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Federico II, Via Cintia, Monte S. Angelo, 80126 Napoli, Italy
(marco.pozzetta@unina.it)

Ivan Yuri Violo
Department of Mathematics and Statistics, University of Jyvaskyla,
P.O. Box 35 (MaD), Jyvaskyla FI-40014, Finland (ivan.y.violo@jyu.fi)

(Received 19 July 2023; accepted 3 September 2023)

We prove topological regularity results for isoperimetric sets in PI spaces having a
suitable deformation property, which prescribes a control on the increment of the
perimeter of sets under perturbations with balls. More precisely, we prove that
isoperimetric sets are open, satisfy boundary density estimates and, under a uniform
lower bound on the volumes of unit balls, are bounded. Our results apply, in
particular, to the class of possibly collapsed RCD(K, N) spaces. As a consequence,
the rigidity in the isoperimetric inequality on possibly collapsed RCD(0, N) spaces
with Euclidean volume growth holds without the additional assumption on the
boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean
setting, as it simplifies some classical arguments.
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1. Introduction

In this paper, we consider length PI spaces, i.e. metric measure spaces (X, d,m)
where m is a uniformly locally doubling Borel measure, there holds a weak local
(1, 1)-Poincaré inequality (see definition 2.4), and the distance between any two
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points x, y is realized as the infimum of the lengths of curves joining x and y.
The well-established theory of BV functions on metric measure spaces [3, 35]
allows the treatment of sets of finite perimeter in this generalized setting. Hence, it
makes sense to consider the classical isoperimetric problem, defined by the following
minimization:

inf
{
P (E)

∣∣ E ⊆ X Borel, m(E) = v
}
,

for any assigned volume v ∈ (0,m(X)), where P (E) denotes the perimeter of E.
A set E minimizing the previous infimum is called an isoperimetric set, or an
isoperimetric region.

One of the fundamental questions about isoperimetric sets addresses their
topological regularity. Namely, one aims at proving that, up to the choice of a
representative, isoperimetric sets are open, bounded and enjoy density estimates
at points of the topological boundary. In the Euclidean space, topological regular-
ity follows from [25], subsequently generalized in [41]. The proof in the Euclidean
setting can be further simplified, see [34, Example 21.3, Theorem 21.11]. On Rie-
mannian manifolds the result is due to [36]. In [6] the result has been generalized
to the setting of noncollapsed RCD(K,N) spaces (X, d,HN ), i.e. N ∈ N and m coin-
cides with the Hausdorff measure HN . We mention also [31], which addresses the
case of quasi-minimal sets in PI spaces.

The purpose of this paper is to prove the topological regularity of isoperimetric
sets in the general setting of length PI spaces that enjoy a so-called deformation
property, which we are going to introduce (we refer to definition 3.3 for the pre-
cise definition). We say that a metric measure space (X, d,m) has the deformation
property provided the following holds: given a set E ⊆ X of finite perimeter and a
point x ∈ X, we can find R,C > 0 such that

P (E ∪ Br(y)) � C
m(Br(y) \ E)

r
+ P (E) for every y ∈ BR(x) and r ∈ (0, R).

(1.1)

Classes of spaces having the deformation property are collected in remark 3.4.
Notably, the class includes RCD(K,N) spaces (X, d,m), thanks to [6, Theorem
1.1]. We shall not introduce RCD spaces here, and we refer the reader to the survey
[4] and the references therein.

We point out that being a PI space does not imply that the deformation property
holds, see the examples in remarks 3.5 and 3.6. Anyway, we are not aware of any
example of a PI space where the deformation property fails when tested on an
isoperimetric set E, nor of an example of a PI space where the essential interior of
an isoperimetric set is not topologically open.

Deformation properties for sets of locally finite perimeter are well-known in the
smooth context [34, Lemma 17.21], and they represent a tool of crucial importance
in several classical arguments. We refer, for instance, to [2, VI.2(3)], [24, Lemma
4.5], and [37, Lemma 3.6] in the sub-Riemannian setting, and to [21, 38] which
study isoperimetric problems in a weighted setting.

