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Abstract. Let R be a ring and M a monoid with twisting f : M × M → U(R) and
action ω : M → Aut(R). We introduce and study the concepts of CM-Armendariz and
CM-quasi-Armendariz rings to generalise various Armendariz and quasi-Armendariz
properties of rings by working on the context of the crossed product R ∗ M over R.
The following results are proved: (1) If M is a u.p.-monoid, then any M-rigid ring
R is CM-Armendariz; (2) if I is a reduced ideal of an M-compatible ring R with
M a strictly totally ordered monoid, then R/I being CM-Armendariz implies that R
is CM-Armendariz; (3) if M is a u.p.-monoid and R is a semiprime ring, then R is
CM-quasi-Armendariz. These results generalise and unify many known results on this
subject.

2010 Mathematics Subject Classification. 16S36, 16N60, 16U99.

1. Introduction. Throughout, unless otherwise indicated, R denotes an
associative ring with identity and M is a monoid. Following the literature, a ring
R is called Armendariz (resp., quasi-Armendariz) if for any f (x) = ∑m

i=0 aixi and
g(x) = ∑n

j=0 bjxj ∈ R[x], f (x)g(x) = 0 (resp., f (x)R[x]g(x) = 0) implies that aibj = 0
(resp., aiRbj = 0) for all i and j [5, 19]. These rings and various generalisations such as
skew Armendariz rings, M-Armendariz rings, M-quasi-Armendariz rings have been
discussed in a number of publications (see, for example, [4, 5, 7, 9, 10, 12, 14] and [21]).

In this paper, we investigate CM-Armendariz rings and CM-quasi-Armendariz
rings, which are the Armendariz-like and quasi-Armendariz-like properties defined
for the monoid crossed product R ∗ M. The former is a common generalisation
of Armendariz rings, skew Armendariz rings and M-Armendariz rings, while
the latter generalises quasi-Armendariz rings and M-quasi-Armendariz rings.
The following results are proved: For a u.p.-monoid M with twisting f : M ×
M → U(R) and action ω : M → Aut(R), (1) R being M-rigid implies that R is
CM-Armendariz; (2) R being semiprime implies that R is CM-quasi-Armendariz;
(3) R being left APP implies that R ∗ M is left APP, in case ω satisfies condition
(∗). Moreover, if R is an M-compatible ring and M is a strictly totally ordered
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monoid with twisting f and action ω as above, then for any reduced ideal I of R, R/I
being CM-Armendariz implies that R is CM-Armendariz. Since the monoid crossed
product R ∗ M is a common generalisation of polynomial rings, skew polynomial
rings, the twisted monoid ring, (skew) Laurent polynomial rings and skew monoid
rings, our results generalise and unify various known results on Armendariz rings,
skew Armendariz rings, quasi-Armendariz rings, M-Armendariz rings and M-quasi-
Armendariz rings.

Next, we recall some of the notions and notations needed in this paper. Let
ω : M → Aut(R) be a monoid homomorphism. For g ∈ M, we denote by ωg the
automorphism ω(g). The crossed product R ∗ M over R consists of all finite sums R ∗
M = {∑

rgg|rg ∈ R, g ∈ M
}

with addition defined componentwise and multiplication
defined by the distributive law and two rules that are called action and twisting explained
below: For g, h ∈ M and r ∈ R, gr = ωg(r)g and gh = f (g, h)gh, where f : M × M →
U(R) is a twisted function and U(R) denotes the set of units of R. Here, the twisted
function f and the action ω of M on R satisfy the following conditions: ωg(ωh(r)) =
f (g, h)ωgh(r)f (g, h)−1, ωg(f (h, k))f (g, hk) = f (g, h)f (gh, k), f (1, g) = f (g, 1) = 1 for all
g, h, k ∈ M. Notice that monoid crossed product is a quite general ring construction.
Let R ∗ M be a monoid crossed product with twisting f and action ω. If the twisting f
is trivial, that is f (x, y) = 1 for all x, y ∈ M, then R ∗ M is the skew monoid ring R�M.
If the action ω is trivial, i.e., ωg = iR with iR the identity map over R, then R ∗ M is
the twisted monoid ring Rτ [M]. If both the twisting f and the action ω are trivial, then
R ∗ M is a monoid ring, denoted by R[M] (see [11] and [18]).

An endomorphism α of a ring R is said to be compatible if for any a, b ∈ R, ab = 0
if and only if aα(b) = 0, and to be rigid if aα(a) = 0, a ∈ R, implies a = 0. The ring
is called α-rigid (resp., α-compatible) ring if there exists a rigid (resp., compatible)
endomorphism α [13]. By [3, Lemma 2.2], R is α-rigid if and only if R is α-compatible
and reduced. A monoid homomorphism ω : M → Aut(R) is said to satisfy condition
(∗) if for every a ∈ R, the left ideal

∑
g∈M Rωg(a) is finitely generated. We call a ring R

an M-compatible (resp., M-rigid) ring if ωg is compatible (resp., rigid) for any g ∈ M.
A monoid M is called a u.p.-monoid (unique product monoid) if for any two nonempty
finite subsets A, B ⊆ M, there exists an element g ∈ M uniquely in the form of ab with
a ∈ A and b ∈ B. From now on, ω : M → Aut(R) is a monoid homomorphism.

