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A TAUBERIAN THEOREM CONCERNING
BOREL-TYPE AND CESARO METHODS OF
SUMMABILITY

DAVID BORWEIN AND TOM MARKOVICH

1. Introduction. Suppose throughout that » = 0, « > 0, ag + B8 > 0
where ¢ is a non-negative integer. Let {s,} be a sequence of real
numbers,

_ - co
Xy +B8—1

T T M b= 2 s,

ae
¢, (x) =

The Borel-type summability method (B, a, B) is defined as follows:
s, = I(B, a, B) if b(x) — [ as x — oo.

The method (B, a, B) is regular [5]; and (B, 1, 1) is the standard Borel
exponential method B. For a real sequence {s,} we consider the slowly
decreasing-type Tauberian condition

. . . . N h
(T,): lim lim inf min “— = 0.
8—0+ n—co n=Em=n+8\/n n

We shall also be concerned with the Cesaro summability method
Cp(p > —1), the Valiron method ¥V, and the Meyer-Konig method S,
(0 < a < 1) defined as follows:

s, = U(C,) i

1 n o o
Zsk(n ktp 1)—>1 as n — oo;

P
s, = (V) if
172 X — k 2

(_a_) 2 S exp{—a(n———)]—>1 as n — oo;

2mn k=0 2n

s, — 1(S,) if
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n+1 < n+k k
(1 — a) zsk a* — | asn— co.
k=0 k
Our main result is
THEOREM 1. If's, — I(B, a, ) and (T,), then s, — [(Cy,).

Now suppose that
n
Sp = E ay
k=0

and note that if
(L):a,> —Hn "% forn=12,...

then, forn = m = n + 8+/n,

Sp — S 1 < —H < '2
m no_ r—1/
- == E aj > - 2 J

n N j=n+1 n o j=n+1

> :-ﬂu(ﬂ) = —118(1 + i)r

vn + 1 n
so that

Sm - Sn

lim lim inf min "

80+ n—oo n=Em=n+8\n n

Z lim lim inf [—H8(1 + i)} = 0.
=0+ n—0oo \/E
Thus (L,) implies (T,).

The special case « = 8 = 1, r = 0 of Theorem 1 with (T,) replaced by
a,=0mn"" 2) is the original O-Tauberian theorem for Borel summability
due to Hardy and Littlewood [10]. The Borel summability case a = 8 = 1
of Theorem 1 has been proved by Rajagopal [13], and the corresponding
theorem for Meyer-Konig summability S, by Sitaraman [14]. More
recently Bingham [3] proved the theorem for summability methods of the
random walk-type of which B and S, are special cases. For the general
(B, a, B) method, the case r =2 0 of Theorem 1 with (T,) replaced by
a, = o(n”~"?) is due to Borwein [6], and the case r = 0 with (T,) replaced
by a, = O(nfl/z) is due to Borwein and Robinson [7]. The most general
result to-date for the (B, a, B) method is due to Kwee [12] who proved the
case of Theorem 1 with (T,) replaced by a, = O(n"~"/?).

Theorem 1 remains true if the hypothesis s, — /(B, «, B) is replaced by
s, = (B, a, B), by which it is meant that, as y — oo,
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/‘00 2 an+B 1
e *d -] -5 _ _; = 0).
0 ~ n=q a F(an + B) sq ! (S ! )

This is a consequence of the following known result due to Borwein ( [4],
Theorem 2) that s, — /(B, «, B + 1) if and only if 5, = /(B’, a, B).
Borwein [5] also proved:

If
0 n
z
J@) = 2
n=gq h(n)
is a holomorphic function of z = x + iy in the half-plane x > x,, such
that

(1) when x > xy and |z| is large
1
h(z) = 2B VZ{C + 0( )}
|z
where C > 0, a > 0, B and v are real, and
(ii) h(x) is real and positive for x Z q > x,, then s,, = I(J)
(, | - 5,x" )
ie., E — ] as x —> oo
J(X) ney h(n)
if and only if
s, = I(B, a, B+ 1/2).

In particular, taking

[ee] n

z
Je) = Eq {T(an + B) }(n + p)" ™
where ¢, p, s, t are real and ac + s > 0, we have
s, = 1(J)
if and only if
s, > I(B,ac + s, Bc +t — ¢/2 + 1/2).
Thus Theorem 1 is in fact a Tauberian theorem for a wide class of power
series methods of summability [9].