In fact, it is mostly powerful to couple the topological regularity of an isoperi-
metric set, or of a set minimizing some variational problem, with the deformation
property. For instance, knowing that such a set E has an open representative allows
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Topological regularity of isoperimetric sets in PI spaces 3

to apply (1.1) centred at points y in the interior, so that m(E ∪ Br(y)) > m(E) only
for radii r sufficiently large, and thus (1.1) implies that one can increase the volume
of E controlling the perimeter of the deformed set E ∪ Br(y) linearly with respect
to the increase of mass m(Br(y) \ E). An analogous observation holds applying
(1.1) to the complement, in case the complement of the considered set has an open
representative. Observe that the previous improved deformation property with lin-
ear control follows from (1.1) only after topological regularity of the set has been
established. This is in contrast to the Euclidean setting, where the stronger form
of deformation property is always available [34, Lemma 17.21]. The latter result
follows by deforming sets of finite perimeter by flows of vector fields, an argument
out of reach in the metric setting. Hence, the simplest Euclidean proof for the
topological regularity of isoperimetric sets [34, Example 21.3] has no hope of being
performed in our framework, and we must look for an alternative argument.

We can now state our main result, which yields the topological regularity at
the more general level of volume-constrained minimizers of the perimeter, i.e. sets
which minimize the perimeter with respect to any bounded variation that locally
preserves the measure, see definition 3.1. We will denote by E(1), E(0), and ∂eE the
essential interior, the essential exterior, and the essential boundary, respectively, of
a Borel set E ⊆ X; see § 2.2 for their definitions.

Theorem 1.1 (Topological regularity of volume-constrained minimizers). Let
(X, d,m) be a length PI space having the deformation property. Let E ⊆ X be a
volume-constrained minimizer of the perimeter. Then, E(1) = int(E(1)) and E(0) =
int(E(0)). In particular, it holds that E(1), E(0) are open sets and ∂E(1) = ∂E(0) =
∂eE.

The previous theorem implies density estimates on the volume and on the perime-
ter measure of a volume-constrained minimizer at points of the essential boundary,
see theorem 3.9. For an isoperimetric set, we can additionally prove its boundedness.
Namely:

Theorem 1.2. Let (X, d,m) be a length PI space having the deformation property.
Suppose that infx∈X m(B1(x)) > 0. Let E ⊆ X be an isoperimetric set. Then, E(1)

is bounded. In particular, every isoperimetric set in X has a bounded representative.

Since RCD(K,N) spaces with N < ∞ are length PI spaces (see [39, 40] and
[33]), and as recalled above they have the deformation property, putting together
theorems 1.1 and 1.2 we obtain the following.

Corollary 1.3. Let (X, d,m) be an RCD(K,N) space with N < ∞. Let E ⊆ X be
an isoperimetric set. Then, the sets E(1), E(0) are open and ∂eE = ∂E(1) = ∂E(0).
Moreover, if in addition infx∈X m(B1(x)) > 0, then E(1) is bounded.

In the case of noncollapsed RCD(K,N) spaces, the above result has been
previously proved in [6, Theorem 1.4].

As an application of corollary 1.3, we can refine the rigidity part in the sharp
isoperimetric inequality on RCD(0, N) spaces (X, d,m) with Euclidean volume
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growth. We recall that ‘Euclidean volume growth’ means that the asymptotic
volume ratio

AVR(X, d,m) := lim
R→∞

m(BR(p))
ωNRN

, for some p ∈ X,

of the space is strictly positive. Recall that the existence of the above limit is
guaranteed by the monotonicity of (0,+∞) � r �→ m(Br(p))/ωNrN , which in turn
follows from the Bishop–Gromov inequality (see e.g. [40]). Observe that the condi-
tion AVR(X, d,m) > 0 implies that infx∈X m(B1(x)) > 0. The sharp isoperimetric
inequality on these spaces, see (1.2), was obtained at different levels of general-
ity in [1, 7, 9, 13, 16, 17]. In [7] the rigidity for the isoperimetric inequality
was proved for noncollapsed RCD(0, N) spaces. Recently in [17, Theorem 1.5],
the authors prove the rigidity for the inequality in all RCD(0, N) spaces with
Euclidean volume growth under the additional assumption that the set achiev-
ing the equality is bounded. An application of our corollary 1.3 allows to drop
the previous boundedness requirement, thus obtaining the following unconditional
rigidity statement.

