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Abstract

Background: Social determinants of health (SDoH), such as socioeconomics and neighbor-
hoods, strongly influence health outcomes. However, the current state of standardized SDoH
data in electronic health records (EHRs) is lacking, a significant barrier to research and care
quality.Methods:We conducted a PubMed search using “SDOH” and “EHR”Medical Subject
Headings terms, analyzing included articles across five domains: 1) SDoH screening and
assessment approaches, 2) SDoH data collection and documentation, 3) Use of natural language
processing (NLP) for extracting SDoH, 4) SDoH data and health outcomes, and 5) SDoH-
driven interventions. Results:Of 685 articles identified, 324 underwent full review. Key findings
include implementation of tailored screening instruments, census and claims data linkage for
contextual SDoH profiles, NLP systems extracting SDoH from notes, associations between
SDoH and healthcare utilization and chronic disease control, and integrated care management
programs. However, variability across data sources, tools, and outcomes underscores the need
for standardization. Discussion: Despite progress in identifying patient social needs, further
development of standards, predictive models, and coordinated interventions is critical for
SDoH-EHR integration. Additional database searches could strengthen this scoping review.
Ultimately, widespread capture, analysis, and translation of multidimensional SDoH data into
clinical care is essential for promoting health equity.

Introduction

The concept of social determinants of health (SDoH) recognizes that health is shaped not only
by biological factors or access to medical care but also by the social, economic, and physical
conditions that shape people’s lives [1]. Research in disciplines such as public health, sociology,
economics, and medicine shows that the circumstances in which people live have a significant
impact on shaping patterns of health and well-being [2]. The World Health Organization
(WHO) defines SDoH as “the conditions in which people are born, grow, live, work, and age,
along with the wider set of forces and systems shaping the conditions of daily life” [3] (WHO
SDoH concepts see Table 1). These determinants are broadly categorized into five
interdependent domains that form the structural and social hierarchies in society: economic
stability, neighborhood and built environment, health care access, education access and quality,
and social and community context [4,5].

Specifically, adverse SDoH like poverty, unequal access to education, lack of public resources
in neighborhoods, high crime rates, racial segregation, and pollution are all strongly associated
with higher rates of morbidity, mortality, and health risk behaviors across populations [1].
On the other hand, protective and promoting SDoH like higher household income, safe green
spaces, strong social support, affordable nutrition options, and accessible transportation, have
been linked to positive health indicators ranging from self-rated health status to lower diabetes
and longer life expectancy [6].
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Health outcomes are greatly influenced by more than just
clinical encounters; indeed, research suggests that only about 20%
of a person’s health outcomes can be attributed to clinical care
[7,8], the majority of health outcomes are determined by a
combination of individual behaviors and various external factors
that are collectively referred to as SDoH. These “causes of the
causes” of health are estimated to account for up to 55% of
population health variation in high-income countries, though
some estimates suggest they may account for as much as 70–80%
[8]. Aspects of physical environment, socioeconomic status, race,
and gender contribute to systemic inequities that manifest as
adverse outcomes. This makes social determinants fundamental
considerations for achieving health equity and improving overall
population health [1].

SDoH-driven translational research: deriving and translating
health data to actionable knowledge into clinical care

Incorporating SDoH into clinical practice is essential for health
equity, but these determinants are rarely consistently recorded in
electronic health records (EHRs). Researchers have implemented
various approaches to standardize SDoH data collection, study the
generated data, and apply the knowledge to improve care (see
Fig. 1). SDoH data, collected from surveys [9], EHR modules [10],
and patient-reported outcomes [11], can be aggregated into a
unified repository for targeted research. However, data collection,
integration, and utility remain inconsistent across systems. To be

useful, data must be integrated and standardized using ontologies
[12], common representations [13], and value sets [14]. Integrated
SDoH data can be studied with health outcomes and linked to
programs [15]. Leveraging SDoH data in EHRs can activate
embedded tools like alerts and flags, such as guiding interventions
like nutrition assistance based on hunger scores [16], referring
patients to community health workers for those in disadvantaged
neighborhoods [17], and creating high-risk patient panels for
targeted care [18]. This integration facilitates personalized care
management and health equity through patient-centric technol-
ogies [19,20], fostering a learning health system.

Challenges and barriers

Integrating SDoH data into EHRs is crucial for promoting health
equity, but significant barriers exist [3,21]. Key challenges include
incomplete and inconsistent data in structured fields [21,22],
varying screening tools and data standards limiting interoperabil-
ity [23], and difficulties in consistently gathering and updating
SDoH data due to clinical and administrative workflows [7].

Confidentiality rules and patient mistrust regarding informa-
tion sharing also hinder SDoH data sharing [24]. Privacy-
preserving tools like DeGAUSS [25] offer a promising approach
by enabling secure and privacy-preserving sharing of SDoH data
through geographical aggregation and statistical noise. However,
the adoption of such tools may face challenges related to
organizational policies, data governance, and stakeholder trust.
Addressing these issues requires a multi-pronged approach
involving policy change, system redesign, and community
engagement [26].

Studies have shown that SDoH factors are commonly discussed
in clinical encounters but rarely documented in structured
fields, consistent with gaps in systematic SDoH data capture in
EHRs [27]. While natural language processing (NLP) approaches
can help extract SDoH data from free-text notes, a more robust
data collection and integration framework is needed. Connecting
patients experiencing SDoH to relevant programs and services is
critical, but determining patient eligibility and accessibility can be
challenging. Clinical decision support systems and digital health
technologies can assist healthcare professionals in making
appropriate recommendations [28].

Our scoping review addresses the lack of a comprehensive
understanding of SDoH-EHR integration by providing an
integrated framework spanning data capture, analytics, and
applications. We aim to identify best practices, gaps, and future
directions by addressing key questions related to standardized
tools, external data linkage, NLP methods, and the impact of
harmonized SDoH data on health outcomes and interventions.

Method

Scoping literature review

We conducted a scoping review to explore the current landscape of
SDoH data integration into EHRs. Scoping reviews are particularly
useful for examining emerging evidence when the specific
questions that can be addressed by a more precise systematic
review are not yet clear [29–31]. The five predetermined focus
areas aligned with the SDoH research pipeline and key steps in
SDoH-EHR integration, spanning from data capture to analytics
and applications. These areas guided the analysis of included
studies, and our approach is consistent with the methodological
framework for scoping reviews.

