover obtained from
regular linear functions on the quadratic part of the Hitchin base, which is exactly given

by R1πs∗TC/S though ρHit.

To establish that μLk is injective, we can again adapt the reasoning from [30, §5]. By
Propositions 3.6.1 and 4.7.1 and Lemma C.2.2, it suffices to show that Φ is injective.

Lemma C.2.3 ([30, Proposition 5.2]). There exists a canonical isomorphism

Ψ : πH∗OH⊗H∗ R1πH∗O,

of πH∗OH-modules which is equivariant with respect to the natural action of Gm on

πH∗OH⊗H and the natural action twisted by weight −1 on R1πH∗O.

Proof. Indeed, sections of H∗ give rise to fibre-wise linear functions on H, which pull

back by φ to functions on MH. As the latter has an algebraic symplectic structure on

MH, s extending the canonical one on T ∗M, these give rise to Hamiltonian vector fields
on MH, s which are tangent to the fibres of φ. Moreover, the inverse of the determinant-of-

cohomology line bundle L naturally extends to MH and is relatively ample with respect
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to φ. Taking the cup product with its relative Atiyah class gives a natural morphism
πH∗TMH/S →R1πH∗O. The composition gives a morphismH→R1πH∗O, which naturally

extends as a morphism of πH∗OH-modules to the desired morphism Ψ.

To show that Ψ is an isomorphism, it can be argued as follows: As πH factors over πH,
and the latter is an affine morphism, we have that R1πH∗OMH

∼= πH∗
(
R1φ∗OMH

)
. Now,

through the theory of abelianisation, we know that over a locusH◦ whose complement has

sufficiently high co-dimension, the morphism φ is a family of (semi-)abelian varieties. The

line bundle L restricts to an ample one on the fibres, and for those fibres X it is known
that cupping with [L] is an isomorphism H0(X,TX)→H1(X,OX). As the vector fields

on MH are independent, on each such X the space H0(X,TX) is given by the vector field

coming from H∗. As a result, we find that, on H◦, R1φ∗OMH is a trivial vector bundle
and that the map Ψ is indeed an isomorphism.

It is also straightforward to observe that the map Ψ is in fact equivariant for the natural

Gm-action that is defined on all spaces, induced by the scaling of Higgs fields, provided
that we twist the action on R1πH∗MH by a weight −1.

Proposition C.2.4 (4.1.1(d)). We have that R1πe∗OM = {0}.

Proof. It suffices to remark that sections of R1πe∗OM correspond to sections of
R1πH∗OMH, ss of weight 0, which would correspond under Ψ to sections of weight −1, of

which there are none.

Proposition C.2.5. The map ∪[L] : πe∗Sym
2TM/S →R1πe∗TM/S is an isomorphism.

Proof. We now want to restrict the isomorphism Ψ from C.2.3 to the subbundle of

πH∗OH ⊗H∗ of weight 2, which corresponds exactly to fibre-wise linear functionals on

πs∗K
2
C/S , which by relative Serre duality is exactly given by R1πs∗TC/S . On this space,

Ψ restricts to give an isomorphism to R1πe∗TM/S . To show that this is a multiple of

Φ, one can argue as follows: If O(1) is the structure sheaf of the first-order infinitesimal
neighborhood of M in MH (cfr. [53, Tag 05YW]), we have the short exact sequence on M

0 N∗
M/MH O(1) OM 0.

Here, N∗
M/MH is the co-normal bundle of M in MH, which is canonically isomorphic to

the tangent bundle TM/S . As by Proposition C.2.4 we have that R1πe∗OM = {0}, this
gives

R1πe∗TM/S
∼=R1πe∗O(1).

If I is the ideal sheaf of M in MH, we have that O(1) =
(
OMH

/
I2

)∣∣∣
M
, and hence, we

have a restriction map

R1πH∗OMH R1πe∗O(1) ∼=R1πe∗TM/S,

which is the identity on R1πe∗TM/S (sitting inside R1πH∗OMH as the weight 1 part).

So we only need to keep track of first-order information in the normal direction. We
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now claim that, for any Δ ∈ R1πH∗(Ω
1
MH/S) which restricts to Δ̃ ∈ R1πe∗(Ω

1
M/S), the

following diagram is commutative:

πe∗Sym
2TM/S R1πe∗TM/S

πH∗OMH R1πe∗O(1).

πH∗Ω
1
MH/S πH∗TMH/S R1πH∗OMH

∪2˜Δ

d

∼=

ω
∼=

∪Δ
restrict

(40)

In [30, page 379], this was shown using holomorphic Darboux coordinates on the total

space of TM/S , coming from (holomorphic) coordinates on M. The reasoning does not
strictly speaking need the latter choice though, and it suffices to work with a local

trivialisation of TM/S . In this sense, it also goes through in an algebraic context, as

follows. Let Ui be a covering of M by open affines, such that TM/S

∣∣
Ui

is free. For a fixed
i, we choose generators e1, . . . ,en of the latter. These can also be understood as functions

f1, . . . ,fn on T ∗
M/S

∣∣
Uγ

. If we denote the dual sections to e1, . . . ,en as e1, . . . ,en, then we can

interpret their pull backs as one-forms on the total space of T ∗
M/S

∣∣
Uγ

. The tautological

one-form θ on the total space of T ∗
M/S can now be written locally as θ =

∑
α fαe

α,
and the canonical symplectic form is therefore ω = −dθ =

∑
α dfα ∧ eα. If a section of

πe∗Sym
2TM/S is locally written as G=

∑
α,βG

αβeα�eβ (with the Gαβ ∈OUi
), then the

corresponding element of πH∗OMH can be written as
∑

α,βG
αβfαfβ . The corresponding

Hamiltonian vector field (with respect to ω) in πH∗ is locally written as

−
∑
α,β,γ

eγ(G
αβ)fαfβh

γ +2
∑
α,β

Gαβfαeβ,

(where, with a slight abuse of notation, we denote by e1, . . . ,en,h
1, . . . ,hn the elements

of the basis of TMH/S dual to e1, . . . ,en,df1, . . . ,dfn). After taking the cup product with

Δ (which we represent by a Čech cohomology class with respect to the open covering
T ∗
Ui/S

) and restricting to O(1), this gives indeed 2G∪ Δ̃. We conclude by applying this

to Δ = [L], in which case the ‘bottom path’ of equation (40) is given by a component of

the isomorphism Ψ.

Corollary C.2.6. The map Φ from (15) is an isomorphism.

Proof. This follows immediately by combining Proposition C.2.2, Proposition C.2.5 and
Proposition 4.7.1.

Finally, as a corollary we also get the final fact we need in the proof of the flatness of

the Hitchin connection (Theorem 4.8.2):

Lemma C.2.7. The map μLk is injective.
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Sup. 40(5) (2007), 815–844. doi: 10.1016/j.ansens.2007.07.002.

[25] P. M. Gilmer and G. Masbaum, ‘Irreducible factors of modular representations of
mapping class groups arising in integral TQFT’, Quantum Topol. 5(2) (2014), 225–258.
doi: 10.4171/QT/51.

[26] P. M. Gilmer and G. Masbaum, ‘An application of TQFT to modular representation
theory’, Invent. Math. 210(2) (2017), 501–530. doi: 10.1007/s00222-017-0734-4.
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