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Abstract

The formal theory of monads shows that much of the theory of monads can be developed in the
abstract at the level of 2-categories. This means that results about monads can be established once
and for all and simply instantiated in settings such as enriched category theory.

Unfortunately, these results can be hard to reason about as they involve more abstract machinery.
In this paper, we present the formal theory of monads in terms of string diagrams — a graphical
language for 2-categorical calculations. Using this perspective, we show that many aspects of the
theory of monads, such as the Eilenberg–Moore and Kleisli resolutions of monads, liftings, and
distributive laws, can be understood in terms of systematic graphical calculational reasoning.

This paper will serve as an introduction both to the formal theory of monads and to the use of
string diagrams, in particular, their application to calculations in monad theory.

1 Introduction

Street’s formal theory of monads (Street, 1972) shows that a large part of the theory of
monads is independent of the specifics of categories, functors, and natural transformations
and can be developed in the abstract. This insight both clarifies the nature of the original
theory and allows the transfer of results to other settings, such as enriched category theory.
Unfortunately, much of the original work is phrased in terms of various 2-categorical con-
structions, in particular, 2-adjunctions, and the use of this machinery can make the material
inaccessible to many.

In this paper, we show that the formal theory of monads can be developed in much
more elementary terms, by systematic calculation using equational reasoning, not with
ordinary mathematical symbols, but with diagrams. Our aims are twofold. First, we aim
to illustrate the power of the graphical language of string diagrams, by explicitly proving
non-trivial results in formal monad theory as our running example. Second, we hope to
present formal monad theory in a more elementary light, opening the insights of Street’s
vision to a broader audience.
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We assume some basic knowledge of category theory, but otherwise provide a self-
contained account of the required material. We begin with background on string diagrams
and 2-categories, and the mathematical structures of interest in Sections 2 and 3. This mate-
rial is adapted from that in Hinze and Marsden (2023), although the account we present
here is specialized to the needs of later calculations. The subsequent sections present
entirely new material that has not appeared in print before. In Section 4, we introduce
the key abstraction of an Eilenberg–Moore object. Section 5 develops what is probably
the fundamental result of formal monad theory, that Eilenberg–Moore objects imply that
every monad arises from an adjunction, and Section 6 then shows that this adjunction
is a canonical choice. Sections 7 and 9 present results about lifting arrows and monads,
and require significantly more involved calculations which provide serious illustrations
of string-diagrammatic techniques. The intervening Section 8 shows how duality can be
exploited to recover results about Kleisli constructions and comonads for free and relates
these dualities to the symmetries of our diagrams.

1.1 Contributions

The contributions of the paper are as follows:

• We provide the first string-diagrammatic account of axiomatic monad theory in a
2-categorical setting. Our work presents an elementary, graphical formulation of
Streets formal theory of monads, obviating the need for complex machinery such
as 2-adjunctions or constructions involving auxiliary 2-categories. We cover sev-
eral fundamental aspects, beginning with an explicit diagrammatic definition of
Eilenberg–Moore objects and their universal property. This is followed by explicit
proofs that:

– Every monad arises from an adjunction.
– The Eilenberg–Moore adjunction is terminal among such resolutions.
– There is a one-to-one correspondence between so called Eilenberg–Moore laws

and liftings of arrows.
– There is a one-to-one correspondence between Beck distributive laws and

monad liftings to Eilenberg–Moore objects.
• We emphasize geometric intuition for calculational moves such as “dragging”,

“bending”, and “splitting” wires and “sliding beads” along wires. Our approach
highlights the need for good notational choices, particularly in this graphical set-
ting where there is great freedom to express ideas. We include illustrations of good
versus bad diagrammatic choices to develop the intuition of readers new to these
techniques — Section 2.5 gives a foretaste.
• We introduce some diagrammatic notational innovations:

– A graphical technique to focus on regions of interest in diagrams where proof
steps will occur.

– A simple systematic approach to Eilenberg–Moore objects, emphasizing the
connection to the base category.
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The graphical theory of monads 3

– The elementary, but crucial, use of explicit identity transforms to both consis-
tently maintain type information and to isolate the role of equations between
arrows in our proofs.

1.2 Related work

Book length expositions of string diagrams, in the style of the present work, can be found
in Hinze and Marsden (2023), and its forthcoming sequel (Hinze and Marsden, 2025).
Hinze and Marsden (2016) develop the theory of distributive laws using string diagrams for
categories, functors, and natural transformations — the calculations transfer directly to the
more abstract setting of the current paper. Other topics dealt with using similar techniques
can be found in Piróg and Wu (2016) and Hinze and Marsden (2016). Earlier accounts of
string diagrams for categorical calculations, with some stylistic differences, can be found
in Curien (2008) and Marsden (2014). Historically, string diagrams were already being
interpreted in 2-categories by the Australian School of Category Theory in the 1980’s
(Aitchison, 1987), and began appearing in formal publications soon after (Street, 1995,
1996). Theoretically, the calculus is a “colourful” variation of the monochrome diagrams
used for (planar) monoidal categories (Joyal and Street, 1988, 1991).

String diagrams are used in a variety of settings, with probably the most common
being various types of monoidal categories. These methods have been applied in many
areas, including quantum theory (Coecke and Kissinger, 2017; Coecke and Gogioso, 2022;
Heunen and Vicary, 2019), natural language semantics (Coecke et al., 2010), signal flow
graphs (Bonchi et al., 2015), control theory (Baez and Erbele, 2015), economic game the-
ory (Ghani et al., 2018) and (Ghani et al., 2018), Markov processes (Baez et al., 2016),
analogue (Baez and Fong, 2015) and digital (Ghica and Jung, 2016) electronics and hard-
ware architecture (Brown and Hutton, 1994), machine learning (Fong et al., 2019), linear
algebra (Sobocinski, 2019), and logic (Clingman et al., 2021; Bonchi et al., 2024). General
background on these different graphical calculi can be found in Selinger (2011). Although
each of these diagrammatic languages has its own distinctive “feel”, they have much in
common, and the present work could serve as an introduction to the general methods.

2 Background: String diagrams

We begin our introduction to string diagrams in terms of conventional category theory.
That is, we consider categories, functors, and natural transformations. Once we have intro-
duced the required notation, we move to the more abstract setting of 2-categories, of which
Cat, the 2-category of categories, functors, and natural transformations, is the paradigmatic
example. A systematic account of this style of graphical reasoning for elementary category
theory can be found in Hinze and Marsden (2023).

We first recall the traditional notation most commonly used in category theory.

Categories Functors Natural Transformations

C CD F CD
G

F

α
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4 R. Hinze and D. Marsden

Categories are drawn as points or vertices, zero-dimensional objects, typically depicted as
letters C, D, and so on. A functor is drawn as a one-dimensional object, in the form of an
arrow between two categories. Finally, natural transformations appear as two-dimensional
objects, as double arrows intuitively filling the region between a parallel pair of func-
tor arrows. Given its appearance, the notation for a natural transformation is sometimes
referred to as an eye diagram.

String diagrams invert these notational conventions, considering their Poincaré dual.

Categories Functors Natural Transformations

C D C
F

F

α

F

G

.

Now categories are two-dimensional objects, depicted as coloured regions, functors remain
one-dimensional, with the slight tweak that they are now drawn vertically, as lines, which
we will also refer to as edges or wires, separating the coloured regions of their domain
to the right and codomain to the left. Functors can only exit the diagram at the top or
bottom boundary, where their wire is labelled with their name. Natural transformations are
now the focus of attention, drawn as zero-dimensional vertices, appearing on the wires
denoting their domain above and codomain below. This change of emphasis better reflects
the significance of the concepts. As described in Mac Lane (1998):

“Category” has been defined in order to be able to define “functor” and “functor” has
been defined in order to be able to define “natural transformation.”

With the string diagram notation, natural transformations are the focus of attention, with
categories and functors auxiliary concepts that provide vital type information about how
they can be combined. In what follows, the names C,D, . . . will range over categories, F,
G, . . . over functors, and α, β, . . . over natural transformations.

2.1 Composition

Of course, these concepts do not live in isolation, we build more complicated functors
and natural transformations by composition, and this is reflected in our diagrams. Given
functors G : E←D and F :D← C, in pictures,

G

G

E D and

F

F

D C ,

their composite G◦F : E←C is drawn as follows:

G F

G F

CDE .
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The graphical theory of monads 5

Notice that symbolically, we write the composite as G◦F : E← C, with the type
information going from right to left. This way, both the type information and order of
composition align between the symbolic notation and the diagrams. As a special case, we
draw the identity functor on C as an empty region:

C .