Table 1. World Health Organization (WHO)–Social Determinants of Health
(SDoH) data components. EHR = electronic health record.

SDoH concept WHO–SDoH domains
Common
EHR representations

Economic
Stability

Income, employment,
financial resources, and
basic needs

Employment status field;
Insurance type; ZIP code
(proxy for area-level
socioeconomic status);
Financial resource strain
screening questions;
Housing instability
screening

Neighborhood
and Built
Environment

Neighborhood (zip
code), transportation,
food access,
environmental
conditions

Patient address/ZIP code;
Transportation needs
screening; Food insecurity
screening; Environmental
exposure history

Health and
Health Care

Insurance status (type,
coverage, payer,
provider), behavioral
and mental health

Insurance information
fields; Primary care
provider; Mental health
screening results;
Substance use screening;
Medication adherence
data

Education Attainment, level,
language

Education level field;
Primary language field;
Need for interpreter
services; Health literacy
screening

Social and
Community
Context

Race/ethnicity,
connections, marital
status

Race/ethnicity fields;
Marital status; Social
support screening
questions; Domestic
violence screening; Sexual
orientation and gender
identity fields
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Search strategy

The literature search was conducted in PubMed, a widely
recognized database for biomedical literature, on 2023 May 8th.
We utilized Medical Subject Headings (MeSH) terms to refine our
search, focusing on articles indexed with terms “Electronic Health
Records” and “Social Determinants of Health.” This combination
was chosen to specifically target studies that discuss the
intersection of EHRs with SDoH (Search strategy see
Supplement Table 1 in Supplementary Material 1).

Screening and selection process

The screening process involved three phases. In phase one, papers
were categorized into five non-mutually exclusive topics (depicted
in Fig. 2):

• SDoH Screening Tools and Assessments: Papers discussing
various tools and methodologies for screening SDoH.

• SDoH Data Collection and Documentation: Studies
focusing on how SDoH data are collected and documented
within EHR systems.

• Use of NLP for SDoH: Research exploring the application of
NLP techniques to identify and extract SDoH information
from unstructured EHR data.

• Associations between SDoH and Health Outcomes: Papers
examining the relationship between SDoH and various health
outcomes.

• SDoH Interventions: Studies that evaluate the effectiveness
of interventions aimed at addressing SDoH within healthcare
settings.

In phase two, aligned with PRISMA guidelines [32], the screening
process involved an initial title/abstract review phase led by author
C.L. (criteria see Supplement Table 2 in SupplementaryMaterial 1)
to categorize papers into one or more of the 5 topics. Targeted
metadata extraction was performed by assigned reviewers as
follows: Screening Assessments (R.Y.), SDoH Data Collection

(C.L.), NLP Approaches (C.L.), and Interventions (X.M.). The
SDoH and Outcomes papers were randomly assigned to the
broader reviewer pool (C.L., R.Y., S.H., D.L.M., U.V., H.K.D.) for
metadata extraction. Additional irrelevant studies were excluded in
this second phase. The full-text metadata extraction phase allowed
confirmation of accurate categorization and extraction, with
discrepancies resolved through consensus meetings. Evidence
synthesis leads included: C.L. for SDoH Screening tools and SDoH
and health outcomes, D.L.M for SDoH Data collection, NLP for
SDoH, X.M. for SDoH Interventions, overseen by senior authors
M.J.M. and D.L.M.

In phase three, senior authors conducted evidence synthesis
and conflict resolution, validating phase one and two results. The
PRISMA flow diagram [32] was used to depict the screening
process.

The multi-stage process with independent categorization, full-
text metadata extraction, and consensus meetings embedded quality
checks aligning with scoping review best practices.

Results

In this section, we present the findings of SDoH in the EHR
according to five domains of interest.

Data collection and synthesis

We identified a total of 685 articles through the PubMed query.
After reviewing the titles and abstracts screening, 415 articles were
included. Of these 415 articles, 324 articles included full text for
qualitative synthesis. The reviewed articles were then classified
according to SDoH in the EHR domains. The majority of articles
focused on SDoH and health outcomes, SDoH data collection and
documentation followed by NLP for SDoH, and SDoH screening
tools and assessments. In the following sections, we reviewed the
major themes and highlighted works for each of the five SDoH in
the EHR domains (see Fig. 3, percentage see Supplement Table 3 in
Supplementary Material 1).

Figure 1. Data-to-knowledge-to-action workflow for translating social determinants of health (SDoH) into clinical care. EHR = electronic health record.
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SDoH screening tools

We included 29 papers (details see Supplement Material 2 – Meta
Data) incorporating SDoH Screening tools into EHRs in our
review. The majority of the studies utilized homegrown tools for
screening SDoH, reflecting the need for tailored approaches and
the limitations of existing standardized tools in certain contexts
Some studies [27,33–35] developed their own questionnaires and
screening sets, reflecting a trend toward customized tools tailored
to specific healthcare settings or populations. Vendor-specific
tools, like the two-item screening tool [36] integrated into Epic
SDoH Wheel, were less common but still present. The screened
determinants varied, but common factors included housing, food
insecurity, transportation, and mental health indicators like stress
and depression.

Studies targeted a diverse range of populations. For example,
children were the focus in some studies [33,37], while adults were
the primary subjects in other studies [34,38]. Various healthcare
settings were represented, from primary care clinics [39,40] to
emergency departments [41], as well as school-based clinics [35].
This diversity indicates the widespread recognition of SDoH’s
importance across different medical environments, underscoring
its growing relevance throughout the healthcare spectrum.

Active screening methods, where healthcare providers proac-
tively administered questionnaires or interviews, were predomi-
nant (n= 28) [27,34]. Passive methods like the analysis of EHR
data [42] were less common. However, the utilization of EHR data
for passive screening indicates a potential to streamline the process
in the future. While many studies focused on personal health
determinants (n= 19), others also assessed structural

Figure 2. Five social determinants of health categories describing the data workflow from data capture efforts to interventions. EHR = electronic health records; NLP = natural
language processing.

Figure 3. PRISMA 2020 flow diagram. EHR = electronic health records; NLP = natural language processing.
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determinants like housing quality and social networks [33,40,43].
A limited number of studies (n= 8) investigated both personal and
structural determinants.

