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The weak density of the non-invertible
elements of a commutative algebra

L. Narici, G. Bachman and E. Beckenstein

Let X be a commutative locally convex Hausdorff topological
algebra with identity over a non-trivially valued field F .

Let Mc denote the continuous nontrivial homomorphisms of X

into F and M the set of all maximal ideals of X . If the
spectrum of each element & in X 1is the set of scalars
{(Flz) | F ¢ Mc} , it is shown that the singular elements of X

are weakly dense in X if and only if M is an infinite set.

In this paper we extend the above quoted result, proved for
commutative Banach algebras with identity by Graham in [4, p. 1791, to a
category of topological algebras over arbitrary nontrivially valued fields.
Included among these are a number of nonarchimedean locally
multiplicatively convex algebras over nonarchimedean valued fields (£30)
such as algebras F(T) of continuous functions from an infinite totally
disconnected space T into a complete nonarchimedean valued field F with

compact-open topology.

LEMMA 1. If X <s a topological algebra over a nontrivially valued
field F such that UMc = UM, then Mc is finite if and only <¢f M 1is

finite.
Proof. Since Mc cM , finiteness of M clearly implies finiteness
of Mc . Conversely we show that if Mc is finite, then Mc =M. To do

this let us suppose that M € M and M ¢ Mc . Letting
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n
.«-s M} , then, by hypothesid, M = U M n Mi] . With no loss
N )

Mc = {Ml’

of generality we may assume that the above union.is irredundant. Thus for
each Z , 1 =<1 < n , there must be an element x; €Mon Mi such that
x. ¢ MM, for j#1i . Consider y=a, + | | x, . Since y €M ,
7 J 1 LT
J#t
Yy €Mn Mk for some k , 1 <k=n . If k#i , we are led to the
contradictory result: x. =Y - l x., €Mn Mk . If k=1 we find that
i# Y

| x., €M n Mi . Since Mé is a maximal - hence prime - ideal, this too
J#t
is contradictory. Thus there can be no M ¢ M such that M ¢ Mc , and the
proof is complete.

Clearly UM = UMc in any topological algebra X where the spectrum
O(x) of each x € X satisfies the relationship o(x) = {f(x) l f € Mc} .

We call such algebras Arens algebras. As a result of [I, p. 462] the

following algebras are Arens algebras:

(a) eany complex commutative complete Hausdorff locally m-convex

algebra ([5, p. 181);
(b) by (a), any complex commutative Banach algebra with identity;

(c) any complete nonarchimedean locally multiplicatively convex
algebra over a complete nonarchimedean valued field whose factor

algebras are Gelfand algebras ([3], [6, p. 4321).

Taeking the radical of X tobe R =0NM , we note that by [8, p. 331,

R = ﬂMo in any Arens algebra. Before proceeding to the main result, the

following lemma is needed.

LEMMA 2. If X is an Arens algebra, then M is infinite if and

only if X/R 1is infinite-dimensional.
Proof. Consider the Gelfand map ([2])
bx > F(M)

x + %
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where for any M ¢ Mc , ®(M) =x +M . Since X is an Arens algebra, we

observe that kery =R . Thus X/R is isomorphic to Y(X) . If X/R is

infinite-dimensional, surely Mc is an infinite set. Thus M is
infinite. Conversely, by Lemma 1, if M is infinite, then Mc must be
infinite. Now Y(X) is a subalgebra of F(Mc) which separates points of
Mc s0, by elementary considerations, Y(X) must be infinite-dimensional.
Thus X/R is infinite-dimensional.

THEOREM. If X <s a locally convex Hausdorff Arens algebra over the
reals, the complexes, or any spherically complete valued field, the
singular elements of X are weakly dense in X if and only if M 1is
infinite.

Proof. We refer to Graham's proof ([4, p. 180]) making note of the
fact that the validity of his proof in this setting depends on the
infinite-dimensionality of X/R which has been shown to be true in Lemma

2, the fact that R = ﬂMc since X 1is an Arens algebra, and the

availability of the Hahn-Banach Theorem in our setting ({7, p. T781).
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