As will be discussed later, it is occasionally useful to break this convention, and explicitly
draw dashed identity wires for clarity.

Using these conventions, both the unitality equations IdD◦F= F= F◦IdC and the
associativity equation (H◦G)◦F=H◦(G◦F) are built into the notation.

Given natural transformations,

α

F

G

and β

G

H

,

we depict their vertical composite β · α : F →̇H as the following diagram:

F

α
G

β

H

.

As a special case, an identity natural transformation is represented by the edge for the
corresponding functor:

F

F

.

As with identity functors, it will be useful to break the convention for identity natural trans-
formations on occasion, and explicitly draw them as white circles. This will be discussed
in detail later.

Again, using these conventions the unitality equations idG · α= α= α · idF and the
associativity equation (γ · β) · α= γ · (β · α) are built into the notation.

There is a second notion of composition. For natural transformations

β

H

K

and α

F

G

,

we denote their horizontal composite β◦α : H◦F →̇K◦G via horizontal diagrammatic
composition:
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6 R. Hinze and D. Marsden

H F

β

K

α

G

.

Vertical and horizontal composition satisfy two coherence conditions, which ensure that
they interact without friction. Horizontal composition preserves vertical identities,

idG◦idF = idG◦F

and vertical composition:

(δ · γ)◦(β · α)= (δ◦β) · (γ◦α) (2.1)

The latter property is also known as the interchange law. Again, both properties are built
into the notation. The interchange law expresses that the two visual ways of forming a
2× 2 matrix of natural transformations are equivalent:

γ

K

L
·

δ

L

M

◦

α

F

G
·

β

G

H

=

K F

γ

δ

M

α

β

H

=

γ

K

L

◦ α

F

G

·

δ

L

M

◦ β

G

H

.

Although unitality and associativity can be built into conventional linear notation
by leaving out identities and brackets around composition, the interchange law is an
intrinsically two-dimensional notion.

As a corollary of the notational convention for identities, we obtain what Dubuc and
Szyld (2013) suggestively call the elevator equations. Intuitively, we can slide vertices
up and down wires, which is a very useful manoeuvre to be able to perform during
proofs.

H F

K G

β

α
=

H F

K G

β α =

H F

K G

β

α
(2.2)
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The graphical theory of monads 7

2.2 Natural transformations between composite functors

So far, all our natural transformations have been “one-in one-out”. To perform useful cal-
culations, we need to look in more detail at natural transformations between composite
functors. For example, we could draw the natural transformation ψ : F◦G →̇H◦J◦K◦L
as:

ψ

F◦G

H◦J◦K◦L

,

but this is probably not the best choice as it mixes symbolic and graphical notation. Instead,
we draw separate wires for each element of the composite:

ψ

F G

H J K L

.

This explicitly exposes the composite wires as multiple threads, which makes it possible
to access them directly in our calculations.

2.3 Identity natural transformations

A related topic is the handling of equations between functors. For example, if we have
an equation such as T=U◦F, we can exploit this in our diagrams using explicit identity
vertices, depicted by special white circles, in our diagrams:

T

U F
and

T

U F

.

These explicit identity vertices allow us to “expand” and “collapse” composite wires, as is
convenient during our proofs. We will occasionally draw the diagram for an identity vertex
to indicate that the corresponding equality holds.

Identity vertices satisfy obvious cancellation identities:

U F

U F

=

FU

FU

,

(2.3a)

T

T

=

T

T

.

(2.3b)

We can also fuse identities with other vertices, for example for η : Id →̇T, with T=U◦F
as before:
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8 R. Hinze and D. Marsden

η

T

=

η

T

,

η

FU

=
η

FU

.

This use of explicit identities extends in the obvious way to more complex equations, such
as G◦F=K◦H which has composite functors on both sides of the equation, and will be
witnessed by vertices of the form:

G F

K H

and

K H

G F

.

The notion of an Eilenberg–Moore object introduced in Section 4 introduces equations
such as these, and so it is important to have a diagrammatic technique to handle them
smoothly.

2.4 Focusing

During calculations, it can sometimes be hard even for experts to identify exactly how a
diagram has been changed during a proof step. To address this, we introduce a visual cue to
focus on a particular part of a diagram, by highlighting the region of interest. For example,
in the following two diagrams,

UT

η
ϵ

UT

ηηηηηηηηηηηηη =

χT

UT

UT

η

χχχχχχχχTTTTTTTTTT

ηηηηηηηηηηηηη
,

an equality has been applied to the rectangular regions that appear to be in the spotlight,
whilst the regions in shadow remain passive. This graphical trick is a purely cosmetic
visual aid, and is not a formal part of the string diagram notation. We indicate the intro-
duction or moving of these highlights in proofs with the hint “focus”, and their removal to
reveal a full diagram with “unfocus”.

2.5 Diagram evolution

On one level of abstraction a string diagram is simply a planar graph: vertices are con-
nected by lines, partitioning the plane into regions. (Lines are implicitly oriented from top
to bottom, so they must not have a horizontal tangent.) Two-dimensional notation pro-
vides considerable artistic freedom. It is quite rare that one gets a drawing “right” the first
time — a diagram typically goes through a series of evolutionary steps. To illustrate, we
have recorded the genesis of an important property in the paper, Equation (7.4). For the
following discussion, it is not important to understand the significance of this equation.

The ugly. Drawing string diagrams is to some extent a matter of personal taste: some
authors simply connect the vertices by straight lines, others prefer curvy diagrams. Our
initial attempt at Equation (7.4) is shown on the right below.
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The graphical theory of monads 9

χT

UT

UT

H

H

T

=

UT H

λ
ϵ

UT H

T

or
χT

UTH

H

T

UT

= λ

UT H

ϵ

UT H

T

The two equations are semantically equivalent, even though they look quite different. (In
general, string diagrams that are equivalent up to planar isotopy denote the same natural
transformation (Joyal and Street, 1991). A planar isotopy is a continuous deformation of
a plane diagram that preserves cusps, crossings, and the property of having no horizontal
tangents.)

The bad. We made some progress when we drew the path that connects the two occur-
rences of H as a continuous, straight vertical line. In the equation on the left below, the
vertical line can be seen as a border. The rendering of the equation suggests a calculational
manoeuvre: stuff on the left of the border transmogrifies into stuff on the right, or vice
versa. However, the diagram on the right-hand side is still a little unwieldy.

χT

UT

UT H

H

T

=
λ

ϵ

UT H

UT H

T or

UT

T
χT

UT

H

H

=

UT

T
χS

UT

H

H

λ

Attempting to extract some geometric intuition for the equation, we pushed the vertical
line idea further, replacing the vertex ε and the wire left of it by χS, folding its definition.
This tweak was enlightening as the resulting equation provides a clear geometric intuition:
when applied from left to right, the vertex χT, transforming to χS as it enters the yel-
low region, and the three wires attached to it are dragged across the border. When a wire
crosses another wire, it “creates” a vertex, which is why the diagram on the right has three
additional vertices. Sections 7 and 9 detail the significance of these vertices.

The good. The introduction of χS was a clarifying idea, but not the final step.

HλUT

HλUT

T
χT

= λ
χS

HλUT

HλUT

T
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10 R. Hinze and D. Marsden

Eschewing the dragging intuition, simplicity won the day and we were drawn to a more
neutral formulation. This reflects how we use the equation in practice, applying it from
right to left to abstract the more complex formulation to a simpler form.

As is commonplace in graphical reasoning, more than one depiction can prove fruitful.
If we switch our attention to the left hand side of the equation and adjust our use of identity
vertices, we are lead to the “conical” depiction below.

χT

T
US

US

H

H

Hλ = λ

H US

H US

χS

T =

χS

T US

US

H

H

λ

We will pick up this conical depiction again in Section 9 where particularly the left-most
diagram provides just the right emphasis in calculations. If we use a conical depiction for
both sides of the equation, we recover a geometrical intuition of sliding the vertical H edge
from right to left.

It is amazing how many and how wildly different renderings an equation admits, and
the scope for expression that provides.

2.6 2-Categories

So far, we have talked of categories and composing functors and natural transformations.
A 2-category is an abstraction of the composition of these entities, in the same way we
can think of categories as an abstraction of how functions between sets compose. Instead
of categories, functors, and natural transformations, we now talk of objects, arrows, and
transforms, respectively. There are two sorts of composition, horizontal and vertical, and
these satisfy all the equations previously introduced. The string diagrammatic notation
transfers seamlessly to this abstract setting.