The heatmap (Fig. 4) shows EHRs as the dominant data source,
with surveys, interviews, and ICD codes used for specific elements.
Free text fields were underutilized, suggesting an opportunity for
leveraging unstructured data. Housing was studied through the
most diverse methods. The heatmap highlights the importance of
EHRs and the need for diverse, integrated approaches.

Challenges and opportunities

The reviewed studies collectively highlight the challenges in
standardizing SDoH screening across various contexts but also
point toward the potential benefits of such screenings to patient
care. The diversity in approaches reflects the complexity of
addressing SDoH in clinical practice. However, it also demon-
strates a concerted effort toward more comprehensive patient care.
The prevalence of homegrown tools [33,35,40,44], indicates a trend
toward customization, tailored to specific patient populations and
healthcare settings. This is likely due to the unique needs and
circumstances of different patient demographics. The variability in
tools and approaches (e.g., the number of questions in studies
[27,45], and the use of paper-based vs. EHR-based tools [34,39]

highlight the challenges in standardizing SDoH screening. This
variability could impact the comparability of data and the
scalability of successful approaches. Despite the challenges, the
focus on SDoH screening illustrates a shift toward more
personalized patient care. Recognizing and addressing social and
behavioral factors [35,46] can lead to more effective healthcare
interventions and better health outcomes.

SDoH data collection and documentation

In our review, we identified 76 articles (see Supplement Material 2 –
Meta Data) describing SDoH data collection and documentation
practices. These studies focused on engagement with populations
and leveraged a variety of technologies to support collection and
documentation processes.

The reviewed studies demonstrated that various technologies
were employed to support the collection and documentation of
SDoH data. Screening tools and questionnaires were also
commonly used, often integrated directly into the EHR system.
For example, Boston Medical Center’s THRIVE tool [47] utilized a
paper screening form that was entered into the EHR by medical
assistants, while the University of California, San Diego [48] used a
local EHR database (Epic) to collect SDoH data through ICD codes
and discrete data fields. The OCHIN network of community health
centers [49] developed an EHR-based screening questionnaire to

Figure 4. Heatmap showing the frequency of association between the top 10 social determinants of health (SDoH) elements and the top five data collection methods.
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assess various SDoH domains, and Wake Forest School of
Medicine [50] employed a tablet-based digital health system to
screen for food security, housing, and transportation needs.

In addition to EHRs and screening tools, some studies leveraged
web-based platforms and applications for SDoH data collection.
For instance, the COMPASS-CP study[51] used a web-based
application and iPad application to capture patient-reported
outcomes related to physical, mental, and social well-being, as well
as financial challenges and caregiver needs.

NLP techniques were also employed to extract SDoH
information from unstructured EHR data. The OSF HealthCare
System[52] utilized the Pieces NLP system to identify SDoH
factors from EHR notes, demonstrating the potential of NLP in
automating the extraction of SDoH data from free-text clinical
documentation.

Furthermore, studies used geocoding techniques to link patient
addresses with external data sources, such as census tract
socioeconomic data and community-level characteristics. The
Envirome Web Service [53], developed by Children’s Mercy
Hospital, integrated census tract data with patient EHRs using real-
time geocoding, enabling a more comprehensive understanding of
patients’ social and environmental contexts.

Our review identified diverse methods for SDoH data collection
and integration. Nine studies incorporated qualitative approaches,
including interviews with patients and clinicians, community
engagement initiatives, focus groups, and town hall meetings
[54–62]. These methods provided rich, contextual information
about SDoH factors and their impacts on health outcomes.

Technology-assisted collection methods were also prevalent,
with seven studies utilizing various tools for SDoH data gathering.
These included paper-based entry, iPads/tablets, patient or
clinician-facing web portals, and other web-based toolkits and
forms [50,51,63–67].

Several studies (n= 6) made use of publicly available, external
data resources to infer structural SDoH information for a given
population. The most common external SDoH data sources linked
to EHRs were US census and community survey data (at both
patient/individual and area/neighborhood levels), administrative
data/claims records, and disease registries. Commonly linked
community surveys and systems include the Behavioral Risk
Factor Surveillance System, the National Health and Nutrition
Examination Survey, the National Health Interview Survey [68],
the National Institutes of Health PROMIS® (Patient-Reported
Outcomes Measurement Information System) [69], the National
Survey of Children’s Health [70], the Center for Disease Control
Youth Risk Behavior Surveillance System [71], the Center for
Medicare and Medicaid Services (CMS) Accountable Health
Communities’ Health-Related Social Needs Screening Tool [72],
the National Center for Education Statistics, the Uniform Crime
Reports, and the American Community Survey [73–76].
Longitudinal study data included the National Longitudinal
Study of Adolescent to Adult Health (Add Health) [77]. Other
administrative data sources included the Healthcare Cost &
Utilization Project (HCUP) Nationwide Readmissions Database
[78], claims data [79], and Medicaid data warehouse [80]. Few
studies describe use of disease-specific registries e.g. cancer
registries such as SEER-CMS, SEER-Medicare, and SEER-
Medicaid [81]. While these sources may not directly capture
SDoH information, they can provide proxy measures related to
healthcare utilization patterns, access to care, and socioeconomic
status. However, the use of administrative and claims data for
SDoH analysis has limitations, as theymay lack the granularity and

specificity of data collected directly from patients or through
dedicated SDoH screening tools.

Eight studies describe methods for inferring structural SDoH
using geocoding of patient addresses and linking to public census
tract data [53,66,82,83] These studies employed various geocoding
techniques to convert patient addresses into geographic coor-
dinates, which could then be mapped to specific census tracts or
other geographic units. For example, the Envirome Web Service,
developed by Children’s Mercy Hospital, used real-time geocoding
to link patient addresses with census tract data [53]. This
geocoding approach enabled the integration of information related
to neighborhood and community-level characteristics (e.g., SES,
crime incidence, and health facility locations) [74,85,86] and
neighborhood factors (e.g., poverty level, education, employment
status, etc.) [47,48,53,68,87–89]. By linking patient locations to
area-level SDoH data, these studies were able to provide a more
comprehensive understanding of patients’ social and environ-
mental contexts, even when individual-level SDoH data were not
available in the EHR.

