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Abstract. The study of gravitating systems of colliding particles has many potential astrophysical 
applications, for instance the dynamics of Saturn's ring, the formation of the solar system, the flattening of 
protogalaxies and the evolution of galactic nuclei. We consider numerically a three-dimensional system of 
particles moving in the gravitational field of a central mass point and interacting through inelastic collisions. 
After a very fast flattening, the system forms a disc of finite thickness: this disc spreads slowly, and 
collisions still occur. A central condensation is formed and there is an outward flux of angular momentum. 
The energy which is continually lost in the inelastic collisions is obtained at the expense of the bodies 
which fall inwards. 

There can be little doubt that collisions between 'macroscopic bodies' are of frequent 
occurrence in the Universe. All kinds of quite different objects undergo such collisions 
- these may range from interstellar clouds to small solid bodies in the solar system; 
it is therefore important to understand the past and present contribution of collisions 
to the overall evolution of the system in which they take place. 

It has been known for a long time that inelastic collisions tend to flatten any system 
(Poincare, 1911). 

The configuration of a flat disc around a central body or bulge is found in many 
different contexts, for example spiral galaxies, the solar system, Saturn's ring, plan­
etary satellites, etc. It may well be that the disc is often produced by the effect of 
contraction on a rotating mass of gas: nevertheless, it is interesting to see just what 
could be the effect of other mechanisms - in particular of inelastic collisions. 

Therefore, in view of the many possible astrophysical applications, it would seem 
important to investigate gravitating systems of colliding particles. A full dynamical 
study has never been completed. A numerical study seems more suitable for this than 
an analytical formulation based on the Boltzmann equation, because such a formu­
lation involves too many approximations of uncertain effect, even though a number 
of interesting conclusions can be derived from it for some specific cases. 

Calculations of this sort have so far only been carried out by Ulam (1968), who 
was interested in the nuclei of galaxies, and by Trulsen (1972a, b) who studied the 
dynamics of 'jet streams'. Corresponding numerical experiments have stimulated 
significant progress in molecular dynamics (Alder and Wainwright, 1959, 1960; 
Rahman, 1964; Verlet, 1967, 1968). 

We hope thereby to throw some light on a number of still unanswered questions: 
What is the evolution of such a system in the limit of very large times? 
What is the time scale of evolution under the effect of collisions? 
Does the system reach an equilibrium state? or not? 
What is the energy balance? 
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Are inelastic collisions sufficient to explain the formation and dynamics of some 
discs in the Universe? or do they constitute merely a secondary process? 

With the help of Michel Henon, I am studying systematically these kinds of sys­
tems by numerical simulation. This work is not only a way of finding the winning 
strategy in a game of three-dimensional billiards, but finds an immediate application 
to the as yet poorly understood dynamics of Saturn's ring (Jeffreys, 1947; Cook et 
a/., 1972; Brahic, 1974b, 1975). Note that this is a case where on the one hand, the 
input of the theory is relatively free of uncertainties, and on the other hand, detailed 
observations will be soon available, so that observation and theory can be compared 
fruitfully. Of course, many other astrophysical potential applications suggest them­
selves, for example: 

The dynamics of colliding cloudlets, such as have been invoked to explain the for­
mation of the solar system disc, and the disc of planetary satellites (McCrea, 1960; 
Woolfson, 1964; Urey, 1966). 

Another example could be the dynamics of protostars in a cluster: it has been sug­
gested that collisions of protostars in a gas cloud which has just fragmented could 
affect their subsequent evolution (Arny and Weissman, 1973). 

One might also study collisions in galactic nuclei (Spitzer and Saslaw, 1966; Spitzer 
and Stone, 1967; Sanders, 1970). 

To explain the generation of X-ray sources in close binary systems, Prendergast 
and Burbidge (1968), Schwartzman (1971), Pringle and Rees (1972), and others intro­
duce a model in which matter form a differentially rotating disc around a compact 
object - either a neutron star or a black hole. A somewhat similar situation, but on 
a much larger scale, is discussed by Lynden-Bell (1969) and by Lynden-Bell and Rees 
(1971), with application to quasars and active galactic nuclei in which gas clouds 
collide to form a nuclear disc. 

Finally, we note also that Brosche (1970) assumed that a protogalaxy consists of 
several randomly moving clouds. The galaxy loses energy through collisions and 
therefore shrinks. Brosche made an approximate qualitative and analytical model of 
this process and found that the Hubble sequence could be interpreted as an angular 
momentum sequence at constant mass. He also noted that this kind of model could 
be refined by an Af-body calculation. 

I am currently studying a sequence of numerical models. The system under study 
is evidently an AT-body system, but, for the time being, my first models in no way 
utilise Af-body techniques. I intend to include some kind of AT-body integration -
using Aarseth's method (1973), for example - at a future date. 

The pure dynamics of a gravitating system of colliding particles is by no means 
obvious. In order to understand first the basic mechanics of the process, I consider 
the simplest model. Attraction between particles has been neglected; and so particles 
orbits are keplerian around a central mass point. Positions and velocities at any 
given time are obtained from Kepler's equation. In a collision, the grazing component 
of velocity is conserved and the perpendicular component is multiplied by a coeffi­
cient k which lies between 0 and — 1; — 1 corresponding to the elastic case. The 
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3000 
fig. 1. Variations as a function of time of the mean inclination. The number of particles is equal to N= 100 
and thejr radius to r = 0.07. Initial trajectories are all ellipses, which lie. between two spheres of radius 
/?! = 1 and R2 = 3 respectively and centered on the central mass point, and with inclinations lying between 
0 and 0.5 rad (for the upper curve) and between 0 and 10~3 rad. (for the lower curve). In the case of the 
upper curve, after 5257 collisions (f = 3000), 1 body out of 100 has escaped and 23 out of 100 have fallen 