There are several reasons to move to this level of abstraction. Results can be proved at a
greater level of generality, exploiting the fact that many other categories “look similar” to
Cat, the 2-category of categories, functors, and natural transformations. It is also clarifying
to understand which results depend on the specifics of ordinary category theory, and which
only depend on higher-level structure. Mathematicians study group theory by abstracting
away from concrete groups for the same reason.

The relationship between the abstract 2-categorical terminology, the concrete example
of Cat, and the string diagrammatic notation is summarized below:

Abstractly Objects Arrows Transforms
Concretely Categories Functors Natural Transformations

Symbolically C F :D←C α : F →̇G :D← C

Graphically C D C
F

F

α

F

G

.
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The graphical theory of monads 11

3 Background: key mathematical structures

Now that we have fixed our setting and notational conventions, it is time to introduce the
key mathematical structures of interest. This will also serve as an introduction to applying
the string diagrammatic notation introduced in Section 2.

3.1 Monads

Our fundamental object of study is that of a monad. A monad on base object C consists of
an arrow T :C← C, and unit and multiplication transforms:

T

T

,

η

T

, μ

T

T T

.

The unit η : Id →̇T looks a tad like a lollipop, the multiplication μ : T◦T →̇T resembles a
tuning fork. The unit and multiplication are required to satisfy unitality and associativity
equations:

η

μ

T

T

=

T

T

=
η

μ

T

T

, (3.1a)

T
μ

T

μ

T

T

=

T
μ

T

μ

T

T

. (3.1b)

As usual in category theory, having introduced a new class of objects, morally we should
specify appropriate arrows between monads. There are a few possibilities, so we defer this
responsibility to Section 7.

As a trivial but useful example of a monad, we note that the identity Id : C← C carries
the structure of a monad:

Id

Id

,

Id

,

Id

Id Id
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12 R. Hinze and D. Marsden

Verifying all the axioms boils down to confirming equations of the form:

= .

3.2 Adjunctions

An adjunction between a pair of arrows L : C←D and R :D←C consists of a pair of
counit and unit transforms:

ϵ

L R

and η

R L

.

The counit ε : L◦R →̇ Id resembles a curved cup, the unit η : Id →̇R◦L a cap. They are
required to satisfy the following snake equations, which intuitively allow us to straighten
out bends in our string diagrams, by pulling a wire straight.

L

ϵ
η

L

=

L

L

(3.2a) R

η
ϵ

R

=

R

R

(3.2b)
In the case of categories, functors, and natural transformations, this definition is equiva-
lent to the many other formulations of adjunctions (Fokkinga and Meertens, 1994), but is
particularly convenient for graphical reasoning.

An adjoint situation with left adjoint L : C←D and right adjoint R :D←C is often
denoted L� R :D↼ C, with the understanding that the units are given implicitly.

3.3 Maps of adjunctions

As we have introduced adjunctions, we are beholden to consider arrows between these
structures. For adjunctions L� R :D↼C and L′ � R′ :D′↼ C′, and arrows H :D′ ←D
and K : C′ ← C as in the diagram below:

D′ D

C′ C

�L′

H

�LR′

K

R ,

we say that the pair H, K is a map of adjunctions if the following conditions hold:

K◦L= L′ ◦H, H◦R= R′ ◦K, K◦ε= ε′ ◦K, H◦η= η′ ◦H (3.3)

The conditions relating the units and counits have a nice visual representation exploiting
identity transforms:
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ε

RL′

K

H

= ε′

RL′

K

H

, η

R′ L

H

K

=
η′

R′ L

H

K

,

which we shall refer to as the sliding equations for obvious reasons. In fact, each of
the sliding equations implies the other. To show unit sliding implies counit sliding, we
calculate:

ϵ

RL′

K

H

{s
na

ke
(3

.2
a)

}

=

ϵ

R

η′ϵ ′

R′

K

H

{u
ni

ts
lid

in
g}

=

ϵ

R

ηϵ ′

R′

K

H

{s
na

ke
(3

.2
b)

}
=

ϵ ′

RL′

K

H

.

The other direction is symmetrical.
Now is probably a good time to say a few words about reasoning with string diagrams.

First and foremost, in terms of manoeuvres, there is no difference between standard equa-
tional reasoning based on one-dimensional notation and equational reasoning using the
two-dimensional language of string diagrams. We chain equations, we unfold and fold
definitions, and we replace equals with equals. In particular, we use the same popular
proof format, attributed to Wim Feijen (Gasteren, van, 1988, p. 107), where each step of
the calculation is justified by a hint, enclosed in curly braces. The hints should allow the
reader to easily verify that the calculation constitutes a valid proof.

The main advantage of diagrammatic notation is that it silently deals with distracting
bookkeeping steps, such as unitality, associativity, and the interchange law, leaving us free
to concentrate on the essentials. This is an important aspect of any choice of notation, as
advocated by Backhouse (1989). Furthermore, with good diagrammatic choices, we can
often exploit topological intuition to identify suitable steps in our reasoning.

3.4 Huber’s construction

Given a monad T and an adjunction L� R, we can build a new monad with underlying
arrow R◦T◦L using Huber’s construction (Huber, 1961). The unit and multiplication
of the resulting monad are graphically given by “wrapping up” the monad T using the
adjunction:

https://doi.org/10.1017/S095679682500005X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682500005X


14 R. Hinze and D. Marsden

η

η

TR L

, (3.4a)
μ

ε
L RTR T L

TR L

. (3.4b)

The special case we are particularly interested in is when the monad T is the identity
monad. The resulting composites,

η

IdR L

,

ε
L RIdR Id L

IdR L

.

show that every adjunction induces a monad. The proofs of the unitality and associativity
axioms, (3.1a) and (3.1b), are left as instructive exercises to the reader. The solutions can
be found in Hinze and Marsden (2023), and a significant hint is provided in Section 3.5.

3.5 Monad actions and transforms of actions

Adjunctions and monads are central concepts of category theory. The third key structure
we require is the less well-known notion of a left monad action. Intuitively, a left action can
be thought of as a generalization of the possibly more familiar idea of an Eilenberg–Moore
algebra, see also Appendix 1.

Given a monad (T :C← C, η, μ), a left action of T, or left T-action, consists of an
objectD, an arrow A : C←D, and a transform α : T◦A →̇A, graphically:

,

A

A

, α

A

T A

.

We occasionally say α is a left T-action on A with source D for emphasis. By abuse of
language, we refer to A as the carrier of α. The transform α must respect the unit and
multiplication of the monad T, in that the following unit and multiplication axioms hold.

α

A

η
A

=

A

A

(3.5a)

α

A

μ
T T A

= α

A

α
ATT

(3.5b)
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The graphical theory of monads 15

For conciseness, we often refer to an action using the diagram for its transform (pars pro
toto), as this implicitly defines all the other data.

Given a pair of T-actions with the same source, a transform of actions or action
transform,

h

A

B

: α

A

T A

→ β

B

T B

,

is a transform h : A →̇B such that the right-turn axiom holds:

α
T A

h

B

= β

T

h

A

B

.

(3.6)

As a first example of an action, we note that the monad axioms (3.1a) and (3.1b) imply
that the monad multiplication

μ

T

T T

is a left T-action.
Adjunctions are also a source of actions: If L� R :D↼ C generates T :D←D, then

R◦ε is a T-action on R.

ϵ
L RR

R

We refer to this as the canonical action induced by the adjunction and introduce the
shorthand χ := R◦ε, graphically:

χ

T R

R

:=
ϵ

T

R

R

.
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16 R. Hinze and D. Marsden

The proof of the unit axiom (3.5a) is an easy exercise in applying the snake equation
(ignore the dashed wires for the moment):

ϵ
η

R Id

R Id

{s
na

ke
(3

.2
b)

}

=

R Id

R Id

For the multiplication axiom (3.5b) there is nothing to do:

R L
ϵ

R L R Id

ϵ

R Id

{r
ed

ra
w

}

=

IdR
ϵ

LRLR

ϵ

R Id

The left-hand side is simply a redraw of the right-hand side. We can make an interesting
observation: If we replace the dashed lines, the identity wires, by the left adjoint L, then we
obtain proofs that Huber’s composites, (3.4a) and (3.4b), satisfy the left unital axiom (3.1a)
and the multiplication axiom (3.1b).