External data provided various socioeconomic factors (income,
education, employment, poverty level, air quality), neighborhood
variables (segregation, safety, and walkability), and health
behaviors (diet, exercise, and smoking) [47–49,52,54,79,90–97].
These complemented and expanded the individual-level SDoH
data (food/housing security, transportation, interpersonal
violence, etc.) captured directly in EHRs [98–100]. A small subset
of studies (n = 3) aimed to integrate EHR, genomic, and public
health data to examine the intersection of lifestyle, genetics, and
environmental influences [48,101,102].

Challenges and opportunities

Although these works highlight the potential for study of personal
and structural SDoH, there is considerable effort for systematically
collecting, linking, and analyzing SDoH data from external sources
together with EHR data at the community, state, and national
levels [103,104]. The adoption of common data models to improve
standardization and interoperability of collected SDoH data
remains limited [105]. Moreover, there is a scarcity of research
demonstrating how this integrated information could be leveraged
to connect individuals with identified SDoH risk factors to
appropriate social programs.

NLP in SDoH

In our review, we identified 36 articles (details see Supplement
Material 2 – Meta Data). describing NLP methods for powering
SDoH studies. Many SDoH elements are captured in clinical free-
text notes, such as progress notes, discharge summaries, and social
work assessments. These unstructured data often contain rich,
contextual information about patients’ social circumstances that
may not be fully captured in structured fields. For example, free
text might include detailed descriptions of a patient’s living
situation, family dynamics, or barriers to accessing care. In
contrast, structured data elements typically consist of predefined
fields or checkboxes in the EHR, such as standardized screening
questionnaires or ICD-10 Z-codes for social factors [106–108]. The
use of NLP techniques is crucial for extracting and analyzing SDoH
information from these unstructured sources, as it allows
researchers to access a wealth of data that might otherwise remain
untapped. NLP can identify mentions of social factors, assess their
relevance, and even determine the severity or impact of these
factors on the patient’s health.
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Several studies focused on lexicon development using
methods such as lexical associations, word embeddings, term
similarity, and query expansion. Lexicons and regular expressions
have been demonstrated to extract SDoH and psychosocial
risk factors [18,109–112], learn distinct social risk factors by
mapping them to standard vocabularies and code sets including
ICD-9/10, ICD Z codes, Unified Medical Language System, and
SNOMED-CT. Most articles (n= 15) describe rule-based
approaches using regular expressions and/or hybrid machine
learning methods leveraging platforms. Five articles highlighted
well-known rule-based toolkits and platforms adapted with
lexicons and regular expressions for SDoH extraction including
Moonstone, Easy Clinical Information Extraction System,Medical
Text Extraction, Reasoning and Mapping System, Queriable
Patient InferenceDossier, and Clinical Event Recognizer [18,109–
112]. Other articles (n= 7) describe rule-based systems paired with
traditional machine learning approaches i.e., an ensemble,
particularly using NLP systems such as General Architecture for
Text Engineering, Clinical Language Annotation, Modeling, and
Processing Toolkit, Extract SDOH from EHRs, Yale clinical Text
Analysis and Knowledge Extraction System, Relative Housing
Stability in Electronic Documentation, and toolkits such as spaCy
and medspaCy in conjunction with conditional random fields and
support vector machines (SVM) [113–116]. In contrast, several
investigators have leveraged open-source NLP toolkits like spaCy
and medspaCy without supervised learners to extract SDoH
variables [117–119]. Other studies (n= 19) have solely leveraged
traditional supervised and unsupervised learning techniques,
SVM, logistic regression (LR), Naïve Bayes, Adaboost, Random
Forest, XGBoost, Bio-ClinicalBERT, Latent Dirichlet Allocation,
and bidirectional long short-term memory [125] to extract and
standardize social and behavioral determinants of health (SBDoH),
e.g., alcohol abuse, drug use, sexual orientation, homelessness,
substance use, sexual history, HIV status, drug use, housing status,
transportation needs, housing insecurity, food insecurity, financial
insecurity, employment/income insecurity, insurance insecurity,
and poor social support. In more recent years, nine studies

have focused on the training and tuning of deep learning
approaches, primarily transformer-based [126–135] approaches
i.e., Bidirectional Encoder Representations from Transformers
(BERT), RoBERTa, BioClinical-BERT models for extracting
SBDoHs including relationship status, social status, family history,
employment status, race/ethnicity, gender, social history, sexual
orientation, diet, alcohol, smoking housing insecurity, unemploy-
ment, social isolation, and illicit drug use—from clinical notes,
PubMed, among other specialized texts, e.g., LitCOVID [126–135].
The frequency of papers for SDoH extraction NLP algorithms
within EHR systems, highlighting the combinations and inter-
sections of utilized methodologies can be found in Fig. 5.

Challenges and opportunities

Although these works highlight the potential for extracting SDoH
from texts, several challenges remain. Few studies focused on
lexicon development, make use of standard terminologies for
encoding SDoH data, and explore deep extraction and represen-
tation of SDoH attributes and relationships. Also, many studies
focus on extraction and encoding SDoH data from a single site and
fail to assess the portability of methods to new textual data sources
beyond clinical notes and PubMed articles such as digital
technologies and chatbots. The introduction of shared datasets
like the Social History Annotated Corpus is an important step
toward demonstrating generalizability of NLP-powered, SDoH
extraction systems. Emerging generative models may also improve
upon the state-of-the-art demonstrated by common shared task
datasets.

SDoH and health outcomes

In our review, we identified 164 articles (details see Supplement
Material 2 – Meta Data). describing SDoH and health outcomes.
SDoH and health outcome studies examined a wide variety of
health-related events and outcomes in relation to SDoH factors.
A predominant focus was on infectious disease outcomes, with 16
studies examining drivers of COVID-19 hospitalization, mortality,

Figure 5. UpSet Plot of natural language processing for social determinants of health (SDoH) algorithms ~electronic health record (EHR) integration. *Outlining the distribution
of papers in which each approach/method individually and in combination was described in the study. *Supervised machine learning includes traditional machine learning
methods (naive bayes, support vector machine, logistic regression, random forest, etc), excluding neural networks and pretrained approaches.
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treatment disparities, and differences in positivity rates across
social groups [140–149]. Another major category included
healthcare utilization metrics like preventable hospital
readmissions (n= 11) [140–149], ED reliance ( n= 16) [173],
and telehealth adoption [174–184]. Beyond infectious outcomes
and healthcare utilization, studies also assessed chronic disease
control across conditions like diabetes (n= 11) [174–184],
hypertension [187,188], kidney disease [150,179,189–193], and
obesity (n= 7) [171,194–203], along with risk factors like elevated
blood pressure and cardiovascular events. Some studies focused on
cancer (n= 11) screening, diagnoses, treatment disparities, and
survival outcomes [150–155], while others addressed mental
health (n= 6) indicators [204] ranging from dementia incidence
[205,206] to suicide (n= 2) risk factors [207,208]. Additional
outcomes evaluated includedmaternal morbidity (n= 2) [177,209]
and pediatric health metrics, ranging from vaccine completion
rates to epilepsy-related consequences.

