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We perform simulations of an impulsively started, axisymmetric viscoelastic jet exiting
a nozzle and entering a stagnant gas phase using the open-source code Basilisk. This
code allows for efficient computations through an adaptively refined volume-of-fluid
technique that can accurately capture the deformation of the liquid–gas interface. We use
the FENE-P constitutive equation to describe the viscoelasticity of the liquid, and employ
the log-conformation transformation, which provides stable solutions for the evolution of
the conformation tensor as the jet thins down under the action of interfacial tension. For
the first time, the entire jetting and breakup process of a viscoelastic fluid is simulated,
including the pre-shearing flow through the nozzle, which results in an inhomogeneous
initial radial stress distribution in the fluid thread that affects the subsequent breakup
dynamics. The evolution of the velocity field and the elastic stresses in the nozzle are
validated against analytical solutions where possible, and the early-stage dynamics of the
jet evolution are compared favourably to the predictions of linear stability theory. We
study the effect of the flow inside the nozzle on the thinning dynamics of the viscoelastic
jet (which develops distinctive ‘beads-on-a-string’ structures) and on the spatio-temporal
evolution of the polymeric stresses in order to systematically explore the dependence of
the filament thinning and breakup characteristics on the initial axial momentum of the jet
and the extensibility of the dissolved polymer chains.
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1. Introduction

Spray formation, which involves the disintegration of a continuous liquid stream as it
enters into a stagnant gaseous phase, is an important aspect of many industrial and
biological processes (Villermaux 2007). Some representative examples include inkjet
printing processes (Basaran, Gao & Bhat 2013; Lohse 2022), the dispersal of fertilizers
and pesticides on plants (Xu et al. 2021), as well as human sneezing (Scharfman et al.
2016). In particular, sprays are the result of an atomization process in which a liquid jet
is destabilized and undergoes breakup into ligaments, threads and eventually droplets,
under the action of capillary, inertial and viscous forces. The breakup process involves
complex interfacial topological transitions featuring pinch-off singularities where the
filament radius locally goes to zero.

The addition of polymers to a Newtonian solvent endows the resultant polymeric
solution with elasticity, which can significantly influence these destabilization and breakup
processes, due to the increased extensional resistance to elongation that arises as a result of
stretching of the polymeric chains. Examples of viscoelastic systems include paints, inks,
industrial thickeners, anti-misting polymer agents, and human saliva or mucus. Achieving
a fundamental understanding of the fragmentation process in the presence of viscoelastic
effects will facilitate optimization and control of the droplet size distribution associated
with sprays of polymeric solutions.

In this paper, we first consider the phenomenology of the thinning and breakup of thin
filaments of a polymeric solution that leads to beads-on-a-string (BOAS) structures, for
which there is no analogue in simple fluids; these structures correspond to a series of
almost cylindrical filaments connecting spherical beads (Clasen et al. 2006). Extensive
experimental and numerical work has been conducted to understand the processes
leading to the formation of BOAS structures in a thinning viscoelastic filament. The
typical formulation makes use of the slender jet profile approximation, resulting in a
one-dimensional description (Clasen et al. 2006; Eggers & Villermaux 2008) of the jet
radius, axial velocity and polymeric stress components. More recently, the self-similar
profiles of a viscoelastic thread during the thinning process have also been computed with
direct numerical simulations (Turkoz et al. 2018; Snoeijer et al. 2020), highlighting the
local importance of the polymeric extra stress components to the final pinch-off.

A characteristic exponential rate of thinning in the viscoelastic filament, in which the
initially capillary-driven deformation of the fluid interface is eventually balanced by fluid
elasticity, has also been observed both experimentally (Bazilevesky, Entov & Rozhkov
1990; Entov & Hinch 1997; Amarouchene et al. 2001; Clasen et al. 2006; Deblais et al.
2020) and through numerical simulations (Bousfield et al. 1986; Étienne, Hinch & Li
2006; Bhat, Basaran & Pasquali 2008; Bhat et al. 2010; Morrison & Harlen 2010; Turkoz
et al. 2018; Eggers, Herrada & Snoeijer 2020). The analytic studies have considered
primarily infinitely extensible polymeric chains in a viscous solvent that can be described
by the Oldroyd-B (Bird et al. 1987) constitutive equation (Li & Fontelos 2003; Clasen
et al. 2006; Ardekani, Sharma & McKinley 2010), while computational simulations
have investigated the final breakup of the thread that results when finite extensibility of
macromolecules is incorporated by using the FENE-P (Bird et al. 1987) model to describe
the polymeric stress evolution (Anna et al. 2001; Fontelos & Li 2004; Wagner et al. 2005).
In particular, the role of finite extensibility in controlling the final breakup time (or length)
of viscoelastic threads has been examined, and an analytical solution, which describes
the local pinch-off dynamics, has been derived (Entov & Hinch 1997; McKinley 2005;
Wagner, Bourouiba & McKinley 2015). In addition, the generation of satellite droplets, as
well as the influence of viscosity and the fluid relaxation time on a viscoelastic filament
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initially at rest, have been studied via two-dimensional simulations (Liu, Guan & Fu
2023). Recently, numerical simulations have also been performed of viscoelastic jets and
single droplet breakup in an inkjet printing configuration (without considering the flow
in a nozzle) using the Oldroyd-B model (Turkoz et al. 2021), and an adaptive remeshing
algorithm was introduced to resolve the time-dependent evolution of very thin viscoelastic
threads.

To understand the dynamical behaviour and the consequences of the viscoelastic nature
of non-Newtonian liquids, we must quantify the extensional rheological properties of this
class of materials. To this end, various experimental protocols accounting for different
initial liquid configurations have been developed. The capillary breakup extensional
rheometer (CaBER; Bazilevesky et al. 1990; Yesilata, Clasen & McKinley 2006) for
various dilute and semi-dilute polymeric solutions, and the Rayleigh Ohnesorge jetting
extensional rheometer (ROJER; Keshavarz et al. 2015) are the most frequently applied
methods to measure the extensional rheology of viscoelastic fluids. The latter technique
is equivalent to a ‘flying CaBER’, and allows the examination of a wider range of fluid
relaxation times. Additional results for both industrial and biological fluids have also
been reported using other recently developed instruments that exploit capillary-driven
breakup, such as dripping-onto-substrate (DoS) rheometry (Dinic et al. 2015; Dinic &
Sharma 2019; Lauser, Rueter & Calabrese 2021; Martínez Narváez et al. 2021; Zinelis
et al. 2024), as well as for more standard dripping experiments that focus on the transition
to elasticity-dominated thinning (Amarouchene et al. 2001; Wagner et al. 2005; Rajesh,
Thiévenaz & Sauret 2022).

Although the establishment of an elasto-capillary balance that results in an exponential
rate of thinning in the fluid thread has been validated in each of these extensional
rheometry configurations, recent experimental and numerical considerations have argued
that there can be systematic differences in the local rate of thinning observed in CaBER
and ROJER experiments (Mathues et al. 2018). This may be due to non-zero initial values
of the axial stresses in the filament that develop as the liquid jet is expelled through the
nozzle exit in the ROJER configuration, subtly altering the tensile force balance on a thin
viscoelastic filament, and leading to a 33 % faster exponential decrease of the local jet
radius. These faster dynamics were reported for the first time in the limit of very low jet
ejection flow rates due to the so-called ‘gobbling phenomenon’, with the conventional
elasto-capillary balance expected in the CaBER instrument being established for larger
flow rate values (Keshavarz et al. 2015; Sharma et al. 2015). The origins of these different
thinning dynamics and their dependence on the viscoelastic properties of the fluid and
process parameters such as the nozzle radius and the jet velocity remain poorly understood.