Theorem 1.4 (Sharp and rigid isoperimetric inequality on RCD(0, N) spaces with
Euclidean volume growth). Let (X, d,m) be an RCD(0, N) space with 1 < N < ∞
having Euclidean volume growth. Then, for every set of finite perimeter E ⊆ X with
m(E) < +∞ it holds that

P (E) � Nω
1/N
N AVR(X, d,m)1/Nm(E)(N−1)/N . (1.2)

Moreover, the equality in (1.2) holds for some set of finite perimeter E ⊆ X with
m(E) ∈ (0,+∞) if and only if X is isometric to a Euclidean metric measure cone
over an RCD(N − 2, N − 1) space and E is isometric, up to negligible sets, to a ball
centred at one of the tips of X.

In the previous theorem, when we say that X is a Euclidean metric measure
cone over an RCD(N − 2, N − 1) space we mean that there is a compact RCD(N −
2, N − 1) metric measure space (Z, dZ ,mZ) such that (X, d,m) is isomorphic, as a
metric measure space, to the metric measure cone (C(Z), dc, t

N−1dt ⊗ mZ), where
dc is the cone metric built using dZ . In the case of 1 < N < 2, it is understood
that in the rigidity part of the previous statement, the space X is either a weighted
Euclidean half-line or a weighted Euclidean line.

We stress that theorem 1.4 is not a straightforward consequence of the results in
[7], according to which the same result holds in the class of noncollapsed spaces.
Indeed, an RCD(0, N) space with 1 < N < ∞ and with Euclidean volume growth
might not be noncollapsed. A simple example is given by the weighted Euclidean
half-line ([0,+∞), deu, tN−1dt), with N > 1.

We now briefly discuss our strategy for the proof of theorem 1.1. As mentioned
above, the Euclidean proof [34, Example 21.3] cannot be adapted to our setting.
As in the classical [25, 41], we gain information on a volume-constrained minimizer
by comparison with suitable competitors exploiting the deformation property, but
our argument is different, more direct, and much shorter. The strategy of [25, 41]
consists in proving first that E has an interior and an exterior point, i.e. int(E(1)) 
=
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∅ and int(E(0)) 
= ∅ (see [25, Theorem 1]), then one deduces that E is a (Λ, r0)-
perimeter minimizer, and thus finally that E is open. Instead, we prove directly that
if x ∈ E(0) and y ∈ E(1) are arbitrary points, then x ∈ int(E(0)) and y ∈ int(E(1)).
To do so we avoid deriving quantitative estimates on the decay of m(Br(y) \ E) as
in [6, 25, 41], and we rather adopt a more qualitative approach. More precisely, the
key point is to show (see the key lemma 3.7) that if the function v(r) := m(Br(x) ∩
E) vanishes, as r → 0+, slower than the function w(r) := m(Br(y) \ E), then x ∈
int(E(0)) (and vice versa for y ∈ int(E(1))). By ‘slower’ we mean, roughly speaking,
that v(r) � w(r) for many r > 0 in a measure-theoretic sense (see lemma 3.7 for
the precise statement). However, up to exchanging E with its complement X \ E,
we can always ensure that v(r) vanishes slower than w(r), thus deducing that
x ∈ int(E(0)). By symmetry, we get y ∈ int(E(1)) as well.

We point out that the strategy of [25, 41] does not seem to generalize to our set-
ting, unless we require additional assumptions—such as Ahlfors regularity—which
we do not want to make (in order to obtain a result which applies to the whole
class of collapsed RCD(K,N) spaces). This motivated us to look for an alterna-
tive proof of the topological result, which—we believe—is of interest even in the
Euclidean setting, since it brings simplifications to the classical arguments in [25],
still (necessarily) avoiding the use of the smooth structure of the ambient.

