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Abstract
We study an epidemic patch model that describes the disease spread in population with variable latency due to
the differences in immunologic tolerance between individuals. We focus on whether the disease can spread in
space that leads to the emergence of epidemic wave, that is the travelling wave solution with constant speed. We
first establish some properties of the linearized wave profile equations, which are helpful in obtaining the priori
estimates of travelling waves and wave speeds. Then, applying the truncation method and limiting arguments, we
can obtain threshold propagation dynamics of the epidemic model. Our result gives a complete characterization of
the existence, nonexistence and minimal wave speed of travelling waves. To the best of our knowledge, this is the first
time to characterize the propagation dynamics of epidemic patch model with variable latency, which contributes to
the understanding of the transmission phenomenon of disease.

1. Introduction

With the emergence of various infectious diseases in the development of human society, mathemati-
cal models have become an important tool for understanding the transmission dynamics of infectious
diseases. In past decades, great attention has been paid to investigate the evolution of diseases through
different mathematical models. For example, many different reaction-diffusion and integro-differential
continuous models were established under the assumption that the populations disperse among contin-
uous spaces, see [2, 8, 9, 13–16, 19, 21, 22, 25, 27, 29–31, 33, 37]. However, due to the development
of modern transportation, the mobility of population in real life usually has the characteristics of large
scale and span. When the infected persons travel by buses, trains or airplanes, many epidemics (such
as plague, SARS, COVID-19, H1N1 flu, etc.) can be easily spread between different discrete spaces,
such as cities, countries or regions. Therefore, it is more realistic and important to consider the impact
of population diffusion in patchy environments on the spread of disease.

In order to investigate the dynamics of disease transmission under the influence of a population dis-
persal among patches, Wang and Zhao [20] proposed the following epidemic dynamical systems with
population dispersal among n patches:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dSj

dt
=

n∑
i=1

ajiSi − μjSj − βjSjIj + γjIj + Bj(Nj)Nj,

dIj

dt
=

n∑
i=1

bjiIi − (μj + γj)Ij + βjSjIj,
for j = 1, · · · , n, (1)
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where Sj(t) and Ij(t) denote the densities of susceptible individuals and infected individuals respectively
in patch j at time t ≥ 0;

aii ≤ 0 represents the emigration rate of susceptible individuals in i−th patch;
aji ≥ 0 (j �= i) represents the immigration rate of susceptible individuals from i−th patch to
j−th patch;
bii ≤ 0 represents the emigration rate of infective individuals in i−th patch;
Nj = Sj + Ij represents the total number of population in patch j;
Bj(·) represents the birth rate of population in the j−th patch.

One can see from [20] that system (1) admits a threshold dynamics for the uniform persistence and
extinction of disease, provided the birth rate satisfies certain assumptions.

Later, to clarify the effects of habitat connectivity and movement rates on the disease transmission
dynamics, Allen et al. [1] proposed the following frequency-dependent SI metapopulation model which
consists of n patches:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dSj

dt
= dS

∑
i∈�

(
LjiSi − LijSj

) − βj

SjIj

Sj + Ij

+ γjIj,

dIj

dt
= dI

∑
i∈�

(
LjiIi − LijIj

) + βj

SjIj

Sj + Ij

− γjIj,
for j = 1, · · · , n, (2)

where � = {1, 2, · · ·, n};
dS and dI are positive diffusion rates for the susceptible and infected subpopulations (resp.);
Lji describes the degree of movement from patch i to patch j;
βj and γj are positive rates of disease transmission and recovery (resp.) in patch j.

They proved the existence and stability of disease-free and endemic equilibria and established some
threshold type results which can predict whether the disease will persist or die out. Their results link the
spatial heterogeneity, habitat connectivity and rates of movement to disease persistence and extinction.

Note that both results of [1, 20] characterized the global dynamics of the disease equilibria in terms
of the values of basic reproduction numbers for the considered models. It has been realized that the
persistence and extinction of disease are related to whether the infectious source can spread between
patches as a wave. This fact prompts some researchers to investigate the propagation phenomena of
travelling waves for different epidemic patch models. Guo et al. [6, 11, 23] considered comprehensively
the travelling wave solutions for a class of epidemic patch model of the form (1), under the assumption
that the population is distributed on infinite patches and spreads only in adjacent patches. The recent
works [28, 32, 34, 36] made further generalization and development by introducing different types of
nonlinear incidence rates. In these works, some threshold type results were established for the existence
and nonexistence of travelling waves connecting two different equilibrium states. Let’s point out that
all the aforementioned works considered the models that the population disperses between its adjacent
patches, i.e., the population in the j patch only interacts with those in the j + 1 and j − 1 patches. Such
a characteristic in mathematics makes the wave equations of the models second-order difference equa-
tions. This brings some conveniences for the mathematical analysis to the models that considered in the
aforementioned works. However, as mentioned above, the population in real world may spread over a
large span due to the development of modern transportation.

On the other hand, it is known that for some diseases, such as the recent epidemic outbreak of
COVID-19, the incubation period usually fluctuates in certain range due to the differences in immuno-
logic tolerance between individuals. Therefore, the latent period from infection to onset of symptoms is
often a variable. Inspired by the works [3, 7], it is more realistic to describe the incubation period via
a weight function, which specifies the probability that an individual from uninfected to infection in a
certain time interval.

To explore the spatial dynamics of disease spreads under the effects of large span diffusion and
variable latency, we consider the following formulation of epidemic patch model:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

dt
Sj = dS

∑
i∈Z

J1(i)
(
Sj−i − Sj

) − βSj

∫ τ

0

f (s)Ij(t − s)ds,

d

dt
Ij = dI

∑
i∈Z

J2(i)
(
Ij−i − Ij

) + βSj

∫ τ

0

f (s)Ij(t − s)ds − γ Ij,
for j ∈Z, (3)

where τ > 0 represents the maximum latent period from infection to onset of symptoms. Different to
system (2), we assume that the disease transmission rate and recovery rate are isotropic (i.e., βi ≡ β,
γi ≡ γ ), and the population in patch j can dispersal to j − i patch with probability Jk(i) (k = 1, 2) for
i ∈Z. Similar to [3, 7], we assume that the variation of incubation period is described by a probability
function f (·) satisfying ∫ τ

0

f (s)ds = 1.

Note that the term Sj

∫ τ

0

f (s)Ij(t − s)ds measures the infection force of disease in patch j and at time t.

Actually, system (3) is a SIR (Susceptible-Infectious-Removed) type epidemic model that the recovered
individuals are not involved in the transmission of the disease as they will not be re-infected due to the
protection of antibodies. This model describes a closed system without births and deaths. Our goal is to
explore the propagation phenomena in system (3), especially travelling wave solutions. Although there
have been many researches on the travelling waves of different discrete systems modelling epidemic
dynamics, the analysis of systems with distributed delay and global interactions should be relatively
more difficult. As we know, there seems to have no results on the wave propagation for this type of
epidemic dynamical systems.

A travelling wave solution of system (3) means a solution propagating with a constant speed c and a
fixed profile. Mathematically, one can consider the ansatz

Sj(t) = S(j + ct) = S(ξ ) and Ij(t) = I(j + ct) = I(ξ ) (4)
for some wave functions S(·) and I(·) defined on R, where ξ = j + ct means the moving coordinate.
Substituting the transformations of (4) into (3), we can obtain the profile equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cS′(ξ ) = dS

∑
i∈Z

J1(i) (S(ξ − i) − S(ξ )) − βS(ξ )
∫ τ

0

f (s)I(ξ − cs)ds,

cI ′(ξ ) = dI

∑
i∈Z

J2(i) (I(ξ − i) − I(ξ )) + βS(ξ )
∫ τ

0

f (s)I(ξ − cs)ds − γ I(ξ ).
(5)

In order to explain the evolution process of disease from outbreak to extinction, we are interested in
finding the positive solutions of system (5) that connect from the initial disease-free state to the final
disease-free state, i.e., (S(ξ ), I(ξ )) satisfies the following conditions:

0 < S(ξ ) ≤ S0, I(ξ ) > 0, for all ξ ∈R,

lim
ξ→−∞

(S(ξ ), I(ξ )) = (S0, 0) and lim
ξ→+∞

(S(ξ ), I(ξ )) = (S∞, 0), (6)

The constant S0 > 0 represents the density of susceptible individuals before the onset of epidemics, while
S∞ ∈ [0, S0) represents the density of susceptible individuals after the onset of epidemics. Condition
(6) means that the travelling wave solutions are of mixed type, i.e., S−component is front type and
I−component is pulse type. Biologically, the mixed type travelling wave indicates that the number of
infected individuals increases first, and then decreases gradually until extinction.

In past years, there have been many literature working on the travelling waves of different discrete SI
type epidemic dynamical systems, see e.g., [6, 11, 18, 23, 24, 28, 36, 38] and so on. However, little is
known so far for the models like (3) with non-adjacent diffusion and distributed delay. The main difficulty
arises from the fact that the solutions of (3) have no priori upper bound when the basic reproduction
number

R0 := βS0/γ
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is greater than one, which leads to the construction of bounded travelling wave solution becomes very
difficult. To overcome the difficulty and for mathematical convenience, throughout this paper, we assume
that Jk(·) (k = 1, 2) are compactly supported so that

1. (J) Jk(i) = 0 for |i| > 2 and Jk(i) = Jk(−i) > 0 for |i| ≤ 2.

Focusing on the dispersal operator, one can see that system (2) is a particular case of system (1). In
addition, focusing on the susceptible population equations, the dispersal operator in system (3) is also
a particular case of that in system (2), e.g., we may take Lj,i = Li,j = J1(|j − i|). This fact also provides
the reason why we impose the symmetry property on Jk(i) in assumption (J). Moreover, the symmetry
of the kernel functions can ensure that the travelling wave solutions propagate forward(i.e., wave speed
c > 0, cf. Lemma 3.1), which is of particular interest in applications.

Based on the above assumption, we first establish some properties of solutions for the linearized
equation of the profile equation (5) around the disease-free equilibrium (S0, 0). With the help of these
properties, when the basic reproduction number R0 is greater than one, we may apply the truncation
method and develop some novel analytical techniques to establish the travelling wave solutions of (3)
that satisfy the condition (6). Moreover, we consider the minimal speed problem of travelling waves,
which is important in epidemiology since it is usually the speed at which the disease spreads. Our main
results can be summarized as the following theorem.