Since the actual choice of ¢ is immaterial, it is convenient to assume in
all that follows that ag + B — r > 0.

2. Preliminary results.

LEMMA 1 ([6], Lemma 2). Let h, = n — x/a, 1/2 < § < 2/3, and
0<n<2f — 1. Then
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0 2 600 =06

[, | >x

2,2

[ n
expl —
\/2mx p( 2x

(ii) ¢, (x) = ){1 + 0(* " ?))

3

when |h,| = x*.

LEMMA 2 ([5], Result (I); [4], Lemma 4). If « > v > 0 and for any
non-negative integer M > —§/v,

- X
2 a

nem T(yn + 8)

n

is convergent for all x, then s, — I(B, a, B) implies

s, = (B, v, b).
The next result follows from Stirling’s formula (see [1], p. 47).
LEMMA 3.
(an)” 1

as n — oQ.

I'(an + B) - T'(an + B —r)

LEMMA 4. Let 1/2 < £ < 2/3, then as x — oo

(i) > e,(x) = o(l),

g=En<x/a—x

(i) > en’cn(x) = o(1).

n>x/a+x

Proof. For (i) we have, by Lemmas 3 and 1 (i), that, as x — oo,
xan+,37r71 }

q§n<x/tx—,xé r(an + B —r)

> n'c,(x) = O{x’eAx

g=En<x/a—x

= 0{xe "} = o().

The proof of (ii) is similar.
LEMMA 5 ([13], Lemma 1). If {s,} satisfies (T,), then there exist positive

constants K, K’ such that, form = n = 1,

re, 172 12 r
Sy, — 8, > —Km(m'= —n'?) — K'n',

_ > _ r+1/2 _ r+1/2y _ g r
S, — 8, = —K(@m n ) — K'n'.

The next lemma is essentially due to Hyslop ([11], Lemma 1).
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LEMMA 6. Let h, = n — x/a, p = 0, and 1/2 < & < 1, then, as

X — 00,
2,2
. h
() > n"h? exp(*a ") = o(1),
n>x/a+x 2x
2,2
h
(i) > dk exp(—“ ) - o),
0=n<x/a—x 2x

0 o2
iy X Akl exp(——") = ofx TPty
n=() 2x
LEMMA 7 (cf. [14], Lemma 5 and [3], Theorem 5). Let M and N be any
positive integers such that

M>x/a + t\/x/a,q < N < x/a — t\/x/a.
Then, as t, x — oo,

N
(i) 2 Ae,(x) = o(x"),
)I:q

(ii) > re,(x) = o(x"),

n=M

M

(i) X Ao (x) ~ (x/a),

n=N

(o0}
(iv) (”I‘+l/2 . Ml'+]/2)()"(x) — ()(xr)‘
n=M
(The precise meaning of part (iit), for example, is that for every ¢ > 0
there is a X, such that

M

x> n'e,(x) — a "| < e whenever x > X, 1 > X,
n=N

g < N < x/a — t/x/a, and M > x/a + ty/x/a. The meanings of the
other parts are similar.)

Proof. Part (i). For 1/2 < £ < 2/3 we have

N
0=S5:= X ¢,(x) = > ¢, (x)
n=gq g=En=x/a—1\/x/a
- ( >+ > ¢u(x)
qéné)«‘/m*.x‘é _\‘/a*xé<n§x/a~t\/x/a
=:8 + 85,
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By Lemma 4 (1), we have S; = o(1) as x — oo. Further, by Lemma 1 (ii),
as t, x — co
o*(x/a — n)z)}

S, = O{x_l/2 exp(—
2x

x/a—xe<n§x/a—1\/.x/a
x¢ 2,2
-1/72 oy

o(l) + O{x ft —= exp( E )dy]

o(1) + 0{ jf/mexp(—uz) du}
= o(1).

It follows that, as 7, x — co, § = o(1), and hence

N N
0= > ne,(x) = (x/a) > ¢, (x) = o(x").
n=4q n=q
Part (ii). For 1/2 < ¢ < 2/3, we have

(o]

S:i=x" > n'e,(x)

n=

x_’{ > + 2 }n’C,,(X)

Ms=n=x/a+xt n>x/a+x

I

= Sl + Sz.