We conclude the introduction by explicitly recording the following open problem.

Question 1.5. Let (X, d,m) be a length PI space and let E ⊆ X be a volume-
constrained minimizer of the perimeter. Is it true that E(1) is open?

2. Preliminaries

Given a metric space (X, d), we denote by LIPloc(X) the space of all locally Lipschitz
functions from X to R, i.e. of those functions f : X → R such that for any x ∈ X there
exists rx > 0 for which f is Lipschitz on Brx

(x). The slope lip(f) : X → [0,+∞) of
a function f ∈ LIPloc(X) is defined as lip(f)(x) := 0 if x ∈ X is an isolated point
and

lip(f)(x) := lim
y→x

|f(x) − f(y)|
d(x, y)

if x ∈ X is an accumulation point.

The topological interior and the topological boundary of a set E ⊆ X are denoted
by int(E) and ∂E, respectively. A Borel measure μ � 0 on X is locally finite if for
any x ∈ X there exists rx > 0 such that μ(Brx

(x)) < +∞, while we say that μ is
boundedly finite if μ(B) < +∞ whenever B ⊆ X is bounded Borel. Trivially, each
boundedly finite measure is locally finite, while the converse holds e.g. if (X, d) is
proper, i.e. bounded closed subsets of X are compact. Notice that locally finite Borel
measures on a complete separable metric space are σ-finite.

2.1. Sets of finite perimeter in metric measure spaces

In this paper, by a metric measure space (X, d,m) we mean a complete separable
metric space (X, d) together with a boundedly finite Borel measure m � 0 on X.
Following [35], we define the total variation |Df |(B) ∈ [0,+∞] of a given function
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f ∈ L1
loc(X) in a Borel set B ⊆ X as

|Df |(B)

:= inf
B⊆Ω open

inf
{

lim
n→∞

ˆ
Ω

lip(fn) dm

∣∣∣∣ (fn)n∈N ⊆ LIPloc(Ω), fn → f in L1
loc(Ω)

}
.

If for some open cover (Ωn)n∈N of X we have that |Df |(Ωn) < +∞ holds for every
n ∈ N, then |Df | is a locally finite Borel measure on X. We say that a Borel set
E ⊆ X is of locally finite perimeter if P (E, ·) := |DχE | is a locally finite measure,
called the perimeter measure of E. When P (E) := P (E,X) < +∞, we say that E
is of finite perimeter.

Remark 2.1. If E ⊆ X is a set of locally finite perimeter and x ∈ X is a given
point, then P (E, ∂Br(x)) = 0 for all but countably many radii r > 0. This is due
to the fact that ∂Br(x) ∩ ∂Bs(x) = ∅ whenever 0 < r < s and to the σ-finiteness
of P (E, ·). �

Given any f ∈ LIPloc(X), it holds that |Df | is a locally finite measure and |Df | �
lip(f)m.

Theorem 2.2 (Coarea formula [35, Proposition 4.2. )] Let (X, d,m) be a metric
measure space. Fix any f ∈ L1

loc(X) such that |Df | is a locally finite measure. Fix
a Borel set E ⊆ X. Then, R � t �→ P ({f < t}, E) ∈ [0,+∞] is a Borel measurable
function and it holds that

|Df |(E) =
ˆ

R

P ({f < t}, E) dt.

Corollary 2.3. Let (X, d,m) be a metric measure space. Fix x ∈ X and a Borel
set E ⊆ X. Define f : (0,+∞) → R as f(r) := |Ddx|(E ∩ Br(x)) for every r > 0,
where we denote dx := d(·, x) ∈ LIP(X). Then, the function f is locally absolutely
continuous and it holds that f ′(r) = P (Br(x), E) for L1-a.e. r > 0.

