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It is well known that a ring R is semiprime Artinian if and only if every right ideal is an
injective right R-module. In this paper we shall be concerned with the following general
question: given a ring R all of whose right ideals have a certain property, what
implications does this have for the ring R itself? In practice, it is not necessary to insist
that all right ideals have the property, usually the maximal or essential right ideals will
suffice. On the other hand, Osofsky proved that a ring R is semiprime Artinian if and
only if every cyclic right R-module is injective. This leads to the secopd general
question: given a ring R all of whose cyclic right R-modules have a certain property,
what can one say about R itself?

1. Right artinian rings

All rings considered are associative with identity and all modiles are unitary. Let R be
a ring and M a right R-module. The socle of M will be denoted soc M. The module M
is called a max module if every proper submodule is contained in a maximal submodule.
For example, a well known consequence of Zorn’s Lemma is that finitely generated R-
modules are max modules. On the other hand, semisimple R-modules are max modules.
To be more precise we have:

Lemma 1.1. Let R be a ring. A right R-module M is semisimple if and only if M is a
max module which does not contain an essential maximal submodule.

Proof. The necessity is proved by [1, Theorem 9.6]. Conversely, suppose that M is a
max module which does not contain an essential maximal submodule. Suppose that
M #soc M. Then there exists a maximal submodule K of M such that soc M =K. By
hypothesis K is not essential and hence there exists a non-zero submodule U of M such
that KnU=0. Clearly U is simple and hence U<soc M<K, a contradiction. Thus
M =socM and M is semisimple.

Semiprime Artinian rings are characterized either by the fact that every maximal right
*Research supported by the Alexander von Humboldt-Stiftung.
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ideal is injective or by the fact that every essential right ideal is injective (see [1,
Theorem 9.6 and Proposition 13.9]). A generalization of this result is a consequence of
the following theorem.

Theorem 1.2. Let R be a ring and M a finitely generated right R-module. Then M is
Artinian (respectively, Noetherian) if and only if every essential maximal submodule of M
is the direct sum of an injective module and an Artinian (respectively, Noetherian) module.

Proof. We consider the Artinian case. The Noetherian case is proved similarly. The
necessity is trivial. Conversely, suppose that every essential maximal submodule of M is
the direct sum of an injective module and an Artinian module. Let A denote the sum of
all Artinian submodules of M. Suppose that A# M. Then there exists a maximal
submodule K of M such that A< K. If K is not essential then there exists a non-zero
submodule U of M such that KnU=0 and in this case U is simple and hence
Uc AcK, giving U=0, a contradiction. Thus K is essential. By hypothesis there exist
an injective submodule I and an Artinian submodule B such that K=1® B. But K/Bx=1
implies that K/B is an injective submodule of M/B and hence there exists a submodule
C of M containing B such that M/B=(K/B)®(C/B). Note that C/B~ M/K and hence
C/B is simple and C is Artinian. Thus C<A4 and M=K+ C<K, a contradiction.
Therefore A= M. Since M is finitely generated it follows that M=A4, +--- + A, for some
positive integer n and Artinian submodules A; (1<i<n). Thus M is Artinian, as
required.

The same proof not only applies to Noetherian modules but also to finitely generated
modules of Krull dimension<a, for any given ordinal «>0. Theorem 1.2 has the
following immediate consequence.

Corollary 1.3. A4 ring R is right Artinian (respectively, right Noetherian) if and only if
every essential maximal right ideal of R is the direct sum of an injective right ideal and an
Artinian (respectively, Noetherian) right ideal.

We shall apply Corollary 1.3 to hereditarily Artinian rings. Let R be a right Artinian
ring. In general, a (two-sided) ideal of R will not be a right Artinian ring. The ring R is
called hereditarily Artinian provided every ideal of R is a right Artinian ring. Such rings
have been discussed in various papers and several different characterizations have been
given (see, for example, [3, 7, 9, 10]). In particular, by [7, Hauptsatz] we know that a
ring R is hereditarily Artinian if and only if R is the direct sum of a semiprime Artinian
ring and a finite ring. We shall characterize these rings in terms of their right ideals, and
to do so we first prove:

Lemma 14. Let A< B be right ideals of a right Artinian ring R such that A is an
essential submodule of B and A is finite. Then B is finite.

Proof. By [2, Theorem 2], R contains an ideal R* such that R/R* is finite and R*
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contains no non-zero finite right ideals. Thus A~ R*=0 and hence, because A is
essential in B, BN R*=0. Thus B embeds in R/R* and B is finite.

Theorem 1.5. A ring R is hereditarily Artinian if and only if every essential maximal
right ideal is the direct sum of an injective right ideal and a finite right ideal.