Furthermore, given any left action α : T◦A →̇A and arrow B :D← E, we can form a
new action by “outlining” on the right-hand side, as follows:

α

T A

AB

B

.

(3.7)

In fact, for a fixed left T-action α : T◦A →̇A the outlining operation is functorial. If we
have an arbitrary transform h : B →̇ C, then the composite

h

B

CA

A

: α

T A

AB

B

→ α

T A

AC

C

(3.8)

is a T-action transform, as by the elevator equations (2.2):
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The graphical theory of monads 17

α

T A

A
h

C

B

= α

T A

AC

B

h . (3.9)

Associativity and preservation of identities is trivial to see diagrammatically. (We have
seen that R◦ε is a left action, and therefore we have a second proof that the multiplication
R◦ε◦L is a left action.) Outlining will be a key feature of the universal property presented
in Section 4.

With these observations in place, we note that the multiplication axiom (3.5b) is equiv-
alent to saying a left T-action α : T◦A →̇A is simultaneously an action transform of type:

α

A

T A

: μ

T T

TA

A

→ α

A

T A

.

(3.10)

We make use of this idea in Section 5.
As with all string diagrams, it is worth considering different ways of depicting left

actions. These can allow us to highlight the intuitions for manipulations performed in
proofs, or simply be more convenient in certain situations. For example, we will often
use the compact, less symmetrical rendering

α

T A

A

,

which emphasizes the idea of T acting on the left of A. It is also sometimes useful to adjust
the orientation, so that the A wire lies in a more passive horizontal direction:

αA
A

T
.

As soon as you have gained some experience with diagrams, you start to relax the rules
a little. For example, we allow edges to enter or exit the sides of diagrams, as was done
above. As edges must not have zero gradient, they can be extended unambiguously to a
diagram in which all edges enter from the top and exit from the bottom of the diagram. To
illustrate, the diagram above can be extended to
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18 R. Hinze and D. Marsden

α

A

AT

,

but ween gain little clarity at the cost of significant horizontal space.
Another perhaps surprisingly useful depiction we will encounter in Section 9.3 is

α

T
A

A

.

When reasoning with string diagrams, for example the proofs in this paper, we would
encourage readers to play with alternative diagrammatic renderings to help clarify their
understanding of the proof moves involved.

4 From Eilenberg–Moore categories to Eilenberg–Moore objects

Using the definition of monad, a reasonable amount of monad theory can be developed
within a 2-category. For example, the graphical arguments about composing monads using
distributive laws and the Yang-Baxter equation presented in Hinze and Marsden (2016),
building upon the original work of Beck (1969) and Cheng (2011), transfer smoothly to
the 2-categorical setting.

However, for many of the more interesting results, we need a bit more. In ordinary
category theory, there are two categories associated with a monad T, the Eilenberg–Moore
category (Eilenberg and Moore, 1965), commonly denoted CT, and the Kleisli category
(Kleisli, 1965), often denoted CT. These constructions cannot be directly transferred to the
2-categorical setting, as they involve the explicit construction of new categories in terms
of objects and arrows of the base category, and the structures of the monads involved. This
presents a challenge for developing more serious aspects of monad theory at this level of
abstraction.

Street (1972) resolved this problem by identifying the correct abstraction of the
Eilenberg–Moore construction in the 2-categorical setting. In this section, we introduce
this machinery in diagrammatic terms, laying the foundations for the proofs in subsequent
sections. Further background in more traditional notation can be found in Lack and Street
(2002), Kelly and Street (2006), and Lack (2009).

Given a monad (T : C← C, η, μ), a left T-action

CT , C CT

UT

UT

, χT

T UT

UT

is universal if it satisfies the following two properties.
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First, for every left T-action

D , C D
A

A

, α

T A

A

there exists a unique comparison arrow

K

K

,

such that UT◦K=A and χT◦K= α, graphically:

UT K

A

and
χT

UT

UT K

K

T

= α

UT K

UT K

T

or χT

A

AT

= α

T A

A

.

(4.1)
Second, given two left actions, α and α′, with induced comparison arrows, K and K′, and

a T-action transform between them,

h

A

A′

: α

T A

A

→ α′

T A′

A′

there exists a unique comparison transform

k

K

K′

such that UT◦k = h, graphically:

k

K

K′UT

UT

= h

UT K

UT K′

or kUT

A′

A

= h

A

A′

.

(4.2)
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20 R. Hinze and D. Marsden

Note Conditions (4.1) and (4.2) depict two variants of the same equation, by making dif-
ferent choices about where to insert identity vertices to ensure consistent labelling at the
boundaries. Essentially, this is a choice between exposing multiple wires or abstracting to
a single composite at the boundary of our diagrams. We shall prefer the latter choice as it
proves more convenient in the calculations we shall encounter.

An object carrying the structure of a universal left action is referred to as an Eilenberg–
Moore object for T, denoted CT. In the graphical representation, an Eilenberg–Moore
object CT is represented by a “dotted” region, reusing the colour of C. As one might expect,
in the case of categories, functors, and natural transformations, the Eilenberg–Moore object
of a monad is the same thing as its Eilenberg–Moore category (Eilenberg and Moore,
1965), see Appendix 1.

How is the universal property used in calculations? The typical pattern in later sections
is that by carefully choosing suitable left T-actions and T-action transforms, the universal
property yields new arrows and transforms, and in each case these satisfy equations that
we can exploit in our calculations. We shall see many examples of this technique in what
follows.

At the risk of dwelling on the obvious, a universal action establishes a one-to-one cor-
respondence between left T-actions on A and arrows F with UT◦F=A. In one direction,
given an action α : T◦A →̇A, the desired arrow F is simply the unique comparison arrow.
In the other direction, given F with UT◦F=A we can construct an action by outlining the
universal action, placing the identity cells above and below:

FχT

A

AT

.

The uniqueness property guarantees that the correspondence is one-to-one.
The following consequence of the universal property provides us with a jolly useful

proof principle. Given a transform h : A →̇B with A, B : CT←D, the composite

h

A

BUT

UT

: χT

T UT

UTA

A

→ χT

T UT

UTB

B

is an action transform due to the functoriality of “outlining” (3.8). Consequently, for
transforms

h

A

B

and k

A

B

,

the uniqueness part of the universal property immediately yields that
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h

A

BUT

UT

= k

A

BUT

UT

⇐⇒ h

A

B

= k

A

B

.

We will exploit this property by saying UT is left-cancellative.

5 Every monad with an Eilenberg–Moore object is induced by an adjunction

We begin our exploration of how the universal property of Eilenberg–Moore objects can
be applied to establish results in monad theory. Our aim is to show that every monad
with an Eilenberg–Moore object is induced by an adjunction. One could describe this as
the fundamental result of formal monad theory, as every subsequent result hinges on the
existence of this adjunction. To establish the result we proceed in three steps: first, we
construct the “raw data”, the adjoints and the units; second, we show that this data gives
the original monad, via Huber’s construction; third, we prove the snake equations.

5.1 Adjoints and units

Let (T : C← C, η, μ) be a monad. The Eilenberg–Moore object immediately gives us an
arrow UT : C← CT, which we anticipate serves as the right adjoint. As a first step toward
establishing an adjunction, we would like to find a candidate left adjoint of type CT← C.
To this end, we recall that the monad multiplication is simultaneously a left monad action.
Therefore, by the universal property there exists a unique comparison arrow FT : CT←C
such that

UT FT

T

and χT

T

TT

= μ

T

T T

.

(5.1)

Since UT◦FT =T, an obvious choice for the unit of our adjunction is the unit of the
monad T.

η

FTUT

:=

η

FTUT
(5.2)

Finally, the counit ε : FT◦UT →̇ Id is constructed using a suitable comparison transform.
To this end, we need to find an action transform between actions whose comparison arrows
are FT◦UT and Id, respectively. We do not have to look far:

https://doi.org/10.1017/S095679682500005X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682500005X


22 R. Hinze and D. Marsden

• The comparison arrow of the source action has to be FT◦UT. Since UT◦(FT◦UT)=
T◦UT, the “outlined” multiplication, see also (3.7), is of the right type:

μ

T T

TUT

UT

.

• The comparison arrow of the target action has to be Id. The universal χT itself is an
action with carrier UT◦Id:

χT

T UT

UTId

Id

.

Now recall from Section 3.5 that an action is simultaneously an action transform (3.10). In
our case, the universal action χT itself is an arrow of the desired type:

χT

T UT

UT

: μ

T T

TUT

UT

→ χT

T UT

UTId

Id

.

