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General Principles

1.1 Introduction

Magnetohydrodynamics is concerned with the study of the interaction of a fluid with a
magnetic field. It takes as its philosophy a continuum approach, describing its phenomena
in macroscopic terms rather than in terms of particle motions. Thus, it is close in spirit to
fluid mechanics, which studies the properties of fluids from such a continuum viewpoint.
Magnetohydrodynamics – commonly abbreviated to MHD – may also be viewed from a
particle approach, discussing the motions of charged particles (electrons or ions) in the
presence of a magnetic field. This is the realm of plasma physics. In our account here we
will consider the subject principally from the macroscopic viewpoint.

The description of magnetic effects in magnetohydrodynamics is rooted in the celebrated
equations of electromagnetism formulated by James Clerk Maxwell in 1864, though it is
generally only the pre-Maxwellian form of the equations of electromagnetism that are used.
The displacement current introduced by Maxwell is ignored on the basis that rapidly vary-
ing phenomena, such as electromagnetic waves, are best described from an electromagnetic
viewpoint. Thus there are no electromagnetic waves or light in magnetohydrodynamics.
Instead, the subject is concerned with relatively slow phenomena, such as sound waves or
convective flows or field generation by dynamo action. It is to such phenomena that a fluid
approach is particularly suited.

By a fluid we mean a gas, plasma or liquid that may be treated from a continuum
approach. In magnetohydrodynamics the fluid is a conductor of electricity, and motions
within the fluid occur in the presence of an applied magnetic field. The current that flows
throughout the volume of the fluid is determined by Ampere’s law which, when expressed
in partial differential equation form, relates the current density to the ‘curl’ (a vector oper-
ator) of the magnetic field. Motions in the fluid are subject to a magnetic force, the Lorentz
force (or j × B force), arising from the current density j and the magnetic (induction) field
B; this force, together with any others that may act (such as pressure gradients or gravity),
serves to define the motion of the fluid.

Temporal changes in the magnetic field B are determined by Faraday’s law of induction,
which links such changes in B to the ‘curl’ of the electric field E. The electric field is in
turn related to the current density j through Ohm’s law, expressed in a form appropriate for
a moving conductor (the fluid). Motions within the fluid are thus inextricably linked to the
magnetic field embedded within it, so that movements of the fluid entail movements in the
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2 General Principles

field, and vice versa. It is this intimate link of fluid and field that gives magnetohydrody-
namics its distinctive nature.

Magnetohydrodynamics, then, is the offspring from a marriage of fluid mechanics and
electromagnetism. It was an offspring that took its time in developing. The basic physical
laws and principles of its parents were well known by the end of the nineteenth century, but
it was well into the twentieth century before the stirrings of magnetohydrodynamics took
shape and then at first only in a somewhat sporadic fashion. By the 1940s, however, the
subject was in full growth and has continued this way ever since. A brief account of the
early years of development of magnetohydrodynamics is provided in Cowling (1962).

The initially slow development of magnetohydrodynamics is in some ways surprising,
given the pedigree of its parents. But early experiments with laboratory fluids such as mer-
cury or sodium, aimed at investigating magnetohydrodynamic phenomena, were fraught
with difficulties, principally connected with the liquids themselves and the maintenance
of sufficiently strong magnetic fields. Strong ohmic attenuation of motions made com-
parison between theory and experiment somewhat qualitative, though reasonable agree-
ment was obtained. However, it was through the application of magnetohydrodynamics
to large-scale phenomena, such as exhibited in the magnetic fields of the Earth and its
magnetosphere, the Sun and our Galaxy, that a spur to sustained development was pro-
vided. That spur has continued to the present day, increasing to ever greater effect as
space and ground-based observations of, most notably, the Sun and the Earth’s magne-
tosphere give firm direction to magnetohydrodynamics. Moreover, the laboratory fluid has
not been left behind, as detailed studies of fusion plasmas have revealed the utility of a
magnetohydrodynamic description of certain phenomena as a valuable addition to a plasma
approach.

An early advance in magnetohydrodynamics, though paradoxically for some time it
seemed more like a backward step, was made by T. G. Cowling who showed, in 1934,
that a dynamo must have a non-symmetric component (Cowling 1934). That a magneto-
hydrodynamic fluid could support a wave motion, distinct from the familiar electromag-
netic and sound waves of the parents, was not however realized until the early 1940s.
In a brief half-page letter to the journal Nature, H. Alfvén showed that in a perfectly
conducting incompressible fluid a transverse wave may propagate along a homogeneous
magnetic field; the speed of the wave was proportional to the strength of the applied
magnetic field and inversely proportional to the square root of the mass density of the
fluid in which the field was embedded (Alfvén 1942a, b). Alfvén termed this wave an
‘electromagnetic-hydrodynamic wave’, but it later became apparent that the Alfvén wave
was born! It seems that the term ‘Alfvén wave’ entered into use with the work of V. C. A.
Ferraro and J. W. Dungey (Ferraro 1954; Dungey 1954). For a recent general discussion
of Alfvén’s contribution to magnetohydrodynamic waves, see Russell (2018). Alfvén was
later, in 1950, awarded the Nobel prize for his contributions to magnetohydrodynamics. In
his 1942 work Alfvén made the suggestion that the observed latitudinal drift of sunspots
on the Sun’s surface towards the equator may be a wave phenomenon controlled by wave
motions (Alfvén waves) deep below the solar surface (Alfvén, 1942a). This direct linkage
of sunspot drift with Alfvén waves is not thought likely now but magnetohydrodynamic
waves do arise in sunspots themselves.
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Alfvén did not discuss what happens to wave motions in a fluid that is compressible. That
extension, particularly important for astrophysical applications, was left to another brief
letter to Nature, written by N. Herlofson (1950), and a more extensive treatment by H. C.
van de Hulst (1951). Herlofson and van de Hulst made the remarkable theoretical discovery
that in a magnetohydrodynamic medium there are in fact three modes of propagation open
to the system: the Alfvén wave (uninfluenced by the compressibility of the medium) and
two compressible waves. There are three distinct wave speeds associated with these modes,
and moreover these speeds depend upon the direction of propagation of the wave. In other
words, magnetohydrodynamic waves are anisotropic. During the 1950s and early 60s, the
theoretical properties of these waves were further explored; see, for example, Friedrichs
and Kranzer (1958) and Lighthill (1960).

More recently, developments in the subject of wave propagation have been motivated
on a number of fronts: by the possibility of heating of laboratory plasmas by magnetohy-
drodynamic waves; by the observations of pulsations in the magnetosphere; by the direct
observation of waves in the Sun’s corona and their use in coronal seismology; and by the
realization that astrophysical plasmas generally, but most clearly the solar atmosphere, are
likely to be strongly inhomogeneous. Perhaps above all has been the spur provided by
the direct observations of magnetohydrodynamic waves in the solar corona, which has
undoubtedly been a powerful stimulus in the further development of theoretical aspects.
Underpinning much of these theoretical developments is the detailed study of magneto-
hydrodynamic wave motions in structured magnetic atmospheres, which are significantly
different from those of a uniform medium, though an understanding of this simpler case is,
of course, the basis for any study of a non-uniform medium. In any case, structured media
provide wave guides for magnetohydrodynamic waves.

We end this section with a brief comment about units. We are adopting the mks
[metre kilogram second] system of units in our treatment, with electromagnetic quantities
expressed in SI [System Internationale, rationalized mks] units. In magnetohydrodynamics
it is convenient to regard the magnetic field B and the velocity u as the primary variables;
other variables, such as the current density j and electric field E, are then of secondary
interest, following from a knowledge of the primary variables if and when required.
Generally, then, of the electromagnetic variables, in applications or illustrations of our
equations we will only quote values of the magnetic field strength B (= |B|); in SI units, B
is expressed in tesla (T). However, it frequently proves convenient to quote B in gauss (G),
noting that 1 T = 104 G = 10 kG.