Proof. The necessity follows by [7, Hauptsatz]. Conversely, suppose that every
essential maximal right ideal is the direct sum of an injective right ideal and a finite
right ideal. By Corollary 1.3 the ring R is right Artinian. Let F be the sum of all the
finite right ideals of R. Note that F is an ideal of R. Since R is right Noetherian it
follows that F is finite. Let M/F be any essential maximal right ideal of R/F. Then M is
an essential maximal right ideal of R and by hypothesis there exist an injective right
ideal I and a finite right ideal G such that M =1@® G. Since M/G=1 it follows that M/G
is injective and hence there exists a right ideal H containing G such that R/G=
(M/G)®(H/G). Now MnH=G so that M H is finite. Moreover, M H is an
essential submodule of H. By Lemma 1.4 it follows that H is finite and hence H< F.
Thus R=M+H<M, a contradiction. We have proved that the ring R/F has no
essential maximal right ideals and hence, by Lemma 1.1, R/F is semiprime. If J is the
Jacobson radical of R then JSF, ie. J is finite. By [4, Theorem 1] R is hereditarily
Artinian.

2, Serial rings

It is easy to give examples of rings which have the property that every proper right
ideal is the direct sum of an injective right ideal and a semisimple right ideal, but which
are not right Artinian (or right Noetherian). For example. let K be any field, V any
infinite dimensional vector space over K and R the ring of all 2 x2 “matrices” of the

form

k v

0 %
where keK, veV. Then R is a commutative ring with a unique maximal ideal M
consisting of all matrices of the above form with k=0. Clearly any proper ideal of R is
semisimple but R is neither Artinian nor Noetherian. Note that as an R-module the
socle of R is the unique maximal submodule of R. The first result of this section

provides more examples of modules with the property that every submodule is the
direct sum of an injective module and a semisimple module.

Lemma 2.1. Let R be a ring and M a projective right R-module such that M=
E,®---®E,, where n is a positive integer and E; is either semisimple or injective of
(composition) length 2 for each 1 <i<n. Then every submodule of M is the direct sum of

an injective module and a semisimple module.

Proof. Note first that the module M/(soc M) has finite length. Let N be a submodule
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of M. The proof is by induction on the length of N/(socN). Let U;=socE; (1£i<n).
Let n; M—E; (1£i<n) denote the canonical projection maps. If n{N)c U, (1£i<n)
then N is semisimple. Suppose that there exists 1 <j<n such that n;(N)¢U,. Since E;
has length 2 it follows that n{N)=E;. But E; is projective, being a direct summand of
M, and hence there exist submodules N(i=1,2) such that N, ~E; and N=N;@N,.
Note that N/(soc N)=(N,/(socN ) @(N,/(socN,)) and N,;#socN,. By induction on
the length of N/(soc N), the submodule N,, and hence N itself, is the direct sum of an
injective module and a semisimple module.

Before proving the next result we make a simple observation about max modules. Let
R be a ring and M a right R-module such that there exists a finite chain

M=M02M12"'2M"=0,

of submodules M; (0<i<k) of M such that M;_,/M; is semisimple for each 1<i<k.
Then M is a max module. Let S=M, _,. If N is a proper submodule of M then consider
the submodule N +S. If N+S# M then (N +5)/S is a proper submodule of M/S so that
by induction (N +S)/S is contained in a maximal submodule of M/S. Thus N +§8, and
hence N, is contained in a maximal submodule of M. On the other hand if M=N+S§
then NS is a submodule of the semisimple module S so that by [1, Theorem 9.6],
there exists a submodule K of S such that S=(Nn S)@ K. It follows that M=N® K.
Clearly K#0 and if L is a maximal submodule of K then N®L is a maximal
submodule of M containing N. Thus M is a max module. As a partial converse to
Lemma 2.1 we have the following resuit.

Lemma 2.2. Let R be a ring and M a max right R-module such that every essential
maximal submodule of M is the direct sum of an injective module and a semisimple module.
Then M/(soc M) is semisimple and M is the direct sum I® A of an injective module I and
a module A which contains a semisimple maximal submodule.

Proof. Let S=socM and let T be the submodule of M containing S such that
T/S =soc(M/S). Suppose that T M. Then there exists a maximal submodule K of M
such that T=K. It is clear that K is essential in M. By hypothesis there exist an
injective submodule I and a semisimple submodule B such that K=1@® B. Since K/B is
injective, being isomorphic to I, there exists a submodule A containing B such that

M/B=(K/B)®(A4/B).
But A/B is simple, being isomorphic to M/K, and hence A< S or A~ S=B. Thus in any
case A contains a semisimple maximal submodule. Note further that M=I® A4.
Moreover (A+S)/S=A/(AnS) and hence (A+S)/S is zero or simple. In any case
A=T<K and M=K+ A=K, a contradiction. Thus T=M and M/S is semisimple.