Theorem 1.1. There exists a c∗ > 0 such that the following statements are valid.

(1) If R0 > 1, then system (3) admits a travelling wave (S(ξ ), I(ξ )) satisfying (6) if and only if c ≥ c∗.
(2) If R0 ≤ 1, system (3) has no travelling wave satisfying (6) for any c ∈R.

From Theorem 1.1, one can see that R0 is a threshold value in determining the occurrence of wave
propagation of system (3). The critical speed c∗ is the minimal wave speed of travelling waves when
R0 > 1. Moreover, it is interesting to see that the population moves at different speed the disease will go
extinct. Indeed, if we fix an initial time, then the I component goes to zero as time goes to infinity.

To deal with the problem of minimal wave speed, we make use of some priori estimates and suitable
limiting arguments. Let’s point out that the limiting arguments were used in many works to study the
existence of front type minimal travelling waves (i.e., the travelling waves with minimal speed connecting
a zero equilibrium and a certain positive equilibrium) for various evolution equations, see [4, 5, 10, 14,
19, 26, 35] and so on. However, for SI epidemic systems, little works have been done for the existence
of mixed type minimal travelling waves connecting two disease-free equilibria. The difficulty comes
from proving the non-triviality (S−component is non-constant, and I−component is non-zero) of the
limiting function and showing its asymptotic behaviour that connects two disease-free equilibria, cf.
[23]. To overcome the difficulty, we use some limiting arguments and establish a crucial lemma (see
Lemma 3.3) to prove the existence of minimal travelling wave of system (3) that connects two disease-
free equilibria. Further, the nonexistence of travelling waves of system (3) is derived by using some
priori estimates and the properties of solutions of the linearized profile equation.

Let’s remark that Theorem 1.1 provides a complete characterization of the existence, nonexistence
and minimal speed of travelling waves. To the best of our knowledge, this is the first result on the
propagation dynamics of epidemic patch model with large span diffusion and variable incubation period.

The remainder of this paper is organized as follows. In Section 2, we establish some properties of
the solutions for the linearized profile equation around the disease-free equilibrium. Some crucial priori
estimates on wave profiles and wave speeds are given in section 3. In section 4, we first establish the
existence of solutions for the profile system (5) over large finite domains. Then, we apply the truncation
method via some different limiting arguments to prove the results of Theorem 1.1.
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2. Some properties of the linearized profile equation

Linearizing the second equation of (5) around the disease-free equilibrium (S0, 0) yields to the linear
equation

cI ′(ξ ) =dI

∑
i∈�̃

J2(i) (I(ξ − i) − I(ξ )) + βS0

∫ τ

0

f (s)I(ξ − cs)ds − γ I(ξ ), for ξ ∈R, (7)

By the assumption (J), it is clear that �̃ = {−2, −1, 1, 2}. To establish a more general theoretical
framework, we embed (7) into the following general form:

cϕ ′(ξ ) = d
∑
i∈�̃

J(i)ϕ(ξ − i) + b0

∫ τ

0

f (s)ϕ(ξ − cs)ds + bϕ(ξ ), for ξ ∈R, (8)

where d, c > 0, b0 ≥ 0, b ∈R and J satisfies the assumption (J). Clearly, the equation (7) is a special
form of (8) with d := dI , b0 := βS0, b := −(dI

∑
i∈�̃

J2(i) + γ ) and J(i) := J2(i).
The characteristic equation of (8) is defined by

�(d, b0, b, c, λ) = d
∑
i∈�̃

J(i)e−λi + b0

∫ τ

0

f (s)e−cλsds − cλ + b = 0. (9)

It is easy to verify that �(d, b0, b, c, ·) = 0 has at most two real roots since it is convex with respect
to λ. Especially, when R0 = βS0/γ > 1 and J(i) = J2(i), it is obvious that �(dI , βS0, −dI

∑
i∈�̃

J2(i) −
γ , c, λ) is decreasing in c with �(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, 0) > 0 and �(dI , βS0, −dI

∑
i∈�̃

J2(i) −
γ , 0, λ) > 0 for all λ > 0. Thus, the constant c∗, defined by

c∗ := inf
{
c > 0| �(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, λ) = 0 has a positive real root
}
,

is well-defined. In addition, we have the following properties:

◦ if c > c∗, �(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, λ) = 0 has two distinct positive roots λ1 = λ1(c) < λ2 =
λ2(c);

◦ if c = c∗, �(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, λ) = 0 has a unique positive real root λ∗;
◦ if c < c∗, �(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, λ) = 0 has no positive real root.

Let ϕ(ξ ) be a positive solution of (8) with c > 0, it is clear that φ(ξ ) := ϕ ′(ξ )/ϕ(ξ ) satisfies the
equation

cφ(ξ ) = d
∑
i∈�̃

J(i)e
∫ ξ−i
ξ φ(y)dy + b0

∫ τ

0

f (s)e
∫ ξ−cs
ξ φ(y)dyds + b, for ξ ∈R. (10)

Boundedness and smoothness for solutions of (10) are established in the following lemma.

Lemma 2.1. If φ(·) is a solution of equation (10), then φ(·) ∈ L∞(R) ∩ C∞(R).

Proof. Let ’s denote

u(ξ ) := ev1ξ+∫ ξ
0 φ(y)dy with v1 := −b/c.

Then, u(ξ ) satisfies the equation

cu′(ξ ) = d
∑
i∈�̃

J(i)eiv1 u(ξ − i) + b0

∫ τ

0

f (s)ecsv1 u(ξ − cs)ds > 0, (11)

which implies that u(ξ ) is strictly increasing on R. Thus, for any p ∈ �̃ with p > 0, we have

cu′(ξ ) > dJ(p)e−pv1 u(ξ + p). (12)
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Integrating the inequality (12) from ξ − p

2
to ξ gives

cu(ξ ) − cu
(
ξ − p

2

)
>

dp

2
J(p)e−pv1 u

(
ξ + p

2

)
,

which implies

u(ξ ) >
dpJ(p)u

(
ξ + p

2

)
2cepv1

>
d2p2J2(p)u(ξ + p)

4c2e2pv1
,

and hence
u(ξ + p)

u(ξ )
<

4c2e2pv1

d2p2J2(p)
. (13)

Since u(ξ ) is strictly increasing onR, it follows from (11) and (13) that u′(ξ )/u(ξ ) ≤ M0, for some M0 > 0.
Note that φ(ξ ) = u′(ξ )/u(ξ ) − v1. Thus, φ(ξ ) is uniformly bounded. Moreover, by (10), it is easy to see
φ(·) ∈ C∞(R). The proof is complete.

In addition, we prove that any non-constant solution of (10) has no global extrema.

Lemma 2.2. Let φ(ξ ) be a solution of (10) that attains its global maxima or minima, then it must be a
constant function.

Proof. The proof of the case b0 = 0 is similar to that of [12, Lemma 2.8], so we only consider the case
b0 > 0. Differentiating equation (10) gives

cφ ′(ξ ) = d
∑
i∈�̃

J(i)e
∫ ξ−i
ξ φ(y)dy(φ(ξ − i) − φ(ξ )) + b0

∫ τ

0

f (s)e
∫ ξ−cs
ξ φ(y)dy(φ(ξ − cs) − φ(ξ ))ds. (14)

Suppose that φ(ξ ) admits a global maxima at ξ∗, then (14) gives

0 = cφ ′(ξ∗) = d
∑
i∈�̃

J(i)e
∫ ξ∗−i
ξ∗ φ(y)dy(φ(ξ∗ − i) − φ(ξ∗)) + b0

∫ τ

0

f (s)e
∫ ξ∗−cs
ξ∗ φ(y)dy(φ(ξ∗ − cs) − φ(ξ∗))ds ≤ 0,

which implies

φ(ξ∗ − i) = φ(ξ∗), for i ∈ {−2, −1, 1, 2}; and φ(ξ∗ − cs) = φ(ξ∗), for s ∈ [0, τ ].

By induction arguments, we can conclude that φ(ξ ) = φ(ξ∗) for all ξ ∈R. Similarly, φ(ξ ) is a constant
function provided that it admits a global minima. The proof is complete.

Next, we investigate the asymptotic behaviour of solutions for the equation (10).

Lemma 2.3. Assume that φ(ξ ) is a solution of (10). Then we have the following statements.

(1) φ( ± ∞) := lim
ξ→±∞

φ(ξ ) exist and �(d, b0, b, c, φ( ± ∞)) = 0.

(2) If φ(ξ ) is a non-constant solution, then

φ(ξ ) − φ(−∞) ∈ C1(R, (0, ∞)) ∩ L1(R−) and φ(+∞) − φ(ξ ) ∈ C1(R, (0, ∞)) ∩ L1(R+).

Proof. (1) Let {yj}∞
j=1 be a sequence such that

lim
j→+∞

yj = +∞ and lim
j→+∞

φ(yj) = w∗ := lim sup
ξ→+∞

φ(ξ ).

Denote ηj(ξ ) := φ(yj + ξ ) for j ∈N. Clearly, {ηj(ξ )}∞
j=1 is uniformly bounded and equicontinuous. Then it

follows from the Arzela-Ascoli theorem that {ηj(ξ )}∞
j=1 has a subsequence, still written as {ηj(ξ )}∞

j=1, such
that ηj(ξ ) → η(ξ ) in C1

loc(R) as j → +∞. Hence, η(ξ ) is a solution of (10) with η(0) = w∗ = maxξ∈R η(ξ ).
By Lemma 2.2, we have η(ξ ) = w∗ for all ξ ∈R, which implies

lim
j→+∞

max
[yj−2−cτ ,yj+2+cτ ]

|φ(ξ ) − w∗| = 0. (15)
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We first show that φ(+∞) exists. Suppose w∗ > w∗ := lim inf
ξ→+∞

φ(ξ ), by (15), there exists a sufficiently
large j such that

min
ξ∈[yj ,yj+1]

φ(ξ ) <
w∗ + w∗

2
and φ(ξ ) >

w∗ + w∗

2
, for ξ ∈[

yj, yj + 2 + cτ
] ∪[

yj+1 − 2 − cτ , yj+1

]
. (16)

Let ŷ be the point such that φ(ŷ) = min
ξ∈[yj ,yj+1]

φ(ξ ). According to (16), we have ŷ ∈ (yj + 2 + cτ , yj+1 − 2 −
cτ ). Then, for s ∈ [0, τ ], it holds that φ ′(ŷ) = 0,

φ(ŷ) ≤ min
{
φ(ŷ + 1), φ(ŷ + 2)

}
, φ(ŷ) < min

{
φ(ŷ − 1), φ(ŷ − 2)

}
and φ(ŷ) ≤ φ(ŷ − cs).