1.2 A Variety of Plasmas

Magnetohydrodynamics has found application to a wide variety of plasmas, extending from
the small scale of the laboratory plasma to the vast scale of the galactic medium. The fact
that the Earth – and indeed many of the planets – has a magnetic field has prompted the
development of magnetohydrodynamic theories aimed at describing its maintenance and
temporal variation. This is the magnetohydrodynamic dynamo problem (see, for example,
Moffatt 1978; Parker 1979a). In particular, extensive developments have taken place in
connection with the Sun’s plasma: in its interior (where magnetic fields are both stored
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and manipulated) through to its surface (where fields are observed and measured in great
detail); into the tenuous but enigmatic coronal outer atmosphere; and on into the solar
wind that blows past the Earth and the other planets, interacting with their magnetic fields.
The magnetospheres that envelop the magnetized planets are ever subject to variations in
the solar wind, variations that commonly have their origin in events in the Sun’s lower
atmosphere. The Earth’s magnetosphere, in particular, displays an array of phenomena
that may be modelled using MHD and exhibits a variety of oscillations (Walker 2005;
Wright and Mann 2006; Southwood, Cowley and Mitton 2015). Indeed, it is profitable
to compare and contrast oscillatory phenomena in the Earth’s magnetosphere and in the
Sun’s atmosphere (Nakariakov et al. 2016). However, our chief interest here is the solar
atmosphere. Accordingly, we turn now to a brief overview of the Sun.

1.2.1 The Sun

The most distinctive property of the Sun as a plasma is its size. With a radius of R◦ =
6.96 × 108 m, the Sun displays a wide variety of plasma conditions ranging from its hot
and dense interior, out through its visible and relatively cool surface, and on into its hot but
tenuous atmosphere. Gravitational stratification makes for a complicated plasma, doubly
compounded by the fact that the Sun possesses a complex and often dynamic magnetic
field. Magnetism is the cause of almost all the exotic phenomena displayed by the Sun;
for without a magnetic field the Sun would be a very quiet and relatively uninteresting
plasma indeed. The possession of a magnetic field is a property it shares with a wide range
of stars, many of which must surely display yet more exotic phenomena than we see on
the Sun, simply by virtue of their stronger magnetic fields; for to detect that a star has a
magnetic field, that field must be about 102 times stronger than occurs in the Sun viewed
as a star.

The Sun’s size and the variety of phenomena it displays has led us to regard the plasma
as made up of separate regions. This is a convenient view to take, though one should
not overlook the fact that these different regions are connected to one another. The Sun’s
interior, the region below the visible surface, is divided into three zones: an inner core,
where nuclear reactions maintain the heat supply; a radiative zone, where the generated heat
is distributed outwards by radiative transport; and, occupying the immediate layers below
the visible surface, a convection zone, where heat transport is in the form of convective
cells. Blending in with the top of the convection zone is the photosphere, the visible layer
of the solar surface. The photosphere extends upwards for a height of about 500 km by
which the Sun’s temperature has fallen to its lowest value, of about 4200 K. This is the
temperature minimum. Higher still in the atmosphere, the temperature rises, at first slowly
in the chromosphere but then rapidly as we enter the corona. The temperature of the
chromosphere ranges from the temperature minimum value to some 5×104 K whereafter it
rises steeply in a thin layer, known as the transition region, to the order of 106 K. This hot
outer region is known as the corona. Gravitational stratification ensures that the plasma
density falls off with height, so the chromosphere and more especially the corona are
tenuous plasmas in comparison with the photosphere.
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Both the chromosphere and the corona are dominated by magnetism. That the Sun has a
magnetic field was not known until 1908, when G. E. Hale used the then newly discovered
Zeeman effect to measure the magnetic field of sunspots (Hale 1908), the dark blemishes
frequently visible on the solar surface (the photosphere). Hale obtained field strengths of
typically 3000 G. The field is sufficiently strong and covers a sufficiently large region –
about 104 km across – that it locally modifies the convective transport of heat, resulting in
a cool patch in the photosphere.

Sunspots are magnetically complex structures. They are frequently observed in groups,
where their magnetism tends to blend together to produce complex field patterns in
the solar atmosphere that are somewhat similar to the patterns made by iron filings
one sees around bar magnets in the school laboratory. But even in an isolated spot
the field patterns detectable in the photosphere and chromosphere are complex. There
are two distinct regions of a mature spot: its central cool umbra where the field is
strongest and is predominantly vertical, and a surrounding penumbra where the field
is weaker and has bent over towards the horizontal. The temperature in the umbra
is typically 4000 K, compared with about 5000 K in the penumbra and 6000 K in the
photosphere.

The magnetism measured in sunspots at the solar surface is presumed to be generated
and manipulated by flows deep within the interior. The solar interior, made up of about 90%
hydrogen and 10% helium (there are also small amounts of heavier elements), is believed to
consist of an inner core where nuclear reactions keep the plasma exceedingly hot, at some
1.6 × 107 K. The inner core occupies some 25% of the solar radius. The region outside
the inner core and extending out to about 70% of the solar radius is the radiative zone, a
region where energy transport is predominantly by radiation. The outer 30% of the solar
interior is occupied by the convection zone, a region where convective cells carry the heat
at the bottom of this zone out to the cooler solar surface some 2 × 108 m above. There
are several scales of convection operating. The two most distinctive convective patterns
of flow are the supergranules and the granules. Granules have horizontal sizes ranging
between 200 km and 2000 km, with 1000 km providing a characteristic scale. The flows in
granules are fairly vigorous, at some 1−3 km s−1 (about 2000−6000 miles per hour), to
be compared with terrestrial wind speeds in hurricanes of perhaps 150 miles per hour and
the Earth’s record wind speed of 230 miles per hour recorded on the top of Mt Washington
in the USA. Supergranules, with a horizontal scale of about 3 × 104 km and so typically
30 times bigger than the granules, have flows of 0.1−0.4 km s−1. Both these flow patterns
are detectable in the Sun’s surface layers, with the granules enveloped by the supergranules.
It is at the base of the convection zone and just below that magnetic field lines are believed
to be manipulated by Coriolis forces and brought to the solar surface through buoyancy
effects.

Sunspots are the obvious locations of magnetism in the solar surface. But even away
from sunspots there are smaller-scale concentrations of magnetic field. The smallest of
these concentrations are the intense magnetic flux tubes, which typically occupy regions
about 200 km across wherein magnetic fields of some 1−2 kG strength are confined by
external gas pressure forces. The intense tubes are generally located in the regions between
convective cells where downdraughts occur. Outside of sunspots, over 90% of the magnetic
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flux appearing in the Sun’s surface layers is in the form of concentrated flux tubes. Sunspots
are known to support several types of wave motion.

Above the photosphere the concentrations of magnetic field, be they in the small-scale
intense flux tubes or the larger scale sunspots, rapidly spread out to fill the available space.
This is simply a consequence of stratification. At the photospheric level the gas pressure
is sufficient to confine the magnetic fields, once formed in a concentrated form. But the
confining external pressure falls off exponentially fast from the photosphere to the chromo-
sphere, decreasing by a factor of e (= 2.178 . . .), to some 37% of its value, over a distance
of about 150 km, and this permits the confined magnetic fields to expand out in immediate
response. By the mid-chromosphere the fields have filled the atmosphere and at coronal
levels completely dominate the nature of the plasma.

The coronal plasma is characterized by its low density – in terrestrial terms it would be
regarded as almost a vacuum – and high temperature. The high temperature of the corona,
in excess of 106 K, was discovered in the 1930s and it remains one of the great puzzles
of solar physics: what effects conspire to reverse the strong decline in temperature from
the interior of the Sun to its surface, producing an extremely hot outer atmosphere? The
answer to this question is important not only for the Sun but for stellar physics in general,
for a wide variety of stars are believed to possess a corona.