2. M-Armendariz rings of crossed product type. In this section, we consider
Armendariz properties relative to a monoid crossed product R ∗ M. We begin with
the following definition.

DEFINITION 2.1. Let R be a ring and M a monoid with twisting f : M × M →
U(R) and action ω : M → Aut(R). The ring R is called an M-Armendariz ring of
crossed product type relative to the given twisting f and action ω (or simply, a CM-
Armendariz ring) if whenever α = a1g1 + · · · + angn, β = b1h1 + · · · + bmhm ∈ R ∗ M
satisfy αβ = 0, we have aiωgi (bj) = 0 for all i, j. In particular, if R is CM-Armendariz
with f trivial, then we call R a skew M-Armendariz ring. If R is CM-Armendariz with
ω trivial, then R is called a TM-Armendariz (i.e., twisted M-Armendariz) ring.

It is clear that an M-Armendariz ring is just a CM-Armendariz ring with both
twisting and action trivial. If M = (� ∪ {0},+) with the trivial twisting f and ω given
by ω(n) = αn for n ∈ M where α ∈ Aut(R), then R is CM-Armendariz if and only if
R is α-skew Armendariz. In particular, if both twisting f and action ω are trivial with
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M = (� ∪ {0},+), then R is CM-Armendariz if and only R is Armendariz. Some other
variants of Armendariz rings can be obtained when specialised to special M, f and ω.

PROPOSITION 2.2. Let M be a u.p.-monoid with twisting f : M × M → U(R) and
action ω : M → Aut(R). If R is M-rigid, then R is CM-Armendariz.

Proof. It is similar to the proof of [14, Proposition 1.1]. �
COROLLARY 2.3 ([14, Proposition 1.1]). Let R be a reduced ring and M a u.p.-

monoid. Then, R is M-Armendariz.

An ordered monoid is a pair (M,�) consisting of a monoid M and an order � on M
such that for all g, h, k ∈ M, g � h implies kg � kh and gk � hk. An ordered monoid
(M,�) is said to be strictly ordered if for all g, h, k ∈ M, g ≺ h implies kg ≺ kh and
gk ≺ hk. It is known that torsion-free nilpotent groups and free groups are ordered
groups by [17, Lemmas 13.1.6 and 13.2.8]. Hence, any submonoid of a torsion-free
nilpotent group or a free group is an ordered monoid.

COROLLARY 2.4. Let R be an M-rigid ring and M a strictly ordered monoid with a
monoid homomorphism ω : M → Aut(R). Then R is CM-Armendariz. In particular, if
M is a strictly ordered monoid and R is a reduced ring, then R is M-Armendariz.

COROLLARY 2.5. Let R be an M-rigid ring and M a u.p.-monoid with action ω :
M → Aut(R). Then R is skew M-Armendariz.

Let I be an ideal of R and ω : M → Aut(R) a monoid homomorphism. If ω̄ : M →
Aut(R/I) is defined by ω̄g(r + I) = ωg(r) + I , then ω̄ is a monoid homomorphism.
Note that the twisting f : M × M → U(R) induces a twisting f̄ : M × M → U(R/I)
given by f̄ (x, y) = f (x, y) + I . Moreover, for every α = ∑n

i=1 aigi in R ∗ M, we denote
ᾱ = ∑n

i=1 āigi in (R/I) ∗ M ∼= (R ∗ M)/(I ∗ M), where āi = ai + I for 1 ≤ i ≤ n. It can
be easily checked that the map μ : R ∗ M → (R/I) ∗ M defined by μ(α) = ᾱ is a ring
homomorphism.

In contrast to the fact that there exits a ring R, which is not Armendariz, but R/I
and I are Armendariz for every nonzero proper ideal I of R (see [12, Example 14]), we
have the following proposition.

PROPOSITION 2.6. Let R be an M-compatible ring and (M,�) a strictly totally
ordered monoid with twisting f : M × M → U(R) and action ω : M → Aut(R). If I is a
reduced ideal of R such that R/I is CM-Armendariz, then R is CM-Armendariz.

