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Abstract

The ring Zd of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree Td .
Endomorphisms of this tree (that is, solenoidal maps) are in one-to-one correspondence with 1-Lipschitz
mappings from Zd to itself. In the case when d = p is prime, Anashin [‘Automata finiteness criterion
in terms of van der Put series of automata functions’, p-Adic Numbers Ultrametric Anal. Appl. 4(2)
(2012), 151–160] showed that f ∈ Lip1(Zp) is defined by a finite Mealy automaton if and only if the
reduced coefficients of its van der Put series constitute a p-automatic sequence over a finite subset of
Zp ∩ Q. We generalize this result to arbitrary integers d ≥ 2 and describe the explicit connection between
the Moore automaton producing such a sequence and the Mealy automaton inducing the corresponding
endomorphism of a rooted tree. We also produce two algorithms converting one automaton to the other
and vice versa. As a demonstration, we apply our algorithms to the Thue–Morse sequence and to one of
the generators of the lamplighter group acting on the binary rooted tree.

2020 Mathematics subject classification: primary 68Q70; secondary 20M35, 20E08.

Keywords: Mealy automata, Moore automata, automatic sequence, van der Put series, p-adic analysis,
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1. Introduction

Continuous self-maps of the ring Zp of p-adic integers are the objects of study of
p-adic analysis and p-adic dynamics. Among all continuous functions Zp → Zp, there
is an natural subclass of 1-Lipschitz functions that do not increase the distances
between points of Zp. These functions appear in many contexts and have various
names in the literature. For example, Bernstein and Lagarias in the paper devoted to
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the Collatz ‘3n + 1’ conjecture call them solenoidal maps [10], Anashin in [3] (see
also [5]) studied the conditions under which these functions act ergodically on Zp.
For us, such functions are especially important because they act on regular rooted
trees by endomorphisms (or automorphisms in the invertible case). Topologically, Zp

is homeomorphic to the Cantor set which, in turn, can be identified with the boundary
X∞ of a rooted p-ary tree X∗, whose vertices are finite words over the alphabet
X = {0, 1, . . . , p − 1}. Namely, we identify a p-adic number x0 + x1 p + x2 p2 + · · · with
the point x0x1x2 . . . ∈ X∞. (For the language of rooted trees and group actions on them,
see [17, 23].)

Under this identification Nekrashevych, Sushchansky, and the first author [23,
Proposition 3.7] showed that a continuous map from Zp to itself induces a (graph)
endomorphism of the tree X∗ precisely when it is 1-Lipschitz. Furthermore, it is
an easy but not so well-known observation that the group Isom(Zp) of isometries
of Zp is naturally isomorphic to the group Aut(X∗) of automorphisms of a rooted
p-ary tree. As such, the groups Isom(Zp) contain many exotic groups that provide
counterexamples to several long standing conjectures and problems in group theory
[20–22, 25] and have connections to other areas of mathematics, such as holomorphic
dynamics [8, 33], combinatorics [19], analysis on graphs [18], computer science [11,
29, 30], cryptography [13, 31, 32, 35], and coding theory [12, 19]. In a similar way, one
can characterize the group Isom(Qp) of isometries of the field Qp of p-adic numbers
as the group of automorphisms of a regular (not rooted) (p + 1)-ary tree that fix the
pointwise one selected end of this tree.

To describe important subgroups of Isom(Zp) and establish their properties, the
languages of self-similar groups and semigroups initiated in [20] and developed in
the last four decades (see survey papers [6, 23] and the book [33]), and Mealy
automata have proved to be very effective. However, these tools were not widely
used by researchers studying p-adic analysis and p-adic dynamics. There are only
a few papers that build bridges between the two worlds. The first realization of an
affine transformation of Zp by a finite Mealy automaton was constructed by Bartholdi
and Šuniḱ in [9]. Ahmed and the second author in [1] described automata defining
polynomial functions x �→ f (x) on Zd, where f ∈ Z[x], and using the language of
groups acting on rooted trees, deduced conditions for ergodicity of the action of
f on Z2 obtained by completely different methods by Larin [27]. In [4], Anashin
proved an excellent result relating finiteness of the Mealy automaton generating an
endomorphism of the p-ary tree to automaticity of the sequence of reduced van der
Put coefficients of the induced functions on Zp, which are discussed below in detail.
Automatic sequences represent an important area at the conjunction of computer
science and mathematics. Some of the famous examples of automatic sequences
include the Thue–Morse sequence and Rudin–Shapiro sequence defining space filling
curves. We refer the reader to [2] for details. Recent applications of automatic
sequences in group theory include [15, 16].

As in the real analysis, one of the effective ways to study functions Zp → Zp is
to decompose them into series with respect to some natural basis in the space of
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continuous functions C(Zp) from Zp to itself. Two of the most widely used bases of
this space are the Mahler basis and the van der Put basis [28, 36]. In the more general
settings of the spaces of continuous functions from Zp to a field, several other bases
have been used in the literature: Walsh basis [38]; Haar basis (used in group theory
context, for example, in [7]); Kaloujnine basis [16]. In this paper, we deal with the van
der Put basis, which is made of functions χn(x), n ≥ 0 that are characteristic functions
of cylindrical subsets of Zp consisting of all elements that have the p-adic expansion
of n as a prefix. Each continuous function f ∈ C(Zp) can be decomposed uniquely as

f (x) =
∑
n≥0

B f
nχn(x),

where the coefficients B f
n are elements of Zp which we call van der Put coefficients.

A function f : Zp → Zp is 1-Lipschitz if and only if its van der Put coefficients can be
represented as B f

n = b f
nd	logd n
 for all n > 0, where b f

n ∈ Zp [5]. We call b f
n the reduced

van der Put coefficients (see Section 3 for details).
The main results of the present paper are the following two theorems, in which

d ≥ 2 is an arbitrary (not necessarily prime) integer.

THEOREM 1.1. Let g ∈ End(X∗) be an endomorphism of the rooted tree X∗, where
X = {0, 1, . . . , d − 1}. Then g is finite state if and only if the following two conditions
hold for the transformation ĝ of Zd induced by g:

(a) the sequence (bĝ
n)n≥1 of reduced van der Put coefficients of ĝ consists of finitely

many eventually periodic elements from Zd;
(b) (bĝ

n)n≥1 is d-automatic.

For the case of prime d = p, Theorem 1.1 was proved by Anashin in [4] using a
completely different method from our approach. The proof from [4] does not provide
a direct connection between the Mealy automaton of an endomorphism of X∗ and
the Moore automaton of the corresponding sequence of its reduced van der Put
coefficients. Our considerations are based on understanding the connection between
the reduced van der Put coefficients of an endomorphism and of its sections at vertices
of the rooted tree via the geometric notion of a portrait. This connection, summarized
in the next theorem, bears a distinct geometric flavor and provides a way to effectively
relate the corresponding Mealy and Moore automata.

THEOREM 1.2. Let X = {0, 1, . . . , d − 1} be a finite alphabet identified with Z/dZ.

(a) Given an endomorphism g of the tree X∗, defined by the finite Mealy automaton,
there is an explicit algorithmic procedure given by Theorem 7.1 and Algorithm 7.3
that constructs the finite Moore automaton generating the sequence (bg

n)n≥0 of
reduced van der Put coefficients of g.

(b) Conversely, given a finite Moore automaton generating the sequence (cn)n≥0 of
eventually periodic d-adic integers, there is an explicit algorithmic procedure
given by Theorem 7.7 and Algorithm 7.8 that constructs the finite Mealy
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automaton of an endomorphism g whose reduced van der Put coefficients satisfy
bg

n = cn for all n ≥ 0.
(c) Both constructions are dual to each other in a sense that the automata produced

by them cover the input automata as labeled graphs (see Section 7 for the exact
definition).

Theorem 1.2 opens up a new approach to study automatic sequences by means of
(semi)groups acting on rooted trees, and vice versa, to study endomorphisms of rooted
trees via the language of Moore automata. Note that in this context, unlike in the p-adic
analysis, the fact that the size of the alphabet can be chosen to be not necessarily
prime plays an important role since there are important automatic sequences over such
alphabets, as well as interesting endomorphisms of d-regular rooted trees, where d is
not a prime number.

In [4], Anashin, using Christol’s famous characterization of p-automatic sequences
in terms of algebraicity of the corresponding power series, suggested another version
of the main result of his paper (that is, of Theorem 1.1 in the case of prime d).
The authors are not aware of the existence of an analog of Christol’s theorem in the
situation of d-automaticity when d is not prime. The first question that arises is how
to define the algebraicity of a function when the field Qp is replaced by the ring Qd of
d-adic numbers. The authors do not exclude that the extension of Christol’s theorem
is possible and leave this question for the future.