Proof. By virtue of the coarea formula, we obtain that f(r) =
´

R
P

({dx < s}, E ∩
Br(x)

)
ds =

´ r

0
P (Bs(x), E) ds for every r > 0, whence it follows that f(r) − f(r̃) =´ r

r̃
P (Bs(x), E) ds for every r > r̃ > 0. Hence, f is locally absolutely continuous and

f ′(r) = P (Br(x), E) for every Lebesgue point r of s �→ P (Bs(x), E), thus for L1-a.e.
r > 0. �

2.2. PI spaces

Even though the general theory of sets of finite perimeter is meaningful in any
metric measure space, a much more refined calculus is available in the class of
doubling spaces supporting a weak form of (1, 1)-Poincaré inequality, which we
refer to as PI spaces. Below we recall the definition of PI space we adopt in this
paper, referring e.g. to [12, 29] for a thorough account of this topic. We will also
recall some key features of sets of finite perimeter in PI spaces.

Definition 2.4 (PI space). Let (X, d,m) be a metric measure space. Then,
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Topological regularity of isoperimetric sets in PI spaces 7

• We say that (X, d,m) is uniformly locally doubling if there is a function
CD : (0,+∞) → (0,+∞) such that

m
(
B2r(x)

)
� CD(R)m

(
Br(x)

)
for every 0 < r < R and x ∈ X.

• We say that (X, d,m) supports a weak local (1, 1)-Poincaré inequality if there
exist a constant λ � 1 and a function CP : (0,+∞) → (0,+∞) such that for any
function f ∈ LIPloc(X) it holds that

 
Br(x)

∣∣∣∣f −
 

Br(x)

f dm

∣∣∣∣ dm

� CP (R) r

 
Bλr(x)

lip(f) dm for all 0 < r < R and x ∈ X.

• (X, d,m) is a PI space if it is uniformly locally doubling and it supports a weak
local (1, 1)-Poincaré inequality.

We point out that if (X, d,m) is a uniformly locally doubling space, then (X, d)
is proper, so (X, d) is locally compact, and locally finite Borel measures on (X, d)
are boundedly finite.

Remark 2.5. Let (X, d,m) be a PI space such that (X, d) is a length space, i.e. the
distance between any two points in X is the infimum of the lengths of rectifiable
curves joining them. Then, the weak local (1, 1)-Poincaré inequality is in fact strong,
namely it holds with λ = 1; see for example [26, Corollary 9.5 and Theorem 9.7].
Moreover, the completeness and the local compactness of (X, d) ensure that (X, d)
is also geodesic. �

Given a Borel set E ⊆ X in a PI space (X, d,m), we define its essential interior
and essential exterior as

E(1) :=
{

x ∈ X
∣∣∣∣ lim

r→0

m(E ∩ Br(x))
m(Br(x))

= 1
}

,

E(0) :=
{

x ∈ X
∣∣∣∣ lim

r→0

m(E ∩ Br(x))
m(Br(x))

= 0
}

,

respectively. The essential boundary of E is defined as ∂eE := X \ (E(1) ∪ E(0)).
Notice that E(1), E(0), and ∂eE are Borel sets and that ∂eE ⊆ ∂E. It follows
from the Lebesgue differentiation theorem (which holds on every uniformly locally
doubling metric measure space, see e.g. [27, Theorem 1.8]) that m(E(1)ΔE) = 0
and m(E(0)Δ(X \ E)) = 0. Moreover, if E is a set of finite perimeter, then we know
from [3, Theorem 5.3] that P (E, ·) is concentrated on ∂eE.

Proposition 2.6. Let (X, d,m) be a PI space. Let E,F ⊆ X be sets of locally finite
perimeter with P (E, ∂eF ) = 0. Then,

P (E ∩ F, ·) � P (E, ·) F (1) + P (F, ·) E(1).
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Proof. We know from [3, Theorem 5.3] that the perimeter measure P (G, ·) of a
set G ⊆ X of locally finite perimeter can be written as P (G, ·) = θGHh|∂eG for
some Borel function θG : X → (0,+∞), where Hh stands for the codimension-
one Hausdorff measure (see [3, Section 5]). Since P (E ∩ F, ·) � P (E, ·) + P (F, ·)
and P (E, ·)|X\∂eE = P (F