The present work aims to address the issues highlighted above and facilitate the
design of robust extensional rheometric instrumentation for measuring accurately the
rheological properties of weakly elastic complex fluids, such as the relaxation time, the
transient extensional viscosity, and the corresponding strain rate. This requires developing
a quantitative understanding of the delicate interplay among viscous, inertial, capillary and
elastic forces in low-speed axisymmetric jets in order to establish robust foundations for
future studies of the complex dynamics of viscoelastic sprays and the ensuing droplet size
distributions that develop at higher flow rates. To achieve this, axisymmetric numerical
simulations are carried out over a wide range of system parameters using the open-source
code Basilisk (Popinet 2009), which incorporates the viscoelastic shearing flow upstream
of the nozzle exit in addition to the subsequent capillarity-driven evolution of the jet and
the formation of BOAS morphologies. Previous experimental work (Ghafourian et al.
1991; Mayer & Branam 2004; Lefebvre & McDonell 2017) has demonstrated that the
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growth of three-dimensional interfacial disturbances, and the transition from axisymmetric
to three-dimensional structures is determined by the jet speed, gas-to-liquid density ratio
and fluid elasticity (Liu & Liu 2008; Ruo, Chang & Chen 2008). Here, we study low-speed,
moderately viscoelastic jets, for which the interfacial deformations are expected to
remain axisymmetric (Bechtel, Cao & Forest 1992) (as confirmed with three-dimensional
simulations provided in the supplementary material), by implementing the formulation of
López-Herrera, Popinet & Castrejón-Pita (2019) whereby the azimuthal component of the
extra polymeric stress tensor is also computed. We also follow these authors in solving
a transport equation for the conformation tensor after the log-transformation (Fattal &
Kupferman 2005) has been applied.

The rest of this paper is organized as follows. In § 2, the problem formulation and
numerical procedure used to carry out the computations are outlined. In this section,
we also validate our numerical predictions of the fully developed flow upstream of the
nozzle exit plane against analytical solutions. A discussion of the results is provided in
§ 3, highlighting the stress profiles that develop due to the flow within the nozzle and the
subsequent evolution of the jet towards breakup following its exit from the nozzle. Careful
attention is paid to the evolution of the jet thinning characteristics with changes in the flow
rate and the finite extensibility of the dissolved polymer. Finally, concluding remarks are
provided in § 4.

2. Formulation and methodology

We first provide details of the problem formulation, which encompasses the flow
configurations, the governing equations including the constitutive relation used to describe
the fluid viscoelasticity, and the numerical methodology deployed to carry out the
simulations.

2.1. Governing equations and numerical method
The simulation set-up for an axisymmetric jet of an incompressible fluid of density ρl
issuing from a nozzle of length �nozzle and initial radius R0, is presented in figure 1. The
fluid corresponds to a viscoelastic polymer solution whose polymeric chains have finite
extensibility L; the total fluid zero-shear viscosity is η0 = ηp + ηs, wherein ηp and ηs
denote the polymer and solvent contributions to the viscosity, respectively. Additionally,
β is the fluid viscosity ratio ηs/η0 that determines the relative polymeric and solvent
contributions to the total dynamic viscosity of the polymer solution. The jet is surrounded
by a gas of density ρg and viscosity ηg, and gravitational effects are neglected in the present
work. In the simulations, we take the characteristic liquid viscosity to be ηl ≡ η0, where
ηl stands for the viscosity of the liquid phase. A pressure gradient (see § 2.2) is imposed
along the nozzle in the axial direction x (here, the considered axisymmetric coordinates
are (r, θ, x)) leading to the development of a parabolic velocity profile with mean velocity
U0 within the nozzle. As shown schematically in figure 1, following its exit from the
nozzle, the jet evolves downstream with a characteristic wavelength λw due to the imposed
perturbations, undergoing an increasingly pronounced deformation over a length �jet until
ultimately a breakup event occurs. Jet breakup proceeds via the development of a thin
thread that connects the leading drop with the rest of the liquid core and polymer stresses in
this highly stretched thread act to retard its eventual detachment. Following a fluid element
of fixed Lagrangian identity in this thinning ligament reveals an exponential decrease in
the radius with time. As will be discussed below, this exponential local decrease of Rmin(t)
results from the establishment of a local elasto-capillary balance in the thinning thread.
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Rmin

�jet�nozzle

∇p · n̂I U0
R0

ρg, ηg λw

ρl, ηl, ηp, β, L2

Figure 1. Schematic representation of the flow, depicting the jetting and eventual breakup of a viscoelastic
fluid issuing from a nozzle surrounded by a gaseous phase. The flow upstream of the nozzle exit is fully
developed, driven by an applied pressure gradient. The solution domain is highlighted in red.

The jet dynamics are governed by the one-fluid formulation of the continuity and
momentum equations, which are respectively expressed by

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · σ + γ κnδs, (2.2)

where t, ρ, u, p, σ , γ , κ , n and δs stand for time, local density, velocity, pressure, the total
stress, (constant) surface tension, interfacial curvature, the outward-pointing unit vector
to the interface, and the Dirac delta function (zero everywhere except at the interface),
respectively. Here, γ κnδs denotes the surface tension forces distributed in the cells in the
vicinity of the interface with the continuum surface force method (Popinet 2009, 2018).
Given the viscoelastic nature of the fluid, the total stress is defined as the sum of the
solvent and polymeric stresses, σ = σ s + σ p, where σ s = ηs(∇u + (∇u)T) is the viscous
contribution to the total stress tensor, and σ p is the polymeric stress tensor defined in the
present work by the FENE-P constitutive equation:

σ p = ηp

τ

⎛
⎜⎝ A

1 − tr(A)

L2

− I

⎞
⎟⎠ . (2.3)

Here, τ is the single characteristic relaxation time of the viscoelastic fluid, L2 provides
a measure of the finite extensibility of the polymeric chains, and A is the dimensionless
conformation tensor of the finitely extensible nonlinearly elastic (FENE) dumbbells that
model the evolution of the polymer configuration, which is governed by the equation

∂A

∂t
+ u · ∇A − (∇u · A + A · ∇uT) = −1

τ

⎛
⎜⎝ A

1 − tr(A)

L2

− I

⎞
⎟⎠ . (2.4)

The above equations are rendered dimensionless by using the nozzle radius R0, the

Rayleigh velocity UR = √
γ /(ρlR0), the Rayleigh time scale tR = R0/UR =

√
ρlR3

0/γ ,

and the capillary pressure ρlU2
R = γ /R0 as the characteristic length, velocity, time and

pressure/stress scales, respectively. Introduction of this scaling into (2.1)–(2.4) leads to the
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following dimensionless equations:

∇̃ · ũ = 0, (2.5)

ρ̃

(
∂ũ
∂ t̃

+ ũ · ∇̃ũ
)

= −∇̃p̃ + Oh
(

β ∇̃ · σ̃ s + 1 − β

De
∇̃ · σ̃ p

)
+ κ̃ δ̃n, (2.6)

∂A

∂ t̃
+ ũ · ∇̃A − (∇̃ũ · A + A · ∇̃ũT) = − 1

De

⎛
⎜⎝ A

1 − tr(A)

L2

− I

⎞
⎟⎠ , (2.7)

where De = τ/(R0/UR) = τ

√
γ /ρlR3

0 denotes the Deborah number, which represents the
ratio of the polymer relaxation time to the Rayleigh time scale, and Oh = ηl/

√
ρlγ R0 is

the Ohnesorge number that reflects the competition between capillary, inertial and viscous
forces. The tildes designate dimensionless variables.

Additionally, the importance of the polymer elasticity in the neck can also be understood
through a local strain rate ε̇min = −2 D(log(R[α]

min))/Dt for each local minimum radius
observed in each neck that is formed and subsequently develops into a thin cylindrical
ligament between two consecutive primary beads (as depicted in figure 1), where the
primary beads are labelled as [α] = A, B, C, . . . (starting from the beads furthest from the
nozzle). When scaled with τ , this local strain rate in a material element, as it is advected
downstream, corresponds to the local Weissenberg number in the thinning ligament:

Wi = −2τ
D log(R[α]

min)

Dt
. (2.8)

This definition will be used to characterize the local rate of jet thinning in each neck
that develops along the corrugated jet. When capillarity and elasticity locally govern the
dynamics in the elasto-capillary regime as breakup is approached, it is expected that the
Weissenberg number will approach a constant value, Wi → 2/3 (Entov & Yarin 1984;
Bazilevesky et al. 1990; Entov & Hinch 1997; Tirtaatmadja, McKinley & Cooper-White
2006).