Taking ξ = ŷ in (14) yields

0 = d
∑
i∈�̃

J(i)e
∫ ŷ−i

ŷ φ(y)dy(
φ(ŷ − i) − φ(ŷ)

) + b0

∫ τ

0

f (s)e
∫ ŷ−cs

ŷ φ(y)dy(
φ(ŷ − cs) − φ(ŷ)

)
ds > 0,

which leads to a contradiction. Hence w∗ = w∗, i.e., the limit φ(+∞) exists.
In the same way, we can obtain that φ(−∞) exists. Letting ξ → ±∞ in (10), it follows that φ( ± ∞)

satisfy the equation �(d, b0, b, c, φ( ± ∞)) = 0.
(2) Since φ(ξ ) is a non-constant solution, according to Lemma 2.2, φ(ξ ) cannot attain its global

extrema. Thus, φ(−∞) �= φ(+∞) and

λ1 := min{φ(−∞), φ(+∞)} < φ(ξ ) < max{φ(−∞), φ(+∞)} := λ2.

We first claim that φ(−∞) < φ(+∞). If the claim is false, i.e., φ(−∞) > φ(+∞), one has φ(+∞) = λ1.
Thus, given any small ε > 0, by translation if necessary, we may assume that

φ(ξ ) < λ1 + ε, for ξ > 0 and λ1 + ε ≤ φ(ξ ), for ξ ≤ 0. (17)

According to (10) and (17), we have

c(λ1 + ε) = cφ(0) = d
−1∑

i=−2

J(i)e
∫ −i

0 φ(y)dy + d
2∑

i=1

J(i)e
∫ −i

0 φ(y)dy + b0

∫ τ

0

f (s)e
∫ −cs

0 φ(y)dyds + b

≤ d
−1∑

i=−2

J(i)e−(λ1+ε)i + d
2∑

i=1

J(i)e−(λ1+ε)i + b0

∫ τ

0

f (s)e−(λ1+ε)csds + b

= d
∑
i∈�̃

J(i)e−(λ1+ε)i + b0

∫ τ

0

f (s)e−(λ1+ε)csds + b,

which implies

�(d, b0, b, c, λ1 + ε) = d
∑
i∈�̃

J(i)e−(λ1+ε)i + b0

∫ τ

0

f (s)e−(λ1+ε)csds + b − c(λ1 + ε) ≥ 0. (18)

However, the inequality (18) contradicts to the fact that �(d, b0, b, c, λ1 + ε) < 0 for every small ε > 0
with λ1 + ε < λ2. Therefore, λ1 = φ(−∞) < φ(+∞) = λ2.
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Next we show that
∫ 0

−∞
(φ(ξ ) − λ1)dξ < +∞. Combining the equations �(d, b0, b, c, λ1) = 0 and

(10), we have

c(φ(ξ ) − λ1) =d
∑
i∈�̃

J(i)(e
∫ ξ−i
ξ φ(y)dy − e−iλ1 ) + b0

∫ τ

0

f (s)(e
∫ ξ−cs
ξ φ(y)dy − e−csλ1 )ds

=d
−1∑

i=−2

J(i)eB1(ξ ,i)

∫ ξ−i

ξ

(φ(y) − λ1)dy + d
2∑

i=1

J(i)eB2(ξ ,i)

∫ ξ−i

ξ

(φ(y) − λ1)dy+

b0

∫ τ

0

f (s)eB3(ξ ,s)

∫ ξ−cs

ξ

(φ(y) − λ1)dyds, (19)

where B1(ξ , i) ∈ [−iλ1, −i maxy∈[ξ ,ξ−i] φ(y)] for i ∈ {−2, −1};
B2(ξ , i) ∈ [−i max

y∈[ξ−i,ξ ]
φ(y), −iλ1] for i ∈ {1, 2}; and B3(ξ , s) ∈ [−cs max

y∈[ξ−cs,ξ ]
φ(y), −csλ1].

Let’s denote R(ξ ) := φ(ξ ) − λ1. Integrating (19) from M to 0 with M < −2 − cτ gives

c
∫ 0

M

R(ξ )dξ =d
−1∑

i=−2

J(i)
∫ 0

M

∫ ξ−i

ξ

eB1(ξ ,i)R(y)dydξ + d
2∑

i=1

J(i)
∫ 0

M

∫ ξ−i

ξ

eB2(ξ ,i)R(y)dydξ+

b0

∫ τ

0

f (s)
∫ 0

M

∫ ξ−cs

ξ

eB3(ξ ,s)R(y)dydξds. (20)

Changing the integration order in (20) yields

0 = − c
∫ 0

M

R(ξ )dξ + d
−1∑

i=−2

J(i)
∫ M−i

M

∫ y

M

eB1(ξ ,i)R(y)dξdy + d
−1∑

i=−2

J(i)
∫ 0

M

∫ y

y+i

eB1(ξ ,i)R(y)dξdy

− d
−1∑

i=−2

J(i)
∫ M−i

M

∫ y

y+i

eB1(ξ ,i)R(y)dξdy + d
−1∑

i=−2

J(i)
∫ −i

0

∫ 0

y+i

eB1(ξ ,i)R(y)dξdy

− d
2∑

i=1

J(i)
∫ M

M−i

∫ y+i

M

eB2(ξ ,i)R(y)dξdy − d
2∑

i=1

J(i)
∫ 0

M

∫ y+i

y

eB2(ξ ,i)R(y)dξdy

+ d
2∑

i=1

J(i)
∫ 0

−i

∫ y+i

y

eB2(ξ ,i)R(y)dξdy − d
2∑

i=1

J(i)
∫ 0

−i

∫ 0

y

eB2(ξ ,i)R(y)dξdy

− b0

∫ τ

0

f (s)
∫ M

M−cs

∫ y+cs

M

eB3(ξ ,s)R(y)dξdyds − b0

∫ τ

0

f (s)
∫ 0

M

∫ y+cs

y

eB3(ξ ,s)R(y)dξdyds

+ b0

∫ τ

0

f (s)
∫ 0

−cs

∫ y+cs

y

eB3(ξ ,s)R(y)dξdyds − b0

∫ τ

0

f (s)
∫ 0

−cs

∫ 0

y

eB3(ξ ,s)R(y)dξdyds. (21)

Let ε > 0 be small enough, by translation if necessary, we may assume that φ(ξ ) < λ1 + ε for ξ < θ

and λ1 + ε ≤ φ(ξ ) for ξ ≥ θ , where θ = 2 + cτ . Note that there exists some constant K > 0 such that
|R(ξ )| ≤ K for all ξ ∈R. Then we can obtain

d
−1∑

i=−2

J(i)
∫ M−i

M

∫ y

M

eB1(ξ ,i)R(y)dξdy

≤dK
−1∑

i=−2

J(i)
∫ M−i

M

∫ y

M

e−i(λ1+ε)dξdy = 1

2
dK

−1∑
i=−2

J(i)i2e−i(λ1+ε) < +∞. (22)
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It is also easy to verify that

d
−1∑

i=−2

J(i)
∫ −i

0

∫ 0

y+i

eB1(ξ ,i)R(y)dξdy < +∞, d
2∑

i=1

J(i)
∫ 0

−i

∫ y+i

y

eB2(ξ ,i)R(y)dξdy < +∞,

b0

∫ τ

0

f (s)
∫ 0

−cs

∫ y+cs

y

eB3(ξ ,s)R(y)dξdyds < +∞.

Then it follows from (21) that ∫ 0

M

�(y)R(y)dy ≤O(1), (23)

where O(1) is uniformly bounded and

�(y) := c − d
−1∑

i=−2

J(i)
∫ y

y+i

eB1(ξ ,i)dξ + d
2∑

i=1

J(i)
∫ y+i

y

eB2(ξ ,i)dξ + b0

∫ τ

0

f (s)
∫ y+cs

y

eB3(ξ ,s)dξds.

Note that

�(y) ≥c + d
−1∑

i=−2

J(i)ie−i(λ1+ε) + d
2∑

i=1

J(i)ie−i(λ1+ε) + b0

∫ τ

0

f (s)cse−cs(λ1+ε)ds

= − ∂

∂λ
�(d, b0, b, c, λ1 + ε) > 0,

for small ε > 0. Let M → −∞ in (23), we have

− ∂

∂λ
�(d, b0, b, c, λ1 + ε)

∫ 0

−∞
R(y)dy ≤O(1).

Thus,
∫ 0

−∞
R(y)dy < +∞, that is

∫ 0

−∞
(φ(ξ ) − φ(−∞))dξ < +∞. By the same way, we can obtain that∫ +∞

0

(φ(+∞) − φ(ξ ))dξ < +∞. The proof is complete.

Based on Lemma 2.3, we can represent solutions of (10) explicitly in the following lemma.

Lemma 2.4. Assume that φ(ξ ) is a solution of (10), then φ(ξ ) takes the form

φ(ξ ) = lλ1eλ1ξ + (1 − l)λ2eλ2ξ

leλ1ξ + (1 − l)eλ2ξ
, for ξ ∈R, (24)

with some l ∈ [0, 1], where λ1, λ2 are two real roots of �(d, b0, b, c, ·) = 0. Specially, when l �= 0 or 1,
then φ(ξ ) is a non-constant solution of (10) which is strictly increasing on R.

Proof. If φ(ξ ) is constant solution of (10), by Lemma 2.3, we have φ(ξ ) = λ1 or φ(ξ ) = λ2 for ξ ∈R,
i.e., (24) holds with l = 1 or 0 respectively. Note that λ1 may equal to λ2.

If φ(ξ ) is a non-constant solution of (10), according to Lemma 2.3, we have λ1 = φ(−∞) < φ(ξ ) <

φ(+∞)= λ2. Then we consider the functions

w(ξ ) := e
∫ ξ

0 φ(z)dz, w1(ξ ) := leλ1ξ and w2(ξ ) := w(ξ ) − w1(ξ ), with l := e− ∫ 0
−∞ (φ(z)−λ1)dz ∈ (0, 1).