Consequently, the universal property gives a comparison transform:

ϵ
FT UT

satisfying the following instance of (4.2):

ϵ

T

UT

UT

= χT

T UT

UT

.

(5.3)

Observe that the universal and the canonical action coincide, provided, of course, that we
succeed in establishing the adjunction FT �UT.
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5.2 Huber’s construction yields the original monad

We now have arrows FT : CT← C and UT : C← CT, and transforms η : Id →̇UT◦FT and
ε : FT◦UT →̇ Id. We wish to confirm that this data induces the original monad, via Huber’s
construction. We have already seen that UT◦FT =T, and the unit of the adjunction is
the unit of the monad by construction. It remains to confirm that the induced monad has
the same multiplication. This follows straightforwardly from equations we have already
established:

T
ϵ

T

T

{
fo

cu
s}

=

T
ϵ

T

T

{(
5.

3)
}

=
χT

T

TT

{
un

fo
cu

s}

=

χT

T

TT

{(
5.

1)
}

=

μ

T T

T
(5.4)

We replace the left chamber of the heart, the canonical action we focus on, by the universal
action (5.3), and then plug in the definition of the multiplication (5.1).

5.3 Every Eilenberg–Moore object induces an adjunction

It remains to confirm that η and μ satisfy the snake equations, establishing the adjunction
FT �UT. For the first snake equation (3.2a), we reason as follows:

UT

η
ϵ

UT

{(
5.

2)
}

=

UT

η

ϵ

UT

{
fo

cu
s}

=

UT

η

ϵ

UT

η

{(
5.

3)
}

=
χT

η

UT

UT

η

{
un

fo
cu

s}

=

χT

η

UT

UT

{a
ct

io
n

(3
.5

a)
}

=

UT

UT

Firstly, we introduce an identity vertex to combine two wires into a T wire. We then
replace the canonical with the universal action as indicated by the focus, and simplify with
the action unit axiom.

The second snake equation (3.2b) is more subtle to prove. Trying to establish the equa-
tion directly, we quickly discover there is no obvious calculation step we can apply. The
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plan therefore is to exploit the fact that UT is left-cancellative, and first prove an equality
for a more complex diagram, which allows us to get the proof off the ground.

We calculate:

T

ϵ

η

T
{(

5.
2)

}

=

T

ϵ

η

T

{H
ub

er
(5

.4
)}

=

μ
η

T

T

{u
ni

t(
3.

1a
)}

=

T

T

{
id

en
tit

ie
s}

=

T

T

.

Consider the first diagram. We have placed a UT wire to the left of the snake and added
suitable identity vertices, T=UT◦FT. This turns the snake into the heart-like shape we
have seen before. We then extract an identity from the unit, apply Huber’s construction
of the monad multiplication, and tidy up using the monad unit axiom. Applying that UT

is left-cancellative then completes the proof. We will subsequently refer to UT and FT,
respectively, as the underlying and free arrows of CT.

6 Eilenberg–Moore comparison and the terminal resolution

Given a monad (T : C←C, η, μ), an adjunction L� R : C↼D is called a resolution of T,
if the adjunction induces the monad via Huber’s construction. This implies, in particular,
that we can express the multiplication using the canonical action:

R L

T

and Lχ

T

TT

= μ

T

T T

.

(6.1)

We wish to compare two resolutions of the same monad. To do so, for resolutions

L� R : C↼D and L′ � R′ : C↼D′

it is natural to consider maps of adjunctions between them, as introduced in Section 3.3.
As the monad and its base object are fixed, we restrict to maps of adjunctions with one
component the identity, as in the following diagram:

C C

D′ D

�L′

Id

�LR′

K

R .

We typically refer to such a map using the arrow K (pars pro toto).
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In Section 5 we saw that if a monad T has an Eilenberg–Moore object, then this
induces an adjunction FT �UT :CT ↼ C, which is a resolution of T. Observe that (5.1)
is an instance of (6.1). Our aim is to show this adjunction is a canonical choice, it
is the terminal resolution: For every resolution L� R : C↼D of T, there is a unique
comparison map from L� R to FT �UT.

Quite pleasingly, we can use the defining properties of the comparison map

K◦L= FT, (6.2a) R=UT◦K, (6.2b) K◦ε= εT◦K, (6.2c) η= ηT (6.2d)

to derive the definition of K : CT←D. Here we write ηT and εT for the unit and counit
of the adjunction FT �UT for clarity. Our principal tool is the universal property of
Eilenberg–Moore objects, so we need to determine a suitable carrier and a suitable action.
The second axiom (6.2b) identifies the carrier as R. The third axiom (6.2c), the counit
sliding equation, fixes the action itself:

K L R

ϵ

K

=

FT

ϵ

UT K

K
⇐⇒ { UT left-cancellative }

UT K L R

ϵ

KUT

=

UT FT

ϵ

UT K

KUT

⇐⇒ { comparison map (6.2b χT }

R L R

ϵ

R

=

T UT K

UT K

χT .

We use the second axiom (6.2b) to eliminate the occurrence of K on the left-hand side.
The resulting transform is the canonical action χ, the outlined counit R◦ε, which a left
T-action on R. Therefore, we can invoke the universal property to conclude that there is a
unique K : CT← E such that UT◦K= R and χT◦K=R◦ε=χ, graphically:

UT K

R

and χT

R

RT

= χ

T R

R

,

(6.3)
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For reasons of hygiene, we have added explicit identity vertices so that the bordering wires
and regions agree. We were less fastidious in the previous proof to avoid unhelpful dia-
grammatic clutter. The reader is encouraged to add suitable identity vertices to ensure
everything is in order.

It remains to verify that the data actually constitutes a map of adjunctions. For the first
axiom (6.2a), we appeal to uniqueness. As we already know that the left adjoint FT is
induced by the multiplication of the monad, it suffices to show that K◦L is also induced
by μ : T◦T →̇T.

UT K L

T

and

T

χT

T

T

K L {(
6.

3)
}

=
χ

T

TT

{(
6.

1)
}

=
μ

T

T T

We fold the definition of χ (6.3) and then use the fact that L� R generates the
monad T (6.1).

The second and the third axiom, (6.2a) and (6.2c), hold by construction. Finally, the
fourth axiom (6.2d) holds trivially as the unit of the monad and the units of the adjunctions
coincide. This completes the proof that there is a unique map of adjunctions from every
resolution to the Eilenberg–Moore resolution.

7 Eilenberg–Moore laws classify liftings

If we have an arrow H :D← C and monads S : C← C and T :D←D, it is natural to ask
when this induces an arrow H :DT← CS between the corresponding Eilenberg–Moore
objects. It turns out that there is a one-to-one correspondence between certain well-behaved
arrows H, so-called liftings, and transforms known as Eilenberg–Moore laws. Establishing
this relationship is the aim of this section.

7.1 Liftings and Eilenberg–Moore laws

For monads S : C← C and T :D←D and arrow H :D← C, we say that H :DT← CS

is a lifting of H, if and only if they commute with underlying arrows: UT◦H=H◦US.
Graphically, this equality is captured by identity vertices:

UT

US

H

H

and
UT

US
H

H

.
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Furthermore, we say that

λ
T

S

HH ,

is an Eilenberg–Moore law if it satisfies the following two coherence conditions with
respect to the monad structure:

η

S

H

H λ
=

η

S

H

H
,

(7.1a)

μ
H

H

S

TT

λ

= H

H

S
μ

TT

λλ
.

(7.1b)

We draw these diagrams in this way to emphasize the intuition that the Eilenberg–Moore
law allows us to “drag” the monad structure across the H wire.

EM-laws generalize left actions of a monad: a left action is an EM-law to the identity
monad. If we “erase” the lower halves, the yellow regions, of the coherence conditions
above, (7.1a) and (7.1b), we obtain the axioms of left actions, (3.5a) and (3.5b).

Picking up a loose thread, in Section 3.1 we postponed introducing a suitable class of
arrows between monads. We now fulfill this obligation, and form monads and EM-laws
into a category suitable for later developments.

The identity EM-law on the monad T is given by id : T◦Id →̇ Id◦T:

TId

T Id

id

The identity trivially satisfies the coherence conditions, (7.1a) and (7.1b).
The composition of two EM-laws is formed by adjoining the laws vertically:

SH

M H

κ
/

TK

S K

λ
=

H

H

K

K

T

M

κ

λ

,
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where κ / λ is symbolic notation for the composite law. The unit axiom (7.1a) for this
composite then follows from the equalities:

H

H

K

K

T

κ

λ

η

{(
7.

