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A TAUBERIAN THEOREM CONCERNING 
BOREL-TYPE AND CESÀRO METHODS OF 

SUMMABILITY 

DAVID BORWEIN AND TOM MARKOVICH 

1. Introduction. Suppose throughout that r ^ 0, a > 0, aq 4- yS > 0 
where q is a non-negative integer. Let {sn} be a sequence of real 
numbers, 

cn(x):=—^——7T- a n d * ( * ) : = 2- c„(*>v 
I (an 4- /*) „=<7 

The Borel-type summability method (B, a, /?) is defined as follows: 

sn —» /(#, a, /}) if &(*) -» / as x —» oo. 

The method (2?, a, /3) is regular [5]; and (B, 1, 1) is the standard Borel 
exponential method B. For a real sequence {sn} we consider the slowly 
decreasing-type Tauberian condition 

(Tr): lim lim inf min Sm ~ Sfl ^ 0. 
8—0 + n—>oo n^m^ân + Sy/n fl 

We shall also be concerned with the Cesàro summability method 
Cp(P

 > — 1 ) > t n e Valiron method Va, and the Meyer-Kônig method Sa 

(0 < a < 1) defined as follows: 

s„->l(Cp) if 

2a sk\ , —» / as n —> oo; 

*„-»TO if 

I a V/2 S / «(/, - fr)2) ^ , 
Z J SA. expj > —» / as « —> oo; 

\2irnl k=0 I 2n ) 

sn ~* l(Sa) i f 
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A TAUBERIAN THEOREM 229 

(1 ~af + x f sk(
n + kV-*l as^-oo. 

k=0 \ k i 

Our main result is 

THEOREM \. If sn^> l(B, a, ($) and (Tr), then sn —> l{Clr). 

Now suppose that 

n 
sn = 2 ak 

k=0 

and note that if 

(Lr): an > -HrT~m for n = 1, 2, . . . 

then, for n ^ m ^k n -f- S\/«, 

i m jj m 
S_m ŵ _ J_ V ,̂ ̂  11 V ;r-\ll 

r ~ r *-* Uj ^ r ^ J 
n n j=n+\ n j=n+\ 

y/n 4- 1 \nl \ yfn) 

so that 

lim lim inf min ——-—-

^ lim lim inf f - W l + — | = 0. 
ô^o+ n^oo [ \ ynl J 

Thus (Lr) implies (Tr). 
The special case a = / ? = l , r = 0of Theorem 1 with (T0) replaced by 

an = 0(n ) is the original O-Tauberian theorem for Borel summability 
due to Hardy and Littlewood [10]. The Borel summability case a = ft = 1 
of Theorem 1 has been proved by Rajagopal [13], and the corresponding 
theorem for Meyer-Kônig summability Sa by Sitaraman [14]. More 
recently Bingham [3] proved the theorem for summability methods of the 
random walk-type of which B and Sa are special cases. For the general 
(#, a, ft) method, the case r ^ 0 of Theorem 1 with (Tr) replaced by 
a„ = o(nr~l/2) is due to Borwein [6], and the case r = 0 with (T0) replaced 

'' 1/9 

by an = 0(n ) is due to Borwein and Robinson [7]. The most general 
result to-date for the (B, a, /?) method is due to Kwee [12] who proved the 
case of Theorem 1 with (Tr) replaced by an = 0(nr~x/1). 

Theorem 1 remains true if the hypothesis sn —» l(B, a, ft) is replaced by 
s —> l(B', a, /?), by which it is meant that, as y —> oo, 
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230 D. BORWEIN AND T. MARKOVICH 

/

bo °° xan + f$-\ 
e~xdx 2 an— —— -> / - s x (s__x = 0). 

u
 n=q T(an + /?) 

This is a consequence of the following known result due to Borwein ( [4], 
Theorem 2) that sn -> l(B, a, /3 + 1) if and only if ^ -> /(£', a, 0). 