Proof. The proof is a modification of that of [14, Proposition 1.4]. Let α = a1g1 +
· · · + angn, β = b1h1 + · · · + bmhm be elements of R ∗ M such that αβ = 0. Without
loss of generality, we can assume that g1 ≺ g2 ≺ · · · ≺ gn and h1 ≺ h2 ≺ · · · ≺ hm. We
use transfinite induction on the strictly totally ordered monoid (M,�) to show that
aiωgi (bj) = 0 for all i and j. Since R/I is CM-Armendariz and

0̄ = (ā1g1 + · · · + āmgm)(b̄1h1 + · · · + b̄nhn)
= (a1 + I)ωg1 (b1 + I)f̄ (g1, h1)g1h1 + · · · + (am + I)ωgm (bn + I)f̄ (gm, hn)gmhn

= (a1ωg1 (b1)f (g1, h1) + I)g1h1 + · · · + (amωgm (bn)f (gm, hn) + I)gmhn,

in (R/I) ∗ M, so we have aiωgi (bj)f (gi, hj) ∈ I for all i, j. Since M is a strictly totally
ordered monoid, we have g1h1 ≺ gihj for i �= 1 or j �= 1. It follows from αβ = 0
that a1ωg1 (b1)f (g1, h1) = 0, i.e., a1ωg1 (b1) = 0. Now, assume that aiωgi (bj) = 0 for all
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1 ≤ i ≤ n and 1 ≤ j ≤ m with gihj ≺ ξ , and we shall show that aiωgi (bj) = 0 for all i
and j with gihj = ξ .

In fact, X := {(gi, hj)|gihj = ξ} is a finite set and hence we can rewrite X =
{(gir, hjr )|1 ≤ r ≤ t} such that gi1 ≺ gi2 ≺ · · · ≺ git . If gic = gid for c �= d, then the
equalities gic hjc = ξ = gid hjd implies hjc = hjd ( since M is cancellative), a contradiction.
Moreover, since (M,�) is a strictly totally ordered monoid, it follows that for any c and
d with c ≺ d, gic hjc = gid hjd = ξ implies hjd ≺ hjc . Thus, we have hjt ≺ hjt−1 ≺ · · · ≺ hj1 ,
and hence ∑

gihj=ξ

aiωgi (bj)f (gi, hj) = ∑
(gi,hj)∈X

aiωgi (bj)f (gi, hj)

=
t∑

r=1
airωgir

(bjr )f (gir , hjr ) = 0.

Note that for any r ≥ 2, gi1 hjr ≺ gir hjr = ξ , and so ai1ωgi1
(bjr )f (gi1 , hjr ) = 0 by induction

hypothesis. Thus ai1ωgi1
(bjr ) = 0. It follows that ai1 bjr = 0 and hence ai1ωgir

(bjr ) =
0, because R is M-compatible. Since I is reduced and ωgir

(bjr )Iai1 ⊆ I , we have
(ωgir

(bjr )Iai1 )2 = ωgir
(bjr )I(ai1ωgir

(bjr ))Iai1 = 0. This implies that ωgir
(bjr )Iai1 = 0 and

hence ωgir
(bjr )f (gir , hjr )Iai1 ⊆ ωgir

(bjr )Iai1 = 0 since I is an ideal of R. For any r ≥ 2, we
obtain

0 = (airωgir
(bjr )f (gir , hjr ))(ai1ωgi1

(bj1 )f (gi1 , hj1 ))2

= (airωgir
(bjr )f (gir , hjr ))(ai1ωgi1

(bj1 )f (gi1 , hj1 ))(ai1ωgi1
(bj1 )f (gi1 , hj1 ))

∈ (airωgir
(bjr )f (gir , hjr ))I(ai1ωgi1

(bj1 )f (gi1 , hj1 ))
= air (ωgir

(bjr )f (gir , hjr )Iai1 )ωgi1
(bj1 )f (gi1 , hj1 ).

Multiplying
∑t

r=1 airωgir
(bjr )f (gir, hjr ) = 0 on the right side by (ai1ωgi1

(bj1 )f (gi1 , hj1 ))2,
we have

0 =
(

t∑
r=1

airωgir
(bjr )f (gir , hjr )

)
(ai1ωgi1

(bj1 )f (gi1 , hj1 ))2

= (ai1ωgi1
(bj1 )f (gi1 , hj1 ))(ai1ωgi1

(bj1 )f (gi1 , hj1 ))2

= (ai1ωgi1
(bj1 )f (gi1 , hj1 ))3.

Since ai1ωgi1
(bj1 )f (gi1 , hj1 ) ∈ I and I is reduced, we have ai1ωgi1

(bj1 )f (gi1 , hj1 ) = 0. Thus
ai1ωgi1

(bj1 ) = 0. This implies that

t∑
r=2

airωgir
(bjr )f (gir , hjr ) = 0. (�)

Multiplying equation (�) from the right-hand side by (ai2ωgi2
(bj2 )f (gi2 , hj2 ))2, we obtain

ai2ωgi2
(bj2 ) = 0 by the similar method as above. Continuing this procedure, we can

prove that aitωgir
(bjr ) = 0 for all r. This shows that aiωgi (bj) = 0 for all i, j with gihj = ω.

Therefore, by transfinite induction, we have proved aiωgi (bj) = 0 for all i, j. �

For any α ∈ R ∗ M, we denote by Cα the set of all coefficients of α.

LEMMA 2.7. Let R be a ring and M a monoid with ω : M → Aut(R) a monoid
homomorphism and twisting f : M × M → U(R). Suppose that R is an M-rigid CM-
Armendariz ring. If α1α2 · · ·αn = 0 with each αi ∈ R ∗ M, then a1a2 · · · an = 0 for all
ai ∈ Cαi and all 1 ≤ i ≤ n.