Observations of the Sun’s corona from space have revealed that in X-ray and EUV
wavelengths the corona appears not as an amorphous hot glow, as was commonly thought
prior to the Skylab mission in the 1970s, but as a complex and structured atmosphere;
for an extensive discussion see Aschwanden (2004) and Priest (2014). The basis for this
structure is the ubiquitous presence of magnetism in the corona. Despite the overall com-
plexity of the coronal plasma, it would appear that there are fundamentally two different
coronae: regions in which the magnetic field lines are curved in the form of loops or
arcades with their ends anchored in the dense photosphere, and regions where the field
lines emanate from the photosphere but are then carried out into space. The regions with
re-entrant magnetic fields – the magnetic loops – are the hottest and most dense parts of
the corona; they glow the brightest in X-ray and EUV pictures of the Sun. These are the
active regions. They are characterized by temperatures of 2−3 × 106 K, plasma densities
of 1016 particles per m3 and have magnetic field strengths of about 102 G. The magnetic
field, with its footpoints tied to the photosphere, confines the coronal plasma and heats
it to its high temperature. By contrast, where the field is open the plasma blows out into
space; these are the coronal holes, the source regions of the high-speed solar wind that
blows from the Sun and flows on past the Earth. The plasma density in coronal holes,
at 1014 particles per m3, is two orders of magnitude less dense than that in the active
regions. The plasma is also cooler, at 1.5−2 × 106 K, and the open magnetic field, with
a strength of around 10 G, is a factor of 10 weaker than the field in active regions. These,
then, are the two fundamentally different regions of the corona. Of particular interest
here is the discovery by the space instrument TRACE (Transition Region And Coronal
Explorer) that coronal loops support a variety of oscillations. Oscillations carry information
about the medium in which they occur; such information may be used to obtain indirectly
solar quantities that are otherwise difficult to measure. This is the new subject of coronal
seismology.
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There are, of course, many other structures in the corona in addition to the two fun-
damental forms. Of particular interest are quiescent prominences. In a sense, quiescent
prominences are bits of the chromosphere that find themselves in a coronal environment.
They are cool, dense structures, sometimes resembling a thin sheet of dense plasma, mag-
ically suspended in a tenuous corona. The source for their support is the magnetic field
that threads through the prominence. They are generally passive structures, surviving for
long periods (perhaps months) but then dramatically erupting, only to reform in much the
same location shortly thereafter. In photographs of the chromosphere and corona they show
up as thin (perhaps 6000 km across), filament-like, dark curves winding their way (for
some 2 × 104 km) through the local magnetic structure; their height is about 5 × 104 km.
Prominences have a typical density of 1017 m−3, some two orders of magnitude larger
than in their coronal surroundings, and a typical temperature of 7000 K. (There is evidence
that the corona may be locally somewhat depleted in density in the neighbourhood of
a prominence.) Quiescent prominences are observed to oscillate, a fact which may have
important implications for coronal and prominence seismology.

1.3 The Magnetohydrodynamic Equations

We have remarked above that magnetohydrodynamics is a combination of fluid mechanics
and electromagnetism with Maxwell’s displacement current neglected. Here we describe
the equations of this subject. We do not provide a derivation of these equations from basic
principles; that route has been fully described elsewhere. Instead, we prefer to simply
write down each of the relevant equations and to add some explanatory comments to
illustrate various features of the equations. Derivations and discussions of the properties
of the equations are given in, for example, Alfvén (1950), Cowling (1957, 1976), Kendall
and Plumpton (1964), Ferraro & Plumpton (1966), Jeffrey (1966), P. H. Roberts (1967),
Boyd and Sanderson (1969, 2003), Parker (1979a, 2007) and Priest (1982, 2014). Solar
applications are given special attention in Bray and Loughhead (1974), Parker (1979a),
Priest (1982, 2014), Bray et al. (1991), Choudhuri (1998), Goossens (2003), Aschwan-
den (2004), Goedbloed and Poedts (2004), Goedbloed, Keppens and Poedts (2010),
Narayanan (2013), Ryutova (2015) and Nakariakov et al. (2016).

Consider a fluid with mass density ρ and motions u. Conservation of matter – the
statement that matter is neither created nor destroyed within the system (so that there are
no sources or sinks of matter) – is described by the equation

∂ρ

∂t
+ div ρu = 0. (1.1)

Equation (1.1) is commonly referred to as the equation of continuity.
The equation of momentum is the statement that changes in momentum are a result of

forces acting in the fluid; it is Newton’s second law applied to a fluid. The momentum
equation is

ρ

[
∂u
∂t

+ (u · grad)u
]

= −grad p + j × B + ρg + F. (1.2)

https://doi.org/10.1017/9781108613774.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108613774.002


8 General Principles

Here p denotes the fluid (or plasma) pressure and ρg is the force per unit volume on the
fluid because of gravity of vectorial strength g (we will generally assume gravity to be
uniform). B denotes the magnetic field that threads the fluid and j is the current density;
these two terms produce the magnetic body force j × B, perpendicular to both B and j.
Finally, there may also be other forces F acting, such as the viscous force.

The magnetic field B is related to the current density j by Ampere’s law, namely

μj = curl B, (1.3)

where μ is the magnetic permeability of the fluid; generally it is assumed that μ = 4π ×
10−7 henry m−1, its value in free space.

Temporal changes in the magnetic field B are related to spatial changes in the electric
field E through Faraday’s law of induction:

∂B
∂t

= −curl E. (1.4)

There is a constraint on the magnetic field: it must be solenoidal,

div B = 0. (1.5)

This constraint is the statement that there are no magnetic monopoles: magnetic field lines
have no ends, but either close upon themselves or are infinite in extent (which we may
view as closing at infinity). There is thus a sharp contrast between magnetic field lines and
electric field lines, for the latter originate in concentrations of charge and so may be viewed
as emanating from a point.

In view of the vector identity

div curl ≡ 0,

we see that equation (1.4) implies that ∂ (div B)/∂t = 0 and so, as a consequence of
Faraday’s law of induction, div B is time independent (and thus is zero for all times if
zero at any instant). The constraint (1.5) is stronger, though, insisting that the divergence
of B is necessarily zero always. There is also an implied constraint on lines of current j, for
the above vector identity taken with Ampere’s law (1.3) implies that div j = 0, and so lines
of current density j (like lines of magnetic field) also have no ends.

The electric field E is related to the current density j by Ohm’s law, as applied to a
moving conductor – the fluid moving with an internal velocity u:

j = σ(E + u × B), (1.6)

where σ is the electrical conductivity of the fluid. Here E + u × B is the total electric field
in the fluid, allowing for the induced electric field arising from the component of motion u
across the field B.

By combining equations (1.4) and (1.6) we may eliminate the electric field E:

∂B
∂t

= curl(u × B) − curl

(
1

σ
j
)

. (1.7)
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Using Ampere’s law (1.3), we may eliminate j to obtain

∂B
∂t

= curl(u × B) − curl(η curl B), (1.8)

where we have written η = 1/(μσ); η is referred to as the magnetic diffusivity of the
fluid, and has units m2 s−1. Equation (1.8) is the general form of the magnetohydrodynamic
induction equation.

Changes in the fluid are generally considered to proceed according to an energy balance
equation of the form

∂p

∂t
+ u · grad p = γ p

ρ

(
∂ρ

∂t
+ u · grad ρ

)
− (γ − 1)L, (1.9)

where L is the gain or loss function (energy per unit volume) and γ is the ratio of specific
heats at constant pressure and constant volume. The term L includes contributions from
thermal conduction and radiation. Mechanical heating from external sources as well as the
Joule (or ohmic) heating may also be added to the right-hand side of (1.9). Joule heating,
arising from the dissipation of current within the fluid, amounts to j2/σ watts m−3, for a
current density of strength j (= |j|). Frequently all these heat losses or gains are considered
to be negligible, and then isentropic (or adiabatic) conditions pertain:

∂p

∂t
+ u · grad p = γ p

ρ

(
∂ρ

∂t
+ u · grad ρ

)
. (1.10)

The ratio of specific heats, γ , is generally assumed to be constant. In numerical illustrations
we take γ = 5/3, the value appropriate for a fully ionized gas. Heat losses are discussed in
Chapter 12.

The fluid we are considering will be treated as a perfect gas, for which the ideal gas
law is

p = kB

m̂
ρT , (1.11)

where kB (= 1.38 × 10−23 J K−1) is the Boltzmann constant, T is the absolute temperature
of the fluid in degrees kelvin (K), equal to the temperature in degrees celsius (◦C) plus 273,
and m̂ is its mean particle mass.

1.4 Some Properties of the MHD Equations

The above system of equations forms the basis for a description of waves in a magne-
tohydrodynamic fluid. However, as the physicist E. N. Parker says in the Preface of his
1979 monograph Cosmical Magnetic Fields, treating the physics of large-scale magnetic
fields in fluids, ‘The fundamental equations of physics may contain all knowledge, but
they are close-mouthed and do not volunteer that knowledge’ (Parker 1979a). Thus, in
particular, the nature of wave propagation in a magnetic fluid, as described by the equations
introduced earlier, is not transparent and indeed serves as the topic for this book. Certain
basic features of the equations can, however, be immediately uncovered and these act
as points of illumination in our general discourse. We set out these aspects here, as a
preliminary to our more detailed discussion of the nature of wave propagation.
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1.4.1 Fundamental Speeds

The magnetohydrodynamic equations have embedded within them the usual equations
of acoustics, which follow by taking B ≡ 0. Consequently, the magnetohydrodynamic
equations must contain the familiar sound speed cs, defined by

cs =
(

γ p0

ρ0

)1/2

. (1.12)

Here ρ0 and p0 refer to the fluid density and pressure in the unperturbed state of the
medium. The occurrence of such a speed as (1.12) is evident on general dimensional
grounds. For, by balancing in the momentum equation (1.2) the acceleration term ρ(∂u/∂t)
with the pressure force grad p we obtain the dimensional combination

Vτ−1 ∼ p

Lρ
.