As a result of the coil–stretch transition, the local polymeric stresses in a fluid element
typically exhibit a steep increase under the influence of extensional deformations at Wi ≥
0.5. In such configurations, numerical challenges can emerge during the computation
of the polymeric stress tensor and its divergence, which is required for (2.3). This is
known as the high-Weissenberg number problem (Renardy 2000). To circumvent the
occurrence of any undesired numerical instability, the log-conformation transformation
(Fattal & Kupferman 2005) is employed, which introduces the logarithmic function Ψ of
the conformation tensor A, which can be computed via a diagonal transformation such that

A = RΛRT, (2.9)

Ψ = log A = R (log Λ) RT , (2.10)

where Λ is the diagonal matrix containing the principal eigenvalues of A. The numerical
procedure for the solution of the appropriate transport equation for the conformation tensor
A when the log-conformation transformation is applied, is provided by López-Herrera
et al. (2019).
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A volume-of-fluid approach (Popinet 2009) is used to capture the deforming jet interface
by advecting the volume fraction c of the liquid phase in every computational cell; the
advection equation for c is given by

∂c
∂ t̃

+ ũ · ∇̃c = 0. (2.11)

Using the volume-of-fluid formulation, which corresponds to a one-fluid approach to
solving the two-phase flow, the density ρ̃ and viscosity η̃ are then respectively given by

ρ̃ = c + (1 − c)
ρg

ρl
, (2.12)

η̃ = c + (1 − c)
ηg

ηl
, (2.13)

where the characteristic density is chosen to be ρl, and the tilde decoration is suppressed
henceforth for brevity. The open-source code Basilisk (Popinet 2009; Turkoz et al. 2018,
2021; López-Herrera et al. 2019) is used here to carry out the computations. A piecewise
linear interface calculation technique is used for reconstructing the interface (Popinet
2009; López-Herrera et al. 2019). The surface-tension-dominated flow disintegration
of a liquid jet is modelled with high accuracy thanks to the well-balanced numerical
discretization combined with the height function method to calculate the geometrical
properties of the interface (Popinet 2009, 2018).

2.2. Numerical set-up
The simulation domain for the axisymmetric simulations of the jet is a plane of dimensions
100R0 × 100R0 as shown in figure 1. The bottom boundary is the axial symmetry axis,
while zero-gradient Neumann boundary conditions are imposed at the left and right
boundaries for all the velocity and polymeric stress components. Downstream from
the nozzle, a no-slip immersed boundary (as described in detail below) is applied for
r ≥ 10R0, which is far away from the jet region, which is located sufficiently far away
from the jet region, for consistency with the immersed boundary method (Aniszewski
et al. 2020) implemented to simulate the flow inside the nozzle as presented in details
below. A pressure gradient is imposed at the left-hand boundary to drive the fluid
through the nozzle, while atmospheric pressure is imposed at the right-hand boundary
through a Dirichlet condition. For the initial conditions of the jetting process at t = 0, we
consider the liquid initially at rest in the region 0 ≤ r ≤ R0 and 0 ≤ x ≤ �nozzle, and the
dissolved polymers in the fluid to be initially unstretched in the inlet of the nozzle, with
Axx = Arr = Aθθ = 1.

An adaptive mesh refinement technique (Popinet 2003) following the quadtree-like
structure available in Basilisk is used to refine the cells based on the location of the
interface and the nozzle, as well as in the regions where large gradients of the axial
component of the polymeric stress occur. Specifically, starting from a base grid resolution
of 8 × 8 square cells for the entire domain, and refining up to an initial minimum cell size
of �xminimum = 0.09 around the nozzle region, the adaptive scheme refines up to three
maximum levels of refinement LVL, gradually increasing from LVL = 12 to LVL = 14,
which corresponds to a minimum square cell size of �xminimum = 0.02 and �xminimum =
0.006, respectively; this provides sufficient resolution to simulate the dynamics accurately
as the pinch-off of the filament is approached. More details of the mesh convergence study
are provided in Appendix A.
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Figure 2. Validation of the predicted fully developed flow profiles within the nozzle with the parameter
values given by table 1. The analytical solution and corresponding simulation data for the dimensionless axial
velocity component and the polymeric stress components are shown in (a) and (b), respectively, as functions
of dimensionless position across the nozzle. Here, for the analytical solution (Tomé et al. 2007; Yapici et al.
2009), the dimensionless strain rate is Wi = τU0/R0 = 4.

De Oh β L2 We �nozzle LVL

1 0.2 0.85 ∞ 16 4 14

Table 1. Parameter values utilized to validate the flow predictions within the nozzle using the immersed
boundary method.

To simulate the flow within the nozzle, a simplified variant of the immersed boundary
method (Aniszewski et al. 2020) is employed to model the velocity field with no-slip
and no-penetration conditions imposed at the solid walls. Starting from a static pipe flow
case and then continuing with an impulsive injection of the fluid through the nozzle,
we first obtain solutions for the velocity and polymeric stress fields, and as the flow
approaches a steady state, we compare the radial profiles of the dimensionless axial
velocity field, and axial and shear polymeric stresses as they evolve along the nozzle to
the analytical solutions for these fields, which have been derived assuming steady-state
and fully developed axisymmetric flow (Tomé et al. 2007; Yapici, Karasozen & Uludag
2009). As we show in figures 2(a,b); we obtain excellent agreement between the computed
velocity and stress fields and the analytic results.

Following the validation of the steady pipe flow case, we now investigate the flow inside
the nozzle when an axial pressure oscillation with an amplitude εp = 0.4 is forced at the
inlet using the expression given by (2.14) with a dimensionless wavenumber k = 0.6 (with
tildes suppressed):

− ∇p · n̂I = 8 Ca (1 + εp sin(
√

We kt)), (2.14)

where n̂I is the unit normal vector to the inlet boundary, Ca = ηlU0/γ is the capillary
number, and We = ρlU2

0R0/γ is the Weber number, which is related to the Ohnesorge
number defined in (2.6) through the relation Ca = √

We Oh. The parameter values used
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Figure 3. Temporal evolution of: (a) the cross-sectionally averaged axial velocity component ūx and pressure
p̄; and (b) cross-sectionally averaged axial (σ̄p,xx) and shear (σ̄p,rx) polymeric stress components in the nozzle.
The parameter values are given in table 1, and the pressure gradient is set by (2.14) with εp = 0.4 and k = 0.6.

in the simulations are provided in table 1. The value k = 0.6 is selected according to
the linear stability analysis presented in § 3.2 in order to correspond to the most unstable
growth rate of the imposed perturbation.

In figure 3(a), we compare the temporal evolution of the radially averaged magnitudes
of the dimensionless isotropic pressure p̄ = ∫ 1

0 p(r, x = 0)r dr and axial velocity
ūx = ∫ 1

0 ux(r, x = 0)r dr at a position close to the nozzle inlet. Specifically, figure 3(a)
indicates the establishment of a phase lag and a corresponding amplitude deviation
between the pressure and axial velocity component, as expected from the analysis
of Womersley (1955). In figure 3(b), we also show the evolution of the radially
averaged dimensionless elastic stress components σ̄p,xx = ∫ 1

0 σp,xx(r, x = 0)r dr and
σ̄p,rx = ∫ 1

0 σp,rx(r, x = 0)r dr, validating in both cases the smooth periodic evolution of
these quantities. In particular, we show that initially both the polymer shear stress and
streamwise axial stress evolve together at short times t ≤ 5 after the flow is impulsively
started. However, as time increases, the radially averaged axial and shear polymeric stress
components in the nozzle exhibit distinct trends in magnitude, with the dimensionless
axial stress significantly increasing and at long times (t ≥ 5), dominating the shear stress.