For a ring R and n ≥ 2, let Sn(R) be the ring of all n × n upper triangular
matrices over R that are constant on the diagonal. Let ω : M → Aut(R) be a monoid
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homomorphism. For each g ∈ M, ω can be extended to a monoid homomorphism ω̄

from M to Aut(Sn(R)) defined by ω̄g((aij)) = (ωg(aij)).

PROPOSITION 2.8. Let R be an M-rigid ring and M a monoid with action ω : M →
Aut(R), where |M| ≥ 2. Then R is skew M-Armendariz if and only if S3(R) is skew
M-Armendariz.

Proof. Let R be a skew M-Armendariz ring and α = A1g1 + A2g2 + · · · + Angn,
β = B1h1 + B2h2 + · · · + Bmhm be nonzero elements of S3(R)�M with αβ = 0, where

Ai =

⎛
⎜⎜⎝

a(i) a12
(i) a13

(i)

0 a(i) a23
(i)

0 0 a(i)

⎞
⎟⎟⎠ , Bj =

⎛
⎜⎜⎝

b(j) b12
(j) b13

(j)

0 b(j) b23
(j)

0 0 b(j)

⎞
⎟⎟⎠ .

We note that there is an obvious isomorphism S3(R)�M ∼= S3(R�M). Therefore,
we can rewrite α and β as

α =

⎛
⎜⎜⎝

α1 α12 α13

0 α1 α23

0 0 α1

⎞
⎟⎟⎠ , β =

⎛
⎜⎜⎝

β1 β12 β13

0 β1 β23

0 0 β1

⎞
⎟⎟⎠ .

So we have the following equations: α1β1 = 0, α1β12 + α12β1 = 0, α1β13 + α12β23 +
α13β1 = 0, α1β23 + α23β1 = 0. Since R is skew M-Armendariz, it follows that
a(i)ωgi (b

(j)) = 0 for all i and j. Therefore, a(i)b(j) = 0 and thus b(j)a(i) = 0 since R
is M-rigid. This implies that b(j)ωhj (a

(i)) = 0 and we obtain β1α1 = 0. Multiplying
α1β12 + α12β1 = 0 on the left side by β1, we have β1α12β1 = 0. Since R is skew M-
Armendariz, we have b(j)a12

(i)b(j) = 0 by Lemma 2.7. This shows that a12
(i)ωgi (b

(j)) =
0 since R is M-rigid, and hence α12β1 = 0. Thus, we deduce α1β12 = 0 and so
a(i)ωgi (b12

(j)) = 0. Similarly, if we multiply α1β23 + α23β1 = 0 on the left side by β1,
then we have β1α23β1 = 0, so b(j)a23

(i)b(j) = 0 by Lemma 2.7. Thus a23
(i)ωgi (b

(j)) = 0
for all i, j since R is M-rigid. Hence, α1β23 = 0 and so b23

(j)ωhj (a
(i)) = 0 for all i and

j. Moreover, if we multiply α1β13 + α12β23 + α13β1 = 0 on the left side by β1, then
β1α13β1 = 0. Similarly, we have a13

(i)ωgi (b
(j)) = 0 and so α13β1 = 0. Thus, the third

equation above becomes α1β13 + α12β23 = 0. If we multiply α1β13 + α12β23 = 0 on the
right side by α1, then we have α1β13α1 = 0 since b23

(j)
ωhj (a

(i)) = 0 (hence β23α1 = 0). A
similar argument shows that a(i)ωgi (b13

(j)) = 0. Therefore, we obtain α12β23 = 0 and so
a12

(i)ωgi (b23
(j)) = 0. Now, it is straightforward to see that Aiωgi (Bj) = 0 for all i, j.

Conversely, assume that S3(R) is skew M-Armendariz. Let μ = a1g1 + a2g2 +
· · · + angn and ν = b1h1 + b2h2 + · · · + bmhm be nonzero polynomials in R�M with
μν = 0. Then

⎛
⎜⎜⎜⎜⎜⎜⎝

μ 0 · · · 0

0 μ · · · 0

...
...

. . .
...

0 0 · · · μ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ν 0 · · · 0

0 ν · · · 0

...
...

. . .
...

0 0 · · · ν

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0,
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in S3(R)�M. Since S3(R) is skew M-Armendariz, a routine verification shows that
R is skew M-Armendariz. �

COROLLARY 2.9. Let R be a ring and M a monoid with |M| ≥ 2. Then R is M-
Armendariz if and only if S3(R) is M-Armendariz.

Note that any endomorphism α of a ring R can be extended to an endomorphism
ᾱ of S3(R) defined by ᾱ(aij) = (α(aij)).

COROLLARY 2.10 ([7, Proposition 17]). Let R be a ring and α an endomorphism of
R. If R is α-rigid, then S3(R) is ᾱ-skew Armendariz.

COROLLARY 2.11 ([12, Proposition 2]). If R is a reduced ring, then S3(R) is
Armendariz.