The most common quality measures reported were standard-
ized condition control thresholds like HbA1c levels for diabetes
control [195], blood pressure (n= 5) levels for hypertension
control, and established cancer staging guidelines [205]. Some
studies used validated risk prediction models for outcomes like
hospital readmissions (n= 5), suicide risk [210,211], or mortality
(n= 6). Beyond clinical indicators, several studies incorporated
validated SDoH indexes like the Area Deprivation Index [212],
Social Deprivation Index [213], and CDC’s Social Vulnerability
Index [163,183,184,196,203,214–221]. In terms of analysis
approaches, common methods included multivariate regression
models like LR (n= 13) [142,200,216] and Cox proportional hazards
models (n= 3) [219] to assess adjusted outcome associations with
SDoH factors. Other advanced techniques includedmachine learning
algorithms [222], geospatial analysis for clustering [154], and
phenome-wide association studies [223,224].

SDoH interventions

A total of 19 papers (details see Supplement Material 2 – Meta
Data) collected supplementary SDoH data to support population
health intervention initiatives targeting hospitals/clinics (n= 10)
or communities (including primary care, n= 9) at the meso
(institution) level. Two articles discussed policy potential and
proposed policy reform at the macro (system) level [225].
The majority of the selected research (n= 16) focused on
implementing a social and healthcare-supportive program to
address the social needs of the target population. Interventions
were implemented in various settings for hospital-based initiatives,
including posthospital discharge [226], the emergency department
[227–231], and clinics specializing in different medical disciplines
[232–235]. On the other hand, community-based initiatives
concentrated mainly on integrating interventions into primary
care services [236,237].

The social and healthcare supportive programs included a
range of initiatives designed toward improving community health.
These initiatives encompassed the introduction of new healthcare
programs [229,236,238], health education and coaching [232],
the strengthening of medical-legal partnerships [233,235,239],
the enhancement of integrated care planning [226,240,241] and the
improvement of patient navigation [227,236,238]. Only a few
papers (n= 3) have examined the potential of incorporating the
family or social support element into their intervention design
[225]. Meanwhile, four studies investigated the potential for
enhancing resource allocation through surveying outcomes.

The improvement objectives encompassed the allocation of staff
and equipment [228], the enhancement of patient navigation
[230,242], and the transformation of health service practices [237].

Our review identified a range of target populations receiving
SDoH interventions. Several interventions focused on specific
demographic groups, including racial/ethnic minorities (e.g.,
Blacks for hypertension control) [227,228], specific age groups
(both pediatric and adult populations) [231], and women’s health
[225]. Health condition-specific interventions were also common,
targeting chronic diseases such as heart failure [237], COPD [233],
diabetes [230], and hypertension [231,235], as well as mental
health conditions [239] and specific diseases like lupus
[234,239,241,242]. Many studies focused on vulnerable or under-
served populations.

Health outcomes, such as improvements in health metrics,
reductions in disease incidence, changes in vital signs, and quality
of life, are commonly used as measures to determine the feasibility
of initiating an intervention (n= 10). Several studies have also
assessed social SDoH in relation to patient satisfaction and
acceptability [243–245]. Since most programs were new efforts, it
was not possible to determine the effectiveness of the intervention
in the short term, nor could the potential generalizability be
assessed.

Discussion

This scoping review set out to map SDoH-EHR integration
literature across five key domains: structured data capture tools,
external data linkage approaches, NLP-based extraction tech-
niques, and applications for outcomes analysis, and health care
interventions. Our results synthesized major themes and collective
gaps within each sphere. Regarding our first aim, predominant
tailored screening instruments enable assessment but standardi-
zation barriers persist. For the second objective, enriching patient
profiles via claims and census linkage shows promise but
systematic consolidation is lacking. On research question three,
rule-based systems boast precision while neural networks improve
unstructured element recognition – yet reproducibility hurdles
remain. Finally, concerning predicting outcomes and targeting
programs, consistent risk evidence conflicts with implementation
uncertainty. Across the five domains, our review highlights the
progress made in SDoH data integration, while also identifying
critical gaps and challenges. We provide a comprehensive
assessment of the current state of SDoH research, from data
collection and analysis to the development and evaluation of
interventions. Our findings underscore the need for standardized
approaches, improved data interoperability, and more rigorous
evaluation of SDoH interventions.

By synthesizing insights from diverse research areas, we offer a
roadmap for advancing SDoH-EHR integration. This cross-
domain perspective reveals the interdependencies between
different aspects of SDoH research and practice, emphasizing
the importance of a holistic, “full-stack” approach. Our review lays
the foundation for future work in this field, guiding researchers and
practitioners in their efforts to leverage SDoH data for promoting
health equity and improving patient outcomes.

Key findings by theme

SDoH screening tools
The studies revealed variety of screening tools to assess patients’
SDoH across diverse healthcare settings. Themost prevalent SDoH
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domains screened included housing instability, food insecurity,
transportation and utility service needs, interpersonal safety,
financial strain, social isolation, health literacy, and education level.
Notably, the majority utilized homegrown instruments rather than
standardized tools, with PRAPARE, National Academy of
Medicine recommendations, and CMS Accountable Health
Communities screening tool being the most commonly referenced
standardized options.

These tools were tested across various settings, from primary
care clinics to emergency departments and inpatient units. While
most relied on active screening during visits, some explored passive
methods like paper questionnaires or electronic tablets. The
instruments primarily focused on individual-level SDoH, with a
minority attempting to capture community or structural factors.