The paper is organized as follows. Section 2 introduces necessary notions related
to Mealy automata and actions on rooted trees. Section 3 recalls how to represent
a continuous function Zd → Zd by a van der Put series. We consider automatic
sequences and define their portraits and sections in Section 4. The crucial argument
relating van der Put coefficients of endomorphisms and their sections is given in
Section 5. Section 6 contains the proof of Theorem 1.1. The algorithms relating Mealy
and Moore automata associated with an endomorphism of X∗ and constituting the
proof of Theorem 1.2, are given in Section 7. Finally, two examples are worked out in
full detail in Section 8 to conclude the paper.

2. Mealy automata and endomorphisms of rooted trees

We start this section by introducing the notions and terminology of endomorphisms
and automorphisms of regular rooted trees and transformations generated by Mealy
automata. For more details, the reader is referred to [23].

Let X = {0, 1, . . . , d − 1} be a finite alphabet with d ≥ 2 elements (called letters)
and let X∗ denote the set of all finite words over X. The set X∗ can be equipped with
the structure of a rooted d-ary tree by declaring that v is adjacent to vx for every
v ∈ X∗ and x ∈ X. Thus finite words over X serve as vertices of the tree. The empty
word corresponds to the root of the tree and for each positive integer n, the set Xn

corresponds to the n th level of the tree. Also, the set X∞ of infinite words over X can
be identified with the boundary of the tree X∗, which consists of all infinite paths in
the tree, without backtracking, initiating at the root. We consider endomorphisms and
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FIGURE 1. Mealy automaton generating the lamplighter group L.

automorphisms of the tree X∗ (that is, the maps and bijections of X∗ that preserve
the root and the adjacency of vertices). We sometimes denote the tree X∗ as Td. The
semigroup of all endomorphisms of Td is denoted by End(Td) and the group of all
automorphisms of Td is denoted by Aut(Td). To operate with such objects, we use the
language of Mealy automata.

DEFINITION 2.1. A Mealy automaton (or simply automaton) is a 4-tuple

(Q, X, δ, λ),

where

• Q is a set of states;
• X is a finite alphabet (not necessarily {0, 1, . . . , d − 1});
• δ : Q × X → Q is the transition function;
• λ : Q × X → X is the output function.

If the set of states Q is finite, the automaton is called finite. If for every state q ∈ Q the
output function λq(x) = λ(q, x) induces a permutation of X, the automaton A is called
invertible. Selecting a state q ∈ Q produces an initial automaton Aq, which formally
is a 5-tuple (Q, X, δ, λ, q).

Here we consider automata with the same input and output alphabets.
Automata are often represented by their Moore diagrams. The Moore diagram of

automaton A = (Q, X, δ, λ) is a directed graph in which the vertices are in bijection

with the states of Q and the edges have the form q
x|λ(q,x)
−→ δ(q, x) for q ∈ Q and x ∈ X.

Figure 1 shows the Moore diagram of the automaton A that, as is explained later,
generates the lamplighter group L = (Z/2Z) � Z.

Every initial automatonAq induces an endomorphism of X∗, which is also denoted
byAq, defined as follows. Given a word v = x1x2x3 . . . xn ∈ X∗, it scans the first letter x1
and outputs λ(q, x1). The rest of the word is handled similarly by the initial automaton
Aδ(q,x1). So we can actually extend the functions δ and λ to δ : Q × X∗ → Q and λ : Q ×
X∗ → X∗ via the equations

δ(q, x1x2 . . . xn) = δ(δ(q, x1), x2x3 . . . xn),
λ(q, x1x2 . . . xn) = λ(q, x1)λ(δ(q, x1), x2x3 . . . xn).
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The boundary X∞ of the tree is endowed with a natural topology in which two
infinite words are close if they have a large common prefix. With this topology, X∞

is homeomorphic to the Cantor set. Each endomorphism (respectively automorphism)
of X∗ naturally induces a continuous transformation (respectively homeomorphism)
of X∞.

DEFINITION 2.2. The semigroup (group) generated by all states of an automaton A
viewed as endomorphisms (automorphisms) of the rooted tree X∗ under the operation
of composition is called an automaton semigroup (group) and is denoted by S(A)
(respectively G(A)).

In the definition of the automaton, we do not require the set Q of states to be finite.
With this convention, the notion of an automaton group is equivalent to the notions of
a self-similar group [33] and state-closed group [34]. However, most of the interesting
examples of automaton (semi)groups are finitely generated (semi)groups defined by
finite automata.

Let g ∈ End(X∗) and x ∈ X. For any v ∈ X∗, we can write

g(xv) = g(x)v′

for some v′ ∈ X∗. Then the map g|x : X∗ → X∗ given by

g|x(v) = v′

defines an endomorphism of X∗ which we call the state (or section) of g at vertex x.
We can inductively extend the definition of a section at a letter x ∈ X to a section at
any vertex x1x2 . . . xn ∈ X∗ as follows:

g|x1x2...xn = g|x1 |x2 · · · |xn .

We adopt the following convention throughout the paper. If g and h are elements of
some (semi)group acting on a set Y and y ∈ Y , then

gh(y) = h(g(y)).

Hence, the state g|v at v ∈ X∗ of any product g = g1g2 · · · gn, where gi ∈ Aut(X∗) for
1 ≤ i ≤ n, can be computed as follows:

g|v = g1|vg2|g1(v) · · · gn|g1g2···gn−1(v).

Also, we use the language of wreath recursions. For each automaton semigroup G,
there is a natural embedding

G ↪→ G � Tr(X),

where Tr(X) denotes the semigroup of all selfmaps of set X. This embedding is given
by

G � g �→ (g0, g1, . . . , gd−1)σg ∈ G � Tr(X), (2-1)

where g0, g1, . . . , gd−1 are the states of g at the vertices of the first level and σg is
the transformation of X induced by the action of g on the first level of the tree. If
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σg is the trivial transformation, it is customary to omit it in Equation (2-1). We call
(g0, g1, . . . , gd−1)σg the decomposition of g at the first level (or the wreath recursion
of g). When this does not cause any confusion, we identify g with its wreath recursion
and write simply

g = (g0, g1, . . . , gd−1)σg.

In the case of the automaton group G = G(A), the embedding Equation (2-1) is
actually the embedding into the group G � Sym(X).

The decomposition at the first level of all generatorsAq of an automaton semigroup
S(A) under the embedding Equation (2-1) is called the wreath recursion defining the
semigroup. Such a decomposition is especially convenient for computing the states
of semigroup elements. Indeed, the products endomorphisms and inverses of automor-
phisms can be found as follows. If g = (g0, g1, . . . , gd−1)σg and h = (h0, h1, . . . , hd−1)σh
are two elements of End(X∗), then

gh = (g0hσg(0), g1hσg(1), . . . , gd−1hσg(d−1))σgσh

and in the case when g is an automorphism, the wreath recursion of g−1 is

g−1 = (g−1
σ−1

g (0), g−1
σ−1

g (1), . . . , g−1
σ−1

g (d−1))σ
−1
g .

3. Continuous maps from Zd to Zd

In this section, we recall how to represent every continuous function f : Zd → Zd by
its van der Put series. For details when d = p is prime, we refer the reader to Schikhof’s
book [36] and for needed facts about the ring of d-adic integers, we recommend [14,
Section 4.2] and [26]. Here we relate the coefficients of these series to the vertices of
the rooted d-ary tree, whose boundary is identified with Zd.

First, we recall that the ring of d-adic integers Zd for arbitrary (not necessarily
prime) d is defined as the set of all formal sums

Zd = {a0 + a1d + a2d2 + · · · : ai ∈ {0, 1, . . . , d − 1} = Z/dZ, i ≥ 0},

where addition and multiplication are defined in the same way as in Zp for prime p
taking into account the carry over. Also, the ring Qd of d-adic numbers can be defined
as the full ring of fractions of Zd, but we only need to use elements of Zd below.
Algebraically, if d = pn1

1 pn2
2 · · · p

nk
k is the decomposition of d into the product of primes,

then

Zd = Zp1 × Zp2 × · · · × Zpk and Qd = Qp1 × Qp2 × · · · × Qpk .

As stated in the introduction, for the alphabet X = {0, 1, . . . , d − 1}, we identify Zd

with the boundary X∞ of the rooted d-ary regular tree X∗ in a natural way, viewing
a d-adic number x0 + x1d + x2d2 + · · · as a point x0x1x2 . . . ∈ X∞. This identification
gives rise to an embedding of N0 = N ∪ {0} into X∗ via n �→ [n]d, where [n]d denotes
the word over X representing the expansion of n in base d written backwards (so that,
for example, [6]2 = 011). There are two standard ways to define the image [0]d of
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FIGURE 2. Labeling of vertices of a binary tree by elements of N0.

0 ∈ N0: one can define it to be either the empty word ε over X of length 0 or a word
0 of length 1. These two choices give rise later to two similar versions of the van
der Put bases in the space of continuous functions from Zd to Zd that we call Mahler
and Schikhof versions. Throughout the paper, we use Mahler’s version and, unless
otherwise stated, we define [0]d = 0 (the word of length 1). However, we state some
of the results for Schikhof’s version as well. Note that the image of N ∪ {0} consists
of all vertices of X∗ that do not end with 0, and the vertex 0 itself. We call these
vertices labeled. For example, the labeling of the binary tree is shown in Figure 2.
The inverse of this embedding, with a slight abuse of notation as the notation does not
explicitly mention d, we denote by bar . In other words, if u = u0u1 . . . un ∈ X∗, then
u = u0 + u1d + · · · + undn ∈ N0. We note that the operation u �→ u is not injective as
u = u0k for all k ≥ 0.

