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Abstract

In previous work [2] calculations of subquadratic second order Dehn functions for various groups were
carried out. In this paper we obtain estimates for upper and lower bounds of second order Dehn functions
of //AW-extensions, and use these to exhibit an infinite number of different superquadratic second order
Dehn functions. At the end of the paper several open questions concerning second order Dehn functions
of groups are discussed.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20E06, 20F05, 20F06; secondary
57M05, 57M07.

1. Introduction

Second (and higher) order Dehn functions have been studied in [2,3,10,11,13,15,17].

In particular, in [2] exact calculations of some (subquadratic) second order Dehn

functions S^ for various groups G were carried out. For any positive integer r

examples were given of groups with second order Dehn function

n H> n2~l/r.

Also, examples were given of groups with second order Dehn function

n2

n
log«
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[2] Second order Dehn functions and fflVW-extensions 273

Recent work in [7], coupled with results in [2, Section 6] show that for any positive
integers p > q there is a group with second order Dehn function

where p = 2 \og2(2p/q); in particular the set

[a : a € [|, 2] , n i-> na is a second order Dehn function}

is dense in [3/2, 2] ([7, Theorem C]).
In this paper we obtain estimates for upper and lower bounds of second order Dehn

functions of //AW-extensions (Theorem 1 and Theorem 2). (We remark that similar
estimates for general graphs of groups can be obtained.) We then obtain estimates
for certain special //AW-extensions (Theorem 3), and use these to exhibit an infinite
number of different superquadratic second order Dehn functions. For any positive
integer r we give an example (Example 1) of a group Gr with 8^ lying between the
functions

n»n"2+\ nv^nr+1.

Also, we give an example (Example 2) of a group Gx with 8^ lying between the
functions

n i-> e"^", n i-> en.

At the end of the paper we raise some open questions concerning second order Dehn
functions.

We refer the reader to [2, Section 2] (see also [3,15,17]) for information concerning
second order Dehn functions, and for all unexplained notations. However, as suggested
by the referee, we include here some of the main ideas for the readers convenience.

Let f? — (x; r) be a finite group presentation. The group G(2?) defined by &
is the quotient of the free group F(x) on x by the normal closure of the elements of
F(x) represented by the words in r. If W is a word on x then the element of G(£?)
represented by W will be denoted by W, and the word length of W will be denoted by
L(W). Usually we will blur the distinction between a word and the element of F(x)
it represents.

Diagrams, or their duals, pictures, over presentations are a well-established concept.
In this paper we will use pictures and adopt [6] as our main reference (see also [14]).

If W is a word representing the identity of G(^) then the area A(W) of W (with
respect to r) is the minimum area (that is, the number of discs) of any picture over @*
with boundary label W. The first order Dehn function 8^ is defined by

S^(n) = max{A(W0; W=l,L(W)<n).
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274 X. Wang and S. J. Pride [3]

As is well-known (see [1] for example) if J3 is another finite presentation with G(£?) =
G(=2), then for a certain standard equivalence ~ of functions (see below) we have
8{^ ~ 8*2 . Thus up to ~-equivalence, for a finitely presented group G we have the
(well-defined) first order Dehn function 8^ of G.

The equivalence ~ is defined as follows. For two increasing functions

/ , g : N ->• K+

write f •< gii there is a constant a > 0 such that/ (n) < ag(an) + an(n e N). Then

There are certain operations (bridge moves, insertions or deletions of folding pairs,
insertions or deletions of floating circles) which can be performed on (spherical)
pictures (see [6, Section 1.2]), and two spherical pictures are said to be equivalent
if one can be obtained from the other by a finite number of these operations. We
write (P)&> (or simply (P)) for the equivalence class of the spherical picture IP. These
equivalence classes form a left ZG(^2l)-module (the second homotopy module of &*,
denoted TT2(&)) under the addition

<Pi + P2>

(where P, + P2 is the spherical picture obtained by putting Pi next to P2), with

(where W • P is the picture obtained from P by surrounding it with a collection of
concentric closed arcs with total label W—see [6, Figure V.6.(b)]).