It’s easy to verify that

w′(ξ ) = φ(ξ )w(ξ ), w2(0) = 1 − l and w2(ξ )e−λ1ξ = e
∫ ξ

0 (φ(z)−λ1)dz − e− ∫ 0
−∞ (φ(z)−λ1)dz. (25)

Note that
∫ ξ

0

(φ(z) − λ1)dz > −
∫ 0

−∞
(φ(z) − λ1)dz for any ξ ∈R. We have

w2(ξ )e−λ1ξ > 0 for ξ ∈R and w2(ξ )e−λ1ξ → 0 as ξ → −∞. (26)
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Based on (26), we further consider the function ϕ(ξ ) := w′
2(ξ )/w2(ξ ). By simple computations, ϕ(ξ )

satisfies the equation (10). We claim that ϕ(ξ ) is a constant solution of (10). If false, that is ϕ(ξ ) is not
a constant function, by Lemma 2.3, we have∫ 0

−∞
(ϕ(ξ ) − λ1))dξ < ∞ and ln [w2(ξ )e−λ1ξ ] − ln [w2(0)] =

∫ ξ

0

(w2(z)e−λ1z)′

(w2(z)e−λ1z)
dz =

∫ ξ

0

[ϕ(z) − λ1]dz.

As ξ → −∞, it follows that

lim
ξ→−∞

ln [w2(ξ )e−λ1ξ ] < ∞,

which contradicts to (26). Hence, by Lemma 2.3, ϕ(ξ ) is a constant function which equals to λ1 or λ2

for all ξ ∈R. If ϕ(ξ ) = λ1, we have w(ξ ) = aeλ1ξ for some constant a. Then φ(ξ ) is constant function,
which gives a contradiction. Therefore ϕ(ξ ) = λ2. In view of the definition of ϕ(ξ ), we have

w2(ξ ) = w2(0)eλ2ξ = (1 − l)eλ2ξ and w(ξ ) = leλ1ξ + (1 − l)eλ2ξ .

Since w′(ξ ) = φ(ξ )w(ξ ), the solution form (24) holds obviously. According to (24), it is easy to verify
that φ(ξ ) is strictly increasing on R. The proof is complete.

Remark 1. From the proof of Lemma 2.4, it can be easily seen that the conclusion of Lemma 2.3 (1) also
holds for more general form of (10) by replacing the constant b as any continuous function b(ξ ) whose
limits b± := b( ± ∞) exist. That is, if φ(ξ ) is a solution of (10) with b replaced by such continuous
function b(ξ ), then φ( ± ∞) exist and �(d, b0, b±, c, φ( ± ∞)) = 0.

By Lemma 2.4, we have the following results on solutions of the linearized equation (8).

Proposition 2.5. Suppose that ϕ(ξ ) is a nonnegative solution of the linear equation (8), then

ϕ(ξ ) = C1eλ1ξ + C2e
λ2ξ , for some constants C1, C2, (27)

where λ1, λ2 are two real roots of the characteristic equation �(d, b0, b, c, ·) = 0.

Proof. The result can be proved in the following two cases.
Case 1: ϕ(ξ0) = 0 for some ξ0 ∈R. In this case, it can be easily deduced from (8) that ϕ(ξ0 ± 1) = 0.

An induction argument shows that ϕ(ξ0 ± k) = 0 for any k ∈N+. On the other hand, by (8), one can see
that

cϕ ′(ξ ) + |b|ϕ(ξ ) ≥ 0, for ξ ∈R,

which implies that ϕ(ξ )e
|b|
c ξ is non-decreasing on R. Thus, it follows that ϕ(ξ ) = 0 on R.

Case 2: ϕ(ξ ) > 0 for all ξ ∈R. Dividing the equation (8) by ϕ(ξ ), we have

cq(ξ ) = d
∑
i∈�̃

J(i)e
∫ ξ−i
ξ q(y)dy + b0

∫ τ

0

f (s)e
∫ ξ−cs
ξ q(y)dyds + b, for ξ ∈R. (28)

where q(ξ ) := ϕ ′(ξ )/ϕ(ξ ). By Lemma 2.4, q(ξ ) admits the form

q(ξ ) = ϕ ′(ξ )

ϕ(ξ )
= lλ1eλ1ξ + (1 − l)λ2eλ2ξ

leλ1ξ + (1 − l)eλ2ξ
, l ∈ [0, 1].

Integrating the above equality gives

ϕ(ξ ) = p(leλ1ξ + (1 − l)eλ2ξ )

for some p > 0. Hence, (27) holds by letting C1 = pl and C2 = p(1 − l).
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3. Priori estimates on wave profiles and wave speeds

To establish some priori estimates on positive travelling waves and wave speeds, we first provide the
necessary condition for the existence of positive travelling waves that satisfy (6).

Lemma 3.1. If (S(ξ ), I(ξ )) is a positive solution of (5) satisfying (6), then R0 > 1 and c > 0.

Proof. Suppose the assertion is false, that is (5) admits a positive solution (S(ξ ), I(ξ )) satisfying (6) for

R0 ≤ 1 and some c ∈R. We first claim that
∫
R

I(ξ )dξ < +∞. Since I( ± ∞) = 0, there exists K > 0 such

that I(ξ ) ≤ K for ξ ∈R. Integrating the first equation of (5) from y to x for any x, y ∈R, we have∣∣∣ ∫ x

y

βS(ξ )
∫ τ

0

f (s)I(ξ − cs)dsdξ

∣∣∣ ≤dS

∣∣∣ ∑
i∈�̃

J1(i)i
∫ x

y

∫ 1

0

S′(ξ − ti)dtdξ

∣∣∣ + |c(S(x) − S(y))|

≤dS

∣∣∣ ∑
i∈�̃

J1(i)i
∫ 1

0

(S(x − ti) − S(y − ti)) dt
∣∣∣ + |c(S(x) − S(y))|

≤(
2dS

∑
i∈�̃

J1(i)|i| + 2|c|)S0.

Then, it follows from the second equation of (5) that∣∣∣γ ∫ x

y

I(ξ )dξ

∣∣∣ ≤dI

∣∣∣ ∑
i∈�̃

J2(i)
∫ x

y

(I(ξ − i) − I(ξ )) dξ

∣∣∣ +
∣∣∣ ∫ x

y

βS(ξ )
∫ τ

0

f (s)I(ξ − cs)dsdξ

∣∣∣
+ |c(I(x) − I(y))|

≤(
2dI

∑
i∈�̃

J2(i)|i| + 2|c|)K + (
2dS

∑
i∈�̃

J1(i)|i| + 2|c|)S0.

Thus, it follows that
∫
R

I(ξ )dξ < +∞ by the arbitrariness of x and y.
By the second equation of (5), we have

γ

∫
R

I(ξ )dξ ≤ dI

∑
i∈�̃

J2(i)
∫
R

(I(ξ − i) − I(ξ )) dξ + βS0

∫ τ

0

f (s)
∫
R

I(ξ − cs)dξds

= dI

∑
i∈�̃

J2(i)
∫
R

(I(ξ − i) − I(ξ )) dξ + βS0

∫
R

I(ξ )dξ = βS0

∫
R

I(ξ )dξ . (29)

Note that R0 = βS0/γ . If R0 < 1, by (29), we have∫
R

I(ξ )dξ ≤ βS0

γ

∫
R

I(ξ )dξ <

∫
R

I(ξ )dξ , (30)

which gives a contradiction. If R0 = 1, the second equation of (5) also gives

0 = dI

∑
i∈�̃

J2(i)
∫
R

(I(ξ − i) − I(ξ )) dξ +
∫
R

βS(ξ )
∫ τ

0

f (s)I(ξ − cs)dsdξ − γ

∫
R

I(ξ )dξ

= dI

∑
i∈�̃

J2(i)
∫
R

(I(ξ − i) − I(ξ )) dξ + β

∫
R

∫ τ

0

f (s)S(ξ + cs)I(ξ )dsdξ − βS0

∫
R

I(ξ )dξ

= β

∫
R

I(ξ )
∫ τ

0

f (s) (S(ξ + cs) − S0) dsdξ . (31)

Since 0 < S(ξ ) ≤ S0 and I(ξ ) > 0 on R, (31) implies that S(ξ ) ≡ S0 on R, which contradicts to S(+∞) =
S∞ < S0. Therefore, R0 > 1.

https://doi.org/10.1017/S0956792524000846 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000846


12 Z. Xu et al.

Next, we show that c > 0. Suppose, by contradiction, that (S(ξ ), I(ξ )) is a positive solution of (5)
satisfying (6) with c ≤ 0. Since R0 > 1 and S(−∞) = S0, there exists a ξ̂ < 0 such that

S(ξ )
∫ τ

0

f (s)I(ξ − cs)ds >
βS0 + γ

2β

∫ τ

0

f (s)I(ξ − cs)ds, for ξ < ξ̂ .

Then, for ξ < ξ̂ , we have

cI ′(ξ ) =dI

∑
i∈�̃

J2(i) (I(ξ − i) − I(ξ )) + βS(ξ )
∫ τ

0

f (s)I(ξ − cs)ds − γ I(ξ )

>dI

∑
i∈�̃

J2(i) (I(ξ − i) − I(ξ )) + βS0 + γ

2

∫ τ

0

f (s) (I(ξ − cs) − I(ξ )) ds + βS0 − γ

2
I(ξ ).

Integrating the above inequality over (−∞, ξ ) with ξ < ξ̂ , one can obtain
βS0 − γ

2
�(ξ ) < cI(ξ ) − dI

∑
i∈�̃

J2(i) (�(ξ − i) − �(ξ )) + βS0 + γ

2

∫ τ

0

f (s) (�(ξ ) − �(ξ − cs)) ds,

where �(ξ ) :=
∫ ξ

−∞
I(y)dy > 0. Since

∫ ξ

−∞

∫ τ

0

f (s)(�(η) − �(η − cs))dsdη =
∫ ξ

−∞

∫ τ

0

f (s)cs
∫ 1

0

�′(η − tcs)dtdsdη

=
∫ τ

0

f (s)cs
∫ 1

0

�(ξ − tcs)dtds ≤ 0,

∑
i∈�̃

J2(i)
∫ ξ

−∞

(
�(η − i) − �(η)

)
dη =

∑
i∈�̃

J2(i)
∫ ξ−i

ξ

�(η)dη

=
2∑

i=1

J2(i)
( ∫ ξ+i

ξ

�(η)dη −
∫ ξ

ξ−i

�(η)dη
)

> 0,

it follows that

0 <
βS0 − γ

2

∫ ξ

−∞
�(η)dη < c�(ξ ) ≤ 0, for ξ < ξ̂ ,

which also gives a contradiction. Hence the assertion of the lemma holds.