By Lemma 4 (ii), we have S, = o(1) as x — oo Furthermore, it follows
from Lemmas 3 and 1 (ii) that
S, = O{x_r n’c,,(x)}
x/a+t\/x/a <n=x/a+x
_ O{e_x xan+B—r—l }
x/a+iy/xla <n=x/a+xt L(an + B — 1)

2 2
= O{X_”2 > exp(———a (n — x/a) )}

x/a+tit\/x/a <n=x/a+xt 2x

Now exactly as in the proof of part (i) we find that, as 7, x — oo,
S, = o(1). The conclusion is now immediate.

Part (iii). The case r = 0 follows from parts (i) and (i1) with »r = 0 and
the known result that

oo
> c,(x) =1 asx— o0
n=q

(see [5], p- 130).
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To prove the result for » > 0, observe that it is equivalent to proving the
following assertion:
Mi

> n'e,(x) ~ (x;/a) asi— oo,
n=N,

whenever {M;}, {N,}, {t;}, {x;} are sequences such that 7, = oo, x; — oo,
and

M, > x/a + t\V/x/a, q < N, < x;/a — t;\/x;/a.

Suppose therefore that {M,}, {N;}, {t;}. {x;} are sequences satisfying the
above conditions, and let

w, = min{ (x)""%, 1,}
so that

0=w, =1, w,—oo, and w,//x; — 0.
Now choose sequences of positive integers {M;}, {N/} such that

M — 1= x/a+ wyx/a <M =M,

=N < x/a — wp/x/a = N + 1.
Then
M; N—1

@l 2 Ae,(x) = ( 2 + 2 + 2 )n’cn(xi).

n=N, n=N/ n=M;+1

(The first series on the right side of (2.1) is defined to be zero if N/ = N, as
is the last series if M, = M,.)

Since
M; M;
(VY 2 o(x) = 2 ne,(x) = MY 2 c,(x)
n=N, n=N/ n=Nj
and

(N)Y ~ (xi/a), (M}) ~ (x;/a)" asi— oo,

if follows that

M, M
> n'e,(x;) ~ (x;/a) 2 c,,(x)
n=Nj

o) N —1 0

=(X,'/0f)r(2 - 2 - X )c,,(x,-) as i — oo.

n=gq n=gq n=M;+1
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Since

oo
> c,(x;) =1 asi— o0
n=q

we have, by parts (i) and (ii) with » = 0, that
M;
22 > n'e,(x;) ~ (x;/a) asi—> oo.

n=N|

Further, from (2.1), (2.2), and parts (i) and (ii), we obtain

M.
i

> e (x;) ~ (x;/a)  asi— oo,
n=N,

as required.
Part (iv). An application of the mean value theorem shows that in order
to prove the desired result it suffices to show that

S:=x"" X (Vn— VMde(x) = o(1) ast, x — co.
n=M

To prove this observe that since M > x/a we have
Va/x(n — M)/2 Z \/n — /M

and hence

(e.e]
0=8=Va2x "2 X (n — Mync,(x)
n=M

— /a/zx—r—]/z {

M=n=x/a+xt

+ ](n — M)n'c,(x)

n>x/a+x£(§M)
= Sl + S2

where 1/2 < £ < 2/3.
Since

M > x/a + t\/x/a and n — M < n — x/a,

it follows from Lemmas 3 and 1 (ii) that

S, = O{x_'/ze‘x
x/a+i\/xTa =n=x/a+xt

¢xn+ﬂ—r—l}

(n - x/a)n m
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_ 0{x1/2e—x 2

xlativ/xla =n=x/a+xt

xan+B‘r71 }

= O{X_l 2
x/a+i\/x/a snsx/a+xt
o’(n — x/a)z)]

— x/ ex(—
(n x/a) exp o

(o'} 2.2
o(l) + O{xI ftm yexp(—%)dy}

= o(l) + O[f(x:/(m u exp(Auz)du} = o(l) as t, x — oo.

t

Next, by Lemmas 3 and 1 (i), we have that, as x — oo,

+B—r—2
S, = O{XI/zevx > nr+1xan p }
n>x/a+xt F(an + B)

an+B—r—2
_ 0{xl/2ex > X }
n>x/a+xt 1—‘(a” + B —r—1
= 0{x"2% ™"} = o(1).

If follows that S = o(1) as ¢, x — co.

THEOREM 2. Suppose that {s,} is a sequence such that (T,) holds and
b(x) = O(xX") as x — oco.
Then s, = O(n").
Proof. Following Sitaraman ( [14], proof of Theorem 1) define

o,:=n 's,, 0,(n) := max g,, and o5(n) := max (—o,).
v=n v=En

We assume that {o,} is unbounded and show that this leads to a
contradiction.