Under this notation, we can also define for each n ≥ 0 a cylindrical subset [n]dX∞ ⊂
Zd that consists of all d-adic integers that have [n]d as a prefix. Geometrically, this set
can be envisioned as the boundary of the subtree of X∗ hanging down from the vertex
[n]d.

For n > 0 with the d-ary expansion n = x0 + x1d + · · · + xkdk, xk � 0, we define
n_ = n − xkdk. Geometrically, n_ is the label of the labeled vertex in X∗ closest to n
along the unique path from n to the root of the tree. For example, for n = 22, we have
[n]2 = 01101, so [n_]2 = 011 and n_ = 6.

We are ready to define the decomposition of a continuous function f : Zd → Zd

into a van der Put series. For each such function, there is a unique sequence (B f
n)n≥0,

B f
n ∈ Zd of d-adic integers such that for each x ∈ Zd, the following expansion:

f (x) =
∑
n≥0

B f
nχn(x) (3-1)

holds, where χn(x) is the characteristic function of the cylindrical set [n]dX∞ with
values in Zd. The coefficients B f

n are called the van der Put coefficients of f and are
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computed as follows:

B f
n =

⎧⎪⎪⎨⎪⎪⎩
f (n) if 0 ≤ n < d,
f (n) − f (n_) if n ≥ d.

(3-2)

This is the decomposition with respect to the orthonormal van der Put basis
{χn(x) : n ≥ 0} of the space C(Zd) of continuous functions from Zd (as a Zd-module)
to itself, as given in Mahler’s book [28], and also used in [5]. In the literature, this
basis is considered only when d = p is a prime number, and is, in fact, an orthonormal
basis of a larger space C(Zp → K) of continuous functions from Zp to a normed field
K containing the field of p-adic rationals Qp. However, the given decomposition works
in our context with all the proofs identical to the ‘field’ case.

To avoid possible confusion, we note that there is another standard version of the
van der Put basis {χ̃n(x) : n ≥ 0} used, for example, in Schikhof’s book [36]. We call
this version of a basis Schikhof’s version. In this basis, χ̃n = χn for n > 0, and χ̃0 is the
characteristic function of the whole space Zd (while χ0 is the characteristic function of
dZd = 0X∞). This difference corresponds to two ways of defining [0]d as mentioned
earlier, since χn is defined as the characteristic function of [n]dX∞. The definition of χ0
clearly depends on the choice we make for [0]d. If [0]d = 0, we obtain the version of
basis used by Mahler, and defining [0]d = ε (the empty word) yields the basis used by
Schikhof. This difference does not change much the results and the proofs, and we give
formulations of some of our results for both bases. In particular, the decomposition
Equation (3-1) is transformed into

f (x) =
∑
n≥0

B̃ f
n χ̃n(x),

where Schikhof’s versions of the van der Put coefficients B̃ f
n are computed as

B̃ f
n =

⎧⎪⎪⎨⎪⎪⎩
f (0) if n = 0,
f (n) − f (n_) if n > 0.

Among all continuous functions Zd → Zd, we are interested in those that define
endomorphisms of X∗ (viewed as a tree). We use the following useful characterization
of these maps in terms of the coefficients of their van der Put series (which works for
both versions of the van der Put basis). In the case of prime d, this easy fact is given
in [5]. The proof in the general case is basically the same and we omit it.

THEOREM 3.1. A function Zd → Zd is 1-Lipschitz if and only if it can be represented
as

f (x) =
∑
n≥0

b f
nd	logd n
χn(x), (3-3)

where b f
n ∈ Zd for all n ≥ 0, and

	logd n
 = (the number of digits in the base-d expansion of n) − 1.
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We call the coefficients b f
n from Theorem 3.1 the reduced van der Put coefficients.

It follows from Equation (3-2) that these coefficients are computed as

b f
n = B f

nd−	logd n
 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (n) if 0 ≤ n < d,

f (n) − f (n_)
d	logd n
 if n ≥ d.

(3-4)

For Schikhof’s version of the van der Put basis, Equation (3-3) has to be replaced
with

f (x) =
∑
n≥0

b̃ f
nd	logd n
χn(x)

and the corresponding reduced van der Put coefficients are computed as

b̃ f
n = B̃ f

nd−	logd n
 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (0) if n = 0,

f (n) − f (n_)
d	logd n
 if n > 0.

In particular, b̃ f
n = b f

n for all n ≥ d.
We note that since Schikhof’s reduced van der Put coefficients b̃ f

n differ from b f
n

only for n < d, the claim of Theorem 1.1 clearly remains true for Schikhof’s van der
Put series as well.

4. Automatic sequences

There are several equivalent ways to define d-automatic sequences. We refer the
reader to Allouche–Shallit’s book [2] for details. Informally, a sequence (an)n≥0 is
called d-automatic if one can compute an by feeding a deterministic finite automaton
with output (DFAO) as the base-d representation of n, and then applying the output
mapping τ to the last state reached. We first recall the definition of the (Moore) DFAO
and then give the formal definition of automatic sequences.

DEFINITION 4.1. A deterministic finite automaton with output (or a Moore automaton)
is defined to be a 6-tuple

B = (Q, X, δ, q0, A, τ),

where

• Q is a finite set of states;
• X is the finite input alphabet;
• δ : Q × X → Q is the transition function;
• q0 ∈ Q is the initial state;
• A is the output alphabet;
• τ : Q→ A is the output function.

https://doi.org/10.1017/S1446788722000027 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000027


88 R. Grigorchuk and D. Savchuk [11]

In the case when the input alphabet is X = {0, 1, . . . , d − 1}, we call the corresponding
automaton a d-DFAO.

Similar to the case of Mealy automata, we extend the transition function δ to δ : Q ×
X∗ → Q. With this convention, a d-DFAO defines a function fM : X∗ → A by fM(w) =
τ(δ(q0, w)).

Note that Moore automata can also be viewed as transducers as well by recording
the values of the output function at every state while reading the input word. This way,
each word over X is transformed into a word over A of the same length. This model of
calculations is equivalent to Mealy automata (in the more general case when the output
alphabet is allowed to be different from the input alphabet) in the sense that for each
Moore automaton, there exists a Mealy automaton that defines the same transformation
from X∗ to A∗ and vice versa (see [37] for details).

Recall that for a word w = x0x1 . . . xn ∈ X∗, we write w = x0 + x1d + · · · + xndn ∈ N0
for the label of the labeled vertex in X∗ closest to w along the unique path from w to
the root of the tree.

DEFINITION 4.2 [2]. We say that a sequence (an)n≥0 over a finite alphabet A is
d-automatic if there exists a d-DFAO B = (Q, X, δ, q0, A, τ) such that an = τ(δ(q0, w))
for all n ≥ 0 and w ∈ X∗ with w = n.

For us, it is more convenient to use the alternative characterization of automatic
sequences (for the proof, see for instance [2]).

THEOREM 4.3. A sequence (an)n≥0 over an alphabet A is d -automatic if and only if
the collection of its subsequences of the form {(aj+n·di )n≥0 | i ≥ 0, 0 ≤ j < di}, called the
d-kernel, is finite.

We recall the connection between the d-DFAO defining a d-automatic sequence
(an)n≥0 and the d-kernel of this sequence (see Theorem 6.6.2 in [2]). For that, we define
the section of a sequence (an)n≥0 at a word v over X = {0, 1, . . . , d − 1} recursively as
follows.

DEFINITION 4.4. Let (an)n≥0 be a sequence over alphabet A. Its d-section (an)n≥0|x at
x ∈ X = {0, 1, . . . , d − 1} is a subsequence (ax+nd)n≥0. For a word v = x1x2 . . . xk over X,
we further define the d-section (an)n≥0|v at v to be either (an)n≥0 itself if v is the empty
word or (an)n≥0|x1 |x2 · · · |xk otherwise.

We often omit d in the term d-section when d is clear from the context. The d-kernel
of a sequence consists exactly of d-sections and the d-automaticity of a sequence can
be reformulated as follows.

PROPOSITION 4.5. A sequence (an)n≥0 over an alphabet A is d-automatic if and only
if the set {(an)n≥0|v : v ∈ X∗} is finite.

The subsequences involved in the definition of the d-kernel can be plotted on the
d-ary rooted tree X∗, where the vertex v ∈ X∗ is labeled with the subsequence (an)|v.
For d = 2, such a tree is shown in Figure 3.
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FIGURE 3. Tree of subsequences of (an)n≥0 constituting its d-kernel (for d = 2).

a0 a1

a2 a3

a4 a5a6 a7

a8 a9a10 a11a12 a13a14 a15

a16 a17a18 a19a20 a21a22 a23a24 a25a26 a27a28 a29a30 a31

(an)|0 (an)|1

(an)|10

FIGURE 4. The 2-portrait of the sequence (an)n≥0.