Borwein [5] also proved: 

oo n 

j(z) = 2 ~ 

/s a holomorphic function of z = x + iy in the half plane x > x0, such 
that 

(i) w/ze/7 x > x0 and \z\ is large 

*(,, - z-V-jc + o(l)} 
where C > 0, a > 0, /? a«J y are /*£#/, tfftd 

(ii) /*(x) is real and positive for x = q > x0, then sn —> l(J) 

(
i oo n 

i.e., 2 —— ~> / Û5 x —» oo 
J(X) n=q h(n) 

if and only if 

sn -* l(B, a, yS + 1/2) 

In particular, taking 
oo 

J(z) " 
n-q {T(an + p) Y(n + p)sn + t 

where c, /?, s, t are real and ac 4- 5- > 0, we have 

if and only if 

^ -> l(B, ac + s, lie + t - c/2 + 1/2). 

Thus Theorem 1 is in fact a Tauberian theorem for a wide class of power 
series methods of summability [9]. 

Since the actual choice of q is immaterial, it is convenient to assume in 
all that follows that aq + /? - r > 0. 

2. Preliminary results. 

LEMMA 1 ([6], Lemma 2). Le/ hn = n ~ x/a, 1/2 < £ < 2/3, am/ 
0 < j] < 2£ - 1. Then 
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A TAUBERIAN THEOREM 231 

(i) 2 t cn(x) = 0(e~x\ 

(ii) c ( x ) = -±= e x p ( - ^ ) { l +. 0(x^ ~ 2) } 
\Z2TTX \ 2x / 

when \hn\ ^ x \ 

LEMMA 2 ( [5], Result (I); [4], Lemma 4). If a > y > 0 and for any 
non-negative integer M > — 8/y, 

O O M 

2 0„-
„=A/ r(yw + ô) 

z's convergent for all x, then sn —> /(#, a, /?) implies 

sn -> /(£, y, 5). 

The next result follows from Stirling's formula (see [1], p. 47). 

LEMMA 3. 

(an)r 1 
^ aS n —> OQ 

r(aw + 0) T(an + )8 — r) 

LEMMA 4. L ^ 1/2 < £ < 2/3, f/ze« as x —» oo 

(i) 2 wrcw(x) = o(l), 
q^n<x/a— x* 

0 0 2 «V„(x) = o(l). 

Proof For (i) we have, by Lemmas 3 and 1 (i), that, as x —» oo, 

{ an + p-r-\ \ 
xre~x 2 — 

q^n<x/a-Xt T(an + /? — r ) J 

= 0 { x ^ ~ ^ } = o(l). 

The proof of (ii) is similar. 

LEMMA 5 ( [13], Lemma 1). If {sn} satisfies (Tr), then there exist positive 
constants K, K' such that, for m = n = \, 

sm ~ sn > -Km\mxn - nxn) - K'nr, 

sm- sn^ -K(nf+xn - * r + 1 / 2 ) - Kn\ 

The next lemma is essentially due to Hyslop ( [11], Lemma 1). 
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232 D. BORWEIN AND T. MARKOVICH 

LEMMA 6. Let hn = n — x/a, p = 0, and 1/2 < £ < 1, then, as 
x —» oo, 

(i) 2 n ' A ' e x p f - ^ ) = *(!), 
n>x/a + x* \ 2X / 

(H) 2 y | A „ | " e x p f - ^ ) = 0(1), 

(iii) 2 ^ / e x p - ^ A = 0 { x ^ + ' ) / 2 } 

w=o V 2x / 

LEMMA 7 (cf. [14], Lemma 5 and [3], Theorem 5). Let M and N be any 
positive integers such that 

M > x/a 4- tyjx/a, q <C N < x/a — t\Jx/a. 

Then, as /, x —» oo, 

N 

(i) 2 nrcn(x) = o(xr\ 

oo 

(ii) 2 /irc„(x) = o(xr\ 
n = M 

M 

(iii) 2 i ^ C x ) - (x/a) r , 

oo 

(iv) 2 ( « r + 1 / 2 - M r + 1/2)c„(x) = o(xr). 
n = M 

(The precise meaning of part (iii), for example, is that for every € > 0 
there is a XQ such that 

x~r 2 nrcn(x) ~ a~r 

n = N 
< € whenever x > X), t > X0, 

q < N < x/a — t\Jx/a, and M > x /a + t\Jx/a. The meanings of the 
other parts are similar.) 

