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Dispersion of small particles emitted from an area source at the surface into a fully
developed high-Reynolds-number boundary layer flow is studied as a theoretical model
for pollen dispersion in the neutral atmospheric boundary layer. The particle plume above
the area source is assumed to behave as a particle concentration boundary layer. Boundary
layer scaling and the assumption of self-preservation lead to an analytical solution in the
form of a similarity function that has an additional dependence on the ratio of gravitational
settling and turbulent diffusion velocities. Similar arguments are used to predict patterns
of deposition onto the surface downstream of the source. Theoretical predictions are tested
using a suite of large-eddy-simulation numerical experiments, with good agreement. The
combined analysis of theoretical and numerical results reveals interesting features in the
patterns of downstream deposition, such as non-monotonic trends in isolation distance
with particle settling velocity and surprisingly large isolation distances for practically
relevant parameter ranges. Possible effects of turbulence on effective settling velocity are
highlighted.
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1. Introduction
The problem of dispersion of small particles emitted from an area source into a

turbulent boundary layer flow is of considerable relevance in a number of settings.
For example, the determination of patterns of wind dispersal and ground deposition
of pollen grains is a key step in the quantification of gene flow for wind-pollinated
species. Predicting pollen dispersion plays an important role in studies of genetic
diversity in natural populations (Honnay et al. 2005; Sork & Smouse 2006; O’Connell,
Mosseler & Rajora 2007) and ecological risks associated with the commercial release
of genetically modified crops (Messeguer 2003). As a specific example, it is important
to predict accurately at what distance to place fields with unmodified crops downwind
of fields with modified crops, in order to prevent cross-fertilization. Patterns of
pollen dispersion have been studied using field experiments (Raynor, Ogden & Hayes
1970; Raynor, Hayes & Ogden 1972a; Raynor, Ogden & Hayes 1972b; McCartney &
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2 M. Chamecki and C. Meneveau

Lacey 1991; Jarosz et al. 2003; Klein et al. 2003; van Hout et al. 2008) and numerical
simulations (Jarosz, Loubet & Huber 2004; Dupont, Brunet & Jarosz 2006; Arritt
et al. 2007; Chamecki, Meneveau & Parlange 2009). However, the lack of a sound
theoretical framework to interpret different data sets has prevented generalizations
about pollen dispersion.

In this paper we study dispersion of small particles emitted from an area source
of finite size at the bottom of a fully developed turbulent boundary layer as a
model for the dispersion of pollen grains in the neutrally stratified atmosphere.
Most of the theoretical work on particle dispersion in boundary layers and channel
flows has been based on experiments (Snyder & Lumley 1971; Rashidi, Hetsroni
& Banerjee 1990; Kaftori, Hetsroni & Banerjee 1995) and detailed direct numerical
simulations (McLaughlin 1989; Pedinotti, Mariotti & Banerjee 1992; Rouson &
Eaton 2001; Marchioli & Soldati 2002) and aimed at fundamental mechanisms of
particle–turbulence interactions. In particular, significant progress has been made in
understanding preferential concentration (Squires & Eaton 1991; Rouson & Eaton
2001; Coleman & Vassilicos 2009), turbophoresis (Reeks 1983; Brooke et al. 1992),
the role of turbulence coherent structures on particle transport and deposition (Brooke
et al. 1992; Pedinotti et al. 1992; Marchioli & Soldati 2002), and the modification of
turbulence by particles (Kiger & Lasheras 1997; Ahmed & Elghobashi 2000; Hartel,
Meiburg & Necker 2000; Necker et al. 2005).

On the other hand, theoretical work on dispersion of particles in the atmospheric
boundary layer follows the pioneering work of Prandtl (1952) and is restricted to
predicting equilibrium profiles over horizontally homogeneous sources (Chamberlain
1967; Kind 1992; Chamecki et al. 2007) or dispersion from point and line sources
(Rounds 1955; Godson 1957; Bouvet & Wilson 2006). Less is known about the
problem of a finite-size area source in which horizontal heterogeneity and local
advection play a critical role.

Turbulent transport from area sources in the atmospheric boundary layer has its roots
in the study of water vapour transport and associated evaporation rates from lakes
and other wet surfaces (Brutsaert 1982). The problem was first formulated by Sutton
(1934), whose motivation was the prediction of evaporation rates from large reservoirs
based on measurements made with evaporimeters (i.e. very small area sources). This
problem is usually referred to as ‘Sutton’s problem’ in the literature (Brutsaert 1982).
Sutton obtained analytical solutions for vertical water mixing ratio profiles taking into
account vertical turbulent transport and mean horizontal advection. The approach was
later refined by Frost (1946) and others (Calder 1949; Philip 1959; Yeh & Brutsaert
1970). The theory was later extended to the study of momentum and scalar transport
induced by step changes in the boundary conditions (such as changes in roughness,
temperature, etc.), where the concept of internal boundary layers (IBL) originated (for
a detailed discussion see Garratt 1994).

In this work, we extend the ideas of local advection and internal boundary layers
to dispersion of heavy particles emitted from a finite-size area source. We consider
a two-dimensional steady-state problem and seek boundary layer solutions for the
mean particle concentration field incorporating the effects of gravitational settling.
In addition, an equation for the growth of the particle concentration boundary layer
is obtained. Similar assumptions lead to a prediction of the functional form of the
surface deposition downstream of the source. Working assumptions and theoretical
results are presented in § 2. Numerical experiments using a large-eddy-simulation
model (Chamecki et al. 2009) are presented in support of the theoretical results in
§ 3. The theoretical framework developed is applied to a problem of practical interest
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Particle boundary layer: scaling, simulations, and pollen transport 3

Parameter Symbol Range Unit Reference

Density ρp 500<ρp < 1500 kg m−3 Gregory (1973, table II)
Diameter dp 10< dp < 100 µm Gregory (1973, figure 3)
Relaxation time τp 0.15<τp < 46 m s−1 From (2.2)
Stokes number St 0.002 6 St 6 0.65 — See text

TABLE 1. Typical characteristic scales for pollen grains.

(the effects of the size of the area source on particle deposition downwind) in § 4.
Results are further discussed in § 5.