In addition, we have the following limiting results of the wave profiles.

Lemma 3.2. Assume that (S(ξ ), I(ξ )) is a solution of (5) with c > 0, and {ξj}j∈N is a sequence satisfying
lim

j→+∞
I(ξj) = +∞, then lim

j→+∞
S(ξj) = 0.

Proof. Let’s prove the result by using the contradiction argument. Suppose, for some constant ε > 0,
there exists a subsequence of {ξj}j∈N, still written as {ξj}j∈N, such that S(ξj) ≥ ε for each j ∈N. Let d1 =
dS

∑
i∈�̃

J1(i) and d2 = dI

∑
i∈�̃

J2(i). By the first equation of (5), we have S′(ξ ) ≤ d1S0/c which implies
S(ξ ) ≥ ε/2 for ξ ∈ [ξj − ξ0, ξj], where ξ0 := cε/(2d1S0). Note that

cI ′(ξ ) + (d2 + γ )I(ξ ) = dI

∑
i∈�̃

J2(i)I(ξ − i) + βS(ξ )
∫ τ

0

f (s)I(ξ − cs)ds > 0.

So, I(ξ )e
d2+γ

c ξ is strictly increasing in R. Then,∫ τ

0

f (s)I(ξ − cs)ds < I(ξ )
∫ τ

0

f (s)e(d2+γ )sds and
I(ξ − x)

I(ξ )
< e

(d2+γ )x
c , for x > 0. (32)
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Moreover, for any p ∈ �̃ with p > 0, we have
cI ′(ξ ) + (d2 + γ )I(ξ ) > dIJ2(p)I(ξ + p),

which implies
d

dξ

(
e

(d2+γ )ξ
c I(ξ )

)
>

dIJ2(p)

c
e

(d2+γ )ξ
c I(ξ + p). (33)

Since I(ξ )e
d2+γ

c ξ is strictly increasing, integrating (33) from ξ − p

2
to ξ gives

e
(d2+γ )ξ

c I(ξ ) − e
(d2+γ )(ξ− p

2 )
c I(ξ − p

2
) >

dIJ2(p)

c

∫ ξ

ξ− p
2

e
(d2+γ )η

c I(η + p)dη >
dIJ2(p)p

2c
e

(d2+γ )(ξ− p
2 )

c I(ξ + p

2
).

It follows that
I(ξ + p

2
)

I(ξ )
<

2c

dIJ2(p)p
e

(d2+γ )p
2c and

I(ξ + p)

I(ξ )
= I(ξ + p)

I(ξ + p
2
)

I(ξ + p
2
)

I(ξ )
<

4c2

(dIJ2(p)p)2
e

(d2+γ )p
c . (34)

Dividing the second equation of (5) by I(ξ ), and using (32) and (34), we have
I ′(ξ )

I(ξ )
=dI

c

∑
i∈�̃

J2(i)
I(ξ − i)

I(ξ )
− d2

c
+ β

c
S(ξ )

∫ τ

0

f (s)
I(ξ − cs)

I(ξ )
ds − γ

c
< +∞. (35)

Thus, there exists a constant ρ > 0 such that |I ′(ξ )/I(ξ )| ≤ ρ, and hence
I(ξj)

I(ξ )
= e

∫ ξj
ξ

I′ (η)
I(η) dη ≤ eρ(cτ+ξ0), for ξ ∈ [ξj − ξ0 − cτ , ξj].

Then it follows that
min

ξ∈[ξj−ξ0−cτ ,ξj]
I(ξ ) ≥ I(ξj)e

−ρ(cτ+ξ0) → +∞ as j → +∞.

Furthermore, by the first equation of (5), one can see

max
ξ∈[ξj−ξ0,ξj]

S′(ξ ) ≤d1S0

c
− βε

2c
min

ξ∈[ξj−ξ0,ξj]

∫ τ

0

f (s)I(ξ − cs)ds ≤ d1S0

c
− βε

2c
I(ξj)e

−ρ(cτ+ξ0) → −∞
as j → +∞. Let j be sufficiently large such that S′(ξ ) ≤ −2S0/ξ0 for ξ ∈ [ξj − ξ0, ξj], then

S(ξj) − S(ξj − ξ0) ≤ −2S0,

which is impossible since 0 < S(ξ ) ≤ S0 on R. Therefore, S(ξj) → 0 as j → +∞.

We further establish the following limiting lemma, which is crucial for proving the existence of
travelling wave solutions with minimal speed.

Lemma 3.3. Assume R0 > 1. Let (Sk(ξ ), Ik(ξ )) (k ∈N) be the positive solutions of (5) satisfying (6) with
c = ck such that lim

k→+∞
ck = c0 > 0. Then (5) admits a positive solution (S(ξ ), I(ξ )) satisfying (6) with

c = c0.

Proof. Without loss of generality, we assume {ck}+∞
k=1 is a strictly decreasing sequence with limk→+∞ ck =

c0 > 0. Let (Sk(ξ ), Ik(ξ )) be a positive solution of (5) satisfying (6) for c = ck. We first claim that
the sequence {Ik(ξ )}k∈N is uniformly bounded on R. If not, there exists a sequence {zk}k∈N such that
lim

k→+∞
Ik(zk) = +∞. Then, it follows from Lemma 3.2 that lim

k→+∞
Sk(zk) = 0. Since Ik( ± ∞) = 0 and

Ik(ξ ) > 0, without loss of generality, we may assume that Ik(zk) = max
ξ∈R

Ik(ξ ). By the second equation
of (5), we have

0 = ckI
′
k(zk) =dI

∑
i∈�̃

J2(i) (Ik(zk − i) − Ik(zk)) + βSk(zk)
∫ τ

0

f (s)Ik(zk − cks)ds − γ Ik(zk)

≤βSk(zk)
∫ τ

0

f (s)Ik(zk − cks)ds − γ Ik(zk) < (βSk(zk) − γ ) Ik(zk). (36)
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However, the inequality (36) contradicts to the properties lim
k→+∞

Ik(zk) = +∞ and lim
k→+∞

Sk(zk) = 0, when
k is large enough. Therefore, {Ik(ξ )}k∈N is uniformly bounded on R.

Since {Sk(ξ )}k∈N and {Ik(ξ )}k∈N are uniformly bounded on R, it follows from (5) that ||Sk||C2(R) and
||Ik||C2(R) are both uniformly bounded on R. Then, by Arzela-Ascoli theorem, there exists subsequences
of {Sk(ξ )}k∈N and {Ik(ξ )}k∈N, still written as {Sk(ξ )}k∈N and {Ik(ξ )}k∈N, such that Sk(ξ ) → S(ξ ) and Ik(ξ ) →
I(ξ ) in C1

loc(R) as k → +∞. By Lebesgue dominated convergence theorem, it is easy to see the limiting
function (S(ξ ), I(ξ )) is a solution of (5) with c = c0, i.e., satisfies the following system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c0S′(ξ ) = dS

∑
i∈�̃

J1(i) (S(ξ − i) − S(ξ )) − βS(ξ )
∫ τ

0

f (s)I(ξ − c0s)ds,

c0I ′(ξ ) = dI

∑
i∈�̃

J2(i) (I(ξ − i) − I(ξ )) + βS(ξ )
∫ τ

0

f (s)I(ξ − c0s)ds − γ I(ξ ).
(37)

Since {Ik}k∈N is uniformly bounded on R, there exists a constant I0 > 0 such that I(ξ ) ≤ I0 on R. Hence,
the solution (S(ξ ), I(ξ )) satisfies 0 ≤ S(ξ ) ≤ S0 and 0 ≤ I(ξ ) ≤ I0 for all ξ ∈R.

Next, we claim that S(ξ ) and I(ξ ) are non-trivial, and they satisfy the asymptotic boundary conditions
of (6).

Claim 1: I( ± ∞) = 0.
Integrating the first equation of (37) from y to x for any x, y ∈R, we have

∣∣∣ ∫ x

y

βS(ξ )
∫ τ

0

f (s)I(ξ − c0s)dsdξ

∣∣∣ ≤dS

∣∣∣ ∑
i∈�̃

J1(i)i
∫ x

y

∫ 1

0

S′(ξ − ti)dtdξ

∣∣∣ + c0|S(x) − S(y)|

≤dS

∣∣∣ ∑
i∈�̃

J1(i)i
∫ 1

0

(S(x − ti) − S(y − ti)) dt
∣∣∣ + c0 |S(x) − S(y)|

≤(
2dS

∑
i∈�̃

J1(i)|i| + 2c0

)
S0. (38)

Thus, by the second equation of (37), we can obtain

∣∣∣γ ∫ x

y

I(ξ )dξ

∣∣∣ ≤dI

∣∣∣ ∑
i∈�̃

J2(i)
∫ x

y

(I(ξ − i) − I(ξ )) dξ

∣∣∣ +
∣∣∣ ∫ x

y

βS(ξ )
∫ τ

0

f (s)I(ξ − c0s)dsdξ

∣∣∣
+ c0|I(x) − I(y)|

≤(
2dI

∑
i∈�̃

J2(i)|i| + 2c0

)
I0 + (

2dS

∑
i∈�̃

J1(i)|i| + 2c0

)
S0. (39)

Due to the arbitrariness of x and y, it follows from (39) that
∫
R

I(ξ )dξ < +∞. In addition, it is easy to

see from (37) that I ′(ξ ) is bounded on R. Therefore, we have I( ± ∞) = 0.
Claim 2: S(ξ ) > 0 on R and S(−∞) = S0.
Assume that S(ξ0) = 0 for some ξ0 ∈R. From the first equation of (37), we have S(ξ0 ± 1) = 0, and

inductively that S(ξ0 ± k) = 0 for any k ∈N. Moreover, the first equation of (37) gives

c0S′(ξ ) + δS(ξ ) ≥ 0, for ξ ∈R,
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where δ = (dS