Let X be a set of generators of the module n2(&)- Then if P is a spherical picture
we define the volume VX((P)) of (P) with respect to X to be the least value of m over
all expressions

1 = 1

(£, = ± 1 , gi G G(&>), f , e X , i = l , 2 m) equal to (P) . We then define the
second order Dehn function 8{# x by

8%x(n) = max{Vx((P}) : A(P) < n] (n = 1 , 2 , . . . ) .

For a group G of type F3 (that is, a group given by a finite presentation for which 7r2 is
finitely generated) this is a group invariant up to ~-equivalence [3] (see also [15,17]),
which we write as 8™—the second order Dehn function of G.
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2. Preliminaries

Consider an HNN-extension

(t;rlKt k

Here K, K are subgroups of the group H, and

f : K -* K

is an isomorphism. We will assume that H is of type F3 and K, K are finitely
presented.

Choose a finite presentation &'H = (x;r) for H. Let a = {ay : y e y}, a =
{ay : y e y} be finite sets of words on x representing generators of K, K respectively,
where ay represents the image under ifr of the element of K represented by ay. Let
F = F(y) be the free group on y, and let B be the kernel of the epimorphism F -> K
induced by the mapping y i->- ay {y 6 y). Let s be a finite set of words whose normal
closure in F is B. Then

is a presentation of K.
For W a word on y, say W = y\[y2 •••^" CM; e y. £; = i l . 1 < ' ^ «)»

we let W(a) (respectively, V^(a)) denote the word on x obtained by replacing each
yt by ay. (respectively, ay.). For y e y let Qy denote the word ayta~xt~' and let
<\ = {Qy '• y ^ y}- Then a presentation for G is given by

(1) ^ = ^ c = (x,/;r,q>.

For 5 e s we let S, S be pictures over £?H with (clockwise) boundary labels
5(a), 5(a) respectively, and we set

c = max{^(S),y\(§) : S es}.

The abelianization S a i = B/B' (written additively) of B is a left ZAT-module
(called the relation module of ^ ^ ) under the action

ay • WB' = yWy~lB' (ygy, We B).

This module is generated by the elements SB' (S € s). Given W e 5 we can thus
write WB' as a sum of elements ±kSB' (k e K, S e s). We define Aab( W) to be the
minimum number of terms in any such sum equal to WB'. This is the 'abelianized
area', considered in [5]. In general, Aab(W) <A(W).
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276 X. Wang and S. J. Pride [5]

Let D> be a picture over 3?K with discs A l t . . . , Am labelled clockwise by 5f, . . . ,
Se

m- respectively (St e s, E,• — ± 1 , 1 < i < m). We let ID (a) (respectively, O(a))
denote the picture over &H obtained from ID by replacing the disc A, (1 < i < m)
by the picture £,-§,- (respectively, £,-§,-), and for each y e y replacing all arcs labelled
y by a sequence of parallel arcs with total label ay (respectively ay).

We let PJJ denote the spherical picture over & obtained from ID (a), ID (a), as
depicted in Figure 1, and we let £D denote the element of 7T2(£P) represented by PD-
When ID consists of a single disc labelled S € s then we write Ps (respectively %s)
instead of F o (respectively £D).

FIGURE 1.

Let W be the label of P . Choose a spray (see [14] for the definition) (yu .

for ID and let [/, be the label on )/,-(/= 1 , . . . , m). Then W is freely equal to
, ym)

It follows that in the relation module Bah we have

WB' =

LEMMA 1. If^K is aspherical and if for each S e s there is no cancellation in the
sum
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PROOF. If g?K is aspherical then Bab is freely generated as a Z^T-module by the
elements SB' (S e s). Thus, as an abelian group Bab is generated freely by the
elements kSB' (k 6 K, S e s), and the result is then immediate. •

LEMMA 2. ft, = X,£,-£4(a)£5..

The proof is similar to the proof of Lemma 5.1 of [2] and is left to the reader.

3. Generators of the second homotopy module and upper bound for volume

Let IB,,... , Br be a collection of spherical pictures over 3?H representing a set XH

of generators of n2(£?H). Then each B, also represents an element of TV2{^>). We let
X denote the set of elements of 7r2(^) represented by Bi , . . . , Er, together with the
elements §s (S e s).