Here V denotes a characteristic speed, L a characteristic length, τ a characteristic timescale,
with p and ρ denoting a characteristic pressure and density; the use of ‘∼’ here denotes
a dimensional balance. Writing V ∼ Lτ−1 then gives V2 ∼ p/ρ, which leads to the
combination (1.12) for a characteristic speed (though without the important factor of γ )
when we take the equilibrium pressure p0 and density ρ0 as representative values.

A similar argument for a magnetic speed can be made by equating, in dimensional terms,
the acceleration term ρ(∂u/∂t) with the magnetic force j × B. We obtain ρVτ−1 ∼ JB,
where J and B are characteristic values of the current density and magnetic field. But from
Ampere’s law (1.3) we have μJ ∼ BL−1, which allows us to eliminate J. Setting V ∼ Lτ−1

then gives V2 ∼ B2/(μρ). We thus obtain a characteristic magnetic speed, a speed that
arises in phenomena for which the magnetic force plays a role. We take this speed1 as

cA =
(

B2
0

μρ0

)1/2

, (1.13)

choosing an equilibrium field strength B0 and a plasma density ρ0 as representative values
of the magnetic field and fluid density. The speed cA defined by equation (1.13) is the Alfvén
speed, the speed obtained by Alfvén in his short letter to Nature in 1942 (Alfvén 1942a). It
is central to all magnetohydrodynamic wave phenomena, just as the sound speed is central
to all acoustic phenomena.

The sound speed and the Alfvén speed underpin all wave phenomena described by the
magnetohydrodynamic equations. Other speeds also play an important role, but these are
always constructed in terms of cs and cA. Accordingly, we consider the sound and Alfvén
speeds in a little more detail.

Plasma Pressure and Density

To begin with suppose our medium is a fully ionized hydrogen plasma, consisting of ne

electrons and np protons (ions) in each unit volume of space. The total pressure is

p = nekBTe + npkBTp

1 In the Gaussian cgs system of units, the Alfvén speed is define as cA = B0/(4πρ0)1/2 where the magnetic field strength B0 is
in gauss (G) and the plasma density ρ0 is in grams per cubic centimetre (g cm−3).
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1.4 Some Properties of the MHD Equations 11

where Te denotes the electron temperature and Tp the proton temperature. We will assume
that the electron temperature and proton temperature are equal, so that Te = Tp = T , where
T denotes the temperature of the medium (the plasma or fluid temperature). Then,

p = (ne + np)kBT .

Now charge neutrality requires that the number of electrons be the same as the number of
protons, so that ne = np; then total number of particles is n = ne + np = 2ne and the
pressure is

p = 2nekBT = nkBT .

The density ρ is determined by the number ne of electrons of mass me together with the
number np of protons of mass mp in a unit volume, so that

ρ = neme + npmp.

However, whilst the number of electrons equals the number of protons, the mass
mp (= 1.673×10−27 kg) of a proton is much larger than the mass me (= 9.109×10−31 kg)
of an electron, so we can neglect the electron mass and take

ρ = nemp = 1

2
nmp.

Accordingly, we can write

p = kB

μ̂mp
ρT = R

μ̂
ρT , ρ = μ̂mpn = m̂n, R = kB

mp
(1.14)

as a description of the plasma pressure p, density ρ and temperature T . Here m̂ = μ̂mp

denotes the mean particle mass of the plasma; for a hydrogen plasma, μ̂ = 1/2 and
m̂ = mp/2.

If the plasma consists of a more complicated mixture of hydrogen and helium (and other
elements too) then we can take relations (1.14) as still standing but now the factor μ̂ is no
longer 1/2; in the solar corona, to allow for the contributions from those other elements that
make up the plasma, it is common to take μ̂ ≈ 0.6 (see, for example, Aschwanden 2004).

Sound Speed

The ideal gas law (1.14) allows us to express the sound speed in terms of the square root of
the temperature T0 of the medium:

cs =
(

γ p0

ρ0

)1/2

=
(

γ kBT0

m̂

)1/2

=
(

γ kBT0

μ̂mp

)1/2

. (1.15)

The mean particle mass m̂ depends upon the nature of the plasma. With Boltzmann constant
kB = 1.38 × 10−23 J K−1, the proton mass mp = 1.673 × 10−27 kg (so that R = kB/mp =
8.25 × 103 m2 s−2 K−1) and an adiabatic index γ = 5/3, equation (1.15) gives a sound
speed

cs = 1.17 × 102 (T0/μ̂)1/2 m s−1. (1.16)
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12 General Principles

In the solar corona, the plasma is mainly made up of hydrogen and helium, which produces
a mean atomic weight of μ̂ ≈ 0.6. Thus, in the corona the sound speed is

cs = 151 T0
1/2 m s−1. (1.17)

A coronal temperature of, say, T0 = 106 K then yields a sound speed of cs = 151 km s−1.
The high temperature of the coronal plasma thus leads to a correspondingly high sound
speed, far in access of the 340 m s−1 sound speed in the Earth’s atmosphere or the
1400 m s−1 sound speed in water.

Lower in the solar atmosphere, a photospheric density of ρ0 = 3 × 10−4 kg m−3

( = 3 × 10−7 g cm−3) and pressure of p0 = 2 × 104 N m−2 ( = 2 × 105 dynes cm−2)
(see, for example, Parker 1979a, p. 212) produces (for γ = 5/3) a sound speed of
cs = 10.5 km s−1.

Alfvén Speed

Turning to the Alfvén speed, we have

cA =
(

B2
0

μρ0

)1/2

= 2.18 × 1016 × B0

(μ̂n)
1/2

m s−1. (1.18)

We have taken μ = 4π × 10−7 henry m−1 and the plasma density as ρ0 = μ̂mpn, for total
number density n (in particles per cubic metre), and the magnetic field strength B0 is in
tesla (T). Thus, with μ̂ ≈ 0.6 appropriate for the corona we obtain

cA = 2.816 × 1016 × B0

n1/2
m s−1. (1.19)

Thus, with a number density of say n = 1015 particles per m3 typical of the corona we
obtain ρ0 = 2×10−12 kg m−3 (or 2×10−15 g cm−3) and an Alfvén speed of cA = 0.890×
109 B0 m s−1.

It is common to quote the magnetic field strength in gauss (G), noting that 1 T = 104 G.
Then the expression for the Alfvén speed reads

cA = 2.816 × 1012 × B0 (G)

n1/2
m s−1, (1.20)

with B0 in gauss. For example, with a coronal field strength of B0 = 10−3 T (= 10 G), we
obtain an Alfvén speed of some cA = 890 km s−1. In an active region the field is stronger;
for example, with B0 = 10−2 T (= 102 G) in a medium with an electron number density
ne = 1016 particles per m3 (1010 particles per cm3) and a total number density n = 2×1016

particles per m3, we obtain cA ≈ 2000 km s−1. Thus, despite the corona’s high temperature
and correspondingly high sound speed, the tenuous nature of the coronal plasma acts to
produce a yet higher Alfvén speed.

In the photosphere, it is usual to quote values of fluid density ρ0 directly, basing these
values on model computations of the convection zone and atmosphere above. A density of
ρ0 = 3 × 10−4 kg m−3 (= 3 × 10−7 g cm−3) is typical of the surface layers of the Sun
(see, for example, Parker 1979a, p. 149). In a magnetic field of B0 = 0.15 T (= 1500 G)
the corresponding Alfvén speed is cA = 0.077 × 105 m s−1. Thus in regions of strong
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photospheric magnetic field the Alfvén speed is some 7.7 km s−1 and sound and Alfvén
speeds are typically comparable.