COROLLARY 2.12. Let R be an M-rigid ring and M a monoid with action ω : M →
Aut(R), where |M| ≥ 2. If R is skew M-Armendariz, then S2(R) is skew M-Armendariz.

In view of Proposition 2.8, one may suspect that Sn(R) is skew M-Armendariz if R
is skew M-Armendariz for n ≥ 4. But the following example eliminates the possibility.

EXAMPLE 2.13. Let R and M be given as in Proposition 2.8. Since R is M-rigid,
we note that ωg(e) = e for every e2 = e ∈ R by [8, Proposition 5]. Let α = e12e + (e12 −
e13)g and β = e34e + (e24 + e34)g ∈ S4(R) ∗ M with e �= g ∈ M, where the eij

,s are the
matrix units in S4(R). Then we have αβ = 0, but (e12 − e13)ωg(e34) �= 0. This shows
that S4(R) is not skew M-Armendariz. Similarly, Sn(R) is not skew M-Armendariz for
all n ≥ 5.

If N is an ideal of the monoid M with twisting f : M × M → U(R) and action
ω : M → Aut(R), then the restrictions f |N×N : N × N → U(R) and ω|N : N → Aut(R)
are induced twisting and action.

PROPOSITION 2.14. Let R be an M-compatible ring and M a cancellative monoid. If
R is CN-Armendariz for an ideal N of M, then R is CM-Armendariz.

Proof. The proof is similar to that of [14, Proposition 1.10]. �
COROLLARY 2.15. Let M be a cancellative monoid and N an ideal of M. If R is

N-Armendariz, then R is M-Armendariz.

Let � be a multiplicative monoid consisting of central regular elements of R.
Then �−1R := {u−1a| u ∈ �, a ∈ R} is a ring. Let ω : M → Aut(R) be a monoid
homomorphism. If ωg(�) ⊆ � for every g ∈ M, then ω can be extended to ω̄ : M →
Aut(�−1R) defined by ω̄g(u−1a) = ωg(u)−1ωg(a). If f : M × M → U(R) is a twisted
function, then f can be viewed as a twisted function from M × M to U(�−1R) as
U(R) ⊆ U(�−1R).

PROPOSITION 2.16. Let R be an M-compatible ring and M a cancellative monoid with
twisting f : M × M → U(R) and action ω : M → Aut(R). Then R is CM-Armendariz
if and only if �−1R is CM-Armendariz.

Proof. It suffices to show the necessity. Assume that R is CM-Armendariz. Let
α = ∑m

i=0 u−1
i aigi, β = ∑n

j=0 v−1
j bjhj be elements in �−1R ∗ M with αβ = 0. Then ᾱ =

(umum−1 · · · u0)α, β̄ = (vnvn−1 · · · v0)β are in R ∗ M. Since R is CM-Armendariz and
ᾱβ̄ = 0, we have (umum−1 · · · u0u−1

i ai)ωgi (vnvn−1 · · · v0v
−1
j bj) = 0 for all i, j. It follows
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that aiωgi (bj) = 0, because � is a multiplicative monoid consisting of central regular
elements of R and all ui, vj ∈ �. Hence (u−1

i ai)ωgi (v
−1
j bj) = aiωgi (bj)(ωgi (vj)ui)−1 = 0

for all i, j. This shows that �−1R is CM-Armendariz. �

COROLLARY 2.17. Let R be an M-compatible ring and M a cancellative monoid with
monoid homomorphism ω : M → Aut(R). Then R is skew M-Armendariz if and only if
�−1R is skew M-Armendariz.

COROLLARY 2.18. Let R be an M-compatible ring and M a monoid. If R is M-
Armendariz, then �−1R is M-Armendariz.

The ring of Laurent polynomials over a ring R in one variable x is denoted by
R[x; x−1]. Each endomorphism α of R can be extended to an endomorphism ᾱ of
R[x; x−1], where ᾱ is given by ᾱ(

∑n
i=k aixi) = ∑n

i=k α(ai)xi for
∑n

i=k aixi ∈ R[x; x−1].

COROLLARY 2.19 ([14, Proposition 2.5]). Let R be a reduced ring and M a monoid.
If R is M-Armendariz, then R[x; x−1] is M-Armendariz.

COROLLARY 2.20. Let R be a reduced ring and M a monoid. Then R[x] is M-
Armendariz if and only if R[x; x−1] is M-Armendariz.

A ring R is left p.q.-Baer if the left annihilator of any principal left ideal of R is
generated as a left ideal by an idempotent [2]. As a generalisation of left p.q.-Baer
rings, Liu and Zhao in [15] introduced left APP-rings. A ring R is a left APP-ring if
the left annihilator lR(Ra) is right s-unital as an ideal of R for any a ∈ R. Here an ideal
I of R is said to be right s-unital if, for each a ∈ I there exists x ∈ I such that ax = a.
Note that an ideal I is right s-unital if and only if R/I is flat as a left R-module if and
only if I is pure as a left ideal of R (see [20, Proposition 11.3.13]). In [5, Theorem 3.9],
it was shown that a ring R is left APP if and only if R[x] is left APP.