A convenient way to represent sections of a sequence and understand d-automaticity
is to put the terms of this sequence on a d-ary tree. Recall that in the previous section,
we have constructed an embedding of N0 into X∗ via n �→ [n]d. Under this embedding,
we call the image of n ∈ N ∪ {0} the vertex n of X∗.

DEFINITION 4.6. The d-portrait of a sequence (an)n≥0 over an alphabet A is a d-ary
rooted tree X∗, where the vertex n is labeled by an and other vertices are unlabeled.

In other words, we label each vertex v = x0x1 . . . xk with xk � 0 or v = 0 by av =

ax0+x1d+···+xkdk . For example, Figure 4 represents the 2-portrait of the sequence (an)n≥0.
To simplify the exposition, we write simply portrait for d-portrait when the value of

d is clear from the context. In particular, unless otherwise stated, X denotes an alphabet
{0, 1, . . . , d − 1} of cardinality d and a portrait means a d-portrait.

There is a simple connection between the portrait of a sequence and the portrait of
its section at vertex v ∈ X∗ that takes into account that the subtree vX∗ of X∗ hanging
down from vertex v is canonically isomorphic to X∗ itself via vu↔ u for each u ∈ X∗.
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PROPOSITION 4.7. For a sequence (an)n≥0 over an alphabet A with a portrait P and a
vertex v = x0x1 . . . xk, k ≥ 0 of X∗, the portrait of the section (an)n≥0|v is obtained from
the portrait of (an)n≥0 by taking the (labeled) subtree of P hanging down from vertex
v, removing, if v ends with xk � 0 and k > 0, the label at its root vertex, and labeling
the vertex 0 by av = ax0+x1d+···+xkdk , which is the label of the labeled vertex in P closest
to v0 on the unique path connecting v0 to the root.

The proof of the above proposition follows immediately from the definitions of
portrait and section.

In other words, as shown in Figure 4, you can see the portrait of a section of a
sequence (an)n≥0 at vertex v ∈ X∗ just by looking at the subtree hanging down in the
portrait of (an)n≥0 from vertex v (modulo the minor technical issue of labeling the
vertex 0 of this subtree and possibly removing the label of the root vertex). Therefore,
a sequence is automatic if and only if its portrait has a finite number of ‘subportraits’
hanging down from its vertices. This way of interpreting automaticity now corresponds
naturally to the condition of an automaton endomorphism being finite state.

Note that the formulation of the previous proposition would be simpler had we
defined portraits by labeling each vertex v = x0x1 . . . xk of the tree by ax0+x1d+···xkdk

instead of only numbered ones, but we intentionally opt not to do that, to simplify
our notation in the next section.

Now it is easy to see that the d-DFAO defining a d-automatic sequence (an)n≥0 over
an alphabet A with the d-kernel K can be built as follows.

PROPOSITION 4.8. Suppose (an)n≥0 is a d-automatic sequence over an alphabet A with
the d-kernel K. Then a d-DFAO B = (K, X, δ, q0, A, τ), where

δ((an)n≥0|v, x) = (an)n≥0|vx,
τ((an)n≥0|v) = av (the first term of the sequence (an)n≥0|v),

q0 = (an)n≥0|ε = (an)n≥0

(4-1)

defines the sequence (an)n≥0.

Informally, we build the automaton M by following the edges of the tree X∗ from
the root, labeling these edges by the corresponding elements of X, and identifying the
vertices that correspond to the same sections of (an)n≥0 into one state of M that is
labeled by the 0 th term of the corresponding section.

5. Portraits of sequences of reduced van der Put coefficients and their sections

It turns out that there is a natural relation between the (portraits of the sequences
of ) reduced van der Put coefficients of an endomorphism g and of its sections. Denote
by σ : Zd → Zd the map σ(a) = (a − (a mod d))/d. This map corresponds to the shift
map on Zd that deletes the first letter of a. That is, if a = x0x1x2 . . . ∈ Zd, then σ(a) =
x1x2x3 . . . ∈ Zd.
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THEOREM 5.1. Suppose g ∈ End X∗ has sections g|x, x = 0, 1, . . . , n − 1 at the vertices
of the first level of X∗. Then the reduced van der Put coefficients bg|x

n of the section g|x
satisfy:

bg|x
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ(bg

x) n = 0,
bg

x+nd + σ(bg
x) 0 < n < d,

bg
x+nd n ≥ d,

(5-1)

where for b ∈ Zd, we denote by σ(b) = (b − (b mod d))/d the shift map on Zd.

PROOF. First we consider the case n = 0. By Equation (3-4), the reduced van der Put
coefficients are computed as follows:

bg|x
0 = g|x(0∞) =

g(x0∞) − (g(x0∞) mod d)
d

= σ(g(x0∞)) = σ(bg
x).

Similarly for 0 < n < d, we obtain

bg|x
n = g|x(n0∞) =

g(xn0∞) − (g(xn0∞) mod d)
d

=
g(xn0∞) − (g(x0∞) mod d)

d
+

g(x0∞) − (g(xn0∞) mod d)
d

= bg
x+nd +

g(x0∞) − (g(x0∞) mod d)
d

= bg
x+nd + σ(bg

x).

Finally, for n > d, we derive

bg|x
n = d−	logd n
(g|x([n]d0∞) − g|x([n_]d0∞))

= d−	logd n

(g(x[n]d0∞) − (g(x[n]d0∞) mod d)

d

− g(x[n_]d0∞) − (g(x[n_]d0∞) mod d)
d

)

= d−	logd n
−1(g(x[n]d0∞) − g(x[n_]d0∞))

= d−	logd(x+nd)
(g([x + nd]d0∞) − g([(x + nd)_]d0∞)) = bg
x+nd,

where in the last line, we used that for x < d, we have x + (n_)d = (x + nd)_ and

	logd(n)
 + 1 = 	logd(n) + 1
 = 	logd(nd)
 = 	logd(x + nd)
. �

In the case of Schikhof’s version of the van der Put basis, we can similarly prove
the following.

THEOREM 5.2. Suppose g ∈ End X∗ has sections g|x, x = 0, 1, . . . , n − 1 at the vertices
of the first level of X∗. Then the reduced van der Put coefficients with respect to
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Schikhof’s version of the van der Put basis of the section g|x satisfy:

b̃g|x
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
llσ(b̃g

0) n = 0, x = 0,
σ(b̃g

x + bg
0) n = 0, 0 < x < d,

b̃g
x+nd n > 0.

There is a more visual way to state the third case in Equation (5-1) using the
notation.

COROLLARY 5.3. Let x0x1 . . . xk ∈ X∗ be a word of length k + 1 ≥ 3 with xk � 0. Then,

bg
x0x1...xk

= b
g|x0
x1...xk

.

PROOF. Follows from Equation (5-1) and the fact that if x1x2 . . . xk = n, then
x0x1x2 . . . xk = x0 + nd. �

The next corollary is used in the calculations in Section 8.

COROLLARY 5.4. Let v, w ∈ X∗ with w of length at least 2 and ending in a nonzero
element of X. Then,

bg
vw = bg|v

w .

PROOF. When v is the empty word, the claim is trivial. The general case now follows
by induction on |v| from Corollary 5.3 as for each x ∈ X, we have

bg
xvw = bg|x

vw = b(g|x)|v
w = bg|xv

w . �

COROLLARY 5.5. Let g ∈ End(X∗) be an endomorphism of X∗ and v ∈ X∗ be an arbi-
trary vertex. Then the sequences (bg|v

n )n≥0 and (bg
n)n≥0|v coincide starting from term d.

PROOF. For any n ≥ d, we have that [n]d = xw for some x ∈ X and w ∈ X∗ of length at
least 1 that ends with a nonzero element of X. So we have by Corollary 5.4,

bg|v
n = bg|v

xw = bg
vxw.

However, bg
vxw is exactly the term of the sequence (bg

n)n≥0|v with index n = xw. �

Now, taking into account Proposition 4.7, there is a geometric way to look at the
previous theorem. Namely, the third subcase in Equation (5-1) yields the following
proposition.

COROLLARY 5.6. Let v ∈ X∗ be an arbitrary vertex of X∗. The labels of the portrait of
the sequence (bg|v

n )n≥0 coincide at levels 2 and below with the corresponding labels of
the restriction of the portrait of (bg

n)n≥0 to the subtree hanging down from vertex v ∈ X.

We illustrate by Figure 5 this fact for v = x ∈ X of length one, where the portraits
of (bg|0

n )n≥0 and (bg|1
n )n≥0 are drawn on the left and right subtrees of the portrait of

(bg
n)n≥0. Figure 5 demonstrates that the labels of the portraits of sections coincide with

the labels of the portrait of (bg
n)n≥0 below the dashed line. The first two subcases of

Equation (5-1) give labels of the portraits of (bg|x
n )n≥0, x ∈ X on the first level.

https://doi.org/10.1017/S1446788722000027 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000027


[16] Solenoidal maps, automatic sequences, van der Put series 93

Portrait of b
g|0
n n≥0 Portrait of b

g|1
n n≥0

b
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0 = σ(bg
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1 = bg
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g|1
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1) b
g|1
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FIGURE 5. Correspondence between portraits of (bg|x
n )n≥0 and (bg

n)n≥0.