3. Results and discussion

3.1. Jet evolution and breakup
We present numerical simulations of a low-speed, axisymmetric viscoelastic jet with
De = 1, Oh = 0.2, β = 0.85 and We = 16, including the flow within the nozzle,
where the mesh resolution is gradually increased in the range 12 < LVL < 14
(0.02 > �xminimum > 0.006); the rest of the parameters are given in table 2. Figure 4(a)
shows a contour plot of the volume fraction of fluid in the domain at t = 47.8, as well as
the spatial distribution within the fluid phase of the dimensionless axial components of the
velocity, ux(r, x), and polymeric stress field, σp,xx(r, x). The capillarity-driven deformation
of the jet is evident as it exits the nozzle, and this leads ultimately to drop formation. The
contour plot of the axial velocity field demonstrates the initial parabolic profile of the
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De Oh β L2 We ρg/ρl ηg/ηl k εp �nozzle �domain LVL

1 0.2 0.85 900 16 0.01 0.01 0.6 0.4 4 100 14

Table 2. Simulation parameters for the jetting process. The ratios ρg/ρl and ηg/ηl are the same as those used
by Turkoz et al. (2018, 2021). The dimensionless wavenumber k is selected to be the value that corresponds to
the most unstable mode of perturbation expected from linear stability analysis.

axial velocity component that develops upstream of the nozzle exit plane, as expected
from figure 2(a), and discussed in § 2. This contour plot also shows that material elements
at the centreline of the liquid jet leave the nozzle at the maximum velocity, and the velocity
field rapidly rearranges (within one perturbation wavelength) so the fluid is then advected
downstream at a uniform average speed. The spatial distribution of the axial polymeric
stresses responds more slowly. Inside the nozzle, the polymeric chains undergo strong
shearing close to the wall of the pipe due to the no-slip boundary condition resulting in
large stresses. Downstream of the nozzle exit plane, a zero shear stress interfacial condition
is imposed, which replaces the no-slip condition on the inside of the nozzle walls. The
axial elastic stress component relaxes within the beads that form as the perturbed interface
evolves under the action of capillarity, but locally increases in the thin ligaments that
develop. This local increase is driven by the large capillary pressure in the filament as it
thins towards breakup.

Figure 4(b) offers a closer inspection of the simulation results in figure 4(a). In
particular, figure 4(b) reveals that the two leading drops are separated by a thin filament
on which a much smaller, satellite drop has formed. These BOAS structures are the
result of a balance between capillarity and the viscoelasticity of the polymer, and have
no direct analogue in low-speed jets of Newtonian fluids undergoing deformation and
breakup. It is also clear that the adaptive mesh refinement scheme within Basilisk has been
deployed appropriately for refinement close to the interface and to resolve accurately the
stresses in these thin string-like filaments. We also note that the thread is not perfectly
fore–aft symmetric: as time evolves, the upper side of the thread (i.e. the side that is
closest to the nozzle) is observed to move slightly faster than the lower side (furthest
from the nozzle), and the satellite droplet moves downstream towards the leading drop.
Additionally, the dimensionless axial polymeric stresses are seen to attain very high values
up to max(σp,xx) ≈ 50γ /R0 in the thin ligaments that develop on either side of the smaller
droplet due to the response of the polymer molecules to the elongational flow. Inside the
satellite drop and the two bigger drops, the stresses relax to values close to zero.

Figure 5(a) presents an alternative Lagrangian view of the jetting process. We show
the temporal evolution of the interface plotted at a sequence of times denoted ti when
the oscillating velocity forcing of the injection at the inlet attains its minimum value (i.e.
ti ≈ 2.3 + 2πn/(

√
We k), with n = 0, 1, 2, . . .). Mesh resolution represented by different

LVL values increases as time increases to ensure that the dynamics is captured accurately.
Each pulsed wave-like disturbance that emanates from the nozzle results in a local necked
region (observable by the blue contours in figure 5b) associated with each new emerging
primary bead that travels downstream at a constant velocity. After an initial transient
period of developing flow, periodicity is observed in terms of the locations where a droplet
is formed, as well as where the thin fluid ligament connects the leading droplet to the rest of
the jet. Figure 5(b) shows the corresponding ‘kymograph’, which highlights the periodicity
over the entire spatio-temporal spectrum of the thinning dynamics of the viscoelastic jet.

998 A4-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.787


Elastocapillary thinning in viscoelastic jets

0 0.5

r

x

Volume fraction ux
1.0 0 3.9 7.8

σp,xx

0 0.1 69.5

0 0.5

Volume fraction ux
1.0 2.4 3.5 4.6

σp,xx

0 0.1 50.0

(a)

(b)

Figure 4. Simulation results at t = 47.8 for the parameter values listed in table 2. (a) The volume fraction (left)
and the mesh (right), highlighting the adaptive mesh refinement in the near-interface regions. The interface is
shown with a light green line, and the mesh attains its maximum density in the regions that contain thin
fluid threads. The spatial distributions of the axial velocity and polymeric stress components are shown in the
following contour plots. (b) Local enlargements in the range of 34 ≤ x < 41 of the spatial distributions of the
volume fraction, with the mesh, the axial velocity and the polymeric stress components in the polymeric thread
highlighting the highly localized distribution of the elastic stress and fore–aft asymmetry of the satellite drop
that develops far downstream of the nozzle. 998 A4-11
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Figure 5. (a) A sequence of jet profiles R(x, ti) highlighting the formation of BOAS structures, as well as
primary and satellite drops, captured each period when the velocity attains its minimum values in the inlet
(these times denoted ti can be seen in figure 3a). (b) Space–time diagram or ‘kymograph’ showing Rmin(x, t)
as each wave pulse is ejected from the nozzle, leading to the formation of a new primary bead as it flows away
from the nozzle. The simulation parameters are provided in table 2.

In particular, the contour plot demonstrates how the local minima in the radius of the jet
evolve in both space and time, where the colour scale ranges from the initial value of the
radius, R0, down to the minimum cell size (≈ 0.6 %R0 for LVL = 14). The kymograph
also permits us to track the formation and detachment of the leading droplet, observed at
early times, after which periodicity of the jet evolution is established. The spatio-temporal
development of satellite droplets – which are represented by cyan-coloured streaks of
smaller radius and travel downstream at almost constant speed – is also highlighted, while
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Figure 6. Temporal evolution of the jet radius associated with four distinct regions. Regions I and II are close
to the nozzle and at intermediate distances from it, wherein the dynamics are linear and weakly nonlinear,
respectively. Regions III and IV are further away from the nozzle, where the dynamics is strongly nonlinear,
featuring the formation of the first satellite beads and BOAS structures, respectively. The contour plot depicting
the shape of the jet at t = 47.8 in regions I–IV shows the spatial evolution of the axial component of the
polymeric stress tensor accompanied by the corresponding scale of the x-axis. The parameter values are the
same as in table 2.

the dark blue regions in the contour plot demonstrate the complete detachment of each of
the formed droplets.

In figure 6, we show the temporal evolution of the jet radius at four fixed Eulerian
locations along the jet axis, which correspond to four distinct regions of the breakup
process (labelled I–IV) and are characterized by their proximity to the nozzle exit plane
and the nature of the evolution of R(x, t). The corresponding jet profile is coloured by the
magnitude of the axial component of the polymeric stress tensor. Relatively close to the
exit plane of the nozzle (which is located at x = 4) in region I (4 ≤ x < 14), the jet radius
exhibits essentially linear dynamics (Middleman 1965; Goldin et al. 1969; Brenn, Liu &
Durst 2000) characterized by a sinusoidal response to the pressure gradient forcing set by
(2.14).