This widespread implementation reflects a growing recognition
of upstream factors in shaping health outcomes. By systematically
documenting social and environmental impacts on health,
providers and researchers aim to address root causes of health
disparities, aligning with population health management and
preventive medicine principles.

Researchers found SDoH screening feasible and effective in
identifying unmet social needs across diverse populations and
implementation strategies. However, further research is warranted
to develop optimal referral systems and interventions for identified
needs, evaluate the impact of SDoH screening on patient outcomes,
or develop evidence-based interventions that effectively address
identified social needs. This will help to fully realize the potential of
this upstream approach in improving overall health outcomes and
reducing health disparities.

SDoH data collection and documentation
Our review reveals a rich landscape of SDoH data collection and
integration efforts, as summarized in Table 2. The integration of
external data sources with EHRs has significantly enhanced the
capture of SDoH, providing critical information on socioeconomic
position, neighborhood characteristics, and health behaviors [246].
This integration enables more holistic patient profiling, supporting
risk stratification, outcomes studies, and health equity initiatives.

The SDoH data collection efforts span a wide range of domains,
from housing and food insecurity to education and employment
status. The diversity of data sources – including census data,
community surveys, and administrative claims – reflects the
multifaceted nature of social determinants. However, this diversity
also underscores the challenges in standardizing data collection
and integration practices.

Several initiatives have been developed to address these
challenges through the creation of common data elements
(CDEs) and standardized models [247], including the Gravity
Project [248], the PhenX Toolkit [249], All of Us [250], andUSCDI
[250], and the extensions to the OMOP Common Data Model
[49,251,252]. These efforts aim to enable consistent data collection,
facilitating better understanding of SDoH contributions to health
inequities and improving data sharing. However, a gap persists
between available standardized elements and their implementation
in practice, contributing to heterogeneity in SDoH data collection
and documentation. Limited adoption of CDEs can be attributed to
technical challenges in integrating new data structures into existing
EHR systems, resource constraints, staff training needs, and the
diverse nature of SDoH factors across populations and healthcare
contexts.

Technical approaches for integrating external SDoH data with
EHRs have employed geocoding of addresses, aggregation of

community measures, and linkage based on unique identifiers.
While progress has been made, further research must promote
systematic collection, analysis, and application of integrated data
sources. Key steps include implementing reliable linkage mech-
anisms for disparate datasets and embedding multidimensional
patient social profiles within clinical decision tools and workflows
[253–255].

Only through purposeful integration and translation efforts can
external SDoH data fully support identification of at-risk
populations, patient-centered risk assessments, and targeted
community-clinical interventions.

NLP in SDoH
A range of NLP approaches have been leveraged to identify critical
social determinants from unstructured clinical notes. These
methods can be broadly categorized into: 1. Rule-based systems
using expert-curated lexicons and regular expressions;
2. Supervised machine learning models (e.g., convolutional neural
networks, recurrent neural networks); 3. Advanced contextual
embedding models (e.g., BERT).

Both generic NLP software libraries and custom systems
tailored to social and behavioral health domains have been
implemented. While reported accuracy metrics vary by model type
and target social determinants, precision and recall generally
exceed 80% for key factors like housing insecurity and occupations.
Simpler models often demonstrate high precision, while recent
neural networks improve sensitivity in capturing key entities from
free-text fields.

Importantly, these NLP approaches recognize more patient
social factors than structured EHR data alone, enabling richer risk
assessments and interventions. However, challenges remain in
standardization and integration into clinical workflows.

In the future, we can focus on developing better-standardized
corpora for reusable NLP systems in social domains, integrating
validated SDoH screening workflows into routine practice,
improving ontologies and shareable custom systems, enhancing
linkages to longitudinal outcomes, and conducting rigorous
assessments of multi-sector SDoH interventions and their specific
mechanisms of impact.

These efforts will facilitate more comprehensive and effective
identification and addressing of SDoH across diverse populations.

SDoH and health outcomes
This review provides insights into current approaches and gaps in
research on SDoH and health outcomes. Most studies were
retrospective analyses examining links between social determi-
nants and health issues, including neighborhood disadvantage,
food and housing insecurity, healthcare access barriers, healthcare
utilization, chronic illness control, and infectious diseases.
A smaller number of studies assessed mental health, cancer, and
mortality. This distribution of research focus highlights areas
where more investigation is needed to provide a comprehensive
understanding of SDoH impacts across all health domains.

COVID-19 has significantly impacted SDoH research, stimu-
lating greater attention to health disparities. Studies consistently
found higher COVID-19 risks and deaths among minorities, low-
income groups, and those with prior conditions. Researchers
leveraged diverse data sources, including medical records, census
indices, and surveys, to quantify the disproportionate pandemic
burden on disadvantaged groups. Some studies displayed
sophisticated applications of predictive analytics and machine
learning to model disease dynamics. This crisis has expanded
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Table 2. Social Determinants of Health (SDoH)-driven translational research: deriving and translating actionable knowledge into clinical care. NLP = natural language processing.

SDoH Screening Tools SDoH Data Collection and Documentation NLP in SDoH SDoH and Health outcomes SDoH Interventions

SDoH Domains Assessed
• Most common elements screened
were housing instability/insecurity,
food insecurity, transportation
needs, utility needs, financial
resource strain, interpersonal
safety issues.

• Other factors included social
isolation, health literacy,
education level, employment
status.

• Tools targeted a range of personal
and structural determinants.

Screening Approaches
• Majority utilized home-grown,
customized questionnaires rather
than standardized validated
instruments.

• Most common existing tools
referenced were PRAPARE, CMS
Accountable Health Communities,
and NAM recommendations.

• Both active screening by staff and
passive self-report methods used.

Settings
• Implemented across varied clinical
settings - primary care, EDs,
inpatient units, community health
centers.

• Some population-based screening
at schools or by telephone.

Effectiveness
• Broad feasibility shown across
populations and settings to
identify unmet social needs.

• More evidence needed regarding
interventions to address identified
needs.

Key Next Steps
• Expanding regular screening with
validated tools tied to follow-up
resources.

• Increasing structural screening
and community-clinical linkages.

• Integrating social needs data with
EHRs and longitudinal outcomes.

Data Sources
• The most common external SDoH data
sources linked to EHRs were census and
community survey data (at both patient/
individual and area/neighborhood levels),
administrative data like claims records,
and disease registries.