6. Proof of the Theorem 1.1

In this section, we prove Theorem 1.1. In the arguments below, we work with
eventually periodic elements of Zd, that is, elements of the form a0 + a1d + a2d2 + · · ·
with eventually periodic sequences (ai)i≥0 of coefficients. As shown in [14, Theorem
4.2.4], this set of d-adic integers can be identified with the subset Zd,0 of Q consisting
of all rational numbers a/b ∈ Q such that b is relatively prime to d. Algebraically, it can
be defined as Zd,0 = D−1Z, where D is the multiplicative set {b ∈ Z : gcd(b, d) = 1}.
We denote the corresponding inclusion Zd,0 ↪→ Zd by ψ. The following inclusions then
take place:

Z ⊂ Zd,0
ψ
↪→ Zd ⊂ Qd

∩
Q

We do not need the definition of ψ which can be constructed using lemma 4.2.2
in [14], but rather need the definition of ψ−1 : ψ(Zd,0)→ Zd,0. The map is defined
as follows. Suppose uv∞ ∈ Zd is an arbitrary eventually periodic element for some
u, v ∈ X∗. Then we define

ψ−1(uv∞) = u +
v · d|u|

1 − d|v|
∈ Zd,0.

LEMMA 6.1. The preimage under ψ of the set {v∞ : v ∈ Xm} of all periodic elements of
Zd whose periods have lengths dividing m ≥ 0 is the set

P0,m =

{ j
1 − dm : 0 ≤ j < dm

}
,

which is a subset of the interval [−1, 0] ⊂ R.

PROOF. It follows from the definition of ψ−1 that

ψ−1(v∞) =
v

1 − d|v|
.
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Recall that for v = x0x1 . . . xm−1, we have v = x0 + x1d + · · · + xm−1dm−1. This implies
that 0 ≤ v ≤ dm − 1 and, henceforth, −1 ≤ ψ−1(v∞) ≤ 0. Moreover, as v runs over all
words in Xm, v runs over all integer numbers from 0 to dm − 1 as we simply list the
d-ary expansions of all these numbers. �

LEMMA 6.2. The preimage under ψ of the set {uv∞ : u ∈ Xl, v ∈ Xm} of all eventually
periodic elements of Zd with preperiods of length at most l ≥ 0 and periods of lengths
dividing m ≥ 1 is the set

Pl,m =

{
i +

j · dl

1 − dm : 0 ≤ i < dl, 0 ≤ j < dm
}
,

which is a subset of the interval [−dl, dl − 1] ⊂ R.

PROOF. We have

ψ−1({uv∞ : u ∈ Xl, v ∈ Xm}) = {ψ−1(uv∞) : u ∈ Xl, v ∈ Xm}
= {ψ−1(u0∞) + ψ−1(0lv∞) : u ∈ Xl, v ∈ Xm}
= {u + dl · ψ−1(v∞) : u ∈ Xl, v ∈ Xm}

= {i + dlψ−1(v∞) : 0 ≤ i < dl, v ∈ Xm} =
⋃

0≤i<dl

(i + dlP0,m).

The set dlP0,m by Lemma 6.1 is a subset of [−dl, 0]. Therefore, since Pl,m ⊂ Q is
obtained as the union of all shifts of dlP0,m by all integers 0 ≤ i < dl, we obtain that
Pl,m ⊂ [−dl, dl − 1]. �

To obtain the condition of finiteness of Mealy automata in the proof of Theorem 1.1,
we also need the following technical lemma. Define a sequence of subsets Al,m

i
recursively by Al,m

0 = Pl,m, and

Al,m
i+1 = σ(Al,m

i ) + Pl,m. (6-1)

Al,m
i is used later to describe the possible sets of states of an automaton defined by

a transformation with a given automatic sequence of reduced van der Put coefficients.

LEMMA 6.3. The set Al,m =
⋃

i≥0 Al,m
i is finite.

PROOF. First, we remark that the denominators of the fractions in Al,m
i are divisors

of dm − 1. Therefore, it is enough to prove by induction on i that Al,m
i ⊂ [−z, z] for

z = (dl+1 + d − 1)/(d − 1). For i = 0, the statement is true since Al,m
0 ⊂ [−dl, dl − 1] by

Lemma 6.1, and

z =
dl+1 + d − 1

d − 1
>

dl+1 + d − 1
d

= dl +
d − 1

d
> dl.

Assume that the statement is true for a given i ≥ 0. Any element of Al,m
i+1 is equal

to σ(x) + b for some x ∈ Al,m
i+1 ⊂ [−z, z] and b ∈ Pl,m ⊂ [−dl, dl − 1]. Since σ(x) =
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(x − x mod d)/d, we immediately obtain

σ(x) + b ≤ x
d
+ b ≤ z

d
+ dl − 1 =

(dl+1 + d − 1)
d(d − 1)

+ dl − 1

=
dl + 1 + (dl − 1)(d − 1)

d − 1
=

dl+1 − d + 2
d − 1

< z.

For the lower bound, we obtain

σ(x) + b ≥ x − d + 1
d

+ b ≥ −z − d + 1
d

− dl =
− dl+1+d−1

d−1 − d + 1
d

− dl

=
−dl − d + 1

d − 1
− dl = −dl+1 + d − 1

d − 1
= −z. �

We are ready to proceed to the main result of this section.

PROOF OF THEOREM 1.1. First, assume that g ∈ End(X∗) is defined by a finite Mealy
automatonAwith the set of states Q. To prove that (bg

n)n≥0 is automatic, by Proposition
4.5, we need to show that it has finitely many sections at vertices of X∗.

Assume that v ∈ X∗ is of length at least 2, v = v′xy for some v′ ∈ X∗ and x, y ∈
X. Then the section (bg

n)|v is a sequence that can be completely identified by a
pair

(bg
v ,σ((bg

n)|v)), (6-2)

where bg
v is its zero term, and σ((bg

n)|v) is the subsequence made of all other terms.
Since by Corollary 5.6

σ((bg
n)|v) = σ((bg

n)|v′xy) = σ((bg|v′
n )|xy),

the number of possible choices for the second component in Equation (6-2) is bounded
above by |Q| · |X|2 (as we have |Q| choices for g|v′ and |X|2 choices for xy ∈ X2).

Further, if v < d (that is, v = z0k for some z ∈ X), then the number of choices for
the first component bg

v of Equation (6-2) is bounded above by |Q| · |X|. Otherwise, v′ =
v′′x′y′ for some v′′ ∈ X∗, x′, y′ ∈ X with y′ � 0. In this case, bg

v = bg|v′′
x′y′

, so the number

of possible choices for bg
v is again bounded above by |Q| · |X|2. Thus, the sequence

(bg
n)n≥0 has finitely many sections.
To prove the first condition asserting that all bg

n are in Zd ∩ Q, or, equivalently,
eventually periodic, it is enough to mention that by Equation (3-4) bg

n must be
eventually periodic for n ≥ d as a shifted difference of two eventually periodic words
g(n) = g([n]d0∞) and g(n_) = g([n_]d0∞). The latter two words are eventually periodic
as they are the images of eventually periodic words [n]d0∞ and [n_]d0∞ under a finite
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automaton transformation. A similar argument works for n < d, in which case there is
no need to take a difference.

Now we prove the converse direction. Assume that for an endomorphism
g ∈ End(X∗) of X∗, the sequence (bg

n)n≥0 is automatic and consists of eventually
periodic elements of Zd. Then automaticity implies that {bg

n : n ≥ 0} is finite as a
set. Let l be the maximal length among the preperiods of all bg

n and let m be the least
common multiple of the lengths of all periods of bg

n. Then clearly bg
n ∈ ψ(Pl,m) for all

n ≥ 0 by the definition of Pl,m given in Lemma 6.2.
Our aim is to show that the set {g|v : v ∈ X∗} is finite. We show that there are only

finitely many portraits (bg|v
n )n≥0. Let v ∈ X∗. By Corollary 5.6, the part of the portrait

of (bg|v
n )n≥0 below level one coincides with the part below level one of the restriction of

the portrait of (bg
n)n≥0 on the subtree hanging down from vertex v. However, according

to Propositions 4.5 and 4.7, since (bg
n)n≥0 is automatic, there is only a finite number of

such restrictions as the set of all sections {(bg
n)|v : v ∈ X∗} is finite.