Proof. Part (i). For 1/2 < £ < 2/3 we have 

0 ë S: = 2 cwU) ^ 2 c„(x) 
q=-n=x/a — ty/x/a n=q 

q^=kn=x/a — JC* .\7a — **< A? =.x/a — f yx/a 

= : 5, + S2. 

c„(x) 
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A T A U B E R I A N T H E O R E M 233 

By Lemma 4 (i), we have Sx = o(l) as x —» oo. Further, by Lemma 1 (ii), 
as t, x —> oo 

V jv:/a — x * < « ^ x / a — t\/x/a \ ^X I) 

_ ( l ) + o{,-/;^exp(-^} 

= o(l) + o j / ^ e x p C - t / 2 ) JMJ 

= «(I)-

It follows that, as /, x —> oo, 5 = o(l), and hence 

0 ^ 2 nrcn(x) ^ (jc/a)r 2 cn(x) = o(xr). 
n=q n=q 

Part (ii). For 1/2 < £ < 2/3, we have 

S := x " r 2 «^(JC) 
-M 

= X 1 ^ {+ s W„ (x) 

= : 5, + S2. 

By Lemma 4 (ii), we have S2 = o(l) as x —» oo. Furthermore, it follows 
from Lemmas 3 and 1 (ii) that 

S, = o{*~' 2 //c„(x)l 
V x/a + t^x/a <n=x/ a + x* ) 

= oh-* 2 
V x/a + tyjx/a. <n=x/a 

an + B — r— 1 

i^jc/a+x* r(a« + /J - r) 

x J 2 exp 
x/a + t-y/x/a <n=x/a + x* 

a2(n - X / - A 2 

2x «I 
Now exactly as in the proof of part (i) we find that, as t, x —» oo, 
Sx = o(\). The conclusion is now immediate. 

Part (hi). The case r = 0 follows from parts (i) and (ii) with r = 0 and 
the known result that 

oo 

2 cjx) —» 1 as x —» oo 

(see [5], p. 130). 
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To prove the result for r > 0, observe that it is equivalent to proving the 
following assertion: 

Mi 

2 nrcn(x) ~ {xt/a)r as / —» oo, 
n=Nt 

whenever {Mz}, {A^}, {/,}, {xt} are sequences such that tt —> oo, xt —> oo, 
and 

Mi > jc/a + fz-\/x/a, q < Nt < xt/a — tt^JXi/a. 

Suppose therefore that {Mz}, {A^}, {/,}, {x,} are sequences satisfying the 
above conditions, and let 

w, = min{(.x,)1/4,f /} 

so that 

0 ^ w- ë /•, w, —> oo, and w / V*/ ~^ 0. 

Now choose sequences of positive integers {Af-}, {N/} such that 

M\ - 1 ^ x / a + w^-VV» < M ; = Mv 

Nt ^ N; < xt/a - wiVGcfix ^ N; + i. 
Then 

Mz / A / J - l A/; A/,- x 

(2.1) 2 ^c„(x,) = 2 + 2 + 2 )nrcn(Xi). 
n = Nl \n=Nt n = N[ n = M\+\> 

(The first series on the right side of (2.1) is defined to be zero if N- = TV, as 
is the last series if M\ = Mt.) 

Since 

(N;Y 2 cn(xt) ^ 2 nrcn(Xi) ^ ( M ; / 2 cn(Xi) 
n=N\ n=N[ n = N{ 

and 

(N;)r ~ (x/af, (M[)r ~ (Xi/a)r as i -> oo, 

if follows that 

2 nrcn(Xi)~(Xi/a)r 2 cn(xt) 
n=N- n=N-

(
oo NI — 1 oo v 

2 - 2 - 2 VM) 

oo ty'-l 
as / —» oo. 

n=q n=q n = M'i+\> 
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Since 

2 cn(xt) -> 1 as i oo 
n=q 

we have, by parts (i) and (ii) with r = 0, that 

(2.2) 2 nrcn{x^) ~ {xt/a)r as / —» oo. 