THEOREM 1. The set X generates n2{£?), and iff is a spherical picture over £?
with n discs, of which I are q-discs, then

and hence

(Here, as usual, for a function 8,8 denotes the subnegative closure, see [2, Section 2].)

PROOF. Let P be a spherical picture over &. A non-trivial t-circle (outward or
inward directed) in IP consists of a collection of q-discs @i, . . . , ®k (k > 0) and a
collection of ?-arcs au ... ,ak where or, joins 0,_i to 0, (subscripts mod k). We
can assume that the numbering of the discs is such that they are encountered in the
order @\, © 2 , . . . , ©* where we read clockwise around the f-circle starting at 0 j .
Suppose 0, is labelled by Qe

y', (y, € y, £, = ±1). Then the label on the t-circle is the
word >']£|y|2 • • -ye

k
k. We also allow a trivial ^-circle consisting of a single closed r-arc.

The label on a trivial f-circle is the empty word. A ^-circle C is minimal if there is no
/-circle contained in the region enclosed by C.

The proof will be by induction on the number k of /-circles in P.
If k = 0 then P is a picture over £?H, so (P)̂ >H can be expressed as a sum of at

most <5(J>HIXH (") elements of ±HXH. Thus (P) can be expressed as a sum of at most
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outward directed
^-circle

inward directed
r-circle

FIGURE 2.

Suppose k > 0 and let C be a minimal f-circle of IP with label W. Let us first
assume that C is inward directed. Let Ao be the subpicture of IP lying inside the area
enclosed by C, and let Af be the geometric configuration obtained by deleting Ao and
C from IP. Let 0 w be a picture over 3?K with boundary label W and having A (W)
discs. Then Ao and ~Dw(a) can be combined to form a spherical picture (Pw over
^Hi and A i and D>n/(a) can be combined to form a spherical picture P" over •£?. We
then have for some word U (see Figure 3)

(2) (IP) = "

U

U

FIGURE 3.

Now IP' has fewer r-circles than IP. Moreover, the area of P' is at most

n - L(W) - A(A0) + cA(W)
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and the number of q-discs in P' is / — L{ W). Thus by inductive hypothesis (P') can
be expressed as a sum of at most

(3) 8%HXH (2C8%K (l-L(W)) + n-l - A(A0) + cA(W)) + 8% (/ - L(W))

elements of ±GX.
By Lemma 2, 1-DW (and hence U%Dw) can be expressed as a sum of A( W) elements

of ±GX, so V̂ x(̂ Dw) is a t m o s t

(4) 8%(L(W)).

Finally, since PH is a spherical picture over £?H, and since A(PH) £ A(A0)+cA(W),
we have that (Pw) (and hence Ul(PH}) can be expressed as a sum of at most

(5) 8%HXH(A(AO) + cA(W))

elements of ± GX.
Adding (3), (4), (5) and using the fact that A(Ow) < V£K (L(W)), we find that (IP)

can be expressed as a sum of at most

8%HXH(2C8%(1) + (u - /)) + 5 ( £ (0

elements of ±GX, as required.
If C is outward directed then a similar argument applies except now (2) becomes

where PH is the result of combining Ao and ~Dw(a), and P' is the result of combining
A, and DM,(a). D

REMARK. Theorem 1 can easily be extended to multiple extensions of H (where
we allow several pairs of isomorphic subgroups of H). More generally, Theorem 1
can be extended to graphs of groups. Let F be a finite connected directed graph with
vertex set v and directed edge set e. Suppose that for each vertex v e v we have a
group Hv of type F3, and for each directed edge e running from vertex u to vertex v
say, we have isomorphic finitely presented subgroups Ke < Hu, Ke < Hv. Let G be
the corresponding fundamental group of this graph of groups. Then we get an upper
bound for 8^ like that at the end of Theorem 1, with <5^HIXH, 8(£K replaced by

max j S ^ x ^ : v e v j , max W&Kr : e e el

respectively.
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4. Lower bound for volume

Let L be the submodule of n2(&) generated by the elements ( 1 | ) , . . . , (IB,.). Let \x
be the standard embedding (see [2, Section 2]) of n2(^

>) into the free left ZG-module
with basis eR (R e r), ey (y € y) in one-to-one correspondence with the defining
relators of &*. Since /x(L) c ® R 6 r ZGeR, we get an induced homomorphism