Lemma 23. Let R be a ring and M a finitely generated right R-module such that
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every essential maximal submodule is the direct sum of an injective module and a finitely
generated semisimple module. Then M contains a semisimple maximal submodule or M is a
finite direct sum of simple modules and injective modules of length 2. The converse holds if
M is projective.

Proof. By Theorem 1.2 M has finite length and by Lemma 22 M is a direct sum
I® A of an injective module I and a module A which contains a semisimple maximal
submodule. Suppose I #0. Since M has finite length there exists a positive integer n and
indecomposable injective submodules E; (1<i<n) such that M=E, @ ---®E,B A. f E;
is simple for each 1<i<n then M contains a semisimple maximal submodule. Suppose
that E, is not simple. Let N be a maximal submodule of E,. Then NQE,® - ®E,$ A
is an essential maximal submodule of M and thus, by hypothesis, is a finite direct sum
of indecomposable injective modules and simple modules. By the Krull-Schmidt
Theorem (see [1, Theorem 12.9]) N and A are both finite direct sums of indecompos-
able injective submodules and simple submodules. Since N is uniform it follows that N
is simple and hence E, has length 2. It follows that M is a finite direct sum of simple
modules and injective modules of length 2.

We shall call a module M almost semisimple provided soc M is the unique maximal
submodule of M. Note that any finitely generated almost semisimple module is cyclic.
For, if M is finitely generated and almost semisimple then there exists xe M such that
x¢soc M. Then xR is not contained in a maximal submodule of M and hence M =xR.

Theorem 2.4. Let R be a ring and M a finitely generated right R-module. Consider the
statements:

(i) every proper submodule of M is the direct sum of an injective module and a finitely
generated semisimple module;

(ii) every maximal submodule of M is the direct sum of an injective module and a
finitely generated semisimple module;

(ili) M has finite length and M is almost semisimple or M is a finite direct sum of simple
modules and injective modules of length 2.

Then (i)=(ii)=(iii). Moreover if M is projective then (iii)=>(i).

Proof. (1)=(ii). Obvious.

(ii)=>(ii1). Suppose (ii) holds. Then M has finite length by Theorem 1.2. By Lemma 2.3
we can suppose without loss of generality that soc M is a maximal submodule of M. If
M is not almost semisimple then M contains a maximal submodule K #soc M. By
hypothesis there exist an injective submodule I and a semisimple submodule A such
that K=1I1@® A. Clearly 1#0 and hence M contains a submodule E which is not simple
but E is the injective envelope of a simple submodule U of M. Now M=E@ B, for
some submodule B of M, and
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M /(soc M) =(E/U)@ (B/(soc B))

implies that E/U is simple and B is semisimple. Thus E has length 2 and M is a finite
direct sum of E and simple submodules. This proves (iii).

Now suppose that M is projective and M is a finite direct sum of simple modules and
injective modules of length 2. By Lemma 2.1 every submodule of M is the direct sum of
an injective module and a semisimple module. On the other hand if M is almost
semisimple then every proper submodule is semisimple.

Corollary 2.5. The following statements are equivalent for a ring R.

(i) Every proper right ideal is the direct sum of an injective module and a finitely
generated semisimple right ideal.

(ii) Every maximal right ideal is the direct sum of an injective module and a finitely
generated semisimple right ideal.

(iii) The right R-module R is almost semisimple or R is a finite direct sum of minimal
right ideals and injective right ideals of length 2.

In Corollary 2.5, if R is a ring which satisfies (ii) then it does not follow that every
right ideal of R is the direct sum of an injective module and a finitely generated
semisimple right ideal. We can provide an easy counter example. Let K be any field, V
any K-vector space of finite dimension =2 and S the ring of all “matrices™

k v

0 k]
where ke K and ve V. It is clear that S is a commutative Artinian ring whose socle is
the unique maximal ideal which consists of all matrices of the above form with k=0.
However the S-module S is indecomposable and is neither injective nor simple. Further
note that if any of the conditions of Corollary 2.5 hold then, by Lemma 2.1, every
proper essential right ideal is the direct sum of an injective module and a finitely
generated semisimple right ideal. The converse is false as the following example shows.
Let R=S®K, where § and K are as before. Again R is a commutative Artinian ring
whose socle is a maximal ideal. Thus every proper essential ideal of R is semisimple.
However the ideal I=S®0 is indecomposable and is neither injective nor simple. Thus
not every submodule of Ry is the direct sum of an injective module and a semisimple
module.