∑
i∈�̃

J1(i) + βI0), which implies that S(ξ )e
δ

c0
ξ is non-decreasing over R. Then it follows

that S(ξ ) ≡ 0 on R, and hence, Sk(ξ ) → 0 as k → +∞ for any ξ ∈R. On the other hand, let’s write
∑
i∈�̃

J1(i)
∫ 0

−∞
(Sk(ξ − i) − Sk(ξ )) dξ = −

∑
i∈�̃

J1(i)i
∫ 0

−∞

∫ 1

0

S′
k(ξ − ti)dtdξ

= −
∑
i∈�̃

J1(i)i
∫ 1

0

∫ 0

−∞
S′

k(ξ − ti)dξdt =
∑
i∈�̃

J1(i)i
∫ 1

0

(S0 − Sk(−ti)) dt = −
∑
i∈�̃

J1(i)i
∫ 1

0

Sk(−ti)dt,

then the first equation of (5) gives

ck(S0 − Sk(0)) =
∫ 0

−∞
βSk(ξ )

∫ τ

0

f (s)Ik(ξ − cks)dsdξ + dS

∑
i∈�̃

J1(i)i
∫ 1

0

Sk(−ti)dt. (40)

As k → +∞, it follows from (40) that c0S0 = 0, which leads to a contradiction. Hence S(ξ ) > 0 on R.
To prove S(−∞) = S0, it is sufficient to show that S := lim inf

ξ→−∞
S(ξ ) = S0. Suppose that S < S0, then

there exists a sequence {ζq}q∈N such

lim
q→+∞

ζq = −∞ and lim
q→+∞

S(ζq) = S.

Denote

S̃q(ξ ) := S(ξ + ζq) and Ĩq(ξ ) := I(ξ + ζq), for ξ ∈R.

Obviously, lim
q→+∞

Ĩq(ξ ) = 0 locally uniformly on R. Since ||S̃q||C2(R) is uniformly bounded on R, there

exists a subsequence of {S̃q(ξ )}q∈N, still denote as {S̃q(ξ )}q∈N, such that S̃q(ξ ) → S̃(ξ ) in C1
loc(R) as q →

+∞. Hence, the first equation of (37) gives

c0S̃′(ξ ) = dS

∑
i∈�̃

J1(i)
(
S̃(ξ − i) − S̃(ξ )

)
. (41)

It is easy to note that zero is the root of the characteristic equation of (41). Since S̃(ξ ) is nonnegative
and bounded with S̃(0) = S, it follows that S̃(ξ ) = S on R according to Proposition 2.5. Hence, we get
that S̃q(ξ ) → S in C1

loc(R) as q → +∞. Since

ckS
′
k(ξ ) = dS

∑
i∈�̃

J1(i) (Sk(ξ − i) − Sk(ξ )) − βSk(ξ )
∫ τ

0

f (s)Ik(ξ − cks)ds, (42)

we have

ck(Sk(ζq) − S0) =dS

∑
i∈�̃

J1(i)
∫ ζq

−∞
(Sk(ξ − i) − Sk(ξ )) dξ − β

∫ ζq

−∞
Sk(ξ )

∫ τ

0

f (s)Ik(ξ − cks)dsdξ .

Note that ∑
i∈�̃

J1(i)
∫ ζq

−∞
(Sk(ξ − i) − Sk(ξ )) dξ = −

∑
i∈�̃

J1(i)i
∫ 1

0

Sk(ζq − ti)dt.

As k → +∞, one can see

c0(S(ζq) − S0) = − dS

∑
i∈�̃

J1(i)i
∫ 1

0

S(ζq − ti)dt − β

∫ ζq

−∞
S(ξ )

∫ τ

0

f (s)I(ξ − c0s)dsdξ . (43)

As q → +∞, it follows that c0(S − S0) = 0, which contradicts to S < S0. Hence, S(−∞) = S0.
Claim 3: I(ξ ) > 0 on R.
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Assume that I(η) = 0 for some η ∈R, then it is easy to see from the second equation of (37) that
I(ξ ) ≡ 0 on R. Then, the first equation of (37) gives

c0S′(ξ ) = dS

∑
i∈�̃

J1(i) (S(ξ − i) − S(ξ )) . (44)

Since S(ξ ) is nonnegative and bounded, by Proposition 2.5, it follows that S(ξ ) is a constant function,
i.e., S(ξ ) ≡ Ŝ for some constant Ŝ ∈ [0, S0]. Note that

Ik( ± ∞) = 0 and
∫ +∞

−∞

∫ τ

0

f (s)Ik(ξ − cks)dsdξ =
∫ +∞

−∞
Ik(ξ )dξ .

By the second equation of (5), we have

0 =
∫ +∞

−∞
βSk(ξ )

∫ τ

0

f (s)Ik(ξ − cks)dsdξ − γ

∫ +∞

−∞
Ik(ξ )dξ

=
∫ +∞

−∞
βSk(ξ )

∫ τ

0

f (s)Ik(ξ − cks)dsdξ − γ

∫ +∞

−∞

∫ τ

0

f (s)Ik(ξ − cks)dsdξ

=
∫ +∞

−∞

(
βSk(ξ ) − γ

) ∫ τ

0

f (s)Ik(ξ − cks)dsdξ . (45)

Note that
∫ τ

0

f (s)Ik(ξ − cks)ds > 0 for any ξ ∈R. There exists some ηk such that γ = βSk(ηk). Since

(Sk(ξ ), Ik(ξ )) is translation invariant, we may assume ηk = 0. As k → +∞, we have

γ = βSk(0) → βS(0) = βŜ,

which implies Ŝ = γ /β. Since R0 = βS0/γ > 1, then S(ξ ) ≡ Ŝ < S0, which contradicts to S(−∞) = S0.
So, I(ξ ) > 0 on R.

Claim 4: S(+∞) = S∞ < S0.
We first show that ᾱ := lim inf

ξ→+∞
S(ξ ) = lim sup

ξ→+∞
S(ξ ) = :α̂. If ᾱ < α̂, one can find two sequences {ξk}k∈N

and {ηk}k∈N, with ξk < ηk, lim
k→+∞

ξk = +∞ and lim
k→+∞

ηk = +∞, such that

lim
k→+∞

S(ξk) = ᾱ, S′(ξk) = 0; and lim
k→+∞

S(ηk) = α̂, S′(ηk) = 0.

Denote

Ŝk(ξ ) := S(ξ + ξk) and Îk(ξ ) := I(ξ + ξk), for ξ ∈R.

Obviously, Îk(ξ ) → 0 locally uniformly on R as k → +∞. Since ||Ŝk||C2(R) is uniformly bounded on R,
there exists a subsequence of {Ŝk(ξ )}k∈N, still written as {Ŝk(ξ )}k∈N, such that Ŝk(ξ ) → Ŝ(ξ ) in C1

loc(R) as
k → +∞. Hence, the first equation of (37) yields

c0Ŝ′(ξ ) = dS

∑
i∈�̃

J1(i)
(
Ŝ(ξ − i) − Ŝ(ξ )

)
. (46)

By Proposition 2.5, it follows that Ŝ(ξ ) is constant function. Since Ŝ(0) = ᾱ, we have Ŝ(ξ ) ≡ ᾱ on
R. Hence, we get that S(ξ + ξk) → ᾱ in C1

loc(R) as k → +∞. By the same way, we also obtain that
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limk→+∞ S(ξ + ηk) = α̂ in C1
loc(R). Then, integrating the first equation of (37) from ξk to ηk, we have

c0(α̂ − ᾱ) = lim
k→+∞

dS

∑
i∈�̃

J1(i)
∫ ηk

ξk

(S(ξ − i) − S(ξ )) dξ − lim
k→+∞

β

∫ ηk

ξk

S(ξ )
∫ τ

0

f (s)I(ξ − c0s)dsdξ

≤ lim
k→+∞

dS

∑
i∈�̃

J1(i)
∫ ηk

ξk

(S(ξ − i) − S(ξ )) dξ

=dS lim
k→+∞

∑
i∈�̃

J1(i)i
∫ 1

0

(S(ξk − ti) − S(ηk − ti)) dt = 0,

which contradicts to ᾱ < α̂. Thus, α̂ = ᾱ, and then S∞ := S(+∞) exists.
Next, we further show that S∞ < S0 by proving lim inf

ξ→+∞
S(ξ ) < S0. Suppose, by contradiction, that

lim inf
ξ→+∞

S(ξ ) = S0, then S(+∞) = S∞ = S0 and the first equation of (37) gives

0 = dS

∑
i∈�̃

J1(i)
∫ +∞

−∞
(S(ξ − i) − S(ξ )) dξ − β

∫ +∞

−∞
S(ξ )

∫ τ

0

f (s)I(ξ − c0s)dsdξ

= −dS

∑
i∈�̃

J1(i)i
∫ +∞

−∞

∫ 1

0

S′(ξ − ti)dtdξ − β

∫ +∞

−∞
S(ξ )

∫ τ

0

f (s)I(ξ − c0s)dsdξ

= −dS

∑
i∈�̃

J1(i)i
∫ 1

0

∫ +∞

−∞
S′(ξ − ti)dξdt − β

∫ +∞

−∞
S(ξ )

∫ τ

0

f (s)I(ξ − c0s)dsdξ

= −β

∫ +∞

−∞
S(ξ )

∫ τ

0

f (s)I(ξ − c0s)dsdξ < 0,

which gives a contradiction. Thus, S∞ < S0. The proof is complete.

4. Proof of the main results

To prove the existence result of travelling wave solutions by using the truncation method, we first
establish the existence of solutions for the profile system (6) over large finite domains.