There are two logical possibilities:

Case (A). 0,(n) = 0g4(n) for infinitely many values of n.

Case (B). 0,(n) < o04(n) for all n sufficiently large.

First, suppose that Case (A) holds. Then in view of our assumption we
conclude that o,(n) — co. Now write

N—1 M-

1 00
23) bx)=|> + + E)C,,(x)s,,
N

n=gq n= n=M
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L= Ty(x) + Ty(x) + Ty(x)

where first N and then M are chosen as follows. Corresponding to any
positive H > o,(gq) there exist integers N = N(H) > g such that

24) oy = 0(N) > 2H, 0,(N) Z 05(N).
Take the least value of N and then the least M = M(H) > N such that

1
25) oy = oy

There are such M’s when H is large, for otherwise 6, — oo, and then
Lemma 3 and the total regularity of the (B, a, B8 — r) method ([9],
Theorem 9) would imply that

x "hb(x) = co as x — oo,

contradicting the hypothesis b(x) = O(x").
In view of Lemma 5, and the choice of M and N in (2.4) and (2.5), we
have that

12 A2 iv_r_l}_ ,
K(M"? — N2y > ol(N)[(M) 5K

where K and K’ are positive constants (cf. [14], proof of Theorem 1). Now
we have either

C\V/I)r : (M)r 3
—] >~- or |—] = -.

4 N 3
In the first case,

1
KMY? — NY2y > Zo,(N) - K,

while in the second case

M2 N2 = Nl/z{(g_)”(zr) _ 1}_

Hence

(2.6) t::t(H)zé(Ml/z—N”z)%oo as N — oo (or H — 00).
Next, let

Q7)) x:=x(H) = %(M“Z + N2y
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so that x — oo as H — oo, since M > N — oo as H — oo. It follows from
(2.6) and (2.7) that

(2.8) M > x/a + t\/x/«,
) g < N < x/a — t\/x/a,

where 1, x — oo as H — oo.

In the analysis which follows, suppose that N, M and x are chosen as in
(2.4), (2.5) and (2.7) and consequently satisfy (2.8). Therefore ¢, x — oo as
H — oo and the properties (i), (ii), (iii) and (iv) of Lemma 7 hold. With
reference to (2.3), we see, that as H — oo

N—1
(29) Ty(x) Z —0yN) X nlc,(x)
=q

n

N
= —g/(N) 2 re,(x) = —a,(N)o(l),
n=gq

by Lemma 7 (i). Further, since M is the least integer greater than N which
satisfies (2.5), we have

A

1
210) o, > oy = %a,(N) for NSn=M-— 1.

Thus, as H — oo,

M—1
2.11) Ty(x) > %ol(N) > re,(x) ~ %a,(N)(x/a)’,
n=N

by Lemma 7 (ii1).
Next, by Lemma 5, there are positive constants K and K’ such that
sn . SMfl ; _K(nr+l/2 _ (M _ 1)r+1/2) _ K/(M . l)r
for n = M. Thus .
(2]2) sn > SM..] _K(nr+l/2 _ (M _ 1)r+l/2) . O(Mr‘|/2) . K/Mr

for n = M, since, by (2.10) and (2.4),
1
Sp—1 = oy (M — 1) > EUN(M - 1Y >HWM — 1) > 0.
By (2.12) and Lemma 7 (ii) and (iv), we have

Q13) Tyx) = —K X2 (2 — M%) (x) — 0(1) 2 nle,(x)
n=M n=M
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=Z —o(x) as H— oo.

Substituting (2.9), (2.11) and (2.13) in (2.3), we get
_ 1 _
x "bh(x) = OI(N)(E“ " - 0(1)) — o(l) > o0 as H— oo,

since 6,(N) —> oo as N —> oo (or H — o0). This implies that x™ "b(x) is
unbounded above, contradicting the hypothesis b(x) = O(x").

Next, suppose that Case (B) holds (i.e., there exists an M, such that
oy(n) > oy(n) for n = M;). Then in view of our underlying assumption
we have o,(n) — co. Now write

N M co
(2.14) b(x) = (2 + %1 + %‘.H)c,,(x)sn
n=gq n= n=

=: Ti(x) + Th(x) + Tx(x)

where first M and then N are chosen as follows. Corresponding to any
positive H > 0,(M,) choose the least M = M(H) such that

(2.15) o0y(n) > o)(n) forn = M, 0y, = —0,(M) < —2H.
Then choose the largest N = N(H) € (¢, M) for which

1 1
(216) oy = oy = —ox(M).