Following this linear phase, figure 6 shows that in a second region, denoted region II
(14 ≤ x < 24), the jet radius exhibits a weakly nonlinear behaviour. Further away from the
nozzle (24 ≤ x < 34), the radial perturbation enters into a fully nonlinear regime enters
into a nonlinear regime denoted region III, featuring bead formation separated by thin
filaments, as shown in figure 6. The dynamical evolution of R(x, t) at x = 35 in region IV
(34 ≤ x < 41) is strongly nonlinear; here, in the elasto-capillary regime, the thin ligaments
are deformed by capillary forces while elastic stresses delay interface breakup through the
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Figure 7. (a) Space–time plot of the spatio-temporal evolution of the jet, highlighting the detection and
tracking of two different minima of the jet radius on either side of a secondary droplet, always observed for
x ≥ 25. Each local maximum corresponding to the formation of a primary bead is shown by a filled black circle
symbol with a distinctly coloured border, as well as a Lagrangian label [α]. Each local minimum in the thinning
fluid ligament between neighbouring primary beads is shown by filled (R[α]

min1, min1) and hollow (R[α]
min2, min2)

symbols of the corresponding colour for each neck region established behind each primary bead [α]. (b) The
enlarged view shows the jet profile between two beads with Lagrangian labels [α] = N, O. The velocity at
which the viscoelastic jet evolves downstream is also indicated. The simulation parameter values are the same
as in table 2.

development of stable viscoelastic threads and BOAS structures. It is also clear from a
close inspection of figure 6 that the initial transient response (corresponding to when the
first ‘leading’ droplet exits the nozzle and then passes each Eulerian location) takes longer
to decay further from the nozzle but eventually the jet attains a perfectly periodic structure
(corresponding to the diagonal lines observed in the space–time diagram of figure 5).

In what follows, we first use linear stability theory to study the regions closest to the
nozzle, i.e. regions I and II, before embarking on a detailed analysis of regions III and
IV, in which the dynamics becomes increasingly nonlinear. In experimental visualization
of the jet breakup, it is common to follow the evolution of local maxima in the jet radius
(leading to the formation of primary beads) as well as local minima in the necks (which
ultimately lead to pinch-off). The situation is more complex in viscoelastic jets because
the large elastic stresses that develop in the neck can inhibit or totally prevent pinch-off. It
is thus important to always follow the same Lagrangian element when attempting to relate
local rates of thinning to material properties such as the local extensional viscosity in a
material element. To aid our analysis of the nonlinear dynamics, we move to a Lagrangian
description so that we follow a specific material element as it is ejected and transported
away from the nozzle and is increasingly deformed by capillary effects in space and time.
We show in figure 7 the space–time evolution of the jet interface (oriented horizontally
here to conserve space), highlighting the evolution of the wave crests and troughs with
distance from the nozzle. This representation allows us to ensure that the same minimum is
followed in space and time, which is essential for estimating the local instantaneous rate of
thinning in region IV accurately. As the jet thins and the BOAS structure develops fully (at
x ≈ 35), two thin threads are formed, one on each side of the satellite droplet. This results
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in two local minima in the jet radius, R[α]
min1 and R[α]

min2, following each labelled primary bead
[α] = A, B, C, . . ., for each period of the upstream forcing. These two emerging minima
are henceforth labelled ‘min1’ and ‘min2’ for each local minimum in every neck region.

3.2. Regions I and II: linear and weakly nonlinear evolution of jet profile
In regions I and II, we use linear stability theory to characterize the thinning dynamics.
Here, the decrease in the dimensionless jet radius is expected to be described by a growing
perturbation of the general form:

Rmin(t) = 1 − δ exp(Ωt), for t ≥ 0, (3.1)

where δ is the initial perturbation amplitude, and Ω = Ωr + iΩi is the complex growth
rate, which depends parametrically on Oh, De and k; Ωr > 0 indicates the presence of
linear instability. In figure 8(a), we show a semi-log plot of 1 − R[α]

min as a function of
time, whence we have subtracted an interval tp that represents the instant when each
of the identified wave pulses – which lead to the formation of primary beads labelled
[α] = L, M, N, O, P – exited the nozzle. We also illustrate the locations of the stationary
Eulerian points located at 5, 15, 25 and 35 nozzle diameters from the injection inlet.
Given the velocity of the jet, each of these fixed points can be associated with a specific
value of t − tp that corresponds to the time when a specific material element passes
through one of each of these locations. Inspection of this plot reveals that even though
the perturbations in region I are small, as illustrated in figure 6, the residual stresses in
the jet, the rearrangement of the velocity profile in the jet (from parabolic to plug-like)
and the pinning conditions of the free surface to the nozzle exit at x = 4 all influence the
local growth rate of perturbations. Hence it is the second region, denoted II, that is best
characterized by the linear theory.

In region II (beyond approximately one jet diameter from the nozzle), the exit boundary
conditions have been forgotten, and small perturbations to the radius grow exponentially
under the action of capillary squeezing. Figure 8(a) shows that region II remains linear
(on a semi-log plot) over a sufficiently large time interval that it is possible to calculate
the gradient, which can be compared with the dimensionless growth rate Ωr in (3.1). The
growth rates obtained from the numerical simulation for Oh = 0.2, De = 1, We = 16 and
linear stability theory (Brenn et al. 2000) (see Appendix B for details) are Ωr ≈ 0.246 ±
0.006 and 0.25, respectively, for k = 0.6, demonstrating excellent agreement, as is also
shown in figure 8(b).

In particular, the finite extensibility of the polymeric chains is not expected to exert a
strong influence on the flow at early times because the motion is driven by the action of
capillarity and dominated by the linear interfacial disturbances. The finite extensibility
of the polymer chains becomes critical as a thin thread is formed and undergoes severe
thinning (Wagner et al. 2015), as will also be shown in § 3.4. We can therefore compare
the numerically predicted growth rates with those obtained from linear stability theory
for an Oldroyd-B fluid (L2 → ∞) for a range of k values. Figure 8(b) shows the resulting
dispersion curves computed using the analysis of Middleman (1965) for a viscoelastic
liquid jet in an inviscid gaseous environment. Specifically, the dispersion curve of an
inviscid Newtonian jet (Oh = 0, De = 0) with no inertia (We = 0) (Rayleigh 1879) is first
presented (blue dash-dotted line), while the effects of viscosity are then added for the
Newtonian jet (Oh = 0.2, De = 0, We = 0), resulting in a strongly reduced growth rate of
the perturbation (orange dashed line). Subsequently, the effects of viscoelasticity (De = 1)
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Figure 8. Comparison of the numerical predictions with those from a linear stability analysis for regions I and
II. (a) Semi-log plot of the temporal evolution in the deviation of the jet radius from its base state for an imposed
perturbation given by (3.1) with δ = 0.13 and k = 0.6. The rest of the simulation parameters remain unchanged
from table 2. Here, t − tp corresponds to the elapsed time since a specific local maximum in the jet radius that
coincides with the formation of a primary bead labelled [α] = L, M, N, O, P is formed as a fluid ligament flows
away from the nozzle. Regions III and IV are characterized by nonlinear dynamics for which linear theory is not
appropriate; regions I–IV map onto those identified in figure 6. (b) Dispersion curves generated via the solution
of (B1) (Middleman 1965; Brenn et al. 2000) for various Weber numbers and wavenumbers; simulation data
for the specific local neck regions highlighted in figure 7 were used for the filled circle symbol at k = 0.6 and
the simulation parameters provided in table 2; the hollow symbols have been generated for the same Oh, De
and We (Oh = 0.2, De = 1, We = 16) conditions, but different k values.
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are considered (solid lines). First, the influence of inertia is neglected (Oh = 0.2, De = 1,
We = 0), showing that the linear viscoelastic jet is more unstable (slightly larger maximum
growth rate) than a Newtonian fluid of the same viscosity. That is, elasticity contributes to a
slightly faster rate of thinning in the neck of the liquid jet in the linear regime (Middleman
1965). Brenn et al. (2000) expanded the work of Middleman (1965) by incorporating the
effects of the momentum flux arising from the injection of the jet (i.e. Weber numbers
We > 0). All of the corresponding dispersion curves (Oh = 0.2, De = 1, We > 0) exhibit
positive growth rates at k = 1 instead of Ωr = 0 as obtained when We = 0. In addition, the
presence of fluid inertia is destabilizing, leading to a higher maximum wave growth rate, a
shift of the most unstable mode to larger k values, and a wider range of wavenumbers for
which Ωr > 0.