1a
)}

=

H

H

K

K

T
λ

η

{(
7.

1a
)}

=

H

H

K

K

T

η

.

We drag the unit η twice, first across the functor H and then a second time across the
functor K. We proceed in an analogous fashion to establish the multiplication axiom (7.1b),
dragging the fork twice:

H

H

K

K

T

M M

κ

λ

μ

{(
7.

1b
)}

=

H

H

K

K

T

M M

κ κ

λ

μ

{(
7.

1b
)}

=

H

H

K

K

T

M M

κ κ

λ
λμ

.

It remains to show that the composition is unital and associative, with the identity as its
neutral element. This is, however, visually evident as we stack the laws vertically.

7.2 A one-to-one correspondence between Eilenberg–Moore laws and left actions

Let S : C← C and T :D←D be monads with Eilenberg–Moore objects. Our first goal is
to establish a one-to-one correspondence between

1. Eilenberg–Moore laws of type T◦H →̇H◦S and
2. left T-actions on H◦US.

Using the results of Section 5, there is an adjunction FS �US : C↼CS inducing S via
Huber’s construction. Using this adjunction, we show that every Eilenberg–Moore law
yields a left T-action via the mapping:

λ
T

S

HH

λ
T H US

H

ϵ

US

=

λ

χS

T

H
H

US
US .

(7.2)

We split the S wire of the EM-law and then “bend the right leg up”. Equivalently, we
can place the universal action below the law — recall that the canonical and the universal
action coincide, US◦ε=χS (5.3). Of course, we need to show that the resulting transform
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is a left action but this is immediate as we compose two EM-laws, the given one and the
universal action.

In the other direction, given a left T-action we can form an Eilenberg–Moore law by
“bending the right arm down”:

T

H
H

US
US

T

H
H

US FS

η .

(7.3)

The resulting transform looks a tad like a humanoid robot. In order to maintain the parallel
alignment of our wires, we have drawn the vertex as a larger blob with greater space to
connect them. Notice that the robot’s right hip uses the unit of the adjunction FS �US

to bend the wire down, whereas the left hip is merely a sudden change in direction of a
downward wire. Of course, we must verify this composite satisfies the two axioms of an
Eilenberg–Moore law. For the unit axiom (7.1a), we calculate:

η

H
H

US FS

η

{(
3.

5a
)}

=
H

H

US FS

η

.

This is a one-step proof simply applying the left action unit axiom (3.5a), which removes
the blob.

The multiplication proof (7.1b) is no more complicated.

μ

H
H

US FS

T T

η

{(
3.

5b
)}

= H

H

T T

η

{s
na

ke
(3

.2
b)

}

=

H

H

T T

η
η

ϵ

We apply the multiplication axiom (3.5b), turning one blob into two blobs. The second
step is more interesting. We deliberately complicate the diagram by the insertion of an
extra “kink” in a wire via the snake equation (3.2b), introducing Huber’s multiplication at
the bottom of the diagram.

Finally, it is not hard to see that the mappings, (7.2) and (7.3), establish a one-to-one
correspondence between Eilenberg–Moore laws of type T◦H →̇H◦S and left T-actions
on H◦US — the snake equations do the trick.

7.3 A one-to-one correspondence between left actions and liftings

Driving the proof home, the universal property of Eilenberg–Moore objects immediately
gives a one-to-one correspondence between
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1. Left T-actions on H◦US and
2. liftings H :DT← CS such that UT◦H=H◦US.

We use the notation Hλ :DT← CS for the lifted arrow induced by an Eilenberg–
Moore law λ : T◦H →̇H◦S. From the discussion above, by the universal property and
the characterization of the counit (5.3), this will satisfy:

χT

T
US

US

H

H

Hλ =

χS

T US

US

H

H

λ
.

(7.4)

We consider liftings in more detail in Section 9.

8 Kleisli objects and duality

When doing mathematics, or anything else for that matter, it is always nice to get things
for free. In the case of the monad theory we have been developing, it pays us to consider if
we can exploit some of the symmetries of our diagrams. For example, what happens if we
mirror our diagrams about a vertical or horizontal axis? By pursuing this idea, we recover
a lots of additional results in the theory of both monads and comonads.

We begin by considering reflection about a vertical axis. If we examine the key notion
of a monad, reflecting all the diagrams in this way results in exactly the same structure.

Fortunately, things get more interesting when we consider monad actions. Given a
monad (M : C←C, η, μ), a left action of T on A : C← E was defined to be a

α

T A

A

such that Equations (3.5a) and (3.5b) hold. By mirroring about the vertical axis, that is,
taking the horizontal reflection, we discover the notion of a right T-action as an

α

A T

A
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satisfying the equations

α

A

η
A

=

A

A

(8.1a)

α

A

μ
TTA

= α

A

α
A T T

.

(8.1b)
Similarly, a transform of right actions is required to satisfy the vertical mirror image of
Equation (3.6).

Taking this mirroring idea further, we can dualize the notion of Eilenberg–Moore object.
We will do this in full detail, so that interested readers can contrast with Section 4 to see
the impact of dualizing the definitions given there.

For a monad T, we say that a right action

CT , CCT

FT

FT

, χT

FT T

FT

is universal if it satisfies the following two properties. First, for every right T-action

D , CD
A

A

, α

A T

A

there exists a unique comparison arrow

K

K

,

such that K◦FT =A and K◦χT = α, graphically:

K FT

A

and χT

A

A T

= α

A T

A

.

(8.2)

Second, given two right actions α and α′, with induced comparison arrows K and K′, and
a right T-action transform
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h

A

A′

: α

A T

A

→ α′

A′ T

A′

(8.3)

there exists a unique comparison transform

k

K

K′

,

such that k◦FT = h, graphically:

k FT

A′

A

= h

A

A′

.

The object CT carrying the structure of a universal right action is referred to as a Kleisli
object for T. Using a similar convention to that for Eilenberg–Moore objects, graphically,
a Kleisli object CT is represented by a distinctive stippled region, reusing the colour of C.
Again, the terminology relates to the fact that the Kleisli object for a monad in Cat is
its Kleisli category (Kleisli, 1965). Observant readers will notice that as well as taking
the horizontal reflection of our diagrams, we have adjusted some of the names. This is a
cosmetic change to ensure we follow standard naming conventions, and we shall continue
to do so in what follows.

By mirroring the arguments in Section 5 and 6, we get new results for free. Every
monad T with a Kleisli object arises from an adjunction FT �UT :C↼ CT via Huber’s
construction, and furthermore this adjunction is the initial resolution.

Similarly, if we reflect Equations (7.1a) and (7.1b) about their vertical axis, we get the
following equations, for H of appropriate type:

η

S

H

Hδ

=
η

S

H

H

, (8.4a)

μ
H

H

S

T T

δ

= H

H

S
μ

T T

δ δ
. (8.4b)

https://doi.org/10.1017/S095679682500005X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682500005X


The graphical theory of monads 33

These are the axioms of what is known as a Kleisli law. Again, via an entirely formal
process of mirroring the proofs of Section 7, we can derive new results. Specifically, there
is a one-to-one correspondence between Kleisli laws for H : C←D and liftings H :DT←
CS such that H◦FT = FT◦H.

Given the additional results, we have found simply by reflecting diagrams about the
vertical axis, it is natural to ask what happens if we take the vertical reflection, reflecting
about the horizontal axis instead. If we reflect the diagrams for the key notion of monad on
C, we are lead to a triple

N

N

,

ε

N

,
δ

N

N N

,

satisfying the equations

ε

δ

N

N

=

N

N

=
ε

δ

N

N

, (8.5a)

N
δ

N

δ

N

N

=

N
δ

N

δ

N

N

. (8.5b)

Such a triple (N : C← C, ε : N →̇ Id, δ : N →̇N◦N), satisfying Equations (8.5a) and (8.5b),
in the setting of categories, functors, and natural transformations is precisely the usual def-
inition of a comonad. The general case is the abstraction of comonads to the 2-categorical
setting. Therefore, by reflecting all the diagrams in the previous sections about the horizon-
tal axis, we derive further results showing every comonad arises via a canonical adjunction,
and lifting results for comonads.