There are such N’s when H is large, for otherwise 6, — —oo and then
Lemma 3 and the total regularity of the (B, a, 8 — r) method would imply
that

x "h(x) = —oco as x — oo,

contradicting the hypothesis b(x) = O(x").

The choice of M and N in (2.14) and (2.15), and Lemma 5 imply that
there are positive constants K, K’ for which

(N (N )’

—_ K/ R

M

12 aAfl/2y = _ YNy
K(M N2y = oz(M){l 2(M)]

1
= Soy(M) = K'—= o0

as H — oo (cf. [14], proof of Theorem 1). Hence defining ¢t = ¢(H) and
x = x(H) as in (2.6) and (2.7) we see that ¢, x — oo as H — co, and that
(2.8) holds. Consequently, as H — oo, the properties (i), (ii), (iii) and (iv)
of Lemma 7 hold. The rest of the proof of Case (B) is exactly as given in
([14], case (ii) of Theorem 1) with the roles of N and M interchanged. This
rules out the possibility of Case (B) holding.
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LeMMa 8. (cf. [8], Hilfssatz 5). Suppose h, = n — x/a, 0 < H < 1,
(1 — H)x/a = n = (1 + H)x/a, and k is any integer Z2. Then, as

X — co
2,2
o ahy, )
c,(x) = exp| — + + Ry,
)1( ) \/2?)6 p( % 8k k
where
h |k+l + 1 i+1 j
R,(:o{—n_-k_b, w- 3 Sl z,
X i=1j=0
and the b; /s are constants with by, = by, = 0.

(Note: In particular, the result is true for all n such that || = x&,
172 < £ < 2/3)

Proof. Since

h
an=ah, +x and 0<1-H="" 4 1=1+H
X

if follows from a form of Stirling’s formula ( [1], p. 48, equation 12) that,
as x — 0o,

(2.17) log I'(an + B)
= (ah, + x + B — 1/2)log x — ah, — x + (1/2) log 27

)

+ é l—yﬂﬂi@(ah" + 1)4r+ 0( ! )

=1 r(r + Dx X ki

h
+(ah, + x + B — 1/2) 1og(“ n
X

where & = 1 and each B, (B) is a Bernoulli polynomial. Since

< <
x
we have
@18 (aizn . 1)4, _ j’g (;r)(aizny 4 0{(|Tl)kr+1]’
and
219 log(ail ) jz (~lj)f (x )’ + 0{(”;1)&1}.
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It follows from (2.18) that

k r+1 _
(=1 Br+1(,8) n "
(220 rgl r(r + Dx" (x - 1)

k  k—r j k
h’ 'h | k—r+1
=2 dd L+ 2 —0{( )
r=1 j=0 ",jerrj r=1 x" X
k i—1 k+1
h) [T+ 1]
=2 Xd_j;—+ 0{——" ,
i=1,=0 JoJ l xk+1

where the d, /s are constants.

If we denote the double sum on the right side of (2.20) by ¢, and then
substitute (2.19) and (2.20) in (2.16) we obtain, after some simplifica-
tion,

(2.21) log c,(x)

=loga — x + (ah, + x + B — 1D log x — log I'(an + B)

= log + ah,

a
\2mx

+ (ah, +x+,8-1/2)2(_1)(
j=1 J

I
X

I, [FF1 4+ 1
+ O}————] asx —oo.
X

We now combine the O-term with the term
kX
on the right side of (2.20) into R, to get, after a further simplification,
2,2
« oah

log ¢, (x) = log “ + g, + Ry,

V2mx 2x

where

with b]‘z = bk,k+1 = 0.
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3. An equivalence theorem.

LeEmMMA 9 ([11], Lemma 3 or [8], Hilfssatz 3). Suppose that s, = O(n"),
and that

§ s exp{—a(n - X_)z} — o(xV/2+h)

n=0 2x

as x — oo where b Z 0. Then, for each integer j = 0 and each € > 0,

2 s,(n — x)’ exp{~a(n—x)} — O(X(J+|)/2+b+<)
n=0 2x

as x — o0.