Comparison of the linear theory predictions to the computed growth rates
resulting from the numerical simulations for Oh = 0.2, De = 1, We = 16 and
k = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (obtained using a similar procedure to that discussed in
connection to figure 8a) shows good agreement. Specifically, each of the circular symbols
in figure 8(b) result from the analysis of the corresponding rates of change, equivalent
to the analysis shown in figure 8(a). Analysis of at least five different Lagrangian wave
pulses exiting the nozzle result in the error bars shown in the figure. Therefore, the slight
deviations seen in figure 8(b) between the simulation predictions and the dispersion curve
computed for Oh = 0.2, De = 1, We = 16 (green curve) indicate the limits of our ability
to resolve small differences in the resulting growth rates due to the small neck-to-neck
variations in the profiles of the thinning jet considered in each of the simulations.

3.3. Regions III and IV: nonlinear evolution of jet profile
The evolution in jet profile in the nonlinear regimes is first analysed by tracking
the temporal decrease of the jet radius following local minima in each neck region
between primary beads in a Lagrangian way as they travel downstream away from the
nozzle, as shown in figure 9(a), for the same simulation parameters as in table 2. This
highlights the emergence of four distinct regimes, as defined in figure 6: I, II, III and IV,
characterized by Rmin ≥ 0.75, 0.75 > Rmin ≥ 0.25, 0.25 > Rmin ≥ 0.1 and 0.1 > Rmin ≥
0.006, respectively, where 0.6 % of R0 is the mesh resolution limit according to the
maximum LVL value achieved in this work. As the thinning jet enters region IV, it is clear
that the radius of the local minima min1 and min2 (corresponding to the local minimum jet
radius in each of the two thin ligaments between primary beads) decreases exponentially
in time. This is the elasto-capillary (EC) regime anticipated in the Introduction. Finally,
at very small radii below Rmin ≤ 0.04, there is a deviation from the exponential thinning
corresponding to the onset of finite extensibility effects. In this regime, the thread radius
is ultimately expected to thin linearly in time, resulting in finite time breakup (Entov &
Hinch 1997; Renardy & Renardy 2004).

To determine the characteristic time scale that best describes the exponential thinning,
the temporal evolution of the local dimensionless strain rate Wi, defined in § 2.1, is plotted
in figure 9(b). Specifically, this plot highlights the existence of two different plateau values,
Wi = 2/3 and Wi = 1, which correspond to the two distinct thinning rates during the
elasto-capillary regime as determined by Keshavarz et al. (2015) and Mathues et al. (2018),
respectively. In addition, figure 9(b) is characterized by four points, P1–P4, highlighting
the non-monotonic evolution of the local strain rate in the thinning jet in agreement
with what has been shown by Tirtaatmadja et al. (2006), and more recently by Rajesh
et al. (2022). The points P1–P4 are respectively associated with the ends of regions
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Figure 9. (a) Thinning dynamics and (b) the temporal evolution of the local Weissenberg number Wi in
each Lagrangian thinning neck region. Data from each of the local neck regions depicted in figure 7 are
used (for simulation parameters listed in table 2). In (b), the plateau values corresponding to Wi = 2/3
(ε̇min = 2/3τ ) and Wi = 1 (ε̇min = 1/τ ), which coincide with the two distinct limits to the thinning dynamics
in the elasto-capillary (EC) regime (Keshavarz et al. 2015; Mathues et al. 2018), are also shown. The regions
I–IV identified in (a) map directly onto those discussed in figures 6 and 8(a). Points labelled P1–P4 in (b)
correspond to the ends of regions I–IV in (a), respectively.

I–IV, identified in figure 9(a). Point P1 is associated with the end of region I in which
the influence of the exit nozzle on the thinning jet radius is felt, while P2 coincides
with the end of region II and exponential growth in disturbances evident in figure 8(a).
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Elastocapillary thinning in viscoelastic jets

In the transition regime (region III), the local dimensionless strain rate Wi associated
with the evolution in the local minima min1 and min2 passes through a local maximum
and then decreases until point P3, which corresponds to the end of region III. Point
P3 is characterized by a local value of the Weissenberg number, which we will denote
generically by WiEC, that remains approximately constant for a period of time whose
duration depends on We and L2, as will be discussed below, and heralds the transition to the
elasto-capillary regime in region IV. Towards the end of region IV, the polymer molecules
reach their maximum extensibility, and the local Weissenberg number undergoes a steady
increase. In this regime, BOAS structures are also formed, reflecting the complex balance
between capillary and elastic stresses. For the relatively large We and small L2 values used
to generate figure 9(b), we see that the plateau value WiEC ≈ 1 is established only for a
narrow time interval, then the strain rate steadily increases until point P4, which coincides
with the end of region IV, when the finite extensibility limit is reached and the local strain
rate diverges as the local radius of the thread decreases to zero.

We note that data from the minimum radius associated with the necks established behind
five different Lagrangian primary beads (labelled L → P) are shown in figures 9(a,b). It
is clear that the jet exhibits self-similar thinning dynamics in the initial inertio-capillary
regime; this is evidenced by the overlapping curves in figure 9(a) in regions I and II. If
nonlinear elastic effects were not important, then the linear perturbations to the jet radius
would continue to grow exponentially until the radius locally approaches zero (according
to (3.1)) and the local strain rate ε̇min = −(2/Rmin)(dRmin/dt) would evolve as indicated
by the curves labelled ‘linear stability’ in figures 9(a,b). However, as nonlinear viscoelastic
effects in the fluid thread become important, the rate of thinning decreases, and the local
strain rate passes through a maximum labelled shortly after point P2. The local thread
dynamics are also self-similar in both the transition region and the elasto-capillary regime,
as demonstrated by the superposition of curves in regions III and IV, as well as P2 and P3
points in figures 9(a,b), respectively. It is also interesting to note that the local maximum
in the strain rate associated with the minimum radius denoted min1 (the leading ligament
ahead of the forming satellite bead) is higher than the one associated with min2, thereby
highlighting the role of the momentum flux in the jet.

Figures 10(a,b) show the dynamical evolution of the axial velocity along the centreline
and the polymeric stress component at the jet centreline for two Lagrangian points
corresponding to min1 and min2. Also shown are snapshots of the axial velocity contours
and polymeric stress fields taken at times that correspond to regions I, II, III and IV, as
defined in figures 6 and 9(a). The centerline velocity associated with both min1 and min2,
which correspond to the same Lagrangian element in the initial stages (regions I and II),
first undergoes a decrease in region I as the jet exits the nozzle and the velocity profile
rearranges, followed by a slow increase in region II associated with local perturbations
growing according to the linear stability analysis. In the transition regime (region III),
the two local minima in the thread radius behind each primary bead start following
different dynamics as the BOAS structure starts forming: the axial velocity associated with
point min1 (min2) decreases (increases) until reaching a minimum (maximum). Shortly
after reaching the local extremal value, the axial velocity in figure 9(a) then exhibits an
approximately linear decrease (increase) during region IV as each part of the thinning jet
approaches a constant velocity.

In contrast, the axial component of the polymeric stress shown on a semi-log scale in
figure 10(b) exhibits a more complex and non-uniform rise over time, with high rates of
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Figure 10. Temporal variation of (a) the axial velocity component, and (b) the axial component of the elastic
stress. Both are evaluated at the jet centreline using data from the local minima associated with the necks
as depicted in figure 7, considering the simulation parameters provided in table 2. Also shown in (a) and
(b) are profiles that depict the shape of the jet, coloured by contours indicating the magnitudes of the axial
components of the velocity and the elastic stress, respectively, during times 0 < t − tp ≤ 1, 1 < t − tp ≤ 4.4,
4.4 < t − tp ≤ 6.2 and 6.2 < t − tp ≤ 7.8 that correspond to regions I–IV presented in figure 9(a), respectively.
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Elastocapillary thinning in viscoelastic jets

increase at the exit plane of the nozzle in region I and in region III, while a slower increase
occurs in the region of linear instability (region II). In the elasto-capillary regime (region
IV), the exponential increase in tensile stress within the thinning filament over time is
seen clearly. As expected, this results in the largest values of the axial component of the
polymeric stress in the thin ligament (Clasen et al. 2006; Deblais et al. 2020; Eggers
et al. 2020). Finally, beyond P4, the finite extensibility limit is approached, and the radius
decreases to zero as the local strain rate and resulting stress in the thinning thread diverge.
Once again, we note that all the data obtained from the five individual Lagrangian local
necked regions used to generate figure 10 collapse to form a master curve for the evolving
axial velocity and stress components at the jet centreline, highlighting the periodicity and
self-similarity of the established dynamics.