2. Particle concentration boundary layer: analytical solution
2.1. Eulerian description of particle concentration field

In this section an Eulerian approach is used to describe transport of a plume of
monodisperse particles in a turbulent boundary layer. In order to obtain analytical
solutions for the mean particle concentration field, a simplified approach is required.
For monodisperse particles mass density and number density are proportional and can
be represented by a concentration field C(x,t). Particles are assumed to occupy a very
small volume fraction, having a negligible effect on the flow field (Elghobashi 1994).
In this work, it is further assumed that the particle phase moves with the turbulent
velocity u(x,t) except for a ‘mean drift’ velocity −wse3, due to gravitational settling in
the vertical direction (unit vector e3). Under these assumptions, the governing equation
for the concentration field is given by

∂C

∂ t
+ (u−wse3) ·∇C = 0, (2.1)

where diffusion due to Brownian motion has been neglected. The one-way coupling
assumption is justified since while pollen concentrations close to the source field may
be very high (as high as several thousand grains per cubic metre Martin, Chamecki &
Brush 2010), the small volume of pollen particles leads to very small volume fractions
(typically <10−9). The mass loading is also very small, typically <10−6. Hence the
effects of particles on the flow are clearly negligible. Density and size of pollen grains
(represented by ρp and dp, respectively) vary from species to species and a typical
range of values is presented in table 1. Assuming a typical value of the Kolmogorov
length scale in the atmospheric boundary layer to be η ≈ 1 mm (Kaimal & Finnigan
1994), both ρp/ρair� 1 and dp/η� 1 hold for the entire range of pollen grains. The
range of values of the particle relaxation time scale, τp, defined as

τp =
ρpd2

p

18µ
, (2.2)

is also shown in table 1. Considering a typical value of the Kolmogorov time scale
τη ≈ 0.07 s in the atmospheric surface layer leads to a range 0.002 6 St 6 0.65.
Therefore, except for the (few) largest pollen grains, the particle inertia is negligible
(an important exception being corn pollen with dp ≈ 100 µm and ρp ≈ 1230 kg m−3

(Aylor 2002) yielding St ≈ 0.54).
The Eulerian transport equation with a drift velocity term has often been used before

in a wide range of problems including sediment transport (Zedler & Street 2001;
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4 M. Chamecki and C. Meneveau

Chou & Fringer 2008), gravity currents (Necker et al. 2002), pollen dispersion (Dupont
et al. 2006; Chamecki et al. 2009), and snow drift (Lehning et al. 2008). The use of
a drift velocity can be justified based on typical scales of the problem. Assuming the
ratio between particle and fluid densities to be large (ρp/ρf � 1) and the particles to
be much smaller than the Kolmogorov scale, the velocity of the particle phase vp can
be approximated by (Maxey & Riley 1983; Shotorban & Balachandar 2007)

dvp

dt
= g+ u−vp

τp
, (2.3)

where g is the gravitational acceleration. Assuming the particle Stokes number St =
τp/τη to be small, the particle response to surrounding fluid is fast and the particle
velocity can be approximated by its quasi-equilibrium relaxation value (Shotorban &
Balachandar 2007)

vp = u+ τpg− τp
Du
Dt
. (2.4)

The second term is expressed as τpg=−wse3, where ws is the particle settling velocity
and represents the ‘mean drift’ due to gravitational settling. As shown in Shotorban
& Balachandar (2007), the third term on the right-hand side of (2.4) can be used
to model realistic trends such as preferential concentrations and possible effects of
turbulence–particle interactions in modifying the mean settling velocity of particles.
In this work, the emphasis will be on ensemble-averaged concentration fields in the
context of analytically tractable solutions. To treat flows in which the settling velocity
is enhanced by turbulence (Maxey 1987; Wang & Maxey 1993; Aliseda et al. 2002),
we will proceed by assuming that ws is then chosen to be equal to such an effective
settling velocity, instead of including the third term proportional to fluid acceleration.
Such an approach will enable us to obtain analytical solutions (see below). Some
numerical simulations including the acceleration term are presented in § 3.3 in order
to quantify possible effects of this term on mean concentrations and deposition
rates.

2.2. Mean field and problem description

In this section we consider a fully developed turbulent boundary layer over a rough
surface characterized by a roughness length z0. Hereafter x, y and z are streamwise,
spanwise and vertical directions respectively. We study a simplified problem in which
the source emitting particles is the semi-infinite plane (x > 0,−∞ < y<∞ ,z= z0,c).
The distance, z0,c, between the source plane and the ground can be interpreted as
a particle concentration roughness length. The source is characterized by a constant
concentration C0 and a plume of particles starts developing from x= 0. The turbulent
boundary layer height is assumed to be much larger than the height of the particle
plume δc(x). We further assume the turbulent fluxes in the streamwise direction to
be negligible in comparison to the mean advective fluxes (i.e. the boundary layer
approximation). Figure 1 shows a sketch of the geometry considered.

Under these conditions, the mean particle concentration is a steady two-dimensional
field C(x,z) and (2.1) yields

u(z)
∂C

∂x
−ws

∂C

∂ z
= ∂

∂ z

(
Kc(z)

∂C

∂ z

)
, (2.5)
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Particle boundary layer: scaling, simulations, and pollen transport 5

Particle plume

c(x)

x

z

C0

Mean flow

z0,c

FIGURE 1. Sketch of the problem showing the coordinate system and pollen boundary layer
height δc(x) and particle roughness height z0,c.

where Kc(z) is an eddy diffusivity used to model the vertical turbulent particle flux.
The set of boundary conditions for the proposed problem is given by

C(x= 0,z) = 0, (2.6)
C(x,z→∞) = 0, (2.7)
C(x,z= z0,c) = C0, (2.8)

and the solution is limited to the half-space x> 0. Except for the settling velocity
of the particles (i.e. the second term on the left-hand side of (2.5)), this problem is
the same as the one first studied by Sutton (1934) in the context of evaporation. The
analysis and assumption of a constant C0 should be understood as a ‘quasi-steady’
approach: over any given time interval over which the wind is reasonably constant
(e.g. 10 min time intervals), the fraction of pollen being released is assumed to be
much smaller than the reservoir content.

In order to close the set of equations, the mean wind and eddy-diffusivity profiles
must be specified. As is often done in analytical solutions for problems including local
advection, we adopt power-law profiles to simplify the mathematical formulation (see
Brutsaert 1982, p. 160)

u(z) = u∗Cp

(
z

zo

)m

, Kc(z) = κu∗z
Sc

, (2.9)

where u∗ is the friction velocity, κ is the von Kármán constant, and Sc is the turbulent
Schmidt number for particle concentration. For neutral temperature stratification
typical values adopted for the constants specifying the mean wind profile are Cp ≈ 6
and m= 1/7 (Brutsaert 1982).

Using the power-law profiles, the governing equation (2.5) can be written as

z
∂ 2C

∂ z2
+ (1+ γ ) ∂C

∂ z
− ScCp

κ

(
z

zo

)m
∂C

∂x
= 0, (2.10)

where

γ = Sc

κ

ws

u∗
(2.11)

is a dimensionless parameter usually referred to as the ‘Rouse number’ in studies
of sediment transport in rivers (Rouse 1937), representing the relative importance of
turbulent dispersion and gravitational settling (e.g. see Chamecki et al. 2007).

2.3. Similarity solution
Following the standard approach in boundary layer problems, local scales are defined
and self-preservation of the dimensionless concentration profile is assumed. If the
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6 M. Chamecki and C. Meneveau

correct scales are chosen for the similarity variables, the approach allows one to
transform the partial differential equation (2.10) to an ordinary differential equation.
The validity of the assumptions made will be tested through comparison with
numerical simulation data presented in § 3.