Hence, we only need to check that there is a finite number of choices for the van der
Put coefficients of the first level of g|v for v ∈ X∗. To do that, we prove by induction on
|v| that bg|v

i ∈ ψ(Al,m
|v| ) for 0 ≤ i < d. The claim is trivial for |v| = 0 by definition of Al,m

and the choice of l and m. Assume that the claim is true for all words v of length k, and
let vx be a word of length k + 1 for some x ∈ X. Then by assumption, bg|v

x ∈ ψ(Al,m
|v| ) and

additionally bg|v
x+d·i ∈ Pl,m for 1 ≤ i < d, as these coefficients of g on the second level of

its portrait coincide with the corresponding coefficients of g. Now by Theorem 5.1, we
obtain

bg|vx
i = b(g|v)|x

i =

⎧⎪⎪⎨⎪⎪⎩
σ(bg|v

x ) i = 0,
bg|v

x+d·i + σ(bg|v
x ) 0 < i < d.

In both cases, we get that bg|vx
i ∈ Al,m

|vx| by definition of Al,m
|vx| from Equation (6-1). Finally,

Lemma 6.3 now guarantees that g has finitely many sections and completes the
proof. �

7. Mealy and Moore automata associated with an endomorphism of X∗

The above proof of Theorem 1.1 allows us to build algorithms that construct the
Moore automaton of the automatic sequence of reduced van der Put coefficients of a
transformation of Zd defined by a finite state Mealy automaton, and vice versa.

We start from constructing the Moore automaton generating the sequence of
reduced van der Put coefficients of an endomorphism g from the finite Mealy
automaton defining g.

THEOREM 7.1. Let g ∈ End(X∗) be an endomorphism of X∗ defined by a finite initial
Mealy automaton A with the set of states QA = {g|v : v ∈ X∗}. Let also (bg

n)n≥0 be the
sequence of reduced van der Put coefficients of the map Zd → Zd induced by g. Then
the Moore automaton B = (QB, X, δ, q,Zd, τ), where
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• the set of states is QB = {(g|v, (bg
vy)y∈X) : v ∈ X∗};

• the transition and output functions are

δ((g|v, (bg
vy)y∈X), x) = (g|vx, (bg

vxy)y∈X),

τ((g|v, (bg
vy)y∈X)) = bg

v ;
(7-1)

• the initial state is q = (g, (bg
y)y∈X),

is finite, and generates the sequence (bg
n)n≥0.

PROOF. According to Proposition 4.8, one can construct an automaton B′ generating
(bg

n)n≥0 as follows. The states of B′ are the sections of (bg
n)n≥0 at the vertices of X∗ (that

is, the d-kernel of (bg
n)n≥0) with the initial state being the whole sequence (bg

n)n≥0, and
transition and output functions defined by Equation (4-1). Let v ∈ X∗ be an arbitrary
vertex. By Corollary 5.6, the labels of the portrait of (bg

n)n≥0|v at level 2 and below
coincide with the corresponding labels of the portrait of (bg|v

n )n≥0. Therefore, each state
(bg

n)n≥0|v of B′ can be completely defined by a pair, called the label of this state:

l((bg
n)n≥0|v) = (g|v, (bg

vy)y∈X), (7-2)

where (bg
vy)y∈X is the d-tuple of the first d terms of (bg

n)n≥0|v that correspond to the
labels of the first level of the portrait of this sequence. The first component of this pair
defines the terms of (bg|v

n )n≥0 at level 2 and below, and the second component consists
of terms of the first level. It is possible that different labels define the same state of B′,
but clearly the automaton B from the statement of the theorem also generates (bg

n)n≥0
since its minimization coincides with B′. Indeed, the set of states of B is the set of
labels of states of B′ and the transitions in B are obtained from the transitions in B′
defined in Proposition 4.8, and the definition of labels.

Finally, the finiteness of QB follows from our proof of Theorem 1.1 since the set
{g|v : v ∈ X∗} (coinciding with QA) is finite, and the set {bg

vy : v ∈ X∗, y ∈ X} is a subset

of the finite set {bg′

w : g′ ∈ QA, w ∈ X ∪ X2}. �

For the algorithmic procedure that, given a finite state g ∈ End(X∗), constructs
a Moore automaton generating the sequence (bg

n)n≥0 of its reduced van der Put
coefficients, we need the following lemma.

LEMMA 7.2. Given a finite state endomorphism g ∈ G acting on X∗ with |X| = d, its
first d2 reduced van der Put coefficients bg

v, v ∈ X∗ of length at most 2, are eventually
periodic elements of Zd that can be algorithmically computed.

PROOF. Suppose g has q states. If v = i < d, then by definition, bg
i = g(i0∞) is the

image of an eventually periodic word under a finite automaton transformation. Thus,
it is also eventually periodic with the period of length at most q and the preperiod
of length at most q + 1. Clearly, both the period and preperiod can be computed
effectively. Further, if d ≤ v < d2, then v = xy for x, y ∈ X with y � 0. In this case, bg

v =

(g(xy0∞) − g(x0∞))/d is eventually periodic as a shifted difference of two eventually
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0

1

0 1

FIGURE 6. Underlying graph for Mealy automaton from Figure 1 and Moore automaton from Figure 8.

periodic words g(xy0∞) and g(x0∞). The latter two words are eventually periodic
as they are the images of eventually periodic words xy0∞ and x0∞ under a finite
automaton transformation that can be effectively computed. �

ALGORITHM 7.3 (construction of Moore automaton from Mealy automaton). Suppose
an endomorphism g of X* is defined by a finite state Mealy automaton A with the set
of states QA. To construct a Moore automaton B defining the sequence of reduced van
der Put coefficients (bg

n)n≥0, complete the following steps.

Step 1. Compute bg′

w for each g′∈ QA and w ∈ X ∪ X2.
Step 2. Start building the set of states of B from its initial state q =

(
g, (bg

y)y∈X
)

with
τ(q) = bg

0. Define Q0 = {q}.
Step 3. To build Qi+1 from Qi for i ≥ 1, start from the empty set and for each state

q =
(
g|v, (bg

vy)y∈X
) ∈ Qi and each x ∈ X, add the state qx =

(
g|vx, (bg

vxy)y∈X
)

to
Qi+1 unless it belongs to Qj for some j ≤ i or is already in Qi+1. Use Corollary
5.4 to identify bg

vxy with one of the elements computed in Step 1. Extend the
transition function by δ(q, x) = qx and the output function by τ(qx) = bg

vx.
Step 4. Repeat Step 3 until Qi+1 = ∅.
Step 5. The set of states of the Moore automaton B is

⋃
i≥0Qi, where the transition

and output functions are defined in Step 3.

A particular connection between the constructed Moore automaton B and the
original Mealy automatonA can be seen at the level of the underlying oriented graphs
as explained below.

DEFINITION 7.4. For a Mealy automaton A = (Q, X, δ, λ), we define its underlying
oriented graph Γ(A) to be the oriented labeled graph whose set of vertices is the set
Q of states of A, and whose edges correspond to the transitions of A and are labeled
by the input letters of the corresponding transitions. That is, there is an oriented edge
from q ∈ Q to q′ ∈ Q labeled by x ∈ X if and only if δ(q, x) = q′.

In other words, the underlying oriented graph of a Mealy automaton A can be
obtained from the Moore diagram of A by removing the second components of the
edge labels. For example, Figure 6 depicts the underlying graph of a Mealy automaton
from Figure 1 generating the lamplighter group L. Similarly, we construct underlying
oriented graph of a Moore automaton.

https://doi.org/10.1017/S1446788722000027 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000027


[22] Solenoidal maps, automatic sequences, van der Put series 99

DEFINITION 7.5. For a Moore automaton B = (Q, X, δ, q0, A, τ), we define its under-
lying oriented graph Γ(B) to be the oriented labeled graph whose set of vertices is the
set Q of states of B and whose edges correspond to the transitions of B and are labeled
by the input letters of the corresponding transitions. That is, there is an oriented edge
from q ∈ Q to q′ ∈ Q labeled by x ∈ X if and only if δ(q, x) = q′.

Figure 6 depicts also the underlying graph of a Moore automaton from Figure 8
generating the Thue–Morse sequence.

We finally define a covering of such oriented labeled graphs to be a surjective
(both on vertices and edges) graph homomorphism that preserves the labels of the
edges.

COROLLARY 7.6. Let g ∈ End(X∗) be an endomorphism of X∗ defined by a finite Mealy
automatonA. Let also (bg

n)n≥0 be the (automatic) sequence of the reduced van der Put
coefficients of a transformation Zd → Zd induced by g. Then the underlying oriented
graph Γ(B) of the Moore automaton B defining (bg

n)n≥0 obtained fromA by Algorithm
7.3 covers the underlying oriented graph Γ(A).

PROOF. Since the transitions in the original Mealy automatonA defining g are defined
by δ(g|v, x) = g|vx, we immediately get that the map from the set of vertices of the
underlying oriented graph of B to the set of vertices of the underlying oriented graph
ofA defined by

(g|v, (bg
vy)y∈X) �→ g|v, v ∈ X∗

is a graph covering. �

Now we describe the procedure that constructs a Mealy automaton of an endomor-
phism defined by an automatic sequence generated by a given Moore automaton.