Lemma 4.1. Assume R0 > 1. For any c > c∗ and large X > 0, the bounded domain problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cS′(ξ ) = dS

∑
i∈�̃

J1(i) (S(ξ − i) − S(ξ )) − βS(ξ )
∫ τ

0

f (s)I(ξ − cs)ds,

cI ′(ξ ) = dI

∑
i∈�̃

J2(i) (I(ξ − i) − I(ξ )) + βS(ξ )
∫ τ

0

f (s)I(ξ − cs)ds − γ I(ξ ),
for ξ ∈ (−X , X ) (47)

has a solution (S(ξ ), I(ξ )) satisfying 0 ≤ S−(ξ ) ≤ S(ξ ) ≤ S0 and 0 ≤ I−(ξ ) ≤ I(ξ ) ≤ I+(ξ ) with

S−(ξ ) := max{S0 − δeνξ , 0}, I−(ξ ) := max{eλ1ξ (1 − Keςξ ), 0} and I+(ξ ) := eλ1ξ ,

when ν ∈ (0, λ1), ς ∈ (0, min{ν, λ2 − λ1}) are small enough; and δ > S0, K > 1 are sufficiently large.

Proof. The idea of proof is similar to that of [28, Proposition 3.1]. However, due to the consideration
of distributed latent period, the computations are more complicated than those of [28].

Firstly, for large Y > 0, we define the set

�Y := {
(ω(·), σ (·)) ∈ C([−Y , Y], R2):S−(ξ ) ≤ ω(ξ ) ≤ S0, I−(ξ ) ≤ σ (ξ ) ≤ I+(ξ ), ξ ∈ [−Y , Y]

}
∩{

(ω(·), σ (·)) ∈ C([−Y , Y], R2):ω(−Y) = S−(−Y), σ (−Y) = I−(−Y)
}
.
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Obviously, �Y is a closed and convex set. In addition, we extend any function (�̃(·), σ (·)) to (ω̃(·), σ̃ (·)) ∈
C(R, R2) in the way

(ω̃(ξ ), σ̃ (ξ )) =

⎧⎪⎨
⎪⎩

(S−(ξ ), I−(ξ )), for ξ < −Y;

(ω(ξ ), σ (ξ )), for |ξ | ≤ Y;

(ω(Y), σ (Y)), for ξ > Y .

For the convenience of statement, without loss of generality, we next assume that
∑

i∈�̃
Jk(i) = 1 (k =

1, 2). Define an operator � on �Y by

� := (�1, �2):(ω(·), σ (·)) ∈ �Y → (S(·), I(·)) ∈ C1([−Y , Y]),

where (S(ξ ), I(ξ )) satisfies the following initial value problem of ODE:

cS′(ξ ) = − (dS + l)S(ξ ) + dS

∑
i∈�̃

J1(i)ω̃(ξ − i) + lω(ξ ) − βω(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds, (48)

cI ′(ξ ) = − (d2 + γ )I(ξ ) + dI

∑
i∈�̃

J2(i)σ̃ (ξ − i) + βω(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds, (49)

S(−Y) =S−(−Y), I(−Y) = I−(−Y), (50)

where l is a constant satisfying l ≥ βeλ1Y

∫ τ

0

f (s)e−cλ1sds. Then we claim that � is completely continuous

which maps from �Y to �Y .
We first show that �[�Y] ⊆ �Y , i.e.,

S−(ξ ) ≤ �1[ω, σ ](ξ ) ≤ S0 and I−(ξ ) ≤ �2[ω, σ ](ξ ) ≤ I+(ξ ), for ξ ∈ [−Y , Y]. (51)

It is easy to see that 0 is a lower solution of (48). By comparison principle, we have

�1[ω, σ ](ξ ) ≥ 0, for ξ ∈ [−Y , Y].

Since 0 ≤ ω̃(ξ ) ≤ S0 on R, for ξ ∈ [−Y , Y], one can obtain

− (dS + l)S0 + dS

∑
i∈�̃

J1(i)ω̃(ξ − i) + lω(ξ ) − βω(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds

≤ − βω(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds ≤ 0,

which implies that S0 is an upper solution of (48). Then, by comparison principle again,

�1[ω, σ ](ξ ) ≤ S0, for ξ ∈ [−Y , Y].

Hence, the left part of (51) holds.
Now we prove the right part of (51). According to the choice of l, it is easy to see that

h(ω) := lω(ξ ) − βω(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds

is non-decreasing in ω. Then, for ξ ∈ [−Y ,
1

ν
ln

S0

δ
), one can see S−(ξ ) = S0 − δeνξ and

cS′
−(ξ ) − dS

∑
i∈�̃

J1(i)ω̃(ξ − i) + (dS + l)S−(ξ ) − lω(ξ ) + βω(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds

≤cS′
−(ξ ) − dS

∑
i∈�̃

J1(i)S−(ξ − i) + (dS + l)S−(ξ ) − lS−(ξ ) + βS−(ξ )
∫ τ

0

f (s)σ̃ (ξ − cs)ds

≤cS′
−(ξ ) − dS

∑
i∈�̃

J1(i)S−(ξ − i) + dSS−(ξ ) + βS−(ξ )
∫ τ

0

f (s)I+(ξ − cs)ds. (52)
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Since I+(ξ ) = eλ1ξ and S−(ξ ) ≥ S0 − δeνξ for ξ ∈R, direct calculation gives

cS′
−(ξ ) − dS

∑
i∈�̃

J1(i)S−(ξ − i) + dSS−(ξ ) + βS−(ξ )
∫ τ

0

f (s)I+(ξ − cs)ds ≤ 0,

for small ν and large δ. Then it follows from (52) that S−(ξ ) is a lower solution of (48). By comparison
principle, one can obtain

S−(ξ ) ≤ �1[ω, σ ](ξ ), for ξ ∈ [−Y ,
1

ν
ln

S0

δ
).

On the other hand, when ξ ∈ [
1

ν
ln

S0

δ
, Y], we have S−(ξ ) = 0. Thus,

S−(ξ ) ≤ �1[ω, σ ](ξ ) ≤ S0, for ξ ∈ [−Y , Y].

Similarly, we can obtain

I−(ξ ) ≤ �2[ω, σ ](ξ ) ≤ I+(ξ ), for ξ ∈ [−Y , Y].

Hence, the inequalities of (51) hold.
Next, we show that �[·, ·] is continuous on �Y . Assume that (ωi(ξ ), σi(ξ )) ∈ �Y(i = 1, 2) and

�2[ωi, σi](ξ ) = Ii(ξ )(i = 1, 2) for ξ ∈ [−Y , Y], one can verify that

c(I ′
1(ξ ) − I ′

2(ξ )) + (dI + γ )(I1(ξ ) − I2(ξ )) = h(ξ ),

where

h(ξ ) := dI

∑
i∈�̃

J2(i) (σ̃1(ξ − i) − σ̃2(ξ − i)) +

β
(
ω1(ξ )

∫ τ

0

f (s)σ̃1(ξ − cs)ds − ω2(ξ )
∫ τ

0

f (s)σ̃2(ξ − cs)ds
)

.

Thus,

I1(ξ ) − I2(ξ ) = 1

c

∫ ξ

−Y

e
dI +γ

c (x−ξ )h(x)dx, (53)

Note that for x ∈ [−Y , Y], one has

|σ̃1(x − i) − σ̃2(x − i)| ≤ max
x∈[−Y ,Y]

|σ1(x) − σ2(x)|
and ∣∣∣ω1(x)

∫ τ

0

f (s)σ̃1(x − cs)ds − ω2(x)
∫ τ

0

f (s)σ̃2(x − cs)ds
∣∣∣

≤ |ω1(x) − ω2(x)|
∫ τ

0

f (s)σ̃1(x − cs)ds + ω2(x)
∫ τ

0

f (s) |σ̃1(x − cs) − σ̃2(x − cs)| ds

≤eλ1Y max
x∈[−Y ,Y]

|ω1(x) − ω2(x)| + S0 max
x∈[−Y ,Y]

|σ1(x) − σ2(x)| .

Then, for x ∈ [−Y , Y], it follows that

|h(x)| ≤ βeλ1Y max
x∈[−Y ,Y]

|ω1(x) − ω2(x)| + (βS0 + dI) max
x∈[−Y ,Y]

|σ1(x) − σ2(x)| . (54)

Combine (53) and (54), we have

|I1(ξ ) − I2(ξ )| ≤ 1

c

∫ ξ

−Y

e
dI +γ

c (x−ξ )|h(x)|dx ≤ κ

dI + γ
(1 − e− dI +γ

c (Y+ξ )) ≤ κ

dI + γ
,

where

κ := βeλ1Y max
x∈[−Y ,Y]

|ω1(x) − ω2(x)| + (βS0 + dI) max
x∈[−Y ,Y]

|σ1(x) − σ2(x)| .
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Thus, �2 is continuous on �Y . Similarly, �1 is continuous on �Y . Furthermore, in view of (48) and (49),
S′(ξ ) and I ′(ξ ) are bounded on [−Y , Y]. Then, it can be deduced by the Arzela-Ascoli theorem that � is
compact. So, � is completely continuous which maps from �Y to �Y .

Finally, by Schauder’s fixed point theorem, one can see that there exists a fixed point (S(ξ ), I(ξ )) ∈ �Y

such that

(S(ξ ), I(ξ )) = �[S, I](ξ ), for ξ ∈ [−Y , Y].

Clearly, (S(ξ ), I(ξ )) satisfies (47) with X = Y − 2 − cτ ,

0 ≤ S−(ξ ) ≤ S(ξ ) ≤ S0 and 0 ≤ I−(ξ ) ≤ I(ξ ) ≤ I+(ξ ).

The proof is complete.

Based on the previous lemmas, we are ready to prove the main results.

Proof of Theorem 1.1.

(1) Let {Xm}m∈N be an increasing sequence satisfyingXm → +∞ as m → +∞. According to Lemma 4.1,
when m is large enough (say m ≥ m0 � 1), we denote (Sm(ξ ), Im(ξ )) as the solution of (47) over
[−Xm, Xm]. Note that {S(ξ )}m≥m0 and {Im(ξ )}m≥m0 are uniformly bounded on [−Xm0 , Xm0 ], it follows from
(47) that {S′

m(ξ )}m≥m0 and {I ′
m(ξ )}m≥m0 are uniformly bounded on [−Xm0 + a, Xm0 − a], where a = 2 + cτ .