The concentration profile at any streamwise location is scaled by its maximum
value Cmax (x). In addition, a particle concentration boundary layer height δc(x) can
be defined as the height where the concentration has dropped to a fixed fraction of its
maximum value. Therefore, the assumption of self-preservation yields

C(x,z)

Cmax (x)
= g(η), (2.12)

where η = z/δc(x) is the similarity variable and g(η) is a similarity function, which
depends, in addition to η, on the parameter γ . For the specific problem described
above, where the concentration is imposed and maximum at the surface z= z0,c, we
have Cmax (x) = C0, which is constant.

Expressing the independent variables x and z in terms of the similarity variable η,
the resulting equation is given by

d2g

dη2
+ (1+ γ ) 1

η

dg

dη
+ ScCp

κ zm
0

(
δm

c

dδc

dx

)
ηm dg

dη
= 0. (2.13)

For a self-similarity solution to exist, no x-dependence can remain in the equation
above. This is only possible if the product δm

c (dδc/dx) is a constant. Note that this
constant may depend on the parameter γ . For convenience, we define the constant as

C1(γ ) = ScCp

κ zm
0

(
δm

c

dδc

dx

)
, (2.14)

and the final form of the ordinary differential equation (ODE) becomes

g′ ′ +
[
(1+ γ )
η

+C1(γ )η
m

]
g′ = 0, (2.15)

where primes indicate derivatives with respect to η.
When expressing the boundary conditions using the similarity variable, notice that

the first two conditions (2.6) and (2.7) collapse into

g(η→∞) = 0, (2.16)

and the third boundary condition (2.8) becomes

g(η = η0) = 1 (2.17)

where η0 = z0,c/δc(x). If z0,c is fixed independent of x, then η0 will depend on x and
no similarity solution exists. We assume η0 to be a constant in order to proceed (but
since δc(x) depends on γ , we allow η0 to depend on γ as well). The consequences
of allowing z0,c to grow in the same manner as δc(x) are not expected to be highly
significant and the appropriateness of this simplification will be evaluated later by
comparisons with numerical simulations where this assumption is not needed.

Integrating twice (first an indefinite and then a definite integral between η and ∞),
the solution to the ODE given by (2.15) is

g(∞)− g(η) = CI

∫ ∞
η

ζ −(γ +1) exp
[
−C1(γ )ζ

m+1

m+ 1

]
dζ , (2.18)
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Particle boundary layer: scaling, simulations, and pollen transport 7

where CI is a constant from the first integration and ζ is an integration variable. Using
the boundary condition (2.16) and the change of variables

t = C1(γ )

m+ 1
ζ m+1, (2.19)

the solution can be written as

g(η) = −CI
1

m+ 1

(
C1(γ )

m+ 1

)γ /(m+1)

×
∫ ∞
(C1 (γ )/(m+1))ηm+1

t−[1+γ /(m+1) ] exp[−t] dt, (2.20)

or in terms of the upper incomplete gamma function 0(a,x)

g(η) = −CI
1

m+ 1

(
C1(γ )

m+ 1

)γ /(m+1)

0

(
− γ

m+ 1
,

C1(γ )

m+ 1
ηm+1

)
, (2.21)

where the upper incomplete gamma function is defined as 0(a,x) = ∫ ∞x ta−1e−t dt.
Finally, imposing the boundary condition (2.17) yields

g(η) =
0

(
− γ

m+ 1
,

C1(γ )

m+ 1
ηm+1

)
0

(
− γ

m+ 1
,

C1(γ )

m+ 1
ηm+1

0

) , (2.22)

which completely specifies the particle concentration profiles if the function C1(γ )

is known. Because γ > 0 and m> 0, the first argument in the incomplete gamma
function above (i.e. parameter a) is always negative and most approximations based
on convergent or asymptotic series fail. For numerical evaluation of the incomplete
Gamma function, we use instead the algorithm implemented in the Fortran library
FMLIB (Smith 2001) which works remarkably well when compared to direct
numerical integration according to the fundamental definition of the function.

2.4. Growth of the particle concentration boundary layer
The condition for the existence of a similarity solution (2.14) can be used to derive
an expression for the growth of the particle concentration boundary layer δc. The
condition can be written as

δm
c

dδc

dx
= C1(γ )

κ zm
0

ScCp
. (2.23)

Assuming δc (x= 0) = 0, the expression above can be integrated to yield

δc(x) =
[

C1(γ )
κ zm

0

ScCp
(m+ 1)x

]1/(m+1)

, (2.24)

where the function C1(γ ) is the only unknown. Strictly speaking, the initial condition
for the integration above should be δc (x= 0) = z0,c, but the expressions become a bit
more complicated and it makes no appreciable difference in practice.

One more constraint is needed to determine C1(γ ). An independent approximate
expression for δc(x) can be obtained by analogy with the ideas used to predict the
growth of internal boundary layers for momentum and passive scalars due to changes
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8 M. Chamecki and C. Meneveau

in surface conditions (e.g. see Brutsaert 1982; Garratt 1994). The usual assumption is
that the rate of growth of the internal boundary layer (dδ/dt) is proportional to the
root-mean-square of vertical velocity fluctuations σw:

dδ
dt
= Cwσw, (2.25)

where Cw=O(1) is a constant of proportionality. In addition, invoking Taylor’s frozen
turbulence hypothesis and assuming σw= 1.25u∗ for neutral conditions (e.g. Kaimal &
Finnigan 1994) one can write

dδ
dx
= Cwσw

u
= 1.25Cwu∗

u
. (2.26)

In the context of internal boundary layers, expression (2.26) is then integrated using
u(z= δ ) in the denominator of the right-hand side. Using results from large-eddy
simulation (LES), 1.25Cw ≈ 0.85 was found to be a good approximation to describe
the growth of internal momentum boundary layers over an abrupt change in surface
roughness (Bou-Zeid, Meneveau & Parlange 2004).

In the present case, a similar approach can be used to predict δc(x). However, the
growth rate of the particle plume is now reduced by the gravitational settling, and if
we assume a linear combination of both rates, one may write

dδc

dt
= Cwσw−ws . (2.27)

Such a linear combination of growth rates is used here as the simplest possible
modelling choice. Deviations from linear superposition could be expected especially
when the growth processes are both fast.