LemMA 10 ([11], Theorem 2 or [8], Hilfssatz 4 with g = 0). Suppose that
s, = O(n"), h, = n — x/a, and that

[eS) — k 2
2 Sy exp{—a(n—z—)—] = o(nl/z) as n — oo.
k=0 n

Then

> S, exp(*a ") = o(x""?) as x — oo.
n=0 2x

THEOREM 3. (cf. [11], Theorems 3 and 6). Suppose that s,, = O(n"). Then
5, = I(B, a, B) if and only if 5, — (V).

Proof. Let
172 < §<2/3, h,=n— x/a,

242
_ a a hn)
Hx) := > exp| ——2s,,.
x) V27X h|=x p( 2x 1"

We first prove that s, — [(V,) implies s, — /(B, «, B). Because of the
regularity of both methods it suffices to prove this result for / = 0.
Suppose therefore that s, — 0(V,). In order to show that s, — 0(B, «, B) it
is enough, by Lemma 4, to prove that b(x) = o(1) as x — co. By Lemma 8,
for x sufficiently large and an integer £k > 2r + 1, we have

(B.1)  b(x) — i(x)

= > es”{c"(x) - exp(—azlj)}

I, =x
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Sl )
V2mX | =xf " 2x / p=1 !
a

= \/27;(141()‘) + Ay(x) + A3(x)),

where
2;2\ 25
o“h £
(32 Ax):= X s, exp(— ") > Sk
Ihnléx£ 2x p=1 !
2,2\ 25
h + R — gt
(3) Ax):i= D s, exp( ) S &t RS gl
lh,| =x* 2x | pm1 !

(34) Ay(x):= X s, exp

h, | =x*

(_azhi) § (8 + R
X | p=2s+1 ! ’

and the integer s > r — 1/2.

We proceed to show that each of the above is o(x'"?

) as x — oo.

To see that 4,(x) = o(x'?) as x — oo consider, for 1 = p = 2s,
2,2
K2\ ot
v(x)i= S, exp(———a ”) Bk
I, | =t 2x /!

The expansion of g, given in Lemma 8 shows that g} is a finite combi-
nation of terms of the form x™ ‘A, where (i) 0 = j = p for i = p and
()0=, =i+ pfori = p + 1. Hence, if we can show that

2.2\ pJ
o’h,\ ke

Vi = 2 s, exp(—~ )—I.
I, | =xt 2x | x

= o(xl/z) as x —> oo
for the i’s and j’s in (i) and (ii) it will follow that
v(x) = o(x'"?)
and hence that
Ay(x) = o(x”z) as x — co.

Now our hypotheses together with Lemma 10, and Lemma 9 with b = 0,
€ = 1/4, imply that, for each integer j = 0,

272

[e o]
. h ,
> s, exp(*a ") = o(xUTH2TV4 45 x — oo.
n=0 2x .

An application of Lemma 6 shows that, for each integer j = 0,
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Vi) = o(x H2TIA a5 x — oo,

172

From this it is clear that, in both cases (i) and (ii), v, =o(x'")and hence

that
Ai(x) = o(xl/z) as x —> oo.

To prove that 4,(x) = o(x]/z) as x — oo, it suffices to show that, for

1 =p=2s,
2,2
ah,
u(x) = 2 CXP(_—“) | (g + R — gil
I, | =x¢ 2x
= o(x[/z) as x — oo.

Since k = 2,1/2 < £ < 2/3,and |h,| = xf we have, by Lemma 8§, that, as

X — 00,
|h |k+l 41
R, = 0{"—k—} = O0(1) and g, = O(1).
X
Hence,
‘L . .
(g + R — st = 2 (MR
Jj=
h, [FT + 1
= O( IRk|) = 0{71( s
X
and so,

2,2
h

u(x) = o{x'k > A+ | T exp(—a )}
h | = 2x

as x — oo.
By Lemma 6, since k > 2r+1,

u(x) _ O(xr~k+l/2) + O(Xr*k/2+l)

172

= o(x''7) as x — oo.