We have the Magnus embedding K (see [12, page 199]) of the relation module
Bab of £?K into the free left ZAT-module 0 y € y 1Key. By applying the exact functor
7LG <S>IK—we m e n obtain an embedding

K :

and we have the commutative diagram

WB'^l®WB'

y
\ inclusion

Now 7T2(^)/L is generated by the elements £5 + L (S e s), and ZG (g)2Jf fia* is
generated by the elements f$s = 1 <8> 5 5 ' (5 G s). Since

we have that Im /x* = Im ic, so we get a surjective homomorphism

Let W be any word on y which defines an element of B. Consider a minimal
expression

(6)

(sj — ±1 , ^; g G, Sj € s fory = 1 , . . . , n) for 1 <8> WB' as a sum of elements from
the set [±gPs • 8 e G, S g s}. Clearly n < Aa*(W0. We want to show that in fact
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equality holds. We can suppose that for some 0 < / < n, gj e K if and only if j < I.
Now ic(l <g> WB') and ic(fis) (S e s) belong to 0 ^ lKey and so we deduce that

Hence, by the injectivity of ic and the minimality of (6), n = /, that is, each gj e K.
Thus we have

So (using the injectivity of A:), we deduce that n > Aab{ W), as required.
Let E, E be any pictures over &n with boundary labels W(a), W(a) respectively.

Then we can form a spherical picture as in Figure 1 with O(a), D(a) replaced by E,
E. For simplicity we denote the element of n2(£?) represented by this picture by £w

(though note that t;w depends on the choice of E, E).

LEMMA 3. Vx(^w) > Aab(W).

PROOF. Suppose we have an expression for £ = %w as a sum of Vx(£) terms from
±GX. Applying 8 to this expression we will get an expression for 0(£) as a sum of
at most Vx(£) terms from {±g0s • g e G, S e s}. But e(£) = 1 <g> WB' and so from
our discussion above

vx(s)>Aab(W). a

THEOREM 2. Let f : H -+ N, h : [1, oo) -*• [1, oo) be Junctions with h strictly
increasing. Suppose there are words W, (i € N) on y with:

(a) L(W,)<hV);
(b) A(W,(a)),A(W,(a))

(c) A°b(Wd>f(i)

for all i. Then

(where [ ] denotes the integral part).

In the special case when K = K and \// is the identity, if we replace (a) by

(a') l(i)L(Wd<h(i),

where l(i) is a function of the natural number i, we obtain
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PROOF. For each / we may choose E,, E,- each to have area at most h(i) (by (b)),
and then A(£Wl) < 3/I(I) (using (a)).

Now let n e N, and let i = [h~l(n)]. Then A (£w.) < 3n, and by Lemma 3 and (c),

Hence,

For the second part, first note that if

£#) = ( l + 7 + - - . + 7 / - % , , 1=1,2,...,

then since powers of 7 all lie in different cosets modulo K, we can modify the argument
leading to Lemma 3 to show that

Vx(fJ?) > lAab(W).

Now in the special case when K = K and \jr is the identity, ^ can be represented by
a small picture, built up by using — E, E and / concentric /-circles (similar to Figure 13
in [2]), so that

A{Sw) <2A(W(a)) + lL(W).

Thus, for this special case, if we replace condition (a) by (a') and modify the argument
above we get

^ ' i X ( 3 n ) > l { [ h - \ n ) ] ) f { { h 1

5. Application

Let F be a finitely generated free group with basis x, and let ^ be a positive
automorphism of F (that is <p(x) is a positive word on x for all x e x). Form the
semi-direct products K = F x (s, J), A = F x («) with j , 5, « all acting via 0. Let
H = A x (u, U). There is an embedding of K into H given by

F —> F, s *->• uv, J i-> uv,

and we can form the HNN-extension

G= {H,t; rlKt = K),
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which has presentation

(7) g? = (x, u, v, v, t; u~lxu = (j>(x), [v, x], [v, x], [x, t](x e x),

[v,u],[v,u],[uv,t],[uv,t]}.