Using Taylor’s hypothesis and the power-law (2.9) to specify u(z= δc), (2.27) can
be written as

δm
c

dδc

dx
=
[

1.25CwSc

κ
− γ

]
κ zm

0

ScCp
. (2.28)

Comparison between (2.23) and (2.28) yields

C1(γ ) =
(

1.25CwSc

κ
− γ

)
. (2.29)

Therefore, the final similarity solution is given by equations (2.22), (2.24), and (2.29).
Figure 2(a) shows a series of predicted concentration profiles for various γ values,
while figure 2(b) shows the corresponding growth of the concentration boundary layer
height. The following parameters have been used in these visualizations: 1.25Cw =
0.85, Sc= 0.5, κ = 0.4, m= 1/7, Cp= 6, z0= 0.01 m, z0,c= 0.01 m, L= 1000 m (η0

was calculated using η0 = z0,c/δc(x= L/2), as discussed in § 3.2).
The thin solid lines in figure 2(a) show the solution with γ = 0.25 but using an

increase/decrease of z0,c by 25 % (this translates into an increase/decrease of 25 % in
η0). There is a shift of the inner part of the profile depending on the value of η0.
As can be expected, in the near-surface region close to the emission height, the
concentration will depend significantly on distance to the emission height. Therefore,
for applications in which z0,c is a constant physical height (i.e. when η0 varies as a
function of x), the assumption made in the similarity solution that η0 is constant does
not, strictly speaking, hold. Still, the aim is to employ the similarity solution in the
sense of a ‘quasi-steady’ solution, using a representative value of η0. The accuracy
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Particle boundary layer: scaling, simulations, and pollen transport 9

(a)
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FIGURE 2. Theoretical profiles (a) g(η) and (b) δc(x) for various values of γ (other
parameters listed in the text). Thin solid lines in (a) represent a variation of ±25 % in z0,c
for γ = 0.25.

of the consequences of these assumptions will be tested in detail using large-eddy
simulations, in § 3. Among other things, it will be shown that concentration profiles
display excellent collapse when plotted using the proposed similarity variables.

2.5. Scaling deposition downstream from a finite source

In most practical applications, a quantity of significant interest is the surface
deposition downstream of the area source. Let us consider a source field of length L
in the streamwise direction instead of the semi-infinite source (the results presented
above are still valid above the source field). If we define a new coordinate system in
which ξ ≡ x−L (i.e. the origin is now at the trailing edge of the field), the point of
interest is the decay of Cmax (ξ ) or the deposition flux onto the surface Φ(ξ ) with ξ
for different values of γ .

Under the same assumptions made in the previous sections, the problem downstream
of the source is also governed by equation (2.10). Furthermore, due to the parabolic
nature of the boundary layer equation, the concentration field downstream of the
source can be solved as an initial value problem, with initial condition specified by
the concentration profile at the trailing edge C(x= L,z) = C(ξ = 0,z). The same
similarity variables can be introduced, except that now Cmax (ξ ) is not a constant.
Taking the ξ -dependence of the concentration scale into account and using f (η) =
C(ξ ,z)/Cmax (ξ ) to indicate a different similarity solution, the equation becomes

d2f

dη2
+ (1+ γ ) 1

η

df

dη
+ ScCp

κ zm
o

(
δm

c

dδc

dξ

)
ηm df

dη

− ScCp

κ zm
o

(
δm+1

c

Cmax

dCmax

dξ

)
ηm−1f = 0. (2.30)

Since both δc and Cmax depend on ξ , constraint (2.14) still has to be satisfied. There
is one additional requirement for the existence of a similarity solution, namely that

C3(γ ) = − ScCp

κ zm
o

(
δm+1

c

Cmax

dCmax

dξ

)
(2.31)
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10 M. Chamecki and C. Meneveau

is independent of downstream distance. The final ODE contains three terms, two of
which are similar to (2.15), and is given by

f ′ ′ +
[
(1+ γ )
η

+C2(γ )η
m

]
f ′ +C3(γ )η

m−1f = 0, (2.32)

where C2(γ ) is used instead of C1(γ ) to indicate that the function may actually be
different from the one obtained in the previous section.

Equation (2.24) should still be valid if a non-zero initial boundary layer height
δc(ξ = 0) = δL is imposed:

δc(ξ ) =
[
δm+1

L +C2(γ )
κ zm

o

ScCp
(m+ 1)ξ

]1/(m+1)

. (2.33)

Replacing this expression for δc(ξ ) into (2.31) and solving for Cmax (ξ ) yields

Cmax (ξ ) = Cini(γ )

[
1+C2(γ )

κ (m+ 1)
ScCp

(
zo

δL

)m
ξ

δL

]−C3 (γ )/(m+1)C2 (γ )

, (2.34)

where the initial condition Cmax (ξ = 0) = Cini(γ ) was used. Equation (2.34) can be
written as

Cmax (ξ ) = Cini(γ )

[
1+ 1

b(γ )

ξ

δL

]−β (γ )
, (2.35)

where the following definitions were used:

b(γ ) =
[

C2(γ )
κ (m+ 1)
ScCp

(
zo

δL

)m]−1

, (2.36)

β (γ ) = C3(γ )

(m+ 1)C2(γ )
. (2.37)

Finally, the deposition on the bottom surface is the total vertical flux at the surface.
From (2.5) we can write the total deposition flux as

Φ(ξ ) =
[

wsC+Kc
∂C

∂ z

]
z=z0,c

, (2.38)

which can be expressed in similarity variables as

Φ(ξ )

Cmax (ξ )u∗
= ws

u∗

[
f + η

γ

df

dη

]
η=η0

. (2.39)

Clearly the right-hand side of (2.39) does not depend on ξ (i.e. it depends only on γ ),
and we can write

Φ(ξ )

Cmax (ξ )
= F(γ ), (2.40)

so that

Φ(ξ ) = a(γ )

[
1+ 1

b(γ )

ξ

δL

]−β (γ )
, (2.41)
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Particle boundary layer: scaling, simulations, and pollen transport 11

where a(γ ) = F(γ )Cini(γ ). Note that according to (2.41), the dependence of the
deposition flux on the field size L is given only through δL.

The expression for the deposition flux given by (2.41) can be further constrained
based on the global particle mass balance. The horizontal particle flux across the
vertical plane at the trailing edge of the source field is given by

FT =
∫ ∞

z0,c

C(x= L,z)u(z) dz, (2.42)

where the turbulent flux in the streamwise direction has been neglected as before. The
expression above can be expressed in similarity variables as follows:

FT = u∗CpC0δL

ηm
0

∫ ∞
η0

g(η)ηm dη . (2.43)

This expression can be integrated to yield

FT

u∗C0
= CpδL

ηm
0

 1
C1(γ )

0

(
1− γ

m+ 1
,

C1(γ )

m+ 1
ηm+1

0

)
0

(
− γ

m+ 1
,

C1(γ )

m+ 1
ηm+1

0

) − ηm+1
0

m+ 1

 . (2.44)

Conservation of the total particle mass requires the total deposition to be equal to FT ,
i.e.

FT =
∫ ∞

0
Φ(ξ ) dξ = a(γ )b(γ )δL

β (γ )− 1
, (2.45)

where the assumption β > 1 was made (if this condition is not satisfied, the integral
above is unbounded and the solution is unphysical). The validity of the scaling (2.41)
and expression (2.44) will be investigated using numerical simulations in § 4.

3. Particle concentration boundary layer: large-eddy simulations
The focus of the numerical experiments is on pollen dispersion from fields of

finite length. In order to provide meaningful comparisons with the theoretical results
developed in the previous section, the source field emitting pollen is a stripe of length
L and infinite width in the lateral direction. The source field is surrounded by an
infinite grass field, as depicted in figure 3. The mean wind speed is assumed to be
steady and perpendicular to the field (so that v = 0). Other than the finite length of
the field and the change in the canopy characteristics (i.e. surface roughness) between
grass and source field, the physical problem is equal to the one studied in the previous
section.