Further, from (2.1), (2.2), and parts (i) and (ii), we obtain 

2 nrcn(Xj) ~ {xt/a)r as / —> oo, 

as required. 
Part (iv). An application of the mean value theorem shows that in order 

to prove the desired result it suffices to show that 

S : = x r 2 (V« - VM)nrcn(x) = o(l) as f, 

To prove this observe that since M > i / a we have 

y/âlx(n - M)/2 S V^ ~ V ^ 

and hence 

x —» oo. 

0 ^ S ^ V ^ 2 ^ ~ r " 1 / 2 2 (» - M ) ^ ( x ) 
« = M 

/ÏTÎX-'-1'2 ( 2 
\M=zn=x/a + x* 

+ 2 , )(* - M)/ircn(jc) 

- : Sx + S2 

where 1/2 < £ < 2/3. 
Since 

M > x/a + t\/x/a and n — M <L n — x/a, 

it follows from Lemmas 3 and 1 (ii) that 

V x/a + ty/x/a = «=* /a + * 

(« — x/a)nr 
an + B-r-\ < 

r(a/i + j8)J 
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236 D. BORWEIN AND T. MARKOVICH 

= 0\x-me-* 2 
xl'<x + t\/x/a =n=x/a-\-x* 

(n — x/a)-
an + fi — r— 1 

\ x/a + tyx/a. làn^kx/a + x" 

T(an + $ - r)\ 

o\ ' 

(n — x/a) exp 
a (n — x/c^ x 

2x 
,2,.2\ 

o(l) + o[x-* / ^ ^ e x p ( - ^ } 

= o(\) + 0\ f r~ u exp( — u2)du\ = <9(1) as t, x —» oo. 

Next, by Lemmas 3 and 1 (i), we have that, as x —> oo, 

{ aw + / J - r - 2 \ 

«>x/a+^ r(a« 4- /?)J 

{ an + p-r-2 \ 

xV2e-* 2 -
«>*/«+.x* T(an + fi — r — 1)J 

= 0{x1/2e~x1?} = o(l). 

If follows that S = o(\) as /, x —» oo. 

THEOREM 2. Suppose that {sn} is a sequence such that (Tr) holds and 

b(x) = 0(x r ) as x —» oo. 

TTzett sn = 0(nr). 

Proof. Following Sitaraman ( [14], proof of Theorem 1) define 

on := n~rsn, ox(n) : = max av, and o2(n) : = max ( — av). 

We assume that {on} is unbounded and show that this leads to a 
contradiction. 

There are two logical possibilities: 
Case (A). ox(n) i^ o2(n) for infinitely many values of n. 
Case (B). ox(n) < o2(n) for all n sufficiently large. 
First, suppose that Case (A) holds. Then in view of our assumption we 

conclude that ox(n) —» oo. Now write 

,N-\ M-\ oo v 

(2.3) b(x) = 2 + 2 + 2 )cn(x)sn 
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= : Tx(x) + T2(x) + T3(x) 

where first TV and then M are chosen as follows. Corresponding to any 
positive H > ox(q) there exist integers N = N(H) > q such that 

(2.4) oN = ox(N) > 27/, or̂ JV) â o2(N). 

Take the least value of N and then the least M = M(H) > N such that 

(2.5) aM ^ - a^ . 

There are such AT s when H is large, for otherwise on —* oo, and then 
Lemma 3 and the total regularity of the (B, a, ft — r) method ( [9], 
Theorem 9) would imply that 

x~rb(x) —» oo as x —» oo, 

contradicting the hypothesis £(JC) = 0(x r) . 
In view of Lemma 5, and the choice of M and N in (2.4) and (2.5), we 

have that 

K(M^ - N^) > *,(*){(£)' - i} - *\ 

where K and À7 are positive constants (cf. [14], proof of Theorem 1). Now 
we have either 

i»\>3- or m*t. 
\M) 4 \Nl 3 

In the first case, 

AT(M1/2 - iV1/2) > -ox(N) - K\ 

while in the second case 

M i / 2 _ N\n => ^1/2 |gT - ')• 
Hence 

(2.6) t : = t(H) = -{Mxn - Nl/2) -> oo as TV -* oo (or 7/ -> oo). 