Let Zn (n = 1, 2 , . . . ) be a sequence of positive words on x such that L(Zn) < an
for some constant a (independent of n), and let

n-\

1=0

THEOREM 3. Jnf ([•>/«]) •< ̂ (n) < 8^(n) (n = 1,2,3,...).

PROOF. By making the substitution s = uv, I = uv in the presentation S? above,
and performing Tietze transformations we find that

G = K x («,0,

where u acts via the automorphism <f> of K defined by

1 r / , j t—r i , j t—r j ,

and t acts via the identity automorphism. We can thus regard G as a (multiple) HNN-
extension where the base-group and associated subgroups are all equal to K, and can
then apply Theorem 1 (for multiple fflVTV-extensions). Since K has the aspherical
presentation

(8) &K = (x, s, I; s~lxs = 4>{x), Tlxl = <p(x) (x e x))

we have that J 2 a is the zero function. So we deduce from Theorem 1 that

To establish the lower bound we revert to the original presentation (7) of G, and
use the second part of Theorem 2 with/ as above, h(X) = (4 + 2a)A2 and l(n) = n.
Note that

&H - {x,u,v,v; u~xxu = (p(x), [v,x],[v,x](x <=x),[v,u],\v,u]),

is as in (8), and

ax =ax =x (x e x), as = as = uv, a7 = aT = uv.
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<P(x)

4>(x) s

FIGURE 4.

Let Wn = s-nZns
as-n Z;ls" (n = 1, 2, . . . ) . Then

L(Wn) < (4 + 2a)n.

We have the picture On with boundary label Wn over ^"^ as in Figure 4. Since &K

is aspherical it follows from Lemma 1 that

Aab(Wn) = 2f(n).

We also have the picture En with boundary label Wn(a) over g?H as in Figure 5.
This picture has area 2n2 + 2n(L(Zn) + 1), so

A(Wn(a))< 2(2 + a)n2. D

EXAMPLE 1. Let F be free on xu x2, •.. ,xr and let (p be defined by

JC,- H> X,- xi+l (I < i < r), xr H> xr.

LetZn =x,". Then
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U

285

and so it follows that

On the other hand, it has been shown by Bridson [8] that for this situation

Thus we deduce that

EXAMPLE 2. Let F be free of rank 3 on a, b, c and let <p be defined by

a —>• c, b -> ac, c -> be.

Let Zn = c for all«. Then as shown in [2] (see page 26)
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Also, it is shown in [4, Example 2] that

Thus we have

^n < Sf(n) < en

6. Open questions

The results of this paper combined with those in [2,7] mentioned in the introduction
give some idea of the behaviour of second order Dehn functions of groups, but the
overall picture is still far from clear. We mention the following open questions.

(i) Obtain some exact calculations of superquadratic second order Dehn functions.

In particular:

(ii) Is there a group with exactly quadratic second order Dehn function? (Added
in proof: Yes—Martin Bridson, to appear.) For the group G2 mentioned in the
introduction, is <5(2) quadratic?

(iii) Describe the spectrum of second order Dehn functions, that is the set of a for
which

is a second order Dehn function.
(iv) Characterize groups with linear second order Dehn function. (Clearly groups

with aspherical presentations are in this class. It is shown in [2] that hyperbolic groups
are also in this class.)

(v) How small can <5(2) be? The split extension of Z2 by Z with the generator of Z
acting via the automorphism

2 1
1 1

was shown in [16] to have second order Dehn function bounded below by

n H-> nlogn.

It follows from [9] that this lower bound is in fact exact (we thank C. Pittet for pointing
this out to us). This is the smallest non-linear second order Dehn function we know
of.
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(vi) How large can <5(2> be? For the group Goo mentioned in the introduction, <5<2)

is more or less exponential. However, no examples above exponential are known.
The techniques of this paper could probably be used to obtain such examples if the
following question could be addressed.

(vii) Can one embed a finitely presented group with large (eg. n H 22") first order
Dehn function into a group of type F3 with small (for example polynomial) first order
Dehn function?

In connection with (vi) and (vii) see also [13, Question 1 and Question 2].
In [13] it is shown that the second order Dehn function of a group is subrecursive

(see also [17]). There then arises the following question.

(viii) Is every second order Dehn function equivalent to a recursive function?
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