3.1. Code description and numerical setup
A suite of numerical experiments using large-eddy simulation is used to compare
with the results presented in the previous section. The numerical model solves the
three-dimensional filtered momentum equations in rotational form and the filtered
conservation equation for pollen concentration given by

∂ C̃

∂ t
+∇ · (ṽpC̃) = −∇ ·π C , (3.1)
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Wind Pollen plume

d0

L

x

z

C0

L

Leading
edge

Trailing
edge

c(x)

FIGURE 3. Sketch of the problem showing the pollen boundary layer height δc(x). The origin
is shifted vertically to the displacement height d0= 0.75h.

where a tilde indicates a filtered field, ṽp = (ũ−wse3) is the resolved velocity for
the particle phase, and π C is the subgrid scale (SGS) pollen flux. The SGS flux is
parametrized using a flux-gradient model (see Chamecki et al. 2009, for a detailed
description of the model).

The momentum equations are discretized using a pseudo-spectral approach in the
horizontal direction and a second-order centred finite-difference scheme in the vertical.
The conservation equation for pollen concentration is discretized using a finite-volume
approach in which the advective term is calculated using the bounded SMART
algorithm (Gaskell & Lau 1988). The interpolations required to couple the two
distinct discretization approaches are performed using the conservative interpolation
scheme proposed by Chamecki, Meneveau & Parlange (2008). The velocity field is
periodic in the horizontal directions. For the pollen concentration, a zero concentration
inflow condition is imposed, and periodic conditions are imposed in the spanwise
directions. At the outflow, a zero streamwise concentration gradient (outflow boundary
condition) is imposed. Bottom boundary conditions for the momentum and pollen
concentration equations are prescribed using wall layer models following the approach
described in Chamecki et al. (2009) and further discussed below. The subgrid scale
momentum fluxes are modelled using the dynamic Smagorinsky model (Germano et al.
1991), following the Lagrangian scale-dependent implementation (Meneveau, Lund
& Cabot 1996; Bou-Zeid, Meneveau & Parlange 2005). Subgrid scale pollen fluxes
are modelled using a flux-gradient model with the SGS diffusivity obtained from
the Lagrangian dynamics SGS viscosity and a constant SGS Schmidt number. The
numerical model is described in detail in Chamecki et al. (2009), where it is also
validated against experimental data of point source releases and dispersion of pollen
released from a natural ragweed field.

A total of 14 simulations were performed to study the effects of γ = Scws/(κu∗ )
and the size of the source field L on pollen dispersion. The general details of the
simulation setup and numerical grid are presented in table 2. In all simulations the
flow is in equilibrium with a grass surface (characterized by a roughness length
scale z0 = 0.01 m in the lower boundary condition for momentum) when it reaches
a canopy patch with uniform height h= 1 m. Note that the vertical height of the
plants is not resolved on the simulation (dz= 3 m) and is parametrized through the
lower momentum boundary conditions as well (using a displacement height d0 =
0.75h and roughness z0 = h/8 for the canopy). The canopy patch extends infinitely in
the spanwise direction and has a length L varying between L= 60h and L= 480h
in the streamwise direction. The pollen emission is prescribed by imposing C = C0

above the source field (i.e. at z0,c= d0+ z0). The numerical bottom boundary condition
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Particle boundary layer: scaling, simulations, and pollen transport 13

Parameter Symbol Value Unit

Grid points Nx×Ny×Nz 200×100×100 —
Domain size Lx×Ly×H 3000×1500×300 m
Grid spacing dx×dy×dz 15×15×3 m
Total time T 3600 s
Time step dt 0.1 s
Friction velocity u∗ 0.4 m s−1

SGS Schmidt number Scsgs 0.4 —
Pollen concentration at the source C0 500 grains m−3

TABLE 2. Parameters and setup for simulations.

is the specification of the total vertical pollen flux between the bottom surface and
the first vertical grid level z= z1. Therefore, the imposed constant concentration is
not directly used as a boundary condition in the numerical model. Instead, it is used
to obtained the required flux. This is done by substituting the imposed constant
concentration into the wall-function for settling particles proposed by Chamecki et al.
(2007), yielding

Φ src
model(x,y) = −ws

C̃(x,y,z1)−C0

(
z1− d0

z0,c− d0

)−γ
1−

(
z1− d0

z0,c− d0

)−γ , (3.2)

where C̃(x,y,z1) is the resolved concentration at the first vertical grid level. The grass
field (both upwind and downwind from the source field) is assumed to be a fully
absorbent surface, represented by imposing C= 0 at z0,c= z0. Substituting these values
into the wall-function and noting that d0 = 0 above the grass yields

Φ
grass
model(x,y) = −wsC̃(x,y,z1)

(
zγ1

zγ1 − zγ0,c

)
. (3.3)

The boundary condition above the source field given by (3.2) represents the net result
of the pollen release flux and deposition flux onto the source field, while the boundary
condition for the grass field given by (3.3) is the deposition onto the grass. In both
equations, the fluxes represent the combined effects of deposition by gravitational
settling and vertical transport by turbulence (for a detailed description, see Chamecki
et al. 2009).

All simulations were evolved until the velocity field reached a statistically steady
condition and then pollen release was started. Statistics were accumulated after the
pollen plume reached a statistically steady state. The relative importance of turbulent
dispersion and gravitational settling was investigated by varying the parameter γ from
γ = 0 (no settling velocity) to γ = 0.625 (in the calculation of values of γ from the
LES, we use the ensemble average value for the turbulent Schmidt number Sc= 0.5,
which was estimated from a simulation using γ = 0).

Snapshots of the particle concentration field in the x–z plane are shown in figure 4
for γ = 0.125 and (b) γ = 0.625. In the figure, the source field is located in the
range 82.5 m 6 x 6 562.5 m and the mean flow is from left to right. Both plots
correspond to the same time step (and therefore the same resolved velocity field) and
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14 M. Chamecki and C. Meneveau
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FIGURE 4. Snapshots of iso-contours of resolved pollen concentration (x–z plane) for (a)
γ = 0.125 and (b) γ = 0.625. Dashed lines indicate the horizontal extent of the source field.

the differences in the details of the plumes illustrate the effects of increasing the
settling velocity: the pollen concentrations are much lower and the plume height is
reduced.