• Other sources included geospatial data,
crime statistics, built environment data,
education data, and proprietary
population health databases.

• Some studies used qualitative interviews or
surveys to gather additional patient SDoH
information not found in the EHR.

SDoH Elements
• External data provided various
socioeconomic factors (income, education,
employment, poverty level), neighborhood
variables (segregation, safety, walkability),
and health behaviors (diet, exercise,
smoking).

• These complemented and expanded the
individual-level SDoH data (food/housing
security, transportation, interpersonal
violence, etc.) captured directly in EHRs.

Linkage Approaches
• Technical approaches to integrate external
SDoH data with EHRs included geocoding
patient addresses, aggregating community
variables to patients, and direct linkage
using unique identifiers.

• Integration enabled richer patient- and
population-level SDoH data for risk
stratification, outcomes research, social
care coordination, and addressing health
disparities.

Gaps & Challenges
• More work is still needed to systematically
collect, link, analyze, and act upon SDoH
data from external sources together with
EHR data.

Methods Used
• Most common NLP approaches
were rule-based systems using
regular expressions or lexicons and
supervised machine learning
models like CNNs, LSTMs, SVMs,
and ensembles.

• Recent studies utilized pretrained
contextual models like BERT which
showed promising performance.

• Both generic NLP libraries (spaCy)
and custom systems tailored to
SDoH were tested.

Performance
• Accuracy ranged widely based on
model type and SDoH category but
precision and recall generally over
80% for housing, occupation, and
some social risks.

• Simple models had high precision
but lower sensitivity in identifying
key SDoH entities. Advanced neural
networks improved recall.

• Overall, NLP could identify more
SDoH data than structured EHR
fields alone.

Applications
• Inferring patients’ social risks,
socioeconomic status, and
exposures to guide interventions.

• Predicting outcomes like hospital
readmissions, suicide risk, and
future healthcare utilization.

• Enriching datasets for disparities
research and population health
surveillance.

Limitations & Next Steps
• Better standardized corpora for
model development and testing are
needed.

• Methods to efficiently integrate NLP
pipelines into clinical workflows
rather than one-off analyses.

• Domain ontologies and shareable
custom systems for SDoH
extraction from notes.

Outcomes Assessed
• Most common outcomes examined
were healthcare utilization (ED visits,
hospitalizations, readmissions),
chronic disease control (diabetes,
hypertension, CVD), and COVID-19
severity.

• Other outcomes included cancer
screening/treatment, obesity/BMI,
mortality, mental health, substance
use disorders, and patient-reported
metrics.

SDoH Factors
• Frequently measured SDoH
elements were neighborhood
disadvantage, food/housing
insecurity, access to care/insurance,
education, income, and social
support.

• Race/ethnicity, immigrant status,
and geographic factors were also
analyzed as social determinants.

Analytical Approaches
• Regression models evaluated
associations between SDoH factors
and outcomes. Some prediction
models incorporated both clinical
and social variables.

• Studies linked area-level SDoH data
from census and surveys to
individual-level EHR data.

Key Findings
• Multiple studies found
socioeconomic deprivation, insecure
housing, lack of social support, and
similar factors increased risk for
adverse outcomes.

• But overall evidence was mixed,
highlighting context-specific
impacts. More research is needed on
mechanisms.

Types of Interventions
• Most common interventions were
social programs like community health
initiatives, resource referrals/patient
navigation services, integrated care
management, and group education
sessions.

• Some studies allocated additional
resources like medical staff or
equipment.

• A few tested policy changes or system-
level practice transformations.

Implementation Levels
• Interventions operated at the
community, hospital/clinic, or health
system level.

• Community programs enabled
broader reach and incorporation of
public health principles.

• Clinic-based initiatives allowed better
integration with healthcare delivery.

Components
• Roughly half emphasized family/peer
support and social connections as part
of the intervention.

Outcomes
• Knowledge, self-efficacy, and resource
utilization were commonly measured
process outcomes.

• Clinical outcomes like chronic disease
control, medication adherence, and
health behaviors were assessed in
some studies.

• Cost savings and healthcare utilization
were less frequently examined.

Effectiveness
• Most interventions showed some
benefits but had limited
generalizability due to small samples
or single health systems.

• Overall evidence was mixed and
highlighted implementation barriers
regarding sustainability, adoption, and
cost.
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SDoH data infrastructure and methodology while underscoring
long-term disparities. Assessing pandemic response and recovery
across social levels is critical, as disruptions may exacerbate
existing health inequities among vulnerable groups.

Methodologically, regression modeling was commonly used to
characterize adjusted outcome associations. However, more
advanced analytics and predictive modeling were less prevalent.
This gap presents an opportunity for more sophisticated computa-
tional research to uncover precise interactions between SDoH and
health outcomes.

Moving forward, key areas for development include standard-
izing processes for SDoH data collection and integration into
medical records, shifting from predominantly observational
analyses to more interventional studies, and translating research
findings into community initiatives for at-risk groups. Developing
analytic guidelines to navigate the complexities of real-world
SDoH data and creating standardized frameworks for SDoH data
analysis in healthcare are also crucial.

These advancements are essential for health outcomes research,
providing a foundation for more effective, evidence-based
interventions and policies that consider the broad influences of
social factors on health. By addressing these challenges, we can
better leverage SDoH data to inform healthcare decisions and
strategies, ultimately working toward reducing health disparities
and improving population health.

SDoH interventions
Interventions addressing health care-related issues occur at micro
(patient care), meso (healthcare institutions), and macro (health-
care policy) levels [256,257]. Our review found that SDoH
recognition primarily facilitates interventions at the meso level,
including primary care and specialist referrals, patient navigation
services, integrated care management, group education sessions,
and resource allocation. Fewer studies reported macro-level policy
changes or micro-level interventions emphasizing family/peer
support and social connections for individual patients.

While many interventions showed some benefit, their general-
izability was often limited due to narrow focus within single health
systems (citation needed). This limitation is particularly relevant in
the US, where health delivery systems are often fragmented into
regional networks (citation needed). Implementing interventions
for vulnerable populations presents unique challenges, as
demographics vary across communities depending on cultural
and geographical factors [258,259].