Finally, to show that 4;(x) = o(x"?) as x — oo, we observe that, since

1/2 < £ < 2/3,and |h,| = x%, we have, by Lemma 8§,

I, + 1 |h,?
(3.5) gk+Rk=g2+R2=O{ + -t

X X

In particular, g, + R, = o(1) as x — oo and hence

§ lgk + Rkw

< " = O(ng + Rklzsﬂ) as x — oo.
p=2s+1 :
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Thus, from this and (3.5), we obtain

2,2, oo
h + R, "
Ay(x) = 0{ > o exp(‘—a ") > g + Ryl” }
I, = x¢ 2x / p=2s+1 p!
2K
- { > n exp( ") lg, + RkIZSH}
A, I_x
2,2 2+1 65+3
ok (1 + |k A |
= o 2 el -5 (Fa— + )}

Hence, by Lemma 6, since s > r — 1/2,

A3(X) — O(X—2s+r41/2) 4 O(X—sﬁ-r) 4 O(X—s+r)

172

= o(x''7) as x — co.

Consequently, it follows from (3.1) that
b(x) — f(x) = o(1) as x — oo.

Next, by our hypotheses, Lemma 10, and Lemma 6 with p = 0, we have
that 7(x) = o(l) as x — oo. Therefore b(x) = o(l) as x — oo. This
completes the proof of the first part of the theorem.

We now prove that s, — [(B, a, 8) implies s, — /(},). Again it is enough
to prove the result for / = 0 and we do this by following ( [8], Satz II).
Suppose that s, — 0(B, «, B). Then by Lemmas 4 and 8 we have

azhi
— + g + R,

LS e
V27X |h,| =it n EXP 2x

=o0(l) asx — oo,

ie.,

1(x) + (A)(x) + Ax(x) + A3(x))

84
\2mx
= o(l) as x — oo,

where A;, A,, A; are defined by (3.2), (3.3), (3.4) respectively with
k > 2r+1 and the integer s > r — 1/2.

Observe that in the proof of the first part of the theorem we only
required the hypothesis s, = O(n") to establish that 4, and A4; were
o(1/x). Since the hypothesis is still operative we now have

3.6) (x) +

2 Ay(x) = o(1) asx — co.
27x
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Further, by Lemma 6 (iii) with p = 0, we have 7(x) = O(x"). Let
y 1= inf{8:7(x) = 0(x% }.

Then either y < 0 or 0 = y = r. We wish to show that 7(x) = o(1) as
x — oo in either case. This is evidently so when y < 0. Suppose therefore
that 0 = y = r. Consider 4,(x), and for 1 = p = 2s, let

2,2
B2\ ot

px):= X s, exp(———-a ") Bk
I, | =x¢ 2x /!

where g/ is a finite combination of terms of the form x ‘A’ with (i)

O=j=pfori=pand(i))0 =, j =i+pufori = pu+1. For the /’s and j’s
in (i) and (ii) let

piji= 2 s, exp

Jh, | =x¢

(_a2h,2,) h)
2x | X

Since 7(x) = o(xYH/g) as x — oo it follows, by Lemma 6 (i) and (ii) with
p = 0, that

o0
(44
> s, expl ——2) = o(x'2TYTV8) as x — co.
n
n=0 2x

Next, it follows from Lemma 9 with » = y + 1/8 and € = 1/8 that, for
each integer j = 0,

o ; o*h? ,
> s exp(— ") = o(x/2TYT3%) a5 x — oo
n=0 2x

Lemma 6 implies that, for each integer j = 0,

2,2
. o2h :
> sl exp(— ") = o(x/?TY34) a5 x — co.
lh,l = x 2x

Thus,
_ —i+j/2+y+3/4
pi; = o(x / )

— o(x‘y+l/4

) as x — oo,

in both cases (i) and (ii). It follows that
A,(x) = o(x""V4 as x > oo,

and hence, by (3.6), that
7(x) = o(x¥ % + 0o(1) as x — oo.

Now if y > 1/4, then
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i(x) = o(x"""%,

and this contradicts the definition of y. Hence y = 1/4 and so

t(x) = o(1) asx — oo.

If follows, by Lemma 6 (i) and (ii) with p = 0, that

2h2
2 S, exp( ):o(l) as x — oo,

\/27TX n=0

so that s, — I(V).

4. Proof of theorem 1. The hypothesis s, — /(B, a, 8) implies that
b(x) = O(x") as x —> oo and hence, by Theorem 2, that s, = O(n").
Theorem 3 now shows that s, — /() while Lemma 2 shows that there is
no loss in generality in making the restriction 0 < a < 1. It follows by a
result due to Faulhaber [8] or Bingham [2] that s, — /(S _,) and hence, by
a result due to Sitaraman ( [14], Theorem 2), that s, — /(C,,).

11.

12.

13.

14.
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