on the central body. 
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Fig. 2. Variations as a function of time of the mean inclination for different values of the rebound 
coefficient k. The initial inclinations of the orbits are all distributed between 0 and 0.5 rad. 
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Fig. 3. Variations as a function of time of the mean inclination for different values of the rebound 
coefficient k. The initial inclinations of the orbits are all distributed between 0 and 10~3 rad. 
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Fig. 4. Variations as a function of time of the mean inclination for different values of the size r of the par­
ticles. The initial inclinations of the orbits are all distributed between 0 and 10~3 rad. 
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initial conditions were set up by selecting at random the six elements of the keplerian 
orbit in such a way that trajectories were all ellipses lying between two spheres cen­
tered on the central mass point and with inclinations lying between 0 and some 
maximal value. We have assumed that particles on hyperbolic trajectories escape at 
once and, for technical reasons, that particles near to the centre are captured by the 
centre of mass. The kinetic rotational energy of the bodies has been neglected. The 
principal difficulty of the rather intricate calculations is to know whether two par­
ticles will in fact collide or not. By appropriate scaling, a few hundred particles suffice 
to simulate more realistic systems. Indeed, the time scale of evolution is inversely 
proportional to the number of particles and to their geometrical cross-section. 
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Fig. 5. Variations as a function of time of the mean inclination for different values of the scale size of 
the disc. The initial inclinations of the orbits are all distributed between 0 and 10~3 rad and initial 
trajectories are all ellipses, which lie between two spheres of radius /?j and R2 respectively and centered on 

the central mass point. 

The preliminary results were presented at the IAU symposia last year (Brahic, 
1974a, b) and a number of more up to date results were presented this year (Brahic, 
1975) within the context of the dynamics of Saturn's ring. I shall give only some 
examples of the results, repeating a few already presented, and summarise the most 
important points. 

Figure 1 shows the mean inclination as a function of time in a typical case. As one 
would expect, the system is considerably flattened quickly - in less than about ten 
collisions per particle - but, contrary to what is often stated, collisions do not reduce 
the thickness of the disc to one layer of particles; after a fast flattening, the system 
reaches a quasi-equilibrium state (see the upper curve of Figure 1) in which the thick-
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ness is finite. This is presumably a consequence of the keplerian motion, which in­
troduces differential rotation. Even if particles are in circular orbits, there are still 
collisions. Part of this residual velocity is transferred in vertical motion. It is exactly 
like viscosity which produces heat. 
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Fig. 6. Variations as a function of time of the mean eccentricity. The initial values of N, r, Rl, R2, etc. 

are the same as for the upper curve of Figure 1. 

If we start with a system almost completely flat (see the lower curve of Figure 1), 
the system is growing and reaches quickly the same limit; indeed, in a system where 
particles have finite collision cross-section, collisions necessarily introduce move­
ments out of any plane as well as radial ones. We can start with a very small value 
of the mean inclination i and study the limit as a function of the parameters of the 
problem. 

The results are very sensitive to the rebound coefficient k (see Figures 2 and 3). If 
k lies between -0 .5 and - 1 , there is no important flattening of the system. 

Figures 4 and 5 show how the ratio r/R - where r is the particle size, and R is a 
scale size of the disc - affects the results. 
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Figure 6 shows the mean eccentricity as a function of time for a typical case. The 
initial rise is due to the fact that thermal equilibrium is established between radial 
and vertical velocities. After this the orbits tends to become increasingly circular but 
the mean eccentricity does not reach 0. This behaviour is similar to that of the mean 
inclination. 
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Fig. 7. Variations as a function of time of the mean eccentricity for different values of the rebound 
coefficient k. 

Figures 7 and 8 show the role of the rebound coefficient k and of the mean size 
of the particles respectively. 

We have also started a study of other models; in particular if we consider particles 
of different masses and dimensions, the first results indicate that the very massive 
bodies were confined to a thinner disc than the light ones. Subsequent models will 
explore different kinds of collision regimes, fragmentation and coalescence and also 
the use of different potential field. 

For the time being, the most interesting result is that an initial phase during which 
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different values of the size r of the particles. 
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the system flattens rapidly is followed by a phase in which collisions still occur: the 
thickness of the disc thus formed is finite and the disc spreads very slowly: many 
particles move inwards forming a central condensation while some particles move 
outwards. There is an outward flux of angular momentum and the energy which is 
continually lost in the inelastic collisions is obtained at the expense of the bodies 
which fall inwards. 
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DISCUSSION 

Lecar: In the asteroid belt, there has been collisions and both the eccentricities and inclinations are large 
and approximately equal. In your model, are the final Z-dispersion velocities equal to the final r-dis-
persion velocities? 

Brahic: Yes, the final / and e dispersions are of the same order of magnitude. 
Lynden-Bell: What is the final value of the e-dispersion as a function of the parameters of the problem? 
Brahic: It depends on the rebound coefficient k and on r/R where r is the particle size and R is a scale 

size of the disc. For k = — 0.3, r = 0.07 and R = 2, e ̂  0.1 which is the same order of magnitude as /. There is 
some kind of equipartition between the mean inclinations and the mean eccentricities. 

Contopoulos: In some of your slides (e.g. when k ^ — 0.7) there was a slow increase of inclination and ec­
centricity. How long does this increase continue? 

Brahic: For — \<k<— 0.5, I cannot really distinguish flattening from a quasi-equilibrium state: 
instead, what I see are rather large non-periodic fluctuations. I observe no important flattening for almost 
elastic collisions. 

https://doi.org/10.1017/S0074180900015618 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015618