3.2. Numerical results
In this section the time-averaged particle concentration plume (i.e. hereafter overbars
are interpreted as time-averaging) above the source field is investigated for the
largest field size L= 480h. For comparison with the theoretical results, the origin
is shifted vertically to the displacement height d0 as indicated in figure 3. Nine
mean concentration profiles at different distances from the leading edge of the field
are shown in figure 5(a) for the case γ = 0.125, showing the increase in pollen
load with distance from the edge. Note that since Cmax (x) is constant above the
source field, the normalization on the x-axis has no effect on the relative loads. The
pollen boundary layer height δc(x) is determined from the simulation profiles as the
point where C(η = δc)/Cmax = 0.01 (linear interpolation is used between two vertical
grid points). As shown in figure 5(b), if the height is normalized by the pollen
boundary layer height at each location, all curves collapse, confirming the validity
of the self-preservation assumption. Therefore, we conclude that the results from the
numerical simulation support the existence of a similarity solution and the validity of
the condition (2.14). Figure 5(c, d) shows similar results downstream from the source
field (now taking into account the ξ -dependence of Cmax), confirming the existence of
a similarity solution as well, and supporting the validity of condition (2.31).

Figure 6 compares LES results to the theoretical predictions above the source field
for all eight values of γ used in numerical simulations (self-preservation holds for all
values tested). Concentrations obtained at the first vertical grid level (i.e. the isolated
set of points on the far left of each panel in the figure) do not collapse well, but
this is probably an issue of numerical resolution. The agreement between theoretical
predictions given by (2.22) and (2.29) and the LES results is quite good for all ranges
of γ and small values of η. To evaluate the theoretical predictions, a value of η0

appropriate to the simulations is required. It is obtained according to η0 = z0,c/δc(x=
L/2), i.e. an average value for the field using the pollen concentration boundary layer
height in the middle of the field at x= L/2. Theoretical predictions improve with
increasing γ for large values of η, being good for the entire range of η for γ > 0.438.
This improvement in agreement can be explained as follows: for larger γ , the effect
of gravitational settling becomes more important and the pollen boundary layer height
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FIGURE 5. Average pollen concentration profiles above the source field normalized by local
maximum concentration at different distances from the leading edge x/h (from x/h= 82.5 to
x/h= 442.5 in increments of 50) for γ = 0.125. (a) Plotted against height above the ground
and (b) against dimensionless height η illustrating collapse consistent with self-preservation.
Panels (c) and (d) are similar for concentration profiles downstream from the source at different
distances from the trailing edge ξ/h.

growth is reduced (as suggested by (2.24) and (2.29) and illustrated by numerical
results in the sequence). Therefore, for larger values of γ , the entire particle plume
is within the surface layer, where the eddy-diffusivity scaling of Kc(z) proportional
to wall distance, as well as the power-law profiles for u(z), represent a reasonable
approximation.

Another interesting feature of figure 6 is the behaviour of the theoretical predictions
in the lower portion of the concentration boundary layer, given by η < 0.1. Within
this region, the assumption that the vertical net flux is constant leads to a logarithmic
profile for γ = 0 (e.g. see Kader & Yaglom 1972), which is confirmed by the
approximately straight line in figure 6(a). As the value of γ increases, the profile
not only shifts but also becomes curved, more consistent with the power-law profiles
derived for particle concentration in the constant flux region (e.g. see Chamberlain
1967; Kind 1992; Chamecki et al. 2007).

Next, the growth of the particle concentration boundary layer above the source
field is investigated. As stated before, boundary layer heights are obtained from the
numerical simulations defined as the height where C/Cmax = 0.01, and are shown
in figure 7(a) for a range of values of γ . The plot confirms that the boundary
layer growth depends strongly on the relative importance of turbulent dispersion and
gravitational settling, and that using the value C/Cmax = 0.01 to define δc yields good
agreement with the theory. Notice that the boundary layer height at x= 0 is not zero as
assumed in the derivation of (2.24). This initial non-zero δ0 is probably caused by the
discontinuity in canopy properties. In order to make a comparison with the theoretical
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FIGURE 6. Normalized concentration profiles as a function of height above the surface.
Different panels show the similarity function g(η) for different values of γ , as indicated.
Symbols represent data from the numerical simulations, solid lines are obtained from (2.22)
and (2.29), and the dashed line is the solution for γ =0 (no settling velocity) shown as reference.
Small black symbols indicate simulations discussed in § 3.3.

prediction possible, a virtual origin x0 is fitted to a single value optimizing all curves.
The value obtained here is x0 = −64.25h, but this value is likely to be dependent on
several parameters not investigated here (such as the change in roughness between the
two surfaces, the friction velocity, etc.). This is the only fitted parameter to connect the
theoretical model to the LES, since all other constants are set to the values obtained
from the literature and cited in the text (the roughness of the source field is used).
The comparison between values calculated in the simulation and predictions made
using (2.24) and (2.29) are plotted against each other in figure 7(b) (a one-to-one
line representing a perfect model is shown for reference). The agreement between
the theoretical boundary layer growth and the values obtained from the numerical
experiments is quite good for the entire range of γ .

Next, we verify the validity of the expression (2.44) to predict the total flux of
pollen across the trailing edge of the field. The theoretical result (2.44) is compared to
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FIGURE 7. (a) Growth of the pollen concentration boundary layer with distance from the
leading edge showing the effect of γ . Symbols are results from the numerical experiments
and lines are predictions from (2.24) and (2.29) with x0=−64.25h (as discussed in the text).
(b) Comparison between values obtained from LES and using the analytical solution. Small
black symbols indicate simulations discussed in § 3.3.
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FIGURE 8. Total horizontal flux across trailing edge of the source field: numerical integration
of expression (2.43) (solid line), explicit solution given by (2.44) (dashed grey line), mean
advective flux from LES (circles), and flux obtained from pollen mass balance from LES
(crosses).

the numerical integration of expression (2.44) and to two different estimates obtained
from the LES results in figure 8. Agreement is quite good between all four methods,
confirming that predictions obtained from (2.44) are correct.

3.3. Effects of particle inertia
In order to quantify effects of the neglected fluid acceleration term on mean particle
velocity (i.e. the third term on the right-hand side of (2.4)), two extra simulations
(γ = 0.313 and γ = 0.625) are performed including the resolved part of the fluid
acceleration. This is done by specifying

ṽp = ũ−wse3− τp
Dũ
Dt

(3.4)

in the calculation of the velocity for the particle phase used in (3.1). This is the
approach proposed by Shotorban & Balachandar (2007) for the resolved velocity of the
particle phase. No modifications were made to the boundary conditions given by (3.2)
and (3.3) or the SGS eddy-diffusivity model for particle concentration. The numerical
implementation of (3.4) is done by calculating Dũ/Dt explicitly in the code from the
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FIGURE 9. (a) Vertical profile of the average components of particle vertical velocity: resolved
fluid velocity (triangles), settling velocity (open circles), and resolved fluid acceleration (closed
circles). (b) Probability density function of vertical particle velocity at the first vertical grid
level z=1.5 m: resolved fluid velocity only (dot-dashed line), including settling velocity (solid
line), and including settling velocity and resolved fluid acceleration (dashed line). The vertical
dotted line indicates the prescribed settling velocity.

terms in the right-hand side of the equation (i.e. adding the SGS stress divergence and
the resolved pressure gradient). The result is added together with the imposed settling
velocity to the resolved fluid velocity (linear interpolations are used where needed for
the fluid acceleration). This resulting velocity for the particle phase is then used as the
advective speed in the SMART scheme (i.e. to determine the direction of advection
and select the points for the surface flux estimation). The simulations are performed
in the same fashion as described before.