1.4.2 Magnetic Flux Tubes

It is convenient to introduce the notion of a magnetic flux tube. The concept of a
magnetic flux tube goes back to the writings of Faraday and Maxwell. Faraday, with
his non-mathematical approach to electromagnetic phenomena, pictured the movement
and distortion of magnetic field lines. Maxwell later added the mathematical detail to give
such an intuitive approach a more rigorous basis. Consider a curve drawn arbitrarily in a
magnetic field. All the field lines passing through this curve are considered to be related,
forming a single entity called a magnetic flux tube. Since the choice of the curve that relates
the various field lines is entirely arbitrary, the flux tube thus formed is also an arbitrary col-
lection of magnetic field lines. However, in Nature it is often found that a certain collection
of field lines is of particular interest and form, giving special definition to those field lines.
In the solar photosphere, for example, we have seen that isolated magnetic flux tubes occur,
corresponding to concentrations of magnetic field surrounded by a field-free environment.
In such objects the magnetic flux tube is given definition by the field itself. In the corona,
magnetic loops are flux tubes given definition not so much by their field strength – the field
may indeed be essentially uniform – but by the fact that certain field lines are loaded with
more plasma or are at a higher temperature than other field lines; the flux tube is thus here
given definition by an enhancement in the plasma density, or by temperature differences
between one region or another. Certain types of prominence structures are also examples
of this kind. The magnetospheres of planets also provide examples of flux tubes which are
given definition by their magnetic field structure, being commonly twisted.

One property of a magnetic flux tube follows immediately from the solenoidal constraint
on a magnetic field. For with B satisfying equation (1.5), application of the divergence
theorem in an arbitrary volume V yields∫

V
div B dV =

∫
SV

B · dS = 0, (1.21)

where the volume V is enclosed by the surface SV and dS is the surface element pointing
(by convention) out of the volume V .

For a magnetic flux tube we may choose that surface to be the curved surface of the flux
tube together with a ‘top’ surface St and a ‘bottom’ surface Sb to make a closed volume.
Then, since no magnetic flux leaves the curved surface of the tube (on which B · dS = 0),
equation (1.21) implies that ∫

St

B · dS =
∫

Sb

B · dS, (1.22)

where the cross-sectional surface element dS points in the same sense as B. In other
words, the magnetic flux across any cross-section S of the tube is the same at all locations
along the tube; it is thus an invariant of the motion. Since this property follows directly from
the solenoidal constraint it is independent of whether we are considering dissipative effects
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14 General Principles

(such as viscosity or diffusivity) or not. Stated loosely, the product of the field strength B
of a tube and its normal cross-sectional area S is a constant. Thus, where a tube narrows
its field strength is large, whereas in the expanded regions of the tube the field strength is
correspondingly reduced.

1.4.3 The Induction Equation

The induction equation (1.8) makes clear that there is a direct link in magnetohydrodynam-
ics between fluid motions and the magnetic field, and that this link is independent of other
properties of the fluid, such as its density and pressure, unless they enter indirectly through
the magnetic diffusivity. In fact, in a plasma the electrical conductivity σ and magnetic
diffusivity η are principally determined by the temperature of the medium. For a fully
ionized hydrogen plasma at a temperature of T K, we have an electrical conductivity of
σ ≈ 8 × 10−4T3/2 mho m−1, leading to a magnetic diffusivity of (Parker 1979a, sect. 4.6
and 7.6; Priest 2014, sect. 2.1.5)

η ≈ 109 T−3/2 m2 s−1. (1.23)

Thus the diffusivity varies quite strongly with the temperature of the plasma, being low in
high temperature plasmas. Complications in the description of diffusivity arise when the
level of ionization in the medium is very low or when the presence of the applied magnetic
field is properly allowed for. Low ionization leads to a significant reduction in the value
of η. The presence of a magnetic field renders the diffusivity as a tensor, with a different
value along the field from that across the field. However, such complications will not be
discussed here.

To illustrate the link between the flow and the magnetic field embedded in the fluid, as
described by the induction equation, it is convenient to discuss the nature of the induction
equation for the case of constant magnetic diffusivity, ignoring the temperature dependence
given in equation (1.23), except in so far as it provides an appropriate numerical value for
η. In fact the complications introduced by a variable diffusivity η do not introduce anything
of general significance as regards the nature of the link between the flow and the magnetic
field. Accordingly, we consider the induction equation under the assumption that η is a
constant. We may then simplify equation (1.8) by use of the vector identity

curl curl ≡ grad div − ∇2.

Coupled with the solenoidal constraint (1.5) on the magnetic field, the above vector identity
allows us to write equation (1.8) in the form

∂B
∂t

= curl(u × B) + η∇2B. (1.24)

This is the induction equation for a medium with uniform magnetic diffusivity. The mag-
netic field B grows or diminishes in time according to the combined influences of a velocity-
dependent advective term (the first term on the right-hand side of equation (1.24)) and a
velocity-independent diffusive term (the term involving η). These terms have quite distinct
effects and, as we shall see, are generally of quite different magnitudes.
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1.4 Some Properties of the MHD Equations 15

There is an interesting analogy between the evolution of magnetic field, as described
by the induction equation (1.24), and the evolution of vorticity ω ≡ curl u in a viscous
non-magnetic liquid with uniform density. Consider the momentum equation (1.2) in the
absence of magnetism (B = 0) and gravity (g = 0), for a liquid with constant density ρ.
The viscous force F in such a liquid is given by

F = ρν∇2u, (1.25)

where ν is the kinematic viscosity (assumed constant) of the liquid. The momentum equa-
tion is thus

ρ

[
∂u
∂t

+ (u · grad)u
]

= −grad p + ρν∇2u. (1.26)

Taking the ‘curl’ of the above equation, and noting the vector identity

curl grad ≡ 0,

we obtain

∂ω

∂t
+ curl[(u · grad)u] = curl (ν∇2u).

Then, making use of the above vector identities together with

1

2
grad(u · u) ≡ u × curl u + (u · grad)u,

we obtain

∂ω

∂t
= curl (u × ω) + ν∇2ω. (1.27)

Thus we see that the vorticity ω in a uniform non-magnetic liquid evolves in time
in much the same way as the magnetic field evolves in a magnetized fluid. There is a
difference, however, in that whereas the vorticity is directly related to the motion (ω =
curl u), the magnetic field B and motion u are not so related. This means that whereas the
vorticity equation is nonlinear, involving a product of u with curl u, the induction equation
is linear in B for a given motion u. Moreover, the kinematic diffusivity ν in a liquid is
generally much smaller than the magnetic diffusivity η of a fluid. The kinematic viscosity
of water, for example, is ν ≈ 10−6 m2 s−1, some two orders of magnitude smaller than
that of olive oil; the electrically conducting fluid mercury has a kinematic viscosity of
ν ≈ 10−7 m2 s−1, about a tenth that of water. These kinematic viscosities ν are several
orders of magnitude smaller than the corresponding magnetic diffusivities η; in the case of
liquid mercury, there is a difference of seven orders of magnitude. There are thus distinctive
differences between the two systems. Nonetheless, the analogy can prove useful.

The magnitudes of the two terms that make up the right-hand side of the induction
equation (1.24) are easily estimated using dimensional considerations. Their ratio forms
a number Rm, known as the magnetic Reynolds number (by analogy with the Reynolds
number of a viscous fluid). We have

Rm ∼ |curl (u × B)|/|η∇2B|.
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16 General Principles

This leads to Rm ∼ L−1VB/(ηL−2B), on noting that ‘curl’ involves a single division
by a spatial scale L whereas ‘∇2’ involves division by L2; as before, V and B denote
characteristic values of the motion and magnetic field strength, each assumed to vary on
the same scale L. Thus

Rm ∼ LV

η
. (1.28)

This may be compared with the Reynolds number R of a viscous flow: R = LV/ν.
The dimensionless number Rm determines which term on the right-hand side of the

induction equation is dominant. If the magnetic Reynolds number is large (Rm � 1) then
the right-hand side of equation (1.24) is dominated by the advection term and diffusive
effects are essentially negligible. Only if one follows the advected field for a long time
would one detect the small diffusion of field that takes place when Rm � 1. Precisely
the opposite conclusion is reached when the magnetic Reynolds number is small. For with
Rm � 1 diffusive effects are dominant and the advection term is essentially negligible.
Only if one follows the evolution of the magnetic field B for a long time would one see the
influence of advection on the overall diffusion of the field. In the intermediate case, when
Rm is of order unity, diffusion and advection play comparable roles in the evolution of the
magnetic field.