THEOREM 7.7. Let g ∈ End(X∗) be an endomorphism of X∗ induced by a transforma-
tion of Zd for which the sequence of reduced van der Put coefficients (bg

n)n≥0 ⊂ Zd is
generated by a finite Moore automaton B with the set of states QB = {(bg

n)n≥0|v : v ∈
X∗}. Then the Mealy automatonA = (QA, X, δ, λ, q), where

• the set of states is QA = {((bg
n)n≥0|v, (bg|v

i )i=0,1,...,d−1) : v ∈ X∗};
• the transition and output functions are

δ(((bg
n)n≥0|v, (bg|v

i )i=0,1,...,d−1), x) = ((bg
n)n≥0|vx, (bg|vx

i )i=0,1,...,d−1),

λ(((bg
n)n≥0|v, (bg|v

i )i=0,1,...,d−1), x) = bg|v
x mod d;

(7-3)

• the initial state is q = ((bg
n)n≥0, (bg

i )i=0,1,...,d−1),

is finite, and defines the endomorphism g.
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PROOF. The initial Mealy automatonA′ defining g has set of states Q′ = {g|v : v ∈ X∗},
transition and output functions defined as

δ′(g|v, x) = g|vx,
λ′(g|v, x) = gv(x),

and the initial state g = g|ε .
Since each endomorphism of X∗ is uniquely defined by the sequence of its reduced

van der Put coefficients, we can identify Q′ with the set

{(bg|v
n )n≥0 : v ∈ X∗}.

By Corollary 5.5, the sequence (bg|v
n )n≥0 of the reduced van der Put coefficients that

defines g|v coincides starting from term d with (bg
n)n≥0|v. Therefore, each state g|v of

A′ can be completely defined by a pair, called the label of this state:

l(g|v) = ((bg
n)n≥0|v, (bg|v

i )i=0,1,...,d−1),

where (bg|v
i )i=0,1,...,d−1 is the d-tuple of the first d terms of (bg|v

n )n≥0 that corresponds
to the labels of the first level of the portrait of this sequence. As in (7-2), the first
component of this pair defines the terms of (bg|v

n )n≥0 at level 2 and below, and the
second component consists of terms of the first level.

Similarly to the case of Theorem 7.1, it is possible that different labels define the
same state of A′, but clearly the automaton A from the statement of the theorem
also generates g since its minimization coincides with A′. Indeed, the set of states
of A is the set of labels of states of A′ and the transition and output functions
in A are obtained from the corresponding functions in A′ and the definition of
labels.

Finally, the finiteness of Q follows from the above proof of Theorem 1.1 since
the set {(bg

n)n≥0|v : v ∈ X∗} (coinciding with QB) is finite, and the set {bg|v
i : v ∈ X∗, i =

0, 1, . . . , d − 1} is finite as well, which follows from Lemma 6.3. �

We conclude with the description of the algorithm for building the Mealy automa-
ton of an endomorphism of X∗ from a Moore automaton defining the sequence of its
reduced van der Put coefficients.

ALGORITHM 7.8 (construction of Mealy automaton from Moore automaton). Let
g ∈End(X*) be an endomorphism of X* induced by a transformation of Zd for which
the sequence of reduced van der Put coefficients (bn

g)n≥0, bn
g ∈ Zd is defined by a finite

Moore automaton B with the set of states QB = {(bn
g)n≥0|v: v ∈ X*}. To construct a Mealy

automaton A = (Q, X, δ, λ, q) defining endomorphism g, complete the following steps.

Step 1. Start building the set of states of A from its initial state q =
(
(bg

n)n≥0,
(bg

i )i=0,1,...,d−1
)

with τ(q) = b0
g. Define Q0 = {q}.

Step 2. To build Qi+1 from Qi for i ≥ 1, start from the empty set and for each state
q =

(
(bg

n)n≥0|v, (bg|v
i )i=0,1,...,d−1

) ∈ Qi and each x ∈ X, add state qx = ((bn
g)n≥0|vx,

(bi
g|vx )i=0, 1, . . ., d−1) to Qi+1 unless it belongs to Qj for some j ≤ i or is already
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in Qi+1. Use the second case in Equation (5-1) to calculate bi
g|vx from the

coefficients bj
g, which are the values of the output function of the given

Moore automaton. Extend the transition function by δ(q, x) = qx and the
output function by λ(q, x) = bx⊂

g|v mod d.
Step 3. Repeat Step 2 until Qi+1 = ∅.
Step 4. The set of states of Mealy automaton A is

⋃
i≥0Qi, where the transition and

output functions are defined in Step 2.

COROLLARY 7.9. Let g ∈ End(X∗) be an endomorphism of X∗ induced by a selfmap
of Zd with the sequence of reduced van der Put coefficients defined by finite Moore
automaton B. Then the underlying oriented graph Γ(A) of the Mealy automaton A
obtained from B by Algorithm 7.8 covers the underlying oriented graph of B.

PROOF. Since the transitions in the original Moore automatonB defining g are defined
by δ((bg

n)n≥0|v, x) = (bg
n)n≥0|vx, we immediately get that the map from the underlying

oriented graph ofA to the underlying oriented graph of B defined by

((bg
n)n≥0|v, (bg|v

i )i=0,1,...,d−1) �→ (bg
n)n≥0|v, v ∈ X∗

is a graph covering. �

8. Examples

8.1. Moore automaton from Mealy automaton. We first give an example of the
construction of a Moore automaton from Mealy automaton. Consider the lamplighter
group L = (Z/2Z) � Z generated by the 2-state Mealy automaton A over the 2-letter
alphabet X = {0, 1} from [24] shown in Figure 1 and defined by the following wreath
recursion:

p = (p, q)(01),
q = (p, q).

PROPOSITION 8.1. The Moore automaton Bp generating the sequence of reduced van
der Put coefficients of the transformation of Z2 induced by automorphism p is shown
in Figure 7, where the initial state is on top, and the value of the output function τ of
Bp at a given state is equal to the first component of the pair of d-adic integers in its
label.

PROOF. We apply Algorithm 7.3 and construct the sections of (bp
n )n≥0 at the vertices

of X∗ in the form of (7-1). It may be useful to refer to Figure 7 to understand better the
calculations that follow.

The label of the initial state (bp
n )n≥0|ε of Bp is (p|ε, (bp

0 , bp
1)). By (3-4), we get:

bp
0 = p(0∞) = 1∞ and bp

1 = p(10∞) = 001∞.
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1

1

1

1

1

1

p, (1∞, 001∞)

p, (1∞, 101∞) q, (001∞, 1∞)

q, (101∞, 1∞) p, (001∞, 101∞) q, (1∞, 1∞)

p, (101∞, 101∞) q, (101∞, 101∞)

FIGURE 7. Moore automaton Bp generating the sequence (bp
n )n≥0 of reduced van der Put coefficients of

the generator p of the lamplighter group L.

Therefore, the initial state of Bp is labeled by

l((bp
n )n≥0|ε) = (p, (1∞, 001∞)).

We proceed with the states corresponding to the vertices of the first level of X∗. We
calculate:

bp
2 =

p(010∞) − p(0∞)
2

=
1001∞ − 1∞

2
= 101∞,

bp
3 =

p(110∞) − p(10∞)
2

=
0101∞ − 001∞

2
= 1∞.

Therefore, we get the labels of two more states in Bp:

l((bp
n )n≥0|0) = (p|0, (bp

0 , bp
2 )) = (p, (1∞, 101∞)),

l((bp
n )n≥0|1) = (p|1, (bp

1 , bp
3 )) = (q, (001∞, 1∞)).

To obtain labels of the states at the vertices of deeper levels, we use Corollary 5.4.
Namely, for n > 3, we have that [n]2 = vx1 ∈ X∗ for some v ∈ X∗ and x ∈ X. Therefore,
by Corollary 5.4,

bp
n = bp

vx1
= bp|v

x1
= bp|v

n mod 4.

Therefore, it is enough to compute the first four values of (bp|v
n )n≥0 for all states p|v of

an automaton A. Since there are only two states in A and we have computed the first
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four values of (bp
n )n≥0, we proceed to (bp

n )n≥0:

bq
0 = q(0∞) = 01∞,

bq
1 = q(10∞) = 101∞,

bq
2 =

q(010∞) − q(0∞)
2

=
0001∞ − 01∞

2
= 101∞,

bq
3 =

q(110∞) − q(10∞)
2

=
1101∞ − 101∞

2
= 1∞.

Now, by Corollary 5.5, we have that

bp
4 = bp

001
= bp|0

01
= bp

01
= bp

2 = 101∞,

bp
6 = bp

011
= bp|0

11
= bp

11
= bp

3 = 1∞,

bp
5 = bp

101
= bp|1

01
= bq

01
= bq

2 = 101∞,

bp
7 = bp

111
= bp|1

11
= bq

11
= bq

3 = 1∞.