Next, let 

(2.7) x : = x ( # ) = - (M 1 / 2 + 7V1/2)2 
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238 D. BORWEIN AND T. MARKOVICH 

so that x —* oo as H —» oo, since M > N —> oo as H —» oo. It follows from 
(2.6) and (2.7) that 

n ox [M > x /a + t-\Jxla, 
^ ' ' [q < N < x/a - tyjxïa, 

where /, x —> oo as H —> oo. 
In the analysis which follows, suppose that TV, M and x are chosen as in 

(2.4), (2.5) and (2.7) and consequently satisfy (2.8). Therefore t, x —» oo as 
i / —» oo and the properties (i), (ii), (hi) and (iv) of Lemma 7 hold. With 
reference to (2.3), we see, that as H —> oo 

(2.9) r , (x) è -o2(N) 2 *rcn(x) 

^ -a^TV) 2 ^„ (x ) = -a,(JVMl), 

by Lemma 7 (i). Further, since M is the least integer greater than N which 
satisfies (2.5), we have 

(2.10) an > -oN = -o{(N) for N ^ n ^ M - 1. 

Thus, as H —* oo, 

1 M~X 1 
(2.11) r 2 ( x ) > - a 1 ( i V ) 2 ^ „ ( x ) ~ - a 1 ( A 0 ( x / a ) ' ' , 

2 „ = # 2 
by Lemma 7 (iii). 

Next, by Lemma 5, there are positive constants K and K' such that 

for n = M. Thus 

^ -K(nr+m - (M - l ) r + 1 / 2 ) - ^ ( M - l) r 

(2.12) sn > sM_x -K(nr+V1 - (M - l ) r + 1 / 2 ) - 0(Mr'xn) - K'Mr 

> -K(nr+l/2 - Mr+V1) - 0(Mr) 

for n ^ M, since, by (2.10) and (2.4), 

% - i = * A / - I ( ^ - 1 / > ^ ( M - 1 / > H(M - 1 / > 0. 

By (2.12) and Lemma 7 (ii) and (iv), we have 

oo oo 

(2.13) T3(x) S -K 2 ( « r + 1 / 2 - M f + 1 / 2)c„(^) - O(l) 2 /I'C„(JC) 
n = M n = M 
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^ — o(xr) as H —» oo. 

Substituting (2.9), (2.11) and (2.13) in (2.3), we get 

x'rb(x) ^ a1(JV)(-a~r - o(l)J - o(l) -> oo as H -> oo, 

since a^iV) —» oo as TV —•» oo (or / / —» oo). This implies that x_r/?(x) is 
unbounded above, contradicting the hypothesis o(x) = <9(xr). 

Next, suppose that Case (B) holds (i.e., there exists an M0 such that 
o2(n) > o{(n) for n ^ M0). Then in view of our underlying assumption 
we have o2(n) —» oo. Now write 

(
N M oo v 

2 + 2 + 2 )cn(x)s„ 
n=q n=N+\ n = M+\> 

= : r,(x) + r2(x) + r3(x) 
where first M and then N are chosen as follows. Corresponding to any 
positive H > o2(M0) choose the least M = M(H) such that 

(2.15) a2(«) > a i(/i) for n ^ M, aM = - a 2 ( M ) < - 2 / / . 

Then choose the largest N = N(H) G (q, M) for which 

(2.16) oN S l a „ = - ± a 2 ( M ) . 

There are such TVs when H is large, for otherwise on —» — oo and then 
Lemma 3 and the total regularity of the (B, a, ft — r) method would imply 
that 

x~rb(x) —> — oo as x —> oo, 

contradicting the hypothesis b(x) = 6>(xr). 
The choice of M and N in (2.14) and (2.15), and Lemma 5 imply that 

there are positive constants K, K for which 

â -o2(M) - K - * c o 

as i / —» oo (cf. [14], proof of Theorem 1). Hence defining / = t(H) and 
x = x(H) as in (2.6) and (2.7) we see that t, x —> oo as / / —» oo, and that 
(2.8) holds. Consequently, as H —> oo, the properties (i), (ii), (hi) and (iv) 
of Lemma 7 hold. The rest of the proof of Case (B) is exactly as given in 
( [14], case (ii) of Theorem 1) with the roles of TV and M interchanged. This 
rules out the possibility of Case (B) holding. 
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240 D. BORWEIN AND T. MARKOVICH 