Now the size of Rm is determined not so much by whether a fluid is electrically a good or
a poor conductor, but by the size L of the fluid in which the magnetic field is entrained and
the flow V that is present. For these quantities can change by orders of magnitude, from
circumstance to circumstance, over-shadowing the possible variations in η in all but the
most severe cases (when large temperature differences can bring about correspondingly
large changes in Rm, through changes in η). Generally, then, we find that for a liquid
(such as mercury or molten iron) in laboratory circumstances Rm is small or of order unity,
simply because L and V are relatively small. In astrophysical circumstances, however, Rm

is large, simply because L (and perhaps V) are large. Thus laboratory systems tend to be
dominated by diffusive effects, whereas astrophysical plasmas are largely free from the
influences of diffusion. An exception in astrophysical systems occurs in regions where B
may undergo a sudden reversal in direction or rapid variation; then the scale of variation
of B is no longer necessarily the same as that of the flow and a local diffusion of mag-
netic field or magnetic reconnection may occur (see, for example, Priest and Forbes 2000;
Priest 2014).

To illustrate specifically the magnitude of Rm, consider a laboratory fluid with spatial
extent L = 1 m and a flow of order V = 0.1 m s−1; for molten iron (with η = 0.06 m2 s−1),
this produces a magnetic Reynolds number of order unity. For the Earth’s liquid core, with
a scale of L = 3.5 × 106 m and a diffusivity of η = 3 m2 s−1, fluid motions of say
0.1 mm s−1 (= 10−4 m s−1) produce a magnetic Reynolds number of order 102. Turning
to the Sun, there are flows of order 1 km s−1(= 103 m s−1) on a scale of 103 km observed
at its surface (in granules); with η = 105 m2 s−1, we obtain an Rm of 104.

We turn now to a brief examination of the behaviour of the induction equation in the two
extremes of small and large magnetic Reynolds number, corresponding to diffusive effects
being either important or negligible.

https://doi.org/10.1017/9781108613774.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108613774.002


1.4 Some Properties of the MHD Equations 17

1.4.4 Diffusion of Magnetic Field (Rm � 1)

Consider the extreme of the induction equation that arises for Rm � 1, when the diffusion
term η∇2B dominates over advection. Then the induction equation reduces to

∂B
∂t

= η∇2B. (1.29)

This reduction of the induction equation is exact when no flows are present (u = 0). Gen-
erally, though, we may regard equation (1.29) as giving the dominant short-term behaviour
of the system when Rm � 1.

We recognize equation (1.29) as the vector form of the diffusion equation (or heat
conduction equation). In a Cartesian coordinate system each component of the magnetic
field satisfies the familiar (scalar) diffusion equation. The diffusion equation acts so as to
smooth out irregularities or steep gradients in B.

We note that the decay or leakage of magnetic field through the fluid is not an entirely
passive process, for it is accompanied by ohmic heating j2/σ (= μηj2), which is of order
(η/μ)B2L−2 in a field of characteristic strength B and spatial scale L. The process of field
decay operates on a timescale τ , readily estimated from dimensional considerations. In
dimensional terms, from equation (1.29) we have Bτ−1 ∼ ηBL−2. Solving for the decay
time τ = τ decay we obtain

τ decay ∼ L2/η. (1.30)

Hence the magnetic field in a motionless conductor decays away on a timescale that is
proportional to the electrical conductivity σ of the medium and proportional to the square
of the spatial scale L: τ decay ∼ μσL2.

The time τ decay gives an estimate of how long it takes a concentration of magnetic field
to leak away by a factor of 1/e (with e = 2.718 . . . being Euler’s constant), reducing to
some 37% of its initial value. Of course, the estimate provided by equation (1.30) is rather
rough, as it ignores such factors as the geometry of the object and the precise choice for
L. Only by solving the diffusion equation in a specific case can one determine τ decay more
precisely. In the case of a sphere of radius a it turns out that τ decay = a2/(ηπ2), so that
for the sphere we have an effective L of a/π . Such factors of π and the like are in fact
significant if, as occurs here, they are squared or raised to a higher power. For the sphere
the factor of π reduces the simple estimate of a2/η for the decay time by an order of
magnitude.

The presence in τ decay of the square of L – an immediate consequence of the Laplacian
operator ∇2 in the diffusion equation – makes for very short timescales in laboratory
situations but very long ones in astrophysical circumstances. We may readily illustrate
this wide range in decay (diffusion) times. For example, in a copper sphere (with η =
0.01 m2 s−1) of radius a = 1 m, the leakage time of the magnetic field through the sphere
is of order τ decay = 10 s, and so rather short. By contrast, for a sphere the size of the Sun
as a whole, with a radius of 6.96 × 108 m and a diffusivity of η = 1 m2 s−1, the value given
by equation (1.23) for a temperature of 106 K (roughly representative of the wide range
in temperature in the solar interior from some 107 K in the core to 6000 K at the surface),
we obtain a decay time of around 109 years (Cowling 1946, 1976), comparable with the
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determined age of the Sun (as 5 × 109 years). Thus, a primordial magnetic field entrapped
within the Sun at its formation would still largely be entrapped today. Of course, we observe
magnetic fields on the Sun changing on relatively short timescales (ranging from hours to
years), so magnetic fields must be manipulated by forces that are more effective than the
simple passive diffusion of the field.

The decay time for the field in an individual object within the Sun is, of course, much
shorter than the time for the Sun as a whole. For example, a sunspot with radius L =
107 m and diffusivity η = 103 m2 s−1 (corresponding to a temperature of 104 K, repre-
sentative of the layers below the surface) we obtain a decay time of over 300 years, as
originally estimated by Cowling. In fact, sunspots change their magnetism on much shorter
times than this and so flows must play a significant part in determining their magnetic
history.

1.4.5 Advection of Magnetic Field (Rm � 1)

Consider now the extreme of the induction equation arising when we neglect diffusivity. A
fluid in which η = 0 is said to be a perfect (or ideal) conductor, for which the induction
equation is simply

∂B
∂t

= curl (u × B). (1.31)

This equation is exact if η = 0 but applies more generally to the case of high magnetic
Reynolds number, describing the short-term behaviour when Rm � 1.

The analogy between the induction equation and the vorticity equation for a liquid may
be exploited here. We may immediately invoke Kelvin’s circulation theorem, which tells us
that the vorticity ω in a flow is advected with the fluid. Accordingly, we may conclude that
the magnetic field in a conducting fluid is advected with the flow. Alfvén (1943) expressed
this picturesquely, saying that the magnetic field lines are frozen into the flow: motions
along the field lines leave them unchanged, whereas motions perpendicular to the field
lines transport the lines with the flow.

That the magnetic field is frozen into the flow in ideal magnetohydrodynamics has an
immediate consequence for a magnetic flux tube. Since each magnetic field line moves with
the fluid, it follows that a magnetic flux tube moves with the motion: the fluid entrained
within a tube at a given time remains entrained within that tube during the subsequent
motion of the fluid, though the tube itself may be distorted by the flow (though, as noted
earlier, its magnetic flux remains invariant).

Consider, then, an elemental flux tube with field strength B and normal cross-section dS.
Then the flux BdS is a constant of the motion. If we consider a section of the flux tube of
length ds measured between two cross-sections of the tube, then in the subsequent motion
the mass ρdsdS contained between the two cross-sections is conserved during the motion.
Thus,

BdS = constant, ρdsdS = constant. (1.32)

Eliminating dS between these two invariants shows that B/ρ is proportional to the distance
ds between neighbouring cross-sections. In other words, B/ρ increases during the motion
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if that motion stretches the field line, whereas it decreases if the motion reduces the length
of the field line between the two cross-sections.

We can view the above discussion directly from the induction equation under ideal
conditions and the equation of continuity. First rewrite the induction equation (1.31) by
using the vector identity

curl (u × B) ≡ u(div B) − B(div u) + (B · grad)u − (u · grad)B

and setting div B = 0. Then, when combined with the equation of continuity (1.1), we
obtain (

∂

∂t
+ u · grad

)(
B
ρ

)
=
(

B
ρ

· grad

)
u. (1.33)

Thus, if the right-hand side of the above equation is ignored we see that the quantity
B/ρ is conserved during the motion. The effect then of a non-zero right-hand side is to
cause an increase (decrease) in B/ρ if the motion stretches (compresses) the field lines,
corresponding to

B

ρ

∂u
∂s

being positive (negative).