Thus, the states at the second level have the following labels:

l((bp
n )n≥0|00) = (p|00, (bp

000
, bp

001
)) = (p, (bp

0 , bp
4 )) = (p, (1∞, 101∞)),

l((bp
n )n≥0|01) = (p|01, (bp

010
, bp

011
)) = (q, (bp

2 , bp
6 )) = (q, (101∞, 1∞)),

l((bp
n )n≥0|10) = (p|10, (bp

100
, bp

101
)) = (p, (bp

1 , bp
5)) = (p, (001∞, 101∞)),

l((bp
n )n≥0|11) = (p|11, (bp

110
, bp

111
)) = (q, (bp

3 , bp
7 )) = (q, (1∞, 1∞)).

Since l((bp
n )n≥0|00) = l((bp

n )n≥0|0), we can stop calculations along this branch. For
other branches, we compute similarly on the next level. We start from branch 01:

l((bp
n )n≥0|010) = (p|010, (bp

0100
, bp

0101
)) = (p, (bp

2 , bp|01

01
)) = (p, (bp

2 , bq
2)) = (p, (101∞, 101∞)),

and

l((bp
n )n≥0|011) = (p|011, (bp

0110
, bp

0111
)) = (q, (bp|0

11
, bp|01

11
))

= (q, (bp
3 , bq

3)) = (q, (1∞, 1∞)) = l((bp
n )n≥0|11).

For branch 10, we obtain

l((bp
n )n≥0|100) = (p|100, (bp

1000
, bp

1001
)) = (p, (bp

1 , bp|10

01
))

= (p, (bp
1 , bp

2)) = (p, (001∞, 101∞)) = l((bp
n )n≥0|10)

and

l((bp
n )n≥0|101) = (p|101, (bp

1010
, bp

1011
)) = (q, (bp|1

01
, bp|10

11
)) = (q, (bq

2, bp
2 )) = (q, (101∞, 101∞)).
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For branch 11, we get

l((bp
n )n≥0|110) = (p|110, (bp

1100
, bp

1101
)) = (p, (bp

3 , bp|11

01
))

= (p, (bp
3 , bq

2)) = (p, (1∞, 101∞)) = l((bp
n )n≥0|0)

and

l((bp
n )n≥0|111) = (p|111, (bp

1110
, bp

1111
)) = (q, (bp|1

11
, bp|11

11
))

= (q, (bq
3, bq

3)) = (q, (1∞, 1∞)) = l((bp
n )n≥0|11).

At this moment, we have two unfinished branches: 010 and 101. For 010, we have

l((bp
n )n≥0|0100) = (p|0100, (bp

01000
, bp

01001
)) = (p, (bp

2 , bp|010

01
))

= (p, (bp
2 , bp

2)) = (p, (101∞, 101∞)) = l((bp
n )n≥0|010)

and

l((bp
n )n≥0|0101) = (p|0101, (bp

01010
, bp

01011
)) = (q, (bp|01

01
, bp|010

11
))

= (q, (bq
2, bp

3)) = (q, (101∞, 1∞)) = l((bp
n )n≥0|01).

Finally, for branch 101, we compute

l((bp
n )n≥0|1010) = (p|1010, (bp

10100
, bp

10101
)) = (p, (bp|1

01
, bp|101

01
))

= (p, (bq
2, bq

2)) = (p, (101∞, 101∞)) = l((bp
n )n≥0|010)

and

l((bp
n )n≥0|1011) = (p|1011, (bp

10110
, bp

10111
)) = (q, (bp|10

11
, bp|101

11
))

= (q, (bp
3 , bq

3)) = (q, (1∞, 1∞)) = l((bp
n )n≥0|11).

We have completed all the branches and constructed all the transitions in the
automaton Bp. �

8.2. Mealy automaton from Moore automaton. In this subsection, we provide
an example of the converse construction. Namely, we construct the finite state
endomorphism of {0, 1}∗ that induces a transformation of Z2 with the Thue–Morse
sequence of reduced van der Put coefficients, where we treat 0 as 0∞ and 1 as 10∞

according to the standard embedding of Z into Z2.
Recall that the Thue–Morse sequence (tn)n≥0 is the binary sequence defined by

a Moore automaton shown in Figure 8. It can be obtained by starting with 0 and
successively appending the Boolean complement of the sequence obtained thus far.
The first 32 values of this sequence are shown in Table 1.

PROPOSITION 8.2. The endomorphism t of X∗ inducing a transformation of Z2 with
the Thue–Morse sequence (bt

n)n≥0 = (tn)n≥0 of the reduced van der Put coefficients is
defined by the 2-state Mealy automatonAt shown in Figure 9 with the following wreath
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0

0
11

q0/0

q1/1

FIGURE 8. Moore automaton B generating the Thue–Morse sequence.

TABLE 1. First 32 values of the Thue–Morse sequence.

n [n]2 tn n [n]2 tn n [n]2 tn n [n]2 tn
0 0 0 8 0001 1 16 00001 1 24 00011 0
1 1 1 9 1001 0 17 10001 0 25 10011 1
2 01 1 10 0101 0 18 01001 0 26 01011 1
3 11 0 11 1101 1 19 11001 1 27 11011 0
4 001 1 12 0011 0 20 00101 0 28 00111 1
5 101 0 13 1011 1 21 10101 1 29 10111 0
6 011 0 14 0111 1 22 01101 1 30 01111 0
7 111 1 15 1111 0 23 11101 0 31 11111 1

0/0
1/1 1/0

0/0

(bt
n), (0∞, 10∞)

(bt
n)|1, (0∞, 0∞)

FIGURE 9. Mealy automaton At defining a transformation of Z2 whose sequence of reduced van der Put
coefficients is the Thue–Morse sequence.

recursion:

t = (t, s),

s = (s, t)
(
01
00

)
,

where
(

01
00

)
denotes the selfmap of {0, 1} sending both of its elements to 0.

PROOF. We follow Algorithm 7.8, according to which the states ofAt are the pairs of
the form

l(t|v) = ((bt
n)n≥0|v, (bt|v

0 , bt|v
1 )).
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Below we suppress the subscript n ≥ 0 in the notation for sequences to simplify the
exposition. For example, we write simply (bt

n) for (bt
n)n≥0.

The initial state t has a label

l(t) = l(t|ε) = ((bt
n), (bt

0, bt
1)) = ((bt

n), (0∞, 10∞)).

We proceed to calculate the labels of the sections at the vertices of the first level.
Using Theorem 5.1 (namely, the first two cases in Equation (5-1)) and the values bt

n =

tn of the Thue–Morse sequence from Table 1, we obtain:

l(t|0) = ((bt
n)|0, (bt|0

0 , bt|0
1 )) = ((bt

n), (σ(bt
0), bt

2 + σ(bt
0)))

= ((bt
n), (σ(0∞), 10∞ + σ(0∞))) = ((bt

n), (0∞, 10∞)) = l(t).

We also use above the fact that (bt
n)|0 = (bt

n), which follows from the structure of
automaton B. Therefore, we can stop developing the branch that starts with 0 and
move to the branch starting from 1. Similarly, we get

l(t|1) = ((bt
n)|1, (bt|1

0 , bt|1
1 )) = ((bt

n)|1, (σ(bt
1), bt

3 + σ(bt
1)))

= ((bt
n)|1, (σ(10∞), 0∞ + σ(10∞))) = ((bt

n)|1, (0∞, 0∞)), (8-1)

so we obtain a new section. We compute the sections at the vertices of the second level
using Figure 5, keeping in mind that according to Equation (8-1), bt|1

0 = 0∞:

l(t|10) = ((bt
n)|10, (bt|10

0 , bt|10
1 )) = ((bt

n)|1, (b(t|1)|0
0 , b(t|1)|0

1 ))

= ((bt
n)|1, (σ(bt|1

0 ), bt|1
2 + σ(bt|1

0 ))) = ((bt
n)|1, (σ(0∞), bt

5 + σ(0∞)))

= ((bt
n)|1, (0∞, 0∞ + 0∞)) = ((bt

n)|1, (0∞, 0∞)) = l(t|1).

Finally, since according to Equation (8-1) bt|1
1 = 0∞, we calculate the last section

at 11:

l(t|11) = ((bt
n)|11, (bt|11

0 , bt|11
1 )) = ((bt

n), (b(t|1)|1
0 , b(t|1)|1

1 ))

= ((bt
n), (σ(bt|1

1 ), bt|1
3 + σ(bt|1

1 ))) = ((bt
n), (σ(0∞), bt

7 + σ(0∞)))

= ((bt
n), (0∞, 10∞ + 0∞)) = ((bt

n), (0∞, 10∞)) = l(t).

We have completed all the branches and constructed all the transitions in the
automaton At. We only need now to compute the values of the output function. By
Equation (7-3), we get

λ(((bt
n), (0∞, 10∞)), 0) = 0∞mod 2 = 0,

λ(((bt
n), (0∞, 10∞)), 1) = 10∞mod 2 = 1,

λ(((bt
n)|1, (0∞, 0∞)), 0) = 0∞mod 2 = 0,

λ(((bt
n)|1, (0∞, 0∞)), 1) = 0∞mod 2 = 0,

which completes the proof of the proposition. �
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