LEMMA 8. (cf. [8], Hilfssatz 5). Suppose hn = n — x/a, 0 < H < 1, 
(1 — H)x/a ^ n ^ (1 -h H)x/a, and k is any integer =^2. Then, as 
x —» oo 

..21.2 a l cfhi \ 
cn(x) = - = e x p ( - ^ + gk + **) , 

where 

Rk = 0 {^4 * - 2 2 ^ 
and the è- .'s are constants with bl2 = bkk + x

 = ®-

(Note: In particular, the result is true for all n such that \hn\ = x , 
1/2 < £ < 2/3.) 

Proof. Since 

an = ah„ x and 0 < 1 - H ^ 
oth„ 

1 ^ 1 7/ 

if follows from a form of Stirling's formula ( [1], p. 48, equation 12) that, 
a s i ^ oo, 

(2.17) log T(an + j8) 

= (a/z„ + x + 0 - 1/2) log x - « / ! „ - JC + (1/2) log 2TT 

+ (ahn + x + j8 - 1/2) l o g { ^ + l) 

,= i r(r 4- \)xr \ x ! k + \ 

where k â 1 and each 2?r+1(/}) is a Bernoulli polynomial. Since 

|aA„ 
^ 77 < 1 

we have 

-M*-r=i(7e+^r+l}' 
and 

a/z 
(2.19) l o d ^ + 1 = 2 

( -1) 

7 = 1 J 

J~] Iah 

x =M(̂ n-
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It follows from (2.18) that 

(2.20) i ( - 1 ) f + ' ^ ^ ( ^ + lV 
r = l r(r + \)xr \ x I 

k k-r 

where the drJs are constants. 
If we denote the double sum on the right side of (2.20) by tk and then 

substitute (2.19) and (2.20) in (2.16) we obtain, after some simplifica­
tion, 

(2.21) logc„(x) 

= log a — x 4- (ahn -f x 4- ft — 1) log x — log T(an + /?) 

= l o ê - 7 = + <*h„ 
ylnx 

(«*„ + * + /*-1/2) 2 ^ ^ ( ^ y -

\\K\k+\ 

k 

2 

+ < 9 { ^ r — j as x -» 00. 
i* + i J_ j 

We now combine the 0-term with the term 

(-p*(«ft„)*+i 

fee* 

on the right side of (2.20) into Rk to get, after a further simplification, 

log Cn{x) = log — 1 = -?-*+ gk + Rk, 
yZTTX 2X 

where 

* . o{^Ç±i) and 

* ' + 1 Ai 

;=U=o Jx 

with 6 , 2 = bkÀ+] = 0. 
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3. An equivalence theorem. 

LEMMA 9 ( [11], Lemma 3 or [8], Hilfssatz 3). Suppose that sn = 0(nr), 
and that 

2* sn exp = o(x D) 
n=0 I 2x ) 

as x —» oo where b = 0. Then, for each integer j = 0 and each e > 0, 

2 sn(n - xy eJ-a(n ~ x)2\ = 0(XO-+D/2+*+«) 

n=0 I 2x ) 

as x —> oo. 

LEMMA 10 ( [11], Theorem 2 or [8], Hilfssatz 4 with g = 0). Suppose that 
sn = 0(nr), hn = n — x/a, and that 

S f a(n - k)2) 
2é *k e x P Z 

&=o I in ) 

°° I i r \21 

2 
k=0 

Then 

o(n ) as n —» oo. 

' 2 s„exp -^—M - o(. 
«=o V 2x / 

xX/ ) as x —> oo. 

THEOREM 3. (cf. [11], Theorems 3 and 6). Suppose that sn = 0(nr). Then 
sn -> /(£, a, 0) if and only if sn -> /(Fa). 