Healthcare professionals must recognize that identifying SDoH
within a community is only the initial stage. Establishing
connections between individuals facing both health and social
issues can be challenging due to various barriers. Building trust
with vulnerable individuals is an ongoing process requiring
sustained social and material support from healthcare profession-
als and community social workers. Creating effective regional
support networks necessitates lasting partnerships with organ-
izations possessing resources to address SDoH-related challenges,
such as housing and transportation [24].

To enhance intervention effectiveness, mature plans with
SDoH collection tools embedded in EHR systems should be
adopted and tailored to the target population’s needs. Careful
selection of platforms for survey distribution and data storage
is crucial to prevent duplication of effort, ensure data integrity,
and promote program sustainability. It’s imperative to collect

intervention-informing data directly from the affected population.
Incorporating patient feedback is essential for achieving optimal
results. Pilot surveys can be used to pretest data collection
instruments, allowing for refinement based on patient input. This
collaborative approach helps create a more supportive environ-
ment for vulnerable individuals and mitigates unforeseen
obstacles [261].

Along with these methods, many interventions have been tried
to help with known social problems and imbalances. Some of these
are community health programs, help finding resources, patient
navigation services, unified care management models, and
educational meetings with peer support. Vulnerable groups have
been given extra resources like more medical staff or tools in some
studies. System-level policy changes have also been implemented
to promote health equity [260].

Future research should focus on rigorous evaluation of health
outcomes improvement to ensure the long-term success and
widespread applicability of SDoH interventions [261,262].

Cross-cutting insights

Despite progress in SDoH research and implementation, several
challenges persist across domains. These challenges highlight the
need for an integrated approach to advance the field.

Standardization remains a critical issue in SDoH integration.
The current variability in screening tools, data collection methods,
and documentation practices [263] hinders comparability and
generalizability of findings. There’s an urgent need for standard-
ized corpora, data elements, and workflows across all aspects of
SDoH integration to facilitate more robust and comparable
research.

Data integration presents another significant challenge.
Presently, expertise and data often reside in silos, with screening,
linkage, extraction, analysis, and intervention programs operating
independently [264]. Breaking down these silos to create a
comprehensive platform spanning from data collection to
application is crucial for optimizing SDoH efforts. As research
continues, embracing interoperable design principles and con-
trolled evaluation around representative datasets, model trans-
parency, and equitable outcomes remains vital [265].

Technological advancements offer both opportunities and
challenges. While NLP and machine learning show promise in
SDoH identification and analysis, their application remains
limited. Few studies have employed advanced predictive modeling
techniques, highlighting an area for growth. The recent exponen-
tial development in large language models (LLMs) presents new
opportunities for SDoH entity recognition across contexts
[266,267].

Longitudinal studies are crucial for understanding the long-
term impact of SDoH interventions. Enhanced linkages to
longitudinal outcomes are needed to fully grasp the effects of
interventions over time. This requires rethinking workflows to
integrate contextual data into real-world utilities [49].

As the field evolves, embracing interoperable design principles,
controlled evaluation around representative datasets, and a focus
on equitable outcomes will be vital. The integration of advanced
technologies like LLMs must be balanced with ethical consid-
erations and rigorous validation to ensure their reliable and
equitable application in SDoH contexts.

By addressing these cross-cutting issues, the field can move
towardmore comprehensive, effective, and equitable integration of
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SDoH in healthcare, ultimately improving population health
outcomes and reducing health disparities.

Limitations

This scoping review faces certain limitations in comprehensively
capturing the state of SDoH data integration into EHRs. Relying
solely on PubMed for literature searches and limiting the results to
English papers may introduce selection bias, omitting potentially
relevant research indexed in other databases. Supplementing with
sources like SCOPUS or Web of Science may have revealed
additional insights and applications. Additionally, our search
strategy relies on the MeSH terms “SDoH” and “EHR” in our
search strategy. While using standardized subject headings helps
retrieve relevant articles indexed in MEDLINE and PubMed, it
may have limited the scope of our search. Future research could
expand the search strategy to include specific SDoH factors and
compare the results with our current findings. This approach may
provide a more comprehensive understanding of the literature on
SDoH and EHR integration, particularly for studies conducted
before the widespread use of the term ‘SDoH’.

Due to resource constraints, the metadata extraction from the
final set of included studies was completed by a single reviewer.
Having dual independent extraction with consensus meetings is
ideal to ensure accuracy and completeness of scoping review data
abstractions. The feasibility and impact of implementing a second
reader should be evaluated in future updates to strengthen
robustness.

Our review methodology, which relies on published literature,
may not fully capture the landscape of SDoH screening tools used
in clinical practice. Many healthcare institutions have imple-
mented SDoH screening within their EHR systems without
publishing these efforts in academic literature. This gap between
published research and actual clinical practice means our review
may underestimate the prevalence and variety of SDoH screening
tools in use. Our findings primarily reflect tools that have been
reported in academic literature, which may disproportionately
represent novel or custom-developed instruments rather than
more commonly used, commercially available tools.

Finally, heterogeneity across settings, populations, tools, and
outcomes creates complexity in evaluating SDoH-EHR integration
maturity. Varying implementation stages and study designs
introduce difficulty in benchmarking best practices. The scoping
methodology prioritized inclusiveness over appraising integration
quality, leaving gaps in assessing real-world effectiveness.
Capturing nuanced, multidimensional integration processes by
diverse healthcare systems persists as a challenge, though
framework refinement helps structure insights.

Future research could benefit from alternative methodologies to
capture a more comprehensive picture of SDoH screening
practices and data integration. This might include surveys of
healthcare institutions, analysis of EHR vendor data, or case
studies of health systems’ unpublished screening practices. Such
approaches could help bridge the gap between published literature
and real-world implementation of SDoH screening tools and data
integration practices.

Conclusion

Overall, while collecting patient social contexts shows immense
potential to rectify health disparities, realizing these possibilities
requires ongoing informatics innovation alongside economic

investments and policy reforms targeting root societal drivers.
This review contributes an evidence base for such continued
progress in wisely applying multidimensional SDoH data to
promote health equity.

The integration of SDoH data into healthcare practice
holds transformative potential for addressing health disparities.
Realizing this potential demands continued innovation, strategic
investment, and policy evolution, guided by the evidence and
insights garnered from comprehensive SDoH research.
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