For the crossed product R ∗ M, we have the following.

PROPOSITION 2.21. Let M be a u.p.-monoid with twisting f : M × M → U(R) and
with action ω : M → Aut(R) satisfying condition (∗). If R is left APP, then R ∗ M is left
APP.

Proof. The proof is a modification of that of [15, Theorem 3.10]. Suppose
α = a1g1 + a2g2 + · · · + angn, β = b1h1 + b2h2 + · · · + bmhm ∈ R ∗ M such that α ∈
lR∗M((R ∗ M)β). Then we have α(R ∗ M)β = 0, and so α(rc)β = 0 for every r ∈ R and
every c ∈ M. In the following, we freely use the fact that ωgi (R)f (gi, hj) = Rf (gi, hj) = R
for any gi, hj ∈ M. Since ω is a map from M to Aut(R), there exist c1, c2, . . . , cn ∈ R
such that ai = ωgi (ci) for i = 1, 2, . . . , n. We shall prove by induction on m that
ci ∈ lR(Rωc(bj)) for every c ∈ M and for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Note that M is
a cancellative monoid by [1, Lemma 1.1].

If m = 1, then β = b1h1 and (a1g1 + a2g2 + · · · + angn)(rc)(b1h1) = 0. A routine
calculation shows that ci ∈ lR(Rωc(b1)).

If m ≥ 2, there exist 1 ≤ s ≤ n and 1 ≤ t ≤ m such that gscht is uniquely presented
by considering the two subsets {g1, g2, . . . , gn} and {ch1, ch2, . . . , chm} of M. It
follows from α(rc)β = 0 that asωgs (R)f (gs, c)ωgsc(bt)f (gsc, ht)gscht = 0, and hence
asωgs (R)f (gs, c)ωgsc(bt)f (gsc, ht) = 0. Then asωgs (R)ωgsc(bt) = 0 since ωgs (R)f (gs, c) =
R. This shows that asωgs (Rωc(bt)) = 0 and so ωgs (csRωc(bt)) = 0, which implies that
csRωc(bt) = 0 since ωgs is a ring automorphism. Hence cs ∈ lR(Rωc(bt)). Since R is a left
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APP-ring, lR(Rωc(bt)) is pure as a left ideal of R and hence there exists et ∈ lR(Rωc(bt))
such that cs = cset. For every r ∈ R, we have

0 = α(etrc)β = (a1g1 + a2g2 + · · · + angn)(etrc)(b1h1 + b2h2 + · · · + bmhm)
= (a1g1 + a2g2 + · · · + angn)(etrc)(b1h1 + b2h2 + · · · + bt−1ht−1 + bt+1ht+1

+ · · · + bmhm) + (a1g1 + a2g2 + · · · + angn)((etrωc(bt)f (c, ht))(cht))
= (a1ωg1 (et)g1 + a2ωg2 (et)g2 + · · · + anωgn (et)gn)(rc)

·(b1h1 + b2h2 + · · · + bt−1ht−1 + bt+1ht+1 + · · · + bmhm).
Moreover, since aiωgi (et) = ωgi (ciet), by induction we obtain ciet ∈ lR(Rωc(bj)) for
i = 1, 2, . . . , n and j = 1, 2, . . . , t − 1, t + 1, . . . , m. Thus cs = cset ∈ ⋂m

j=1 lR(Rωc(bj)).
Now, we have asωgs (Rωc(bj)) = ωgs (csRωc(bj)) = 0 for j = 1, 2, . . . , m. For every gi ∈
M, since ωgi is an automorphism of R and ωgs (R)f (gs, c) = Rf (gs, c) = R, we obtain
asωgs (R)f (gs, c)ωgsc(bj)f (gsc, hj) = 0. It follows from α(rc)β = 0 that (a1g1 + a2g2 +
· · · + as−1gs−1 + as+1gs+1 + · · · + angn)(rc)(b1h1 + b2h2 + · · · + bmhm) = 0.

Similarly, there exists γ ∈ {1, 2, . . . , s − 1, s + 1, . . . , n} such that
cγ ∈ ⋂m

j=1 lR(Rωc(bj)). This implies that aγ ωgγ
(Rωc(bj)) = ωgγ

(cγ Rωc(bj)) = 0
for j = 1, 2, . . . , m. Then we have (a1g1 + a2g2 + · · · + as−1gs−1 + as+1gs+1 + · · · +
aγ−1gγ−1 + aγ+1gγ+1 + · · · + angn)(rc)(b1h1 + b2h2 + · · · + bmhm) = 0. Continuing
this procedure yields c1, c2, . . . , cn ∈ ⋂m

j=1 lR(Rωc(bj)) for every c ∈ M. Now let
I = ∑m

j=1

∑
c∈M Rωc(bj). It is easy to see that c1, c2, . . . , cn ∈ lR(I) and I is finitely

generated since ω satisfies condition (∗).
Since R is left APP, lR(I) is pure as a left ideal of R, so there exists ξ ∈ lR(I) such

that ci = ciξ with i = 1, 2, . . . , n. Note that for every r ∈ R and every c ∈ M, we have
rωc(bj) ∈ I , and thus

(ξe)(rc)β = (ξe)(rc)(�m
j=1bjhj) = ξωe(r)f (e, c)(ec)(�m

j=1bjhj)
= �m

j=1ξrf (e, c)ωec(bj)f (ec, hj)(chj)
= �m

j=1ξrf (e, c)ωc(bj)f (c, hj)(chj) = 0.