Then, for any ξ1, η1 ∈ [−Xm0 + 2a, Xm0 − 2a], we have

|S′
m(ξ1) − S′

m(η1)|

≤dS

c

∑
i∈�̃

J1(i) |Sm(ξ1 − i) − Sm(η1 − i)| + dS

c
|Sm(ξ1) − Sm(η1)|

+ β

c

∣∣∣Sm(ξ1)
∫ τ

0

f (s)Im(ξ1 − cs)ds − Sm(η1)
∫ τ

0

f (s)Im(η1 − cs)ds
∣∣∣

≤dS

c

∑
i∈�̃

J1(i)
∣∣∣Sm(ξ1 − i) − Sm(η1 − i)

∣∣∣ + dS

c
|Sm(ξ1) − Sm(η1)|

+ β

c
|Sm(ξ1) − Sm(η1)|

∫ τ

0

f (s)Im(ξ1 − cs)ds + βS0

c

∫ τ

0

f (s) |Im(ξ1 − cs) − Im(η1 − cs)| ds,

which implies that {S′
m(ξ )}m≥m0 and {I ′

m(ξ )}m≥m0 are equicontinuous on [−Xm0 + 2a, Xm0 − 2a]. Moreover,
for any compact set � of R, there is some q0 ∈N+ such that � ⊂ [−Xm + 2a, Xm − 2a] for any m ≥ q0.
Then, it follows from the Arzela-Ascoli theorem that there exists a subsequence {(Smk (ξ ), Imk (ξ ))}mk≥m0

of {(Sm(ξ ), Im(ξ ))}m≥m0 such that Smk (ξ ) → S(ξ ) and Imk (ξ ) → I(ξ ) in C1
loc(R) as k → +∞. It is clear that

(S(ξ ), I(ξ )) is a solution of (5) that satisfies

S−(ξ ) ≤ S(ξ ) ≤ S0 and I−(ξ ) ≤ I(ξ ) ≤ I+(ξ ), for ξ ∈R.

Furthermore, we claim that S(ξ ) > 0 and I(ξ ) > 0 on R. Suppose that S(η) = 0 for some η ∈R, then
S′(η) = 0 and the first equation of (5) implies that S(η ± 1) = 0. By induction argument, we have S(η ±
k) = 0 for any k ∈N. Let k be sufficiently large such that η − k < 1

ν
( ln S0 − ln δ), one can see S(η − k) ≥

S−(η − k) > 0, which gives a contradiction. Hence, S(ξ ) > 0 on R. Similarly, one can obtain I(ξ ) > 0 on
R.

Next, we show that the positive solution (S(ξ ), I(ξ )) satisfies the condition (6). According to the
facts S−(−∞) = S0 and S−(ξ ) ≤ S(ξ ) ≤ S0 for ξ ∈R, it is clear that S(−∞) = S0. To prove I( ± ∞) =
0 and S(+∞) < S0, we first show that I(ξ ) is bounded on R. Suppose that lim sup

ξ→+∞
I(ξ ) = +∞, if

σ := lim inf
ξ→+∞

I(ξ ) < +∞ then there exists a sequence {sj}j∈N satisfying sj → +∞ such that I(sj) → σ as
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j → +∞. Without loss of generality, we may assume that I(sj) < σ + 1 for j ∈N. Given any j, one can
find ξj ∈ [sj, sj+1] such that

I(ξj) = max
{
I(ξ )| ξ ∈ [sj, sj+1]

}
.

Clearly, lim
j→+∞

I(ξj) = +∞. Then, by Lemma 3.2, we have lim
j→+∞

S(ξj) = 0. Without loss of generality, we

may assume that I(ξj) ≥ (1 + σ )e2C0 for j ∈N, where C0 := supξ∈R |I ′(ξ )/I(ξ )| (cf. (35)). Then we have

I(ξj)

I(ξ )
= e

∫ ξj
ξ

I′ (η)
I(η) dη ≤ e2C0 , for ξ ∈ [ξj − 2, ξj + 2].

Thus,

I(ξ ) ≥ I(ξj)e
−2C0 ≥ σ + 1, for ξ ∈ [ξj − 2, ξj + 2]. (55)

It then follows that [ξj − 2, ξj + 2] ⊂ [sj, sj+1]. In fact, if ξj − 2 < sj and (or) ξj + 2 > sj+1, then (55) con-
tradicts to I(sj) < σ + 1. Hence, [ξj − 2, ξj + 2] ⊂ [sj, sj+1]. Then, by the second equation of (5) and (32),
we have

0 = cI ′(ξj) =dI

∑
i∈�̃

J2(i)
(
I(ξj − i) − I(ξj)

) + βS(ξj)
∫ τ

0

f (s)I(ξj − cs)ds − γ I(ξj)

≤βS(ξj)
∫ τ

0

f (s)I(ξj − cs)ds − γ I(ξj) <
(
βS(ξj)

∫ τ

0

f (s)e(dI+γ )sds − γ
)

I(ξj),

which is impossible since I(ξj) → +∞ and S(ξj) → 0 as j → +∞. Thus, we have I(+∞) = +∞. It then
follows from Lemma 3.2 that S(+∞) = 0.

On the other hand, dividing the second equation of (5) by I(ξ ), we have

cζ (ξ ) = dI

∑
i∈�̃

J2(i)
(
e

∫ ξ−i
ξ ζ (x)dx − 1

) + βS(ξ )
∫ τ

0

f (s)
I(ξ − cs)

I(ξ )
ds − γ ,

where ζ (ξ ) := I ′(ξ )/I(ξ ). Since S(+∞) = 0 and∫ τ

0

f (s)
I(ξ − cs)

I(ξ )
ds <

∫ τ

0

f (s)e(dI+γ )sds < +∞, for ξ ∈R,

by Remark 1, it follows that the limit λ3 := ζ (+∞) exists, and it is a real root of the characteristic
equation

�(λ) := dI

∑
i∈�̃

J2(i)
(
e−λi − 1

) − cλ − γ = 0. (56)

Note that λ3 = ζ (+∞) ≥ 0 due to I(+∞) = +∞. Moreover, �(λ) is convex with �(0) = −γ < 0. Thus,
it follows that λ3 is the unique positive real root of the characteristic equation (56). On other hand, it is
clear that

�(λk) = dI

∑
i∈�̃

J2(i)
(
e−iλk − 1

) − cλk − γ = −βS0

∫ τ

0

f (s)e−csλk ds < 0,

where λk (k = 1, 2) is the positive real root of �(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, λ) = 0. It follows that
λ1 < λ2 < λ3. Since lim

ξ→+∞
I ′(ξ )/I(ξ ) = λ3 > λ2+λ3

2
, there is some sufficiently large constant X > 0 and

some constant C1(X) > 0 such that

I(ξ ) ≥ C1(X)e
(λ2+λ3)ξ

2 , for ξ ≥ X,

which contradicts to the fact I(ξ ) ≤ eλ1ξ on R. Therefore, lim sup
ξ→+∞

I(ξ ) < ∞, i.e., I(ξ ) is bounded on R.

By the boundedness of I(ξ ), following the same proof procedure as Lemma 3.3, we can obtain that
I( ± ∞) = 0 and S(+∞) < S0.
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Now we show the existence of travelling wave with speed c = c∗. Let {ck}k∈N ⊂ (c∗, 2c∗) be a strictly
decreasing sequence satisfying ck → c∗ as k → ∞. According to the above proof, we denote (Sk(ξ ), Ik(ξ ))
as the solutions of (5) satisfying (6) with c = ck. Then, as a consequence of Lemma 3.3, we can obtain
that (5) admits a solution (S(ξ ), I(ξ )) satisfying (6) with wave speed c = c∗.

(2) By Lemma 3.1, we only need to show that (5) has no positive solution satisfying (6) for c ∈ (0, c∗).
Assume that (5) admits a positive solution (S(ξ ), I(ξ )) satisfying (6) with c ∈ (0, c∗). Let {ξ n}n∈N be a
sequence satisfying ξ n → −∞ as n → +∞, we consider the functions

Sn(ξ ) := S(ξ n + ξ ) and In(ξ ) := I(ξ n + ξ )/I(ξ n), for ξ ∈R.

Obviously, lim
n→+∞

Sn(ξ ) = S0 locally uniformly on R, and (Sn(ξ ), In(ξ )) satisfies the equation

cI
′
n(ξ ) = dI

∑
i∈�̃

J2(i)
(
In(ξ − i) − In(ξ )

) + βSn(ξ )
∫ τ

0

f (s)In(ξ − cs)ds − γ In(ξ ). (57)

Denote E(ξ ) := I ′(ξ )/I(ξ ), which is bounded on R (cf.(35)). Since

In(ξ ) = e
∫ ξn+ξ

ξn
E(y)dy

,

it follows that In(ξ ) is locally uniformly bounded on R. Further, by (57), I
′
n(ξ ) and I

′′
n(ξ ) are locally

uniformly bounded on R. Thus, there exists a subsequence of {In(ξ )}n∈N, still written as {In(ξ )}n∈N, such
that In(ξ ) → I(ξ ) in C1

loc(R) as n → +∞. It follows from (57) that I(ξ ) satisfies

cI
′
(ξ ) = dI

∑
i∈�̃

J2(i)
(
I(ξ − i) − I(ξ )

) + βS0

∫ τ

0

f (s)I(ξ − cs)ds − γ I(ξ ). (58)

It is clear that I(0) = 1 and I(ξ ) ≥ 0 on R. We claim that I(ξ ) > 0 on R. If the claim is false, then there
exists some ξ 0 ∈R such that I(ξ 0) = 0 and I

′
(ξ 0) = 0. It can be further deduced from (58) that I(ξ ) ≡ 0

on R, which is impossible since I(0) = 1. Thus, I(ξ ) > 0 on R.
Finally, we define E(ξ ) := I

′
(ξ )/I(ξ ) for ξ ∈R. By (58), E(ξ ) satisfies

cE(ξ ) = dI

∑
i∈�̃

J2(i)e
∫ ξ−i
ξ E(y)dy + βS0

∫ τ

0

f (s)e
∫ ξ−cs
ξ E(y)dyds − (γ + dI

∑
i∈�̃

J2(i)). (59)

According to Lemma 2.3, the limits E( ± ∞) exist, which are real roots of the characteristic equation
�(dI , βS0, −dI

∑
i∈�̃

J2(i) − γ , c, λ) = 0. However, by the definition of c∗, �(dI , βS0, −dI

∑
i∈�̃

J2(i) −
γ , c, λ) = 0 has no nonnegative real roots for 0 < c < c∗. This gives a contradiction. The proof of
Theorem 1.1 is complete.
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