In total, by combining vertical and horizontal reflections, every definition or proof we
introduce yields three further mirror images. This is a powerful principle, as without doing
further work each time we get four concepts and sets of results for the price of one. In more
mathematical language, we are applying dualities of 2-categories:

1. Each 2-category has a dual given by reversing all of the arrows. Taking the horizon-
tal reflection of our diagrams precisely corresponds to considering definitions and
proofs in this dual 2-category.

2. Each 2-category has another dual, given by reversing all of the transforms. Taking
the vertical reflection of our diagrams then corresponds to considering structures in
this second dual 2-category.

3. The two dualities can be combined and diagrammatically this relates to mirroring
about both axes.

The string diagrammatic notation plays particularly well with these 2-categorical dualities,
as it is easy to visualize their impact on definitions, axioms, and equational proofs.
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9 Beck’s distributive laws classify monad liftings

In Section 7, we established tight conditions under which we could lift an arrow to the level
of Eilenberg–Moore objects. In this section, we continue this line of thought, considering
when we can lift one monad to the Eilenberg–Moore object of another.

9.1 Beck distributive laws

A Beck distributive law or simply Beck law of type T◦S →̇ S◦T is a transform that is
both a Kleisli law and an Eilenberg–Moore law. Graphically,

λ

T S

S T

satisfies the following equations:

λ

η

T

TS

=
η

T

TS

, (9.1a)

μ

SS

S T

T

λ

=
μ

SS

S T

T

λλ , (9.1b)

λ

η

S

S T

=
η

S

S T

, (9.1c)

μ

T T

TS

S

λ

=
μ

T T

TS

S

λ λ . (9.1d)

9.2 Monad liftings

We say that a monad (S : CT← CT, η, μ) is a lifting of the monad (S : C←C, η, μ) if and
only if its components commute with the underlying functor:

UT◦S= S◦UT, UT◦η= η◦UT, UT◦μ=μ◦UT. (9.2)

As usual, the diagrammatic rendering of these properties is instructive: we have

UT

UT

S

S

and
UT

UT
S

S

,
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and exploiting these identity vertices, the units and multiplications satisfy the equations:

η

S

UT

UT =
UT

UT

η

S
(9.3a)

μ

S

SS
UT

UT =
μ

S

SS

UT

UT

.

(9.3b)

In other words, the identity transform id : UT◦S →̇ S◦UT is a Kleisli law! This is
equivalent to requiring that the following dual equations hold:

η

S

UT
UT

= UT
UT

η

S
(9.4a)

μ

S

SS

UT

UT

=
μ

S

SS

UT

UT .

(9.4b)

In other words, the opposite identity transform id : S◦UT →̇UT◦S is an Eilenberg–
Moore law! (This holds in general: an isomorphism is an Eilenberg–Moore law if and only
if its inverse is a Kleisli law.) That we have two equivalent pairs of equations for liftings,
Equations (9.3a) and (9.3b), and Equations (9.4a) and (9.4b), can be seen as witnessing
a certain bias in their diagrammatic rendering. Both capture the single pair of symbolic
equations, UT◦η= η◦UT and UT◦μ=μ◦UT. That the symbolic notation is unbiased in
this respect comes at the cost of omitting type information that is explicit at the boundaries
of our diagrams.

9.3 Lifting the monad arrow

Given a Beck law λ : T◦S →̇ S◦T, we can lift the arrow S to S := Sλ : CT←CT. Building
on the one-to-one correspondence between liftings and left actions, the Beck law satisfies
the following instance of (7.4):

χT

T
US

US

S

S

S =

χS

T US

US

S

S

λ
.

(9.5)

Observe that χT is drawn creatively: the UT wires point to the right, in order to make the
subsequent calculations more visually appealing.

Our goal is now to show that the additional axioms of a Beck distributive law mean that
the unit and multiplication also lift to give a monad on CT.
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9.4 Lifting the unit

We begin by aiming to find a candidate unit for the lifted monad. To this end let us briefly
pause to explain a general recipe for constructing transforms. Say, we need one of type

φ

F

G

.

The idea is, of course, to appeal to the universal property of the Eilenberg–Moore object,
which gives a suitable transform, provided there is an action transform of type:

h
UT F

UT G

: α

UTT F

UT F

→
β

UTT G

UT G

.

Then φ is given as the unique comparison transform, satisfying

ϕ

F

GUT

UT

= h
UT F

UT G

.

There are two proof obligations: we need to show (1) that α and β are actions and (2) that h
is an action transform between them. Fortunately, these obligations are often easy to dis-
charge if we use general constructions such as “outlining”. To illustrate, let us apply the
recipe to the problem at hand.

Since we aim to construct a lifted unit,

η

S

we need to find an action transform of type

h
UT

UT

S

:
χT

UT

UT Id

Id

T

→

χT

UT

UT S

S

T

.

(9.6)

The actions are constructed by outlining the universal action (the only action around): once
with the source of η, the identity arrow Id, and a second time with S, the target of η. The
universal property induces a unique η such that
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η

S

UT
UT

=
h

UT
UT

S

.

The condition required of the unit of a lifted monad (9.4a) suggests defining

h
UT

UT

S

:= UT
UT

η

S

,

so that the requirement holds by definition.
All that remains to be done is to discharge the proof obligations: (1) χT◦Id and χT◦S

are actions via “outlining”; (2) to show that η◦UT is an action transform between them,
we first consider an alternative rendering of (9.6) that is more suitable for our graphical
calculations:

η

UT

UTS

:
χT

T
UT

UT

→

χT

T
UT

UT

S

S

S .

(9.7)

The arrow UT is consistently drawn as a cone on the right, in line with the style of (9.5).
For the proof of the right-turn axiom (3.6), we need to vertically paste the diagrams: for
the left-hand side, we place the transform below the source action, and for the right-hand
side above. To establish the axiom, we reason:

χT

T
UT

UT

η

S

S {(
9.

3a
)}

= χT

T
UT

UT

S

η {(
9.

4a
)}

= χT

T
UT

UT

S
η

.

(9.8)

We simply drag the unit across the UT wires using the fact that the identity is a Kleisli
law (9.3a) and an Eilenberg–Moore law (9.4a).

9.5 Lifting the multiplication

To find a candidate multiplication for the lifted monad, we follow the same steps as in
the previous section. In particular, we use the condition UT◦μ=μ◦UT required of the
multiplication of a lifted monad, (9.3b) and (9.4b), to fix the action transform. We obtain
the following counterpart of (9.7):
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μ

UTTT

UTT

:
χT

T

UT

UT

S S

S S

→

χT

T

UT

UT

S

S

S .

We verify the right-turn axiom (3.6) as follows:

χT

T

UT

UT

S S
μ

S

{(
9.

3b
)}

= χT

T

UT

UT

μ

S S

S

S {(
9.

4b
)}

= χT

T

UT

UT
S

μ

S S

S S .

(9.9)

Here we drag the multiplication across the UT wires using the two multiplication
axioms, (9.3b) and (9.4b).

9.6 Lifting the monad

It remains to establish that η and μ satisfy the three monad axioms. The pattern in each
case is the same. We exploit that id is an EM-law, repeatedly applying the lifting equa-
tions, (9.4a) and (9.4b), to “slide away the veil”, revealing a construction in terms of the
original monad. We can then apply the axioms of that monad to further our proof.

For the left unit axiom (3.1a):

μ

S

η

S

UT
UT

{l
ift

in
g

(9
.4

a)
}

= μ

S

η

S

UT
UT

{l
ift

in
g

(9
.4

b)
}

=

μ

S

η

S

UT
UT

{l
ef

tu
ni

t(
3.

1a
)}

=
S

S

UT
UT

,
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and for the right unit axiom (3.1a):

μ

S

η

S

UT
UT

{l
ift

in
g

(9
.4

a)
}

=
μ

S

η

S

UT
UT

{l
ift

in
g

(9
.4

b)
}

=

μ

S

η

S

UT
UT

{r
ig

ht
un

it
(3

.1
a)

}

= S

S

UT
UT

.

Finally, for the associativity axiom (3.1b):

μ

S

μ

SS S

UT
UT

{l
ift

in
g

(9
.4

b)
}

=
μ

S

μ

SS S

UT
UT

{l
ift

in
g

(9
.4

b)
}

=

μ

S

μ

SS S

UT
UT

{a
ss

oc
ia

tiv
ity

(3
.1

b)
}

=

μ

S

μ

SSS

UT
UT

{l
ift

in
g

(9
.4

b)
}

=
μ

S

μ

SSS

UT
UT

{l
ift

in
g

(9
.4

b)
}

=

μ

S

μ

SSS

UT
UT

.