In order to estimate the net effects of the additional acceleration term, first the
averages of particle velocities are computed during the simulation. The resulting
vertical profile for the averages of the three terms contributing to the particle vertical
velocity are shown in figure 9(a) for the case γ = 0.625 (i.e. the one for which inertial
effects are the largest). In agreement with previous studies (Maxey 1987; Wang &
Maxey 1993; Aliseda et al. 2002), particle inertia increases the vertical settling velocity.
This increase is more pronounced closer to the ground, being as large as about 17 %
at the first vertical grid level and 7 % at the second. As expected, mean particle
velocities in the horizontal directions (not shown) are essentially zero in this flow. To
further study manifestations of this effect, the probability density function (PDF) of the
particle velocity at the first vertical grid level is shown in figure 9(b) with and without
the inclusion of the acceleration term. The inclusion of the settling velocity causes
a shift in the entire PDF (by ws), compared to the resolved fluid velocities. Another,
but smaller, shift occurs when including the resolved acceleration term. The important
point here is that the resolved acceleration term causes mostly a shift of the entire PDF,
without altering its shape much. Therefore, in simplified models it may be possible to
account for these changes by increasing the value for the settling velocity. It is possible
that one may also need to increase the effective diffusion velocity. In order to directly
quantify the effects of the resolved acceleration term in the mean concentration plume,
additional results are presented in figures 6 and 7(a) using small filled symbols for
the two γ values considered. The effects on the scaled vertical concentration profiles
(figure 6) can be seen to be rather small, essentially lowering the values in the first
vertical grid point and being rather negligible above that. As shown in figure 7(a),
some small effects can be observed in the growth of the concentration boundary layer
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height. They are typically about 5 % and less than the differences between the LES
and the theoretical similarity solution.

4. Effect of source field size on downstream deposition
A quantity of significant interest in most applications is the ground deposition

downwind from the source (or related quantities such as the amount of pollen airborne
at a given distance from the source). As summarized in § 1, understanding the effect
of the source field size on the dispersion patterns downwind is critical in studies of
gene flow (e.g. see Timmons et al. 1995; Ramsay 2005). Clear effects of field size on
dispersal patterns have been shown by the simplified empirical models that explicitly
account for the source size (Walklate et al. 2004; Shaw et al. 2006). The assumption
that airborne concentration depends on the distance from the source through an inverse
square power-law leads to the conclusion that dispersal distance scales linearly with
the size of the source (Shaw et al. 2006). However, results from these simplified
models are very sensitive to the shape of the deposition function assumed (in this
case an inverse power-law) and to the fitted parameters (in this case the exponent 2),
which usually contain large margins of errors. In this section we use the numerical
simulations presented above to investigate the validity of the arguments presented in
§ 2.5 and to characterize the effect of the source field size on patterns of pollen
particle deposition downstream of a field.

As mentioned earlier, due to the parabolic nature of the boundary layer equation
(2.5), the concentration field downwind from the source can be solved as an initial
value problem, with initial condition specified by the concentration profile at the
trailing edge C(x= L,z). The working hypothesis is that if the size of the field
emitting pollen changes but everything else remains constant, the changes in deposition
can be fully characterized by the concentration profile at the trailing edge. In
addition, based on the framework presented above, C(x= L,z) can be written in
terms of Cmax (x= L), δc(x= L), and g(η , γ ). Above the source field, the maximum
concentration is the one imposed as boundary condition Cmax (x= L) = C0. Finally,
since all conditions are kept constant except for the size of the source field L, the
similarity function is also expected to be the same and the changes in deposition
produced by a change in field size should be fully characterized by the height of the
pollen concentration boundary layer at the trailing edge δL = δc(x= L) = δc(ξ = 0).
Note that this argument is consistent with (2.41). Next, the validity of these argument
is verified using LES results.

In the numerical simulations, deposition fluxes are modelled through the lower
boundary condition (3.3). Figure 10(a) shows the decay of deposition flux Φ(ξ ) with
distance from the trailing edge of the field ξ for the four field sizes considered.
Deposition fluxes are normalized by C0u∗ , which is held constant and does not
affect the relationship between deposition fluxes for the different field sizes. As first
suggested by the experimental observations of Timmons et al. (1995) in the context of
pollen flow, the decay is slower for larger field sizes, implying an increase in pollen
transport far from the source field. Figure 10(b) presents the same curves if the scaling
proposed by Shaw et al. (2006) is adopted. That is to say, if the dispersion patterns are
linearly proportional to the size of the field L, the deposition fluxes should collapse
when plotted against ξ /L. It is clear that, at least for neutral temperature stratification,
there is no collapse. Instead, figure 10(c) presents the fluxes plotted against ξ /δL as
suggested by our theory. In this plot, the data show good collapse for each value of γ ,
confirming the validity of the arguments presented above.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

24
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.243


20 M. Chamecki and C. Meneveau

(a)

increasing

(b)

(c)

10–4

10–3

10–2

10–1

10–1

10–4

10–3

10–2

101 102 103

ξ (m)
100 104

10–1 100 10110–2 102

10–4

10–3

10–2

10–1

100 101 102

γ = 0.000

γ = 0.313

60
120
240
480

10–1 103

FIGURE 10. Average deposition flux as a function of distance from the trailing edge of the
field for different field sizes for γ = 0 (black symbols) and γ = 0.313 (grey symbols). x-axis
normalized following three assumptions: (a) that the field size has no effect on dispersion, (b)
that scaling is proportional to field size L, and (c) that scaling is proportional to boundary layer
height at trailing edge δL.

Finally, we use the deposition fluxes obtained from the LES to determine the
unknown coefficients in expression (2.41). This is done by using the mass conservation
constraint (2.45) to eliminate the unknown a(γ ) and write (2.41) as

Φ(ξ ) = FT (β − 1)
bδL

[
1+ 1

b

ξ

δL

]−β
. (4.1)

Expression (4.1) provides much information about the patterns of deposition. (i) The
deposition flux is directly proportional to FT /δL, but since FT is proportional to δL

(see (2.44)), the prefactor that determines the magnitude of the deposition fluxes does
not depend on the size of the source field (as shown in figure 10c – except for a weak
dependence via η0 in the calculation of FT). (ii) In the near field, characterized by
ξ /δL� b, the deposition has a very weak dependence on the distance and asymptotes
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FIGURE 11. Average deposition flux as a function of normalized distance from the trailing
edge of the field for different values of γ : LES results (grey symbols) and fitted solution
(solid lines). The inset shows the fitted functions b(γ ) and β(γ ). Small black symbols indicate
simulations discussed in § 3.3.

to a constant value given by the prefactor in (4.1). (iii) In the far field, given by
ξ /δL� b, the deposition flux presents a power-law decay with exponent −β . (iv)
The transition between the two regions is controlled by the value of b, which is a
function of the parameter γ . This behaviour is illustrated in the deposition flux from
LES shown with grey symbols in figure 11 for four values of γ . The simulation
results suggest that the power-law exponent is increasing with γ , so the decay is
faster for heavier particles as expected. However, the prefactor is also larger for
larger γ , indicating stronger deposition at the field’s edge for heavier particles. As
a consequence of these two trends, we observe a ‘crossing’ of the deposition curves
(bear in mind that the total amount of pollen crossing the trailing edge is different for
each value of γ as illustrated in figure 8).