This shows that (ξe) ∈ lR∗M((R ∗ M)β). Hence, α(ξe) = ∑n
i=1 aigi(ξe) =∑n

i=1 aiωgi (ξe)gi = ∑n
i=1 aiωgi (ξ )gi = ∑n

i=1 ωgi (ciξ )gi = ∑n
i=1 ωgi (ci)gi = ∑n

i=1 aigi =
α. It follows that R ∗ M is left APP. �

COROLLARY 2.22. Let M be a u.p.-monoid with ω : M → Aut(R) satisfying condition
(∗). If R is left APP, then the skew monoid ring R�M (i.e., the crossed product R ∗ M
with the trivial twisted function) is left APP.

3. CM-quasi-Armendariz rings. Given a ring R and a monoid M with twisting
f : M × M → U(R) and action ω : M → Aut(R), we define the notion of a CM-quasi-
Armendariz ring, which unifies several quasi-Armendariz properties of rings.

DEFINITION 3.1. A ring R is called M-quasi-Armendariz of crossed product type
relative to the given twisting f and action ω (or simply, CM-quasi-Armendariz) if
whenever α = a0g0 + a1g1 + · · · + angn, β = b0h0 + b1h1 + · · · + bmhm ∈ R ∗ M with
gi, hj ∈ M satisfy α(R ∗ M)β = 0, we have aiRωgig(bj) = 0 for any i, j and g ∈ M.

REMARK 3.2. If R is CM-quasi-Armendariz with f trivial, then we call M a skew
M-quasi-Armendariz ring. If R is CM-quasi-Armendariz with ω trivial, then we call
R a TM-quasi-Armendariz (i.e., twisted M-quasi-Armendariz) ring. It is easy to see
that if both twisting f and action ω are trivial, then R is M-quasi-Armendariz. In
particular, if both twisting f and action ω are trivial with M = (� ∪ {0},+), then R is
CM-quasi-Armendariz if and only R is quasi-Armendariz.
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PROPOSITION 3.3. If R is a left p.q.-Baer ring and M is a strictly totally ordered
monoid, then R is TM-quasi-Armendariz.

Proof. The proof is a modification of that of [6, Lemma 1]. Let α = a0g0 +
a1g1 + · · · + angn, β = b0h0 + b1h1 + · · · + bmhm ∈ Rτ [M] such that α(Rτ [M])β = 0.
Since M is a strictly totally ordered monoid, we can assume that gi ≺ gj and hi ≺ hj

whenever i < j. Now, we claim aiRbj = 0 for all i, j. Let r be an element of R. Then, we
have α(re)β = 0 since α(Rτ [M])β = 0, and so

0 = α(re)β = a0rf (g0, e)b0f (g0, h0)g0h0 + · · · + {anrf (gn, e)bm−2f (gn, hm−2)gnhm−2

+an−1rf (gn−1, e)bm−1f (gn−1, hm−1)gn−1hm−1 +an−2rf (gn−2, e)bmf (gn−2, hm)gn−2hm}
+{anrf (gn, e)bm−1f (gn, hm−1)gnhm−1 +an−1rf (gn−1, e)bmf (gn−1, hm)gn−1hm}
+anrf (gn, e)bmf (gn, hm)gnhm. (†)

It follows that anrf (gn, e)bmf (gn, hm) = 0 since gnhm is of highest order in the
gih

,
js. Hence anrf (gn, e)bm = 0. This shows that an ∈ lR(Rf (gn, e)bm) = lR(Rbm). Hence,

lR(Rbm) = Rem for some idempotent em by hypothesis. Replacing r by rem in equation
(†), we obtain

0 = a0remf (g0, e)b0f (g0, h0)g0h0 + · · · + {anremf (gn, e)bm−2f (gn, hm−2)gnhm−2

+an−1remf (gn−1, e)bm−1f (gn−1, hm−1)gn−1hm−1}
+anremf (gn, e)bm−1f (gn, hm−1)gnhm−1. (‡)

So anremf (gn, e)bm−1f (gn, hm−1) = 0, because gnhm−1 is of highest order in {gihj|1 �
i � n, 1 � j � m}\{gn−1hm, gnhm}. Hence anremf (gn, e)bm−1 = 0. Since Rem is an ideal
of R and em ∈ Rem, we have emr ∈ Rem and thus emr = emrem for all r ∈ R. On the
other hand, we also have an = anem since an ∈ lR(Rbm) = Rem. Hence anrf (gn, e)bm−1 =
anemrf (gn, e)bm−1 = anemremf (gn, e)bm−1 = anremf (gn, e)bm−1 = 0. This implies that
an ∈ lR(Rbm + Rbm−1), and hence lR(Rbm + Rbm−1) = Rem−1 for some idempotent
em−1 ∈ R since R is a left p.q.-Baer ring.