Therefore, as UT is left-cancellative, we have established that the required equations hold.
These proofs illustrate a general phenomenon: base transformations pass their properties

on to their lifted counterparts — like transformations we can also lift equations.
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9.7 A lifting induces a distributive law

We would now like to show that every lifting of (S : C← C, η, μ) arises in this way. To
do so, we assume a lifting (S : CT← CT, η, μ). As UT◦S= S◦UT, the lifted arrow S is
induced by the left T-action:

χT

T

UT

UT

S

S

S .

Calculations (9.8) and (9.9) have established the intuitive equations:

χT

T
UT

UT

η

S

S =

χT

T
UT

UT

S
η

,

(9.10a)

and

χT

T

UT

UT

S S
μ

S

=

χT

T

UT

UT
S

μ

S S

S S .

(9.10b)

As we have seen earlier, a left action induces an Eilenberg–Moore law by “bending a wire
down”:

χT

T

T

S
η

To show that this composite is a Beck distributive law, we must confirm that it also satisfies
the axioms of a Kleisli law.
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For the unit axiom, we first observe that

χT

T

T

η

= T

T

,

(9.11)

which is the snake equation (3.2a) in disguise.
Combining this handy identity with Equation (9.10a), we establish the Kleisli unit

axiom (9.1a):

χT

T

T

η

S

η

{(
9.

10
a)

}

= χT

T

T
S

η

η

{(
9.

11
)}

=

T

T
S

η

We proceed in a similar way to establish the multiplication axiom. First, we redraw
Equation (5.3), introducing an explicit identity vertex on the left arm of the universal
action.

ϵ
UTFTUT

UT

=
χT

UT

FTUT UT

(9.12)
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For the proof of the Kleisli multiplication axiom (9.1b), we argue:

χT

T

T

S S

μ

S

η

{d
ra

g
(9

.1
0b

)}

=

χT

T

T

S S

S
μ

η

{s
na

ke
(3

.2
b)

}

=

χT

S S

S
μ

T

T

η

η
ϵ

{
fo

cu
s}

= χT

S S

S
μ

T

T

η

η
ϵ

χT

μμ

η

η

{e
le

va
to

r(
2.

2)
}

=

χT

S S

S
μ

T

T

ϵ η

η

χT

μμ

η

η

{
un

fo
cu

s}

=
χT

S S

S
μ

T

T

ϵ η

η

{(
9.

12
)}

= χT

S S

S
μ

T

T

χT η

η

It is best to read the proof backwards. The goal is clear: we need to “merge” the two
copies of the candidate law into one. To this end, we first replace the lower universal
action by the counit (9.12), creating a snake between the two vertical paths. Alas, we
cannot immediately pull the wire straight, as this would transmogrify the extremities of the
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identity vertices attached to the snake, turning an arm into a leg and vice versa. To enable
the snake equation, we first need to raise the right identity vertex above the level of the left
one, as indicated by the focus. Here, we make essential use of the elevator equations (2.2).
The rest is routine: we pull the string straight and then drag the multiplication upwards
across the UT wires (9.10b).

All that remains to be done is to show that the distributive law induced by a lifted monad
induces the original monad. But this is straightforward, as the unit and multiplication of
a lifted monad are uniquely defined. Assume that we have two lifted units, then UT◦η=
η◦UT =UT◦η′ and consequently η= η′ as UT is left-cancellative. An analogous argument
shows that lifted multiplications are unique.

10 Conclusion

A great deal more monad theory can be developed graphically in the style of this paper.
For example, the convenient notation for Kan extensions (Kan, 1958) presented in Hinze
(2012) transfers to the 2-categorical setting. The techniques of that paper enable a diagram-
matic account of the theory of codensity monads (Kock, 1966). A graphical formulation of
Kan extensions and codensity monads in a graphical style more consistent with the present
work will appear in Hinze and Marsden (2025).

If we allow ourselves to move beyond the 2-categorical setting, diagrammatic reasoning
can be pushed even further. One shortcoming of working in a 2-category is that there
is no convenient abstraction of hom-sets, and this can place some categorical ideas out
of reach. Moving to the setting of double categories (Ehresmann, 1963), or even more
abstractly to virtual equipments (Cruttwell and Shulman, 2009) can address this problem
by providing a connection with profunctors. Myers (2016) presents a graphical language
suitable for these settings, very similar to that used in the present work, and this notation
was exploited by Arkor and McDermott (2023) to give graphical arguments about relative
monads (Altenkirch et al., 2015), which require this additional flexibility. We leave the
exploration of these more advanced techniques to further work.
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1 Appendix: Eilenberg–Moore categories are Eilenberg–Moore objects

The purpose of this appendix is to show that in Cat, the 2-category of categories, functors,
and natural transformations, every monad features an Eilenberg–Moore object. We begin
by reviewing some basic definitions.

A �-algebra for endofunctor � : C← C is a pair (A, a) consisting of an object A of C,
the carrier of the algebra, and a C arrow of the form
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a

A

A�

,

where a is referred to as the action of the algebra. (The gray region denotes the termi-
nal category, which allows us to seamlessly integrate objects and arrows in our graphical
calculus.)

A �-algebra homomorphism of type (A, a)→ (B, b) is an arrow h : A→ B in C such
that the homomorphism axiom holds:

B

A�

h
a

=
B

A�

b

h
, (1.1)

Composition of homomorphisms and identities are given as in the base category C.
For a monad T : C← C, we can define the Eilenberg–Moore category of T,

denoted CT. An object of CT, referred to as an algebra for T, is a T-algebra satisfying
unit and multiplication axioms:

A

A
η

a
=

A

A

, (1.2a)

A

AT
μ

T

a

=

A

ATT

a a

, (1.2b)

The arrows of CT are the T-algebra homomorphisms.
An Eilenberg–Moore category equips a given category with additional structure. There

is a forgetful functor, the underlying functor,

UT : C← CT,
UT (A, a) := A,

UT h := h,

that forgets about this structure, mapping an algebra to its carrier and a homomorphism to
its underlying arrow. The forgetful functor has a left adjoint, the free functor,

LT : CT← C,
LT A := (T A, μ A)

LT f :=T f

which sends the object A to the so-called free algebra over A and the arrow f to the homo-
morphism T f . The unit of the adjunction FT �UT : C↼ CT is given by the unit of the
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monad. The counit

ε : FT◦UT →̇ Id, ε (A, a) := a

extracts the action of the algebra, which is a T-homomorphism a : (T A, μ A)→ (A, a).
We claim that an Eilenberg–Moore category carries the structure of a universal left

action, given by the canonical action χT :=UT◦ε.
Firstly, given a left action α : T◦A →̇A with sourceD, we need to construct a compari-

son functor K : CT←D. The two requirements, UT◦K=A and χT◦K= α (4.1), strongly
suggest defining

K : CT←D,
K X := (A X , α X ),

K f :=A f .

Since α is a left action, K maps objects to algebras for T — we observe that the algebra
axioms, (1.2a) and (1.2b),

A

A

X

X

η
α =

A

A

X

X
and

A

A

X

X

T T
μ

α =

A

A

X

X

T T

α
α

,

are instances of unit and multiplication axioms for actions, (3.5a) and (3.5b).
Furthermore, K maps arrows to T-homomorphisms — we note that the homomorphism
condition (1.1),

A

A

Y

X

T

α

f

=

A

A

Y

X

T

α
f

,

is an instance of the right-turn axiom for “outlining” (3.9). As a forgetful functor, UT is
faithful and therefore left-cancellable. Consequently, K preserves identities and composi-
tion. Finally, K is clearly unique: the composite UT◦K determines the arrow map of K and
fixes the carriers of the algebras and the composite χT◦K determines their actions.

Secondly, given two left actions, α and α′, with induced comparison functors, K and K′,
and a T-action transform τ : (A, α)→ (A′, α′), we need to construct a natural transformation
κ : K →̇K′. The requirement, UT◦κ= τ (4.2), strongly suggests defining

κ X := τ X .

So κ has the same components as τ. It maps objects to T-homomorphisms — the
homomorphism condition (1.1),
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B

A

X

X

T

α
τ

=

B

A

X

X

T

α
τ

,

is an instance of the right-turn axiom (3.6). Moreover, κ is natural as the forgetful
functor UT is left-cancellable. And finally, κ is unique for the same reason.
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