WEAK COMPACTNESS AND SEPARATION
ROBERT C. JAMES

The purpose of this paper is to develop characterizations of weakly compact
subsets of a Banach space in terms of separation properties. The sets 4 and B
are said to be separated by a hyperplane H if 4 is contained in one of the
two closed half-spaces determined by H, and B is contained in the other; 4
and B are strictly separated by H if A is contained in one of the two open
half-spaces determined by H, and B is contained in the other. The following
are known to be true for locally convex topological linear spaces.

(A) Disjoint convex subsets can be separated by a hyperplane if 4 has an
interior point or if A is weakly compact (see 4, pp. 456—457 and 5), but every
non-reflexive Banach space contains a pair of disjoint bounded closed convex
sets that cannot be separated by a hyperplane (4, p. 881).

(B) Disjoint closed convex subsets 4 and B can be strictly separated by
a hyperplane if A is compact (1, p. 73).

(C) If 4 and B are disjoint closed convex subsets and 4 is weakly com-
pact, then there is a continuous linear functional f such that

inf{f(x) :x € A} > sup{f(x) : x € B}

(4, p. 457), so that d(4, B) > 0 if the space is normed.

If an element x of a locally convex linear topological space does not belong
to a closed convex set C, then there is a continuous linear functional f such
that f(x) > sup{f(y) : vy € C} (see 2, Theorem 5, p. 22). Therefore all closed
convex sets are weakly closed, and the assumption in the following lemma
that B is weakly closed could be replaced by the assumption that B is closed
and convex.

LemMA. If A and B are disjoint weakly closed subsets of a normed linear space
and A 1is weakly compact, then d(4, B) > 0.

Proof. 1f d(4, B) = 0 and A4 is weakly compact, then there is a scquence
of ordered pairs (a4, b;) for which each a; € 4, each b; € B, d(a, b;) — 0,
and {a;} converges weakly to a member « of 4. Then « ¢ B, but {b,} converges
weakly to a. This implies that B is not weakly closed.

THEOREM 1. A necessary and sufficient condition that a weakly closed subset .1
of a Banach space be weakly compact is that d(A, B) > 0 for all weakly closed
sets B such that A M\ B 1s empty.
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Proof. If 4 is not weakly compact, then there is a continuous linear func-
tional f that does not attain its supremum on 4 (3). Let ¢ = sup{f(x):x € A4}
and B = {x:f(x) = ¢}. Then 4 and B are disjoint and B is closed, convex,
and weakly closed, but d(4, B) = 0. Now suppose that 4 is weakly compact,
A and B are disjoint, and B is weakly closed. Then it follows from the lemma
that d(4, B) > 0.

In case 4 is bounded as well as weakly closed, Theorem 1 can be modified
to state that 4 is weakly compact if and only if d(4, B) > 0 for all bounded,
weakly closed sets B such that 4 M B is empty. Also, it should be clear from
the proof that the property of weak closure for the set B could be replaced
by closure and convexity. If we assume that 4 also is closed and convex, we
obtain part (a) of the following theorem.

THEOREM 2. Each of the following is a necessary and sufficient condition that
a closed convex subset A of a Banach space be weakly compact:

(a) For each closed convex subset B such that A M B is empty, d(4, B) > 0.

(b) For each closed convex subset B such that A M B is empty, there is a hyper-
plane that strictly separates A and B.

Proof. To show the sufficiency of (b), we assume that 4 is not weakly
compact. Then there is a continuous linear functional f that does not attain
its supremum on 4 (3). Let ¢ = sup{f(x):x € 4} and B = {x:f(x) = ¢}.
Then 4 and B are disjoint and B is closed and convex. Suppose there is a
continuous linear functional g and a number 6 such that

glx) <6 if x€ A, g(x) >0 if x € B.
Also choose ¢ and x as elements of the Banach space for which f(¢) = 0 and
f(x) = ¢. Then for all & we have f(x + k&) = c. Therefore x + k¢ € B and
g(x + kE) > 0 for all k. This is impossible unless g(¢) = 0. Therefore the
null spaces of f and g are the same, f and g are proportional, and there is a
number ¢ such that

glx) = %Qf(x) for all x.

When x € B, we have f(x) = cand g(x) > 6. Therefore ¢ > 1. Since g(x) < 6
if x € A, we have

flx) = 5%g(x) <§; forallx € 4.

This is impossible, since ¢ = sup{f(x):x € A} and ¢ > 1. Now suppose that
A is weakly compact and B is closed and convex. Then it follows from (C)
that there is a hyperplane which strictly separates 4 and B.

The following theorems are related to results of Tukey (5) and Klee (4,
p. 881) that can be combined to give the following theorem: A necessary and
sufficient condition that a Banach space be reflexive is that each pair of disjoint
bounded closed convex sets can be separated by a hyperplane.
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THEOREM 3. A mnecessary and sufficient condition that a Banach space be
reflexive is that d(4, B) > 0 for all disjoint pairs (4, B) of weakly closed sub-
sets at least one of which is bounded.

Proof. If the space is not reflexive, then the unit sphere 4 is weakly closed
but not weakly compact (2, p. 52). It follows from Theorem 1 that there
is a weakly closed set B such that 4 M B is empty and d(4, B) = 0. If the
space is reflexive and A is bounded and weakly closed, then 4 is weakly
compact and it follows from Theorem 1 that d(4, B) > 0 for cach weakly
closed set B such that 4 M B is empty.

TuEOREM 4. Each of the following is a necessary and sufficient condition that
@ Banach space be reflexive:

(a) For each disjoint pair (A, B) of closed convex subsets at least one of which
is bounded, d(4, B) > 0.

(b) For each disjoint pair (4, B) of closed convex subsets at least one of which
15 bounded, there is a hyperplane that strictly separates A and B.

Proof. 1f the space is not reflexive, then the unit sphere is not weakly com-
pact. With 4 the unit sphere, it follows from Theorem 2 that neither (a) nor
(b) is satisfied. Now suppose that the space is reflexive and 4 and B are as
stated, with 4 bounded. Then A4 is weakly closed, since . is convex and
closed. Therefore 4 is weakly compact and it follows from Theorem 2 that
d(4, B) > 0 and that there is a hyperplane which strictly separates .1 and B.
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