Replacing r by rem−1 in equation (†), we obtain anrem−1f (gn, e)bm−2f (gn, hm−2) = 0
in the same way as above. This shows that an ∈ lR(Rbm + Rbm−1 + Rbm−2). Continuing
this process we obtain anRbt = 0 for all t = 0, 1, . . . , m. So, we have (a0g0 + a1g1 +
· · · + an−1gn−1)(Rτ [M])(b0h0 + b1h1 + · · · + bmhm) = 0. Using induction on m + n, we
obtain aiRbj = 0 for all i, j. Therefore, R is a TM-quasi-Armendariz ring. �

COROLLARY 3.4. If R is a left p.q.-Baer ring and M is an ordered monoid, then R is
an M-quasi-Armendariz ring.

PROPOSITION 3.5. Let M be a u.p.-monoid with twisting f : M × M → U(R) and
action ω : M → Aut(R). If R is a semiprime ring, then R is CM-quasi-Armendariz.

Proof. The proof is a modification of that of [9, Theorem 1.1]. Let α = a1g1 +
a2g2 + · · · + angn and β = b1h1 + b2h2 + · · · + bmhm be elements in R ∗ M with α(R ∗
M)β = 0. Then for any r ∈ R and g ∈ M, we have

(a1g1 + a2g2 + · · · + angn)gr(b1h1 + b2h2 + · · · + bmhm) = 0. (�)

We shall prove, by induction on n, that aiRωgi (ωg(bj)) = 0 for every g ∈ M and for all
1 ≤ i ≤ n and 1 ≤ j ≤ m.

If n = 1, then (a1g1)gr(b1h1 + b2h2 + · · · + bmhm) = 0. A routine calculation shows
that a1Rωg1 (ωg(bj)) = 0 for each 1 ≤ j ≤ m.

If n ≥ 2, since M is a u.p.-monoid, there exist s, t with 1 ≤ s ≤ n and 1 ≤ t ≤ m
such that gsght is uniquely presented by considering two subsets S = {g1g, . . . , gng} and
T = {h1, . . . , hm} of M. We may assume, without loss of generality, that s = 1, t = 1. It
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follows from (�) that a1ωg1 (ωg(Rb1))f (g1g, h1)g1gh1 = 0, and hence a1ωg1 (ωg(Rb1)) = 0.
Since ωg, ωg1 are automorphisms of R, we get a1Rωg1 (ωg(b1)) = 0. Hence, for every
z ∈ R, a1Rωg1 (ωg(b1zb1)f (g1g, h1) = 0, and so

0 = (a1g1 + a2g2 + · · · + angn)grb1z(b1h1 + b2h2 + · · · + bmhm)
= (a2g2 + · · · + angn)gr(b1zb1h1 + b1zb2h2 + · · · + b1zbmhm).

By induction hypothesis, we have aiωgi (ωg(rb1zbj)) = 0 for all 2 ≤ i ≤ n and 1 ≤ j ≤ m,
and so 0 = aiωgi (ωg(rb1zb1)) = aiωgi (ωg(r))ωgi (ωg(b1))ωgi (ωg(z))ωgi (ωg(b1)). Since ωgi

and ωg are automorphisms for every 2 ≤ i ≤ n, we have aiRωgi (ωg(b1))Rωgi (ωg(b1)) =
0. It follows that aiRωgi (ωg(b1)) = 0 for all 2 ≤ i ≤ n since R is a semiprime
ring. Therefore, we have aiRωgi (ωg(b1)) = 0 for all 1 ≤ i ≤ n. Thus, the equation
(�) becomes (a1g1 + a2g2 + · · · + angn)gr(b2h2 + · · · + bmhm) = 0. Continuing this
process, we obtain aiωgi (ωg(rbj)) = 0 for all g ∈ M and all i, j. This shows
that aiRωgi (ωg(bj)) = 0 for all g ∈ M, 1 ≤ i ≤ n and 1 ≤ j ≤ m. The proof is
complete. �

Let α be an endomorphism of a ring R. According to [9], a ring R is
called α-skew quasi-Armendariz if for f (x) = �m

i=0aixi and g(x) = �n
j=0bjxj in R[x; α],

f (x)R[x; α]g(x) = 0 implies aiRαi(bj) = 0 for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. The following
corollary shows that CM-quasi-Armendariz rings generalise both α-skew quasi-
Armendariz rings and semiprime rings with α an epimorphism.

COROLLARY 3.6. Let R be a semiprime ring with an epimorphism α. If f (x) = �m
i=0aixi

and g(x) = �n
j=0bjxj ∈ R[x; α] such that f (x)R[x; α]g(x) = 0, then aiRαi+k(bj) = 0 for all

k ≥ 0, 0 ≤ i ≤ m and 0 ≤ j ≤ n.
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