1.4.6 The j × B Force

Magnetic effects in the momentum equation (1.2) are determined by the j × B force, which
acts perpendicular to the magnetic field B and the current j. Now, using Ampere’s law (1.3)
and the vector identity

1

2
grad (B · B) ≡ B × curl B + (B · grad)B,

we obtain

j × B = −grad

(
B2

2μ

)
+ 1

μ
(B · grad)B, (1.34)

where now B (= |B|) denotes the magnitude of the field B. Comparing this form of the
magnetic force with the right-hand side of the momentum equation, we see immediately
that we may regard the contribution

− grad (B2/2μ) (1.35)

from the j × B force as acting as a pressure term, much the same as the fluid pressure force
−grad p. Accordingly, we may introduce the magnetic pressure pm,

pm = 1

2μ
B · B = B2

2μ
. (1.36)

The magnetic pressure pm acts isotropically throughout the fluid, just as the plasma pressure
p does.
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A magnetic field, then, has a magnetic pressure pm associated with it, augmenting the
plasma pressure p; the magnetic pressure force increases in proportion to the square of the
magnetic field strength. In illustrations we will commonly quote magnetic field strength in
gauss; a field of B gauss produces a magnetic pressure of

B2/(80π) Pa. (1.37)

This is the magnetic pressure in pascals (Pa), the SI unit of pressure (1 Pa = 1 N m−2).
(In cgs units with B in gauss, the magnetic pressure is B2/8π dynes cm−2.)

For example, the Earth’s magnetic field of order 1/2 G produces a magnetic pressure
of some 10−3 Pa (= 10−3 N m−2), eight orders of magnitude smaller than a typical atmo-
spheric pressure of 1 bar (= 105 Pa). By contrast, a field of 3000 G, typical of a sunspot,
produces a magnetic pressure of 3.6 × 104 Pa, which (at about 1/3 bar) is roughly com-
parable with the plasma pressure of 1.6 × 104 Pa at the solar surface. Equilibrium in the
spot is achieved because the plasma within the magnetic field sinks to a level below the
photosphere where the confining external plasma pressure is higher.

The identification of magnetic pressure, acting in addition to any dynamical pressure,
raises the question of their relative importance. This is decided upon by their ratio, com-
monly referred to as the plasma beta and defined by

β ≡ p

pm
= p

(B2/(2μ)
. (1.38)

If we take p and B as represented by the equilibrium values p0 and B0, we see that the
plasma β is directly related to the ratio of the sound and Alfvén speeds:

β = 2

γ

c2
s

c2
A

. (1.39)

Thus a medium with high Alfvén speed (cA � cs) is a low-β plasma, and one with a low
Alfvén speed (cA � cs) is a high-β plasma.

A fluid with low plasma β has a correspondingly strong magnetic field, and generally
speaking it is mechanically dominated by the magnetic forces. This is the circumstance in
much of the Earth’s magnetosphere and in the upper atmosphere of the Sun. By contrast,
in a high-β plasma magnetic forces are weak compared with the dynamical pressure force
and magnetic effects are correspondingly less important; this is the circumstance pertaining
in the Earth’s interior and below the Sun’s photosphere. Of course, in some situations β

is of order unity, indicating that both magnetic and dynamical effects are of comparable
importance. This situation typically pertains in magnetic concentrations in the surface
layers of the Sun.

The magnetic pressure term comprises only one part of the j × B force; there remains
the term

1

μ
(B · grad)B. (1.40)

This term may be interpreted as a magnetic tension. The magnetic field behaves much as
an elastic band, the tension in the band being B2/μ per unit area, acting along the magnetic
field. Accordingly, a distortion or bend introduced into a magnetic field line sets up a
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tension force – just as with an elastic band – that acts so as to try to straighten out the
field line.

To see this in detail, consider a magnetic field line with arc distance s measured along
it from a fixed point. Denote by ŝ a unit vector pointing along the magnetic field B. Then
B = B(s)ŝ, where B(s) is the field strength at location s. The magnetic tension force is
accordingly

1

μ
(B · grad)B = 1

μ
B(s)

∂

∂s
[B(s)ŝ] = ŝ

∂

∂s

(
B2

2μ

)
+ B2

μ

∂ ŝ
∂s

. (1.41)

Now it is shown in discussions of vector calculus that

∂ ŝ
∂s

= 1

Rc
n̂,

where Rc(s) is the radius of curvature of the field line at the location s and n̂ is the principal
unit vector perpendicular to the field line at that location and pointing towards the centre of
curvature. Hence

1

μ
(B · grad)B = ŝ

∂

∂s

(
B2

2μ

)
+ B2

μRc
n̂, (1.42)

and so

j × B = −grad

(
B2

2μ

)
+ ŝ

∂

∂s

(
B2

2μ

)
+ B2

μRc
n̂. (1.43)

The contribution from the term acting in the direction of ŝ may be grouped with the
contribution from the pressure term, these respective contributions cancelling out in the
direction of the magnetic field (as they must do, since the j × B force is perpendicular
to B). The term perpendicular to the magnetic field gives a tension force of magnitude
B2/μRc, which acts so as to straighten out any bends in the field. The sharper the bend
in the field, the smaller is the radius of curvature Rc and so the larger is the tension force
acting to straighten out the field.

1.4.7 Energetics

As well as providing a magnetic pressure, the expression B2/2μ gives the magnetic energy
density (per unit volume) in the plasma. The total magnetic energy in a volume V is
therefore

W =
∫
V

B2

2μ
dV . (1.44)

It is of interest to determine how W varies in time for a fixed volume V . Noting that B2 =
B · B and j2 = j · j, we may invoke the induction equation (1.24) and Ampere’s relation
(1.3) to obtain

dW

dt
= −

∫
V

[
1

σ
j2 + u · j × B

]
dV + 1

μ

∫
SV

[
(u × B) × B − 1

σ
(j × B)

]
· dS (1.45)
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for surface SV (with vector area element dS) enclosing the volume V . Consider the case
when V is the whole of space, with SV = S∞ being the sphere at infinity. Then the
contribution from the surface integral is negligible if B declines sufficiently fast as r → ∞.
For example, if B declines to zero faster than r−3/2, a rate which ensures that W is finite
(it diverges logarithmically if B ∼ r−3/2), then the surface integral of the j × B force is
negligible. The result is

dW

dt
= −

∫
S∞

1

σ
j2dV −

∫
S∞

[u · j × B]dV , (1.46)

where the integrations are now over the whole of space. Thus, the fate of the magnetic
energy in the system – whether it decays or grows – depends upon the two contributions
on the right-hand side of equation (1.46). The contribution from Joule heating (the first
term on the right-hand side of (1.46)) leads to an inexorable decline, to be balanced against
the effect of the second term on the right-hand side of (1.46), the contribution from the
fluid motions doing work against the opposing magnetic forces. When those motions are
sufficiently vigorous and complicated so as to reverse the sign of the second term in equa-
tion (1.46), then W may grow in time: dynamo action is said to have occurred. To judge
from the ubiquitous occurrence of magnetic fields in astrophysical objects, ranging from
the planets to the stars and galaxies, Nature seems particularly adept at bringing about such
an arrangement.

1.5 Aspects of Wave Propagation

1.5.1 Linearization

Waves generated in a system are often of very small amplitude, a state of affairs that
permits one to examine linear equations describing the temporal and spatial behaviour of
the perturbations (disturbances) about an equilibrium state. The process of obtaining such
equations for the perturbations is referred to as linearization. We may illustrate the process
of linearization by considering the equation of continuity (1.1). Denote by ρ0 the value of
the density in the basic state; suppose that there is no flow (u = 0) in the basic state. Then
in the disturbed state we write

density = ρ0 + ρ, motion = u, (1.47)

where ρ and u now denote the values of the perturbations in density and motion. Thus
equation (1.1) becomes

∂ρ

∂t
+ div (ρ0 + ρ) u = 0.

So far no approximation has been made, given that ρ0 is independent of time. But if we now
suppose that the perturbation ρ is small, so that |ρ| � |ρ0|, then the equation of continuity
reduces to

∂ρ

∂t
+ div ρ0u = 0. (1.48)
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This represents a considerable simplification since it has resulted in a linear equation,
and linear equations are relatively easy to solve whereas nonlinear equations (such as the
original form of the continuity equation) are difficult. A further simplification occurs if the
equilibrium state is a uniform one. For if the density ρ0 is a constant, then the linearized
equation of continuity becomes

∂ρ

∂t
+ ρ0div u = 0. (1.49)

The equations describing the other perturbations may be treated in a similar fashion. For
example, the linearized equation of motion (with F = 0) becomes

ρ0
∂u
∂t

= −grad p + j × B0 + j0 × B + ρg, (1.50)

where p, B and j now denote the perturbations in fluid pressure, magnetic field and current
density about an equilibrium with magnetic field B0 and current density j0 (with μj0 =
curl B0). If the equilibrium magnetic field is a uniform one, with B0 a constant vector, then
the current density j0 in the equilibrium is zero.