In contrast to the free viscoelastic filament undergoing thinning in the absence of a
mean flow (the We = 0 case) presented recently in Turkoz et al. (2018), in the jetting
process for a low to moderate Weber number, the momentum flux of the ejected fluid at the
nozzle exit stimulates the exponential decrease of the jet radius and the development of a
fore–aft asymmetric BOAS structure, as indicated by the distinct evolution of the two local
minima that separate the formation of the viscoelastic ligament in figure 10(a). Below, we
further investigate the influence of the injection flow rate and the finite extensibility of
the polymeric chains on the rate of thinning during the elasto-capillary regime and the
associated pinch-off dynamics.

3.4. Effect of inertia and polymer chain finite extensibility
In figure 11, we show the effect of altering the injection rate on the resulting jet dynamics
by varying the Weber number; we plot snapshots of the interface shape coloured by the
magnitude of the axial polymeric stress component field for We = 8, 16 and 36, with the
rest of the parameters remaining unchanged from those shown in table 2. The smallest
Weber number studied was chosen to be larger than that associated with the so-called
‘gobbling limit’ (typically seen at We ≈ 2; Clasen et al. 2009). It is seen that the jet
length increases with We, and the thinning dynamics is accompanied by a concomitant
rise in the number of undulations that develop into necks with longer strings separating
the formed beads. According to the dispersion curves in figure 8(b), the magnitude of the
Weber number has a weak influence on the instability growth rates, and the perturbations
are therefore advected further away from the nozzle before entering the elasto-capillary
regime when the Weber number is increased. Furthermore, the size of the satellite drops
along the ligaments interconnecting the primary drops also increases with We, and their
position is shifted downstream towards the leading bead; the size of the primary beads,
however, appears to be only weakly dependent on We. Moreover, from the contour plots of
the elastic stresses shown in figure 11, it is clear that the increase in We results in higher
polymeric stresses within the nozzle and correspondingly at the exit, but these largely relax
within a few jet diameters, and there is only a slight increase in the stress levels attained in
the thin viscoelastic threads.

We also study the temporal evolution in the local dimensionless strain rate
Wi(t) = τ ε̇min(t) in figure 12, for Weber numbers 8, 16 and 36, with the rest of the
parameters remaining unchanged from figure 10. As the profiles in figure 10 are identical
for each neck established behind a formed primary bead labelled L, M, N, . . ., we focus
on only one local neck henceforth in figure 12. We also consider the flow dynamics only
after dimensionless times (t − tp ≥ 1) during which the effect of the nozzle exit becomes
less pronounced. In each case, it is clear that the evolution in the local strain rate in a fluid
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Figure 11. The effect of fluid inertia on the interfacial thinning dynamics: contour plots of the jet shape
coloured by the magnitude of the axial component of the elastic stress for We = 8, 16 and 36, at t = 53.6,
47.8 and 29.2, respectively, with the rest of the parameters remaining unchanged from table 2. Also shown
are enlarged views of the leading bead and the interconnecting ligament regions for each value of the Weber
number.

3.0
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Figure 12. The effect of increasing the relative significance of fluid inertia (by increasing We) on the temporal
evolution of the local dimensionless strain rate Wi(t) = τ ε̇min(t) in the thinning neck of the fluid jet, for We = 8,
16 and 36, with the rest of the parameters remaining unchanged from table 2.

neck, as it evolves along the jet, shows all the features documented in figure 9, with a slow
increase in Wi(t) as the disturbances grow, and a local maximum in the deformation rate
before the necking material element enters the elasto-capillary (EC) regime (region IV) in
which the Weissenberg number approaches a locally constant value that we denote WiEC.
However, it can be seen that decreasing the level of inertia in the jet results in the approach
to a plateau value WiEC = 2/3, in marked contrast to the We = 16 and 36 cases where
WiEC = 1. It is also observed that increasing the Weber number leads to larger values of
the local maxima in the Weissenberg number obtained after point P2, which coincides
with the transition to the elasto-capillary regime. It is also clear that in the case of the
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Figure 13. The effect of increasing the extensibility parameter L2 on the temporal evolution of the local
dimensionless strain rate Wi(t) = τ ε̇min(t), for L2 = 900, 2500, 10 000 and We = 16, with the rest of
the parameters remaining unchanged from table 2. Also shown for comparison is the Oldroyd-B limit
corresponding to L2 → ∞.

smaller Weber number (We = 8), the transition from the characteristic points labelled P3
and P4 in figure 10 is more gradual compared to We = 16 and 36.

In figure 13, we show how the dimensionless strain rate in a representative fluid neck
varies with the extensibility parameter L2 at Weber number We = 16 (the rest of the
parameters remain unchanged from table 2). It is clear that an increase in the extensibility
of the polymeric chains beyond L2 = 900 leads to the strain rate in the elasto-capillary
regime converging progressively to a plateau of value WiEC = 2/3 for a time duration that
appears to be weakly dependent on L2. In contrast, for L2 = 900, as discussed above (see
figure 9b), the limited extensibility of the chains prevents a full elasto-capillary balance
from being established, and there is a rapid divergence in the local strain rate from point
P3 towards P4, with the WiEC = 2/3 plateau never being approached. Moreover, the local
peaks in Wi, which coincide with the transition to the elasto-capillary balance, increase
with L2, reaching saturation as the Hookean dumbbell limit L2 → ∞ is approached.

In figure 14, we construct a flow map in (We, L2) space in which we collect the results
presented in figures 12 and 13. The map is coloured by the magnitude of WiEC established
during the elasto-capillary balance. The values of WiEC are computed from the strain
rate in the necking filament at the onset of the elasto-capillary regime, and serve to
highlight whether or not the thinning dynamics are significantly accelerated beyond the
value WiEC = 2/3 expected in the classic elasto-capillary balance (Entov & Hinch 1997)
depending on We and L2.

Additional simulations are performed over a range of We and L2 to cover an extended
region of parameter space from low to moderate jet speeds, and from moderate to large
polymer chain extensibilities. As indicated by the arrows in figure 14, pronounced BOAS
structures are promoted for large We, associated with longer jet lengths with multiple
beads, whilst high values of L2 enable large elastic stresses to develop in the jet and lead
to the formation of longer and thinner ligaments without satellite droplets attached, as
well as slower thinning dynamics. When the axial momentum in the jet is small and the
breakup length of the jet is characterized by a large value of the polymer finite extensibility
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Figure 14. Flow regime map in (We, L2) parameter space coloured by the magnitude of the Weissenberg
number at the start of the elasto-capillary regime, WiEC, which corresponds to point P3 labelled in figure 9(b).
The four contour plots of the jet profile that highlight the shape of the jet for low and high values of We and L2

are coloured by the magnitude of the axial component of the elastic stress. The green triangles correspond to
the numerical simulations that have been performed here to capture how the magnitude of WiEC varies in the
(We, L2) space. The rest of the parameters are given in table 2.

parameter, an elasto-capillary balance with WiEC = 2/3 (deep red colours) is established,
similar to the dynamics realized in the CaBER device (Entov & Hinch 1997; Anna et al.
2001). However, when the axial momentum in the jet is high, the length to breakup is
large, and the finite extensibility of the polymeric chains is small, the asymmetric force
balance of Clasen et al. (2009) and Mathues et al. (2018) applies, resulting in a faster local
stretching rate such that WiEC ≈ 1 (yellow colour contours).

4. Conclusions

We have studied the thinning and breakup of an axisymmetric viscoelastic jet issuing
from a nozzle using the FENE-P constitutive relation that accounts for finite polymer
chain extensibility. We have used the open-source code Basilisk, which is based on a
volume-of-fluid interface-capturing methodology and utilizes adaptive mesh refinement
for accurate and efficient free-surface flow solutions. The free-surface evolution of the jet
is coupled to the upstream flow and the initial polymeric stress development inside the
nozzle by employing a simplified immersed boundary method. The numerical solutions of
the local flow within the nozzle are in excellent agreement with analytical solutions for the
cases of steady and pulsating flows (Womersley 1955).