Next we determine the functions b(γ ) and β (γ ) using the LES results. For
each value of γ , the parameters b and β are chosen to minimize the normalized
mean-squared error between (4.1) and the LES results using the simplex search
algorithm of Lagarias et al. (1998) available in MATLAB. The resulting curves are
shown together with the LES results in figure 11. The agreement is very good for low
values of γ . We found that for large γ , expression (4.1) can reproduce well either the
near field or the far field and will deviate from LES results in the other end. In order
to capture the correct power-law decay, we choose to have better agreement in the far
field (better agreement in the near field is obtained by minimizing the non-normalized
mean-squared error).

In order to provide a final expression for the deposition flux, linear polynomials
were fitted to the two parameters b(γ ) and β (γ ). The fits are shown in the inset
in figure 11 and the resulting expressions are given by

b(γ ) = −2.75γ + 8.0, β (γ ) = 1.25γ + 1.1. (4.2)

To illustrate the applicability of the theoretical framework developed here to
practical problems in pollen dispersion, we investigate the effects of γ on the distance
required for the deposition flux to drop below a given threshold value Φt. We call this
the ‘isolation distance’ IDt, which is defined as the value of ξ so that Φ/(u∗C0)=Φt.
Theoretical predictions of deposition flux as a function of ξ /δL are shown for four
values of γ in figure 12(a), together with horizontal lines representing two values of
Φt. In this plot, the normalized isolation distance for each pair (γ ,Φt) is given by
the crossing between the corresponding deposition flux and horizontal line Φt. The
normalized isolation distances corresponding to four threshold values are shown as a
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FIGURE 12. (a) Theoretical deposition flux as a function of normalized distance from the
trailing edge of the field for different values of γ (horizontal lines represent two threshold
values Φt). (b) Normalized isolation distance for the deposition flux to drop below several
threshold values as a function of γ .

function of γ in figure 12(b). The striking feature of figure 12(b) is the fact that the
value of IDt/δL does not decrease monotonically. This feature can be understood in
terms of the crossing of the deposition flux curves discussed above and illustrated in
figure 12(a).

It is interesting to note that for a reasonable threshold (e.g. Φt = Φ/(u∗C0) = 10−3

shown in dashed lines in figure 12b), the isolation distances can be quite large when
large source fields are considered. As an example, for Φt = 10−3 and a moderate value
of γ = 0.3 we have IDt/δL ≈ 150. For a source field of length 500 m, (2.24) yields
δL ≈ 30 m, corresponding to a rather long isolation distance of IDt ≈ 4.5 km. The
value of γ = 0.3 could be relevant for pollen particles of dp = 55 µm on a windy day
(u∗ = 0.4 m s−1) or dp = 25 µm on a calm day (u∗ = 0.1 m s−1) assuming laminar
flow settling velocity, or it could correspond to even smaller particles for which larger
settling velocities are assumed to hold due to increased effective settling velocity due
to turbulence.

Finally, the effect of resolved flow accelerations considered in § 3.3 on the
deposition patterns is quantified by showing the corresponding results for the two
cases, γ = 0.313 and γ = 0.625, using small filled symbols in figure 11. It appears
that for γ = 0.313 the effect is quite small. However, for the heavier particles (γ =
0.625), it is interesting to note that in the far field, there is a noticeable effect
of particle inertia and interaction with turbulence in the deposition distribution. We
conclude that for the heavier particles, inclusion of turbulence effects on settling
velocities cannot be neglected in such simulations. Also, the results suggest that
the effects of subgrid-scale accelerations may be important. Clearly, there is a need
to develop subgrid models for acceleration to properly represent turbulence and
subgrid-scale acceleration effects in LES of pollen transport. We point out that in
recent years there have been developments of such models mostly in the context
of Lagrangian models (Vinkovic et al. 2006; Berrouk et al. 2006). Shotorban &
Balachandar (2007) proposed an SGS model to be used in Eulerian simulations of
resolved concentration fields, which is an extension of the dynamic Smagorinsky
model. However, physically based models that incorporate the effects of SGS particle
velocity on resolved concentrations are still lacking.
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5. Conclusions
This work presents a theoretical framework for the study of dispersion of particles

released from area sources within a turbulent boundary layer. Under the assumption
that particle motion is governed by fluid velocity and an effective gravitational settling
velocity, the mean particle concentration field above the source field is obtained using
boundary layer approximations. An analytical prediction of the mean concentration
profiles as a function of normalized height is obtained, and the dependence on
the settling velocity is captured. Consistent with the theoretical analysis, a suite
of three-dimensional large-eddy simulations shows that mean concentration profiles
exhibit self-similarity when normalized by local scales. The theoretical predictions
obtained from boundary layer theory display good agreement with results from
the large-eddy simulations. Both the shape of the profiles and the growth of the
concentration boundary layer are shown to depend on the dimensionless parameter
γ = Scws/κu∗ , representing the ratio between gravitational settling and turbulent
diffusion.

Theoretical arguments also yield expressions to predict important quantities at the
trailing edge of the field: (i) the height of the particle concentration boundary layer
and (ii) the total number of particles crossing being transported downstream of the
field. The former is shown to be the relevant parameter to scale the effects of
the source field size on the deposition patterns and the latter is a characterization
of the effective particle source (i.e. the portion of the total amount emitted that is
transported downstream).

Boundary layer arguments applied to the mean concentration field downstream of
the source field lead to a prediction of the shape of the deposition flux onto the bottom
surface as a function of distance from the source. Predictions from the numerical
simulations are used to determine unknown coefficients and provide a final expression
for the deposition flux. In addition, the effects of particle acceleration on the settling
velocity have been explored by including a new term in the LES. Some effects were
found in the far-field deposition distribution, especially for the heavier particles. The
results highlighted the need for further research on subgrid-scale models for Eulerian
treatments of particle concentration.

The framework presented here and the results from the LES have the potential
to improve our understanding of dispersion from area sources in the atmospheric
boundary layer. In practical applications, area sources are finite in the cross-stream
direction and results in the far field (ξ � L) are expected to be affected by the finite
size of the emitter field. Discussion of these consequences will be presented elsewhere.

This research was originally motivated by, and is an outcome of, a long-term
collaborative project on bio-complexity, funded by the National Science Foundation
under BES-0119903. The authors are grateful for fruitful conversations and interactions
that took place during this project with M. B. Parlange, G. Brush, J. Katz and S. Chen.
CM is grateful for partial support from NSF (ATM-0621396).
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