1.5.2 Fourier Representation

In general, when the equilibrium is a uniform one, with constant density, pressure and
magnetic field, then the linear equations describing the perturbations will have coefficients
that are constants. This permits us to construct solutions with a sinusoidal or exponential
behaviour. This is most conveniently done using a representation in terms of the complex
exponential function. For an unbounded and uniform equilibrium it frequently proves con-
venient to consider a plane wave representation for the perturbations. By a plane wave
representation we mean that at time t each perturbation may be expressed in the form
f (ωt − k · r), where r denotes the position vector of the point (x, y, z) in a Cartesian
coordinate system O, x, y, z. Here ω denotes the angular frequency of the perturbation,
k = (kx, ky, kz) is the wave vector, and the function f describes the shape or profile of
the disturbance. The function

P ≡ ωt − k · r (1.51)

is known as the phase, and the equation P = constant describes a plane with normal vector
k. The phase plane moves with a speed c, where

c = ω

k
(1.52)

with k = |k| = (k2
x +k2

y +k2
z )

1
2 denoting the magnitude of the wave vector. The disturbance

moves in the direction of the vector k. Accordingly, the plane wave moves with a velocity

c = ω

k
ek = c ek, (1.53)

where ek denotes a unit vector in the direction of propagation, k. The vector c is referred to
as the phase velocity of the disturbance, with c being the phase speed.
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It is convenient to use a complex variable representation of a perturbation, such as the
fluid motion u and the perturbed plasma density ρ, by writing

u(x, y, z, t) = u1exp i(ωt − k · r), ρ(x, y, z, t) = ρ1exp i(ωt − k · r), (1.54)

where i2 = −1. Here u1 is a complex constant vector (i.e., a vector with components that
are complex constants) and ρ1 is a complex constant. The modulus of these quantities,
|u1| and |ρ1|, gives information about the amplitude of the motion u and the associated
density variations ρ. Other perturbations (such as the pressure or magnetic field) may
be expressed in a similar complex exponential form. The actual physical perturbations
may be obtained by taking the real parts of the above complex representations, once the
relationships between the various complex constants and vectors, such as ρ1 and u1, are
determined.

The value of using a complex exponential representation is that it converts the various
differential operators arising in the linear equations for the perturbations into simple alge-
braic scalar and vector forms. Thus, the relations

∂

∂t
≡ iω,

∂

∂z
≡ −ikz, ∇2 ≡ −k2, (1.55)

div ≡ −ik·, grad ≡ −ik, curl ≡ −ik× (1.56)

provide algebraic scalar and vector representations (involving the scalar product (·) for
div and the vector product (×) for curl) of the partial differential operators, converting such
operators into relatively simple forms. Thus, for example, ∂ρ/∂t = iωρ and div u = −ik · u
and so the linearized equation of continuity (1.49) becomes

ωρ = ρ0k · u = ρ0(kxux + kyuy + kzuz), (1.57)

where u = (ux, uy, uz) and we have cancelled a common factor i. Thus, the density pertur-
bation is related to the scalar product of k with u. Similar algebraic relationships arise from
the other partial differential equations.

1.5.3 Dispersion Relations, Phase Speed and Group Velocity

The system of linear algebraic equations that arise from a Fourier representation of the
perturbations leads, in general, to a dispersion relation. This is a relationship between
the frequency ω and the wave vector k. When the phase speed c = ω/k is independent
of k, we say that the system is non-dispersive: all waves travel with the same speed c
whatever their wavelength, 2π/k. However, in magnetohydrodynamics it turns out (see
Chapter 2) that while the waves are non-dispersive the phase speed c nonetheless varies
with direction: a wave propagating in the direction of the equilibrium field B0, say, has
a different speed from one propagating at an angle to the field. We say the medium is
anisotropic. This anisotropy arises simply because the presence of an applied magnetic
field in the equilibrium state introduces a preferred direction in the magnetohydrodynamic
system, and this directionality is reflected in the behaviour of the phase speed c and phase
velocity c.
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In addition to the phase velocity c, there is particular interest in the group velocity cg

defined as (see, for example, Whitham 1974; Lighthill 1978)

cg ≡ ∂ω

∂k
≡
(

∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
. (1.58)

Thus the group velocity is the gradient in k-space of ω = ω(k) and may be determined
once the dispersion relation ω = ω(k) is known. In general, cg is different from c, in both
magnitude and direction, though in some systems – most notably for acoustic waves – the
two speeds are equal. Since ω = kc, we may write

cg = ∂

∂k
(kc) = ∂k

∂k
c + k

∂c

∂k
= c + k

∂c

∂k
, (1.59)

on noting that ∂k/∂kx = kx/k, etc., and so ∂k/∂k = k/k.
Now, as noted earlier, magnetohydrodynamic waves are not dispersive but are aniso-

tropic, with a phase speed that is independent of k but a function of the angle of propagation
of the wave relative to the direction of the applied magnetic field. Introduce the angle
θ that the direction of propagation of a plane wave makes with a fixed direction,
taken to be that of the applied magnetic field, and with it a unit vector eθ that is
perpendicular to the wave vector k and points in the direction of increasing θ (see
Figure 1.1). Magnetohydrodynamic waves are such that c = c(θ). It is convenient to
align our Cartesian coordinate system so that the plane wave vector k lies entirely in
the xz-plane. Then we may write k = (k sin θ , 0, k cos θ ) and eθ = (cos θ , 0, − sin θ),
and so

∂c

∂k
= 1

k

dc

dθ
eθ . (1.60)

Hence

cg = c + dc

dθ
eθ . (1.61)

Thus the group velocity is the vector sum of the phase velocity and a component perpendic-
ular to the direction of propagation. The component of the group velocity in the direction
of propagation is simply the phase speed: cg · ek = c. The component perpendicular to
the direction of propagation may be positive, zero or negative; all three cases arise in
magnetohydrodynamics and are discussed in Chapter 2.

The difference between phase and group velocities is perhaps most readily illustrated for
the special case of one-dimensional propagation of a dispersive wave, where k = (0, 0, k)
with kz = k. Consider a travelling wave of the form A0 cos(ωt − kz). Then the sum of
two such travelling waves with the same amplitude A0 but different frequencies ω1, ω2 and
wavenumbers k1, k2 is

A0 cos(ω1t − k1z) + A0 cos(ω2t − k2z) = 2A(z, t) cos
[

1
2 (ω2 + ω1)t − 1

2 (k2 + k1)z
]

,

(1.62)
where

A(z, t) = A0 cos
[

1
2 (ω2 − ω1)t − 1

2 (k2 − k1)z
]
. (1.63)

This simple addition underlies the well-known acoustic phenomenon of beats.
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cg eqc k

Figure 1.1 The geometry of the phase and group velocities of a wave propagating at an angle θ

to a fixed direction. The phase velocity c here makes an angle θ measured anti-clockwise from
the horizontal axis (representing the direction of the applied magnetic field); θ = 0 corresponds
to the horizontal axis (and alignment with the applied magnetic field). The group velocity cg in
general makes a different angle, φ, with the applied magnetic field. The unit vector eθ , which acts
perpendicular to c, is also indicated.

Now suppose that k1 and k2 are almost equal: k1 ≈ k2 ≈ k. Then we see that the addition
of two cosine waves of equal amplitude gives a cosine wave travel with almost the same
speed,

ω2 + ω1

k2 + k1
≈ ω

k
, (1.64)

as the original pair of waves. But the effective amplitude A(z, t) of the resulting disturbance
is a slowly varying function of both time and space, and in particular is of much greater
wavelength than the original pair. The slowly varying, long wavelength, amplitude moves
with the speed

ω2 − ω1

k2 − k1
. (1.65)

In the limit k1 → k, k2 → k, ω1 → ω, ω2 → ω, this becomes dω/dk. Thus the wave packet
A(z, t) moves with the group speed cg = dω/dk.
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