Osofsky [8] proved that a ring R is semiprime Artinian if and only if every cyclic
right R-module is injective. A module M is finitely cogenerated provided it has finitely
generated essential socle. Artinian modules are finitely cogenerated. In [4] van Huynh
and Dung proved that a ring R is right Artinian if and only if every cyclic right R-
module is the direct sum of an injective module and a finitely cogenerated module. Also
van Huynh [3] proved that a ring R is hereditarily Antinian if and only if every cyclic
right R-module is the direct sum of an injective module and a finite module.
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A module M is called uniserial if its set of submodules is linearly ordered. A ring R is
defined to be right serial if R is a direct sum of uniserial right ideals. Left serial rings are
defined similarly. By an Artinian serial ring we shall mean a ring which is right and left
Artinian and right and left serial.

Theorem 2.6. The following statements are equivalent for a ring R with Jacobson
radical J.

(i) Every right ideal is the direct sum of an injective module and a finitely generated
semisimple right ideal.

(i) Every essential right ideal is the direct sum of an injective module and a finitely
generated semisimple right ideal.

(iii) R is a direct sum of minimal right ideals and injective right ideals of length 2.

(iv) Every cyclic right R-module is the direct sum of an injective module and a
semisimple module.

(v) Every right R-module is the direct sum of an injective module and a semisimple
module.

(vi) R is an Artinian serial ring such that J*>=0.
(vil) Any of the left sided analogues of (i}~v).

Proof. (iii)=>(ii). By Lemma 2.1.

(i))=(i). Suppose (ii) holds. By Corollary 1.3 R is right Artinian. Any right ideal is a
direct summand of an essential right ideal so that (i) holds by the Krull-Schmidt
Theorem.

(i)=(iii). Suppose that the right R-module R is almost semisimple. Then Ry is
indecomposable so that Ry is injective or simple. If Ry is injective then, being
indecomposable and almost semisimple, Ry has length 2. By Corollary 2.5, (iii) follows.

(iif)=>(iv). Suppose that there exists a positive integer n such that R=A4, P "D A4,
where A; is a minimal right ideal or an injective right ideal of length 2 for each 1 <ign.
Let X=xR be a cyclic right R-module. Note that R is right Artinian and X has finite
length. Further note X =xA;+ -+ xA,. Suppose that X is not semisimple. Then xA4; is
not semisimple for some 1<i<n. Define ¢: 4,—xA4; by ¢(a)=xa (ae A;). Then ¢ is an
R-epimorphism. Since x4; is not semisimple it follows that A, is injective of length 2 and
ker ¢ =0. Thus x4;, and hence X, contains an injective submodule im ¢. There exists a
submodule Y of X such that X =(im ¢)® Y. Note that Y is cyclic and by induction on
the length of X it follows that Y, and hence X, is a direct sum of an injective module
and a semisimple module. This proves (iv).

(iv)=(v). By [4, Theorem 1.1] R is right Artinian. Let M be a right R-module.
Because R is right Noetherian, the union of any chain of injective submodules of M is
injective. By Zorn’s Lemma M contains a maximal injective submodule I. There exists a
submodule N of M such that M=I@®N. Let xeN. By hypothesis there exist an
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injective module K and a semisimple module S such that xR=K @ S. By the choice of I
it follows that K =0 and hence xR =S. Thus N is semisimple. This proves (v).

(v)=>(vi). Suppose (v) holds. By (i)=-(iii) we know that R is right Artinian right serial
and J2=0. Let E be an indecomposable injective right R-module. Suppose that E is not
simple. Then E is not semisimple and hence there exists ye E such that yR is not
semisimple. By (v) yR is injective and hence E=yR. If K is a maximal submodule of E
then K is not injective and hence K is simple by (ii). Thus E is simple or E has length 2.
By (v) and [1, Theorem 25.6] it follows that every right R-module is a direct sum of
uniserial right R-modules. By [5, Theorem 1.3] R is an Artinian serial ring.

(vi)=(i). Suppose that R is not semiprime Artinian. Let 4 be a right ideal of R which
is indecomposable but is not simple. Let H denote the injective envelope of 4. Then H
is indecomposable and by [6, Theorem 254.2] H is cyclic and uniserial, say H=hR.
Now R=B,® - ® B, for some positive integer k and right ideals B, of length <2 for
each 1<i<k. Now H=hB,+ - +hB, implies H=hB; for some 1<j<k (because H is
uniserial). Thus H is a homomorphic image of B; and H has length <2. It follows that
A=H. Thus every right ideal is the direct sum of an injective module and a finitely
generated semisimple right ideal.

We have proved the equivalence of (i)—(vi). That (vii) is also equivalent to the other
conditions follows from the symmetry of (vi).
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