Proof. Let 

1/2 < £ < 2/3, hn = n - x/a, 

b(x) : = 2 cn{x)sn and 

<*2/z2 

We first prove that sn —> /(PQ implies 5„ —» /(#, a, /?). Because of the 
regularity of both methods it suffices to prove this result for / = 0. 
Suppose therefore that sn —» 0(Va). In order to show that sn —» 0(5, a, /?) it 
is enough, by Lemma 4, to prove that b(x) = o(l) as x —» oo. By Lemma 8, 
for x sufficiently large and an integer A: > 2r 4- 1, we have 

(3.1) b(x) - T(x) 

J.u2\ 

M--M— (-£)) 
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2 sn exp - — - 2 ^ l \ v (& + RkT 
2<TTX \hn\^x* V 2x J n=\ • jLt! 

a -04,(*) + A(*) + ^3(*)). 
\2TTX 

where 

(3.2) ,4 l ( ; c ) := E ,„ e x p ( - ^ ) | ^ 

03) ,2W:= S . „ p ( - ^ ) | f e + y-rt, 

<3.4) ^>:- S.^J-^I 2 àtSÎ, 

and the integer s > r — 1/2. 
We proceed to show that each of the above is o(x ' ) as x —» 00. 
To see that ^ ( J C ) = o(x1/2) as JC —» 00 consider, for 1 ^ /x ^ 2s, 

The expansion of g^ given in Lemma 8 shows that g\ is a finite combi­
nation of terms of the form x~lhJ

n, where (i) 0 = j = /x for / = ti and 
(ii) 0 ^ j ^ 1; + /x for / ^ xx 4- 1. Hence, if we can show that 

l,J \h\^xt
 n \ 2x J x1 

= o(x ) a s x - ^ o o 

for the /'s and^'s in (i) and (ii) it will follow that 

v(x) = o(xxn) 

and hence that 

^j(x) = o(xxn) as x —> 00. 

Now our hypotheses together with Lemma 10, and Lemma 9 with b = 0, 
c = 1/4, imply that, for each integer j i? 0, 

2 Snh{ exp - ^ = 0 ( ^ + , ) / 2 + 1 / 4 ) as x -> oo. 
n=0 V 2x.) 

r2i.2\ 

j ^ e x p l — 

An application of Lemma 6 shows that, for each integer j ^ 0, 
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ViJ = o(x-i+J/2+V4) as x -> oo. 

From this it is clear that, in both cases (i) and (ii), vz- • = o(x ) and hence 
that 

i /? ^j(x) = o(x ) as x —» oo. 

To prove that ^42(
JC) = 0(*1/2) as x -^ oo, it suffices to show that, for 

1 ^ ix ^ 2s, 

u(x) : = 2 «r e x p ( - ^ ) I (g, + * * ) " " gg| 
\h„\^x* \ 2x ' 

= o(xl/2) as x —> oo. 

Since /c = 2, 1/2 < £ < 2/3, and \hn\ = x* we have, by Lemma 8, that, as 
x —» oo, 

£+1 
^ = 0JMIliLi| = 0(1) and g^o(i). 

Hence, 

and so, 

u(x) = o\x~k 2 n\\ + |AJ* + 1)exp(-^)) 
I |/zj=ix* \ 2x /J 

as x —* oo. 

By Lemma 6, since & > 2r-f 1, 

u(x) = 0(xr-k + vl) 4- 0 ( x r - ^ / 2 + 1) 

— o(x1/2) as x —» oo. 

Finally, to show that A3(x) = o(xl/2) as x —» oo, we observe that, since 
1/2 < £ < 2/3, and |/zj ^ x , we have, by Lemma 8, 

(3.5) gk + Rk = g2 + R2 = OK + — r } -
V x x ) 

In particular, gk + Rk = o(l) as x —» oo and hence 

I kJ_̂  = oL+^r')as,-oo. 
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Thus, from this and (3.5), we obtain 

\\h„\^x* \ 2x / ^=2^ + 1 /x! J 

Hence, by Lemma 6, since s > r — 1/2, 

^3(jt) = 0 ( x " 2 5 + r - 1 / 2 ) 4- O(x~ 5 + 0 + 0 ( x ~ 5 + / ) 

= o(xV2) as x —» co. 