Our numerical simulations of the interfacial dynamics capture the development of
beads-on-a-string (BOAS) structures (Clasen et al. 2006) for fixed Ohnesorge and Deborah
numbers over a range of Weber numbers as well as for a range of finite polymer
chain extensibilities, representative of real polymer solutions. We have highlighted the
development of four local regions along the jet axis. The initial growth of small-amplitude
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perturbations is consistent with linear stability theory sufficiently close to the nozzle
inlet, and gives way to nonlinear dynamics further downstream where the jet evolution
is first governed by the interplay of capillary, inertial and viscous forces, and subsequently
dominated by an elasto-capillary balance characterized by the formation of a distinct
BOAS structure. We have also successfully captured the exponential thinning of the thin
highly-stretched ligaments that form between the primary beads. This elasto-capillary
thinning regime is short-lived for small polymer chain extensibilities but becomes more
pronounced for high L2, and the corresponding polymeric tensile stresses grow larger and
larger, in the limit of infinite chain extensibility. In this limit, adaptive mesh resolution
becomes essential and we are able to simulate the time-dependent evolution of the jet down
to minimum feature sizes Rmin ≈ 0.006R0 and jet lengths as large as �jet,max ≈ 100R0 (see
Appendix B for additional details).

Finally, we have explored in detail the local thinning dynamics of the slender ligaments
that develop between the BOAS structures that evolve along the jet to resolve differences
in previous reports that affect the determination of a characteristic fluid relaxation time.
We construct a flow map in Weber number and chain extensibility space, and calculate
the variations in the local dimensionless extension rate WiEC(We, L2). This map helps
us to identify regions of parameter space characterized by the presence or absence of
satellite drop formation, the development of very long viscoelastic jets with pronounced
beads separated by thin strings, and how the thinning dynamics in the ligaments may vary
from WiEC = 2/3 to WiEC = 1. Understanding this systematic evolution is essential if an
accurate value of the characteristic relaxation time in an unknown fluid is to be extracted
from measurements of ligament thinning in a jetting rheometer or inkjet device (Morrison
& Harlen 2010; Keshavarz et al. 2015; Mathues et al. 2018; Xu et al. 2021).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.787.
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Appendix A. Mesh convergence study

It is essential to confirm that a specified mesh resolution is adequate to capture all the
dynamics of interest, in particular, the point P3 labelled in figure 9(b) or equivalently the
value of WiEC that determines the local rate of filament thinning in the elasto-capillary
regime. To achieve the required level of resolution, we compute and present in figure 15
the evolution in Rmin(t) and Wi(t) for a lower and a higher maximum level of refinement,
LVL = 13 and LVL = 15, respectively. We note here that each increase of LVL corresponds
to a decrease in the minimum cell size by a factor of 2. For example, LVL = 14 and LVL =
15 correspond to �x = 0.006 and �x = 0.003, respectively. Figure 15(a) shows that there
is a significant influence of the grid resolution on the nonlinear elasto-capillary thinning
regime (region IV). Specifically, the local rate of thinning in the thread radius for LVL = 13
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Figure 15. Mesh convergence study showing the evolution of the minimum neck radius Rmin(t) for a
representative Lagrangian element with three distinct maximum levels of refinement (LVL = 13, 14, 15) for
the parameters shown in table 2; results are presented through the temporal evolution of (a) the minimum
radius of the jet Rmin, and (b) the local dimensionless strain rate Wi = τ ε̇min(t), to evaluate the resolution of
the point P3 where the local dimensionless strain rate Wi(t) passes through a minimum.

is excessively rapid, and pinch-off is approached too rapidly. The change in the slope is
large as we move to a higher level of resolution (LVL = 14). However, increasing further
to LVL = 15 does not seem to change the observed dynamics significantly, particularly
regarding the local exponential decrease of the minimum radius in the elasto-capillary
regime. An interesting difference between LVL = 14 and LVL = 15 is observed only very
close to the limit of the finite extensibility of the polymer chains. A higher level of
refinement delays the filament breakup and ensures a slightly longer-lasting filament as
the finite extensibility effects that lead to the final breakup become significant later at
t − tp ≈ 8.4 with LVL = 15 compared to t − tp ≈ 7.8 with LVL = 14. Additionally, the
enhanced resolution also results in a better-resolved terminal linear thinning regime where
finite extensibility effects dominate. This observation can be confirmed by the evolution
in the local Weissenberg number shown in figure 15(b). While LVL = 13 refinement
definitely leads to faster thinning dynamics, it does not allow for meaningful quantitative
analysis; the higher resolution of the LVL = 14 and LVL = 15 simulations leads to good
overlap for the two minima min1 and min2, in particular at point P3. Nonetheless,
an even closer inspection shows that the point P4 is not identical even at these two
levels of resolution. Therefore, LVL = 14 refinement is sufficient for computations of the
exponential elasto-capillary regime, whereas LVL = 15 refinement is required (but is also
more computationally challenging) for analysis of the terminal finite extensibility regime
that dominates the ligament dynamics immediately before pinch-off.

Appendix B. Linear stability analysis

Here, we provide details of the (temporal) linear stability analysis discussed in § 3.2
in connection with region II that is identified in figure 8. Here, we focus on the real
part of the complex dispersion equation as the analysis is restricted to the examination
of purely temporal instabilities of the jet. Following the substitution of small-amplitude
perturbations in the filament radius, the linearization of the dimensionless mass and
momentum conservation equations in cylindrical coordinates, and the incorporation of
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the kinematic and dynamic interfacial boundary conditions, the use of normal mode
analysis leads to the following dispersion relationship for an axisymmetric Oldroyd-B
jet, corresponding to a dilute polymer solution with infinite chain extensibility (L2 → ∞;
Brenn et al. 2000):

Ω2
r

k
2

[
I0(k)
I1(k)

+ ρg

ρl

K0(k)
K1(k)

]
+ Ωrk2 Oh

1 + β De Ωr

1 + De Ωr

×
[

2k
I0(k)
I1(k)

(
1 + k2 Oh

Ωr

1 + β De Ωr

1 + De Ωr

)

− 1 − 2l
I0(l)
I1(l)

k2 Oh
Ωr

1 + β De Ωr

1 + De Ωr

]

= k2

2
(1 − k2) + C

ρg

ρl
k3 We

K0(k)
K1(k)

. (B1)

Here, Ωr > 0 (Ωr < 0) indicates instability (stability), In and Kn are the modified Bessel
functions, C is an empirical correction factor to express the aerodynamic effects on
the jet (here we choose C = 0.175; Brenn et al. 2000; Keshavarz et al. 2015), and
l is a dimensionless modified wavenumber given by l2 = k2 + (1 + De (Ω + ikU0))/

(Oh (1 + βDe (Ω + ikU0))). The intrinsic Deborah number is De = τ/tR, the Ohnesorge
number is Oh = η0/

√
ρR0γ , and the solvent viscosity ratio is β = ηs/η0, with the

Rayleigh time tR =
√

ρR3
0/γ and the initial radius of the jet R0 being the characteristic

time and length scales, respectively. Equation (B1) can be solved numerically with a simple
MATLAB solver at specific values of De, Oh and We for a range of wavenumbers, with
the dimensionless growth rate Ωr being the unknown. Typical results are presented in
figure 8(b): in the inviscid limit, the maximum growth rate Ωr ≈ 0.34 is at k ≈ 0.693.
The first effect of viscosity is to stabilize the jet partially, and the most unstable growth
rate reduces to Ωr ≈ 0.23 at k ≈ 0.6. In contrast, linear viscoelastic effects are observed
to render the jet slightly more unstable than the corresponding Newtonian viscous jet, with
the most unstable growth rate increasing to Ωr ≈ 0.24 at k ≈ 0.6.
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