Consequently, it follows from (3.1) that 

b(x) — T(x) = o(\) as x —> oo. 

Next, by our hypotheses, Lemma 10, and Lemma 6 with/? = 0, we have 
that T(x) = o(l) as x —» oo. Therefore &(x) = o(l) as x —» oo. This 
completes the proof of the first part of the theorem. 

We now prove that sn —> l(B, a, ft) implies sn —> l(Va). Again it is enough 
to prove the result for 1 = 0 and we do this by following ( [8], Satz II). 
Suppose that sn —» 0(B, a, /?). Then by Lemmas 4 and 8 we have 

-j= 2 *„exp - — * + g* + /U 

= o(l) as x —> oo, 

i.e., 

re*) + —1=^^^) + ^2(x) + A3(X)) 
yimx 

= o(\) as x —» oo, 

where ^4l9 v42, ^3 are defined by (3.2), (3.3), (3.4) respectively with 
k > 2r+ 1 and the integer s > r — 1/2. 

Observe that in the proof of the first part of the theorem we only 
required the hypothesis sn = 0(nr) to establish that A2 and A3 were 
6>(yGc). Since the hypothesis is still operative we now have 

(3.6) T(x) 4- —==Al(x) = o(l) as x —» 00. 
ylTTX 
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Further, by Lemma 6 (iii) with/? = 0, we have t(x) = 0(xr). Let 

y : = inf {S:T(x) = 0(x8) }. 

Then either y < 0 o r 0 = y = r. We wish to show that t(x) = o(\) as 
x —» oo in either case. This is evidently so when y < 0. Suppose therefore 
that 0 ^ y ^ r. Consider Ax{x), and for 1 ^ /x ^ 2s, let 

Ju2\ 

\hn\^x* V 2x I fil 

where g\ is a finite combination of terms of the form x~~lhJ
n with (i) 

0 ^ j' ^ fi for * = jit and (ii) O i j â / + /x for / ^ /x+ 1. For the /'s and 7's 
in (i) and (ii) let 

Pij : = 2- * „ e x p — — - . 

Since 7~(JC) = o(jcy 7 ) as x —» 00 it follows, by Lemma 6 (i) and (ii) with 
p = 0, that 

2* J w e x p — — - = o(x 
2 7.2. 

1/2 + 7+1/8 ) a s x —» 00 . 

Next, it follows from Lemma 9 with Z> = y + 1/8 and e = 1/8 that, for 
each integer 7 ^ 0, 

w=o \ 2x I 

,2 7.2. 
7 / 2 + Y + 3 / 4 

( / ^ 7 T J / 4 ) a s i ^ o o . 

Lemma 6 implies that, for each integer j ^ 0, 

2 ^ e x p f - ^ ) = o(xJ/2+i+3'4) a s x - ^ o o . 

Thus, 

Pij = o ( x - ^ ^ / 2 + Y + 3 / 4 ) 

= o(xY + 1 / 4) a s x ^ o o , 

in both cases (i) and (ii). It follows that 

Ax(x) = o(xY+ ' ) as x —» 00, 

and hence, by (3.6), that 

T(x) = o(xy~l/4) 4- o(l) as JK -> 00. 

Now if y > 1/4, then 
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T(x) = o(xy-l/4\ 

and this contradicts the definition of y. Hence y S 1/4 and so 

T(x) = o(l) as x —» oo. 

If follows, by Lemma 6 (i) and (ii) with p = 0, that 

« V ahn\ / n _ , 
— 7 = iL J„ exp — M — 0(1) as x —> co, 
ylTTX n=0 \ 2x I 

so that ^ -> /(J/,). 

4. Proof of theorem 1. The hypothesis sn —» /(#, a, /?) implies that 
6(A:) = 0(xr) as x —» 00 and hence, by Theorem 2, that ^ = 0(rf). 
Theorem 3 now shows that sn —-> l(Va) while Lemma 2 shows that there is 
no loss in generality in making the restriction 0 < a < L i t follows by a 
result due to Faulhaber [8] or Bingham [2] that sn —» l(Sl _a) and hence, by 
a result due to Sitaraman ( [14], Theorem 2), that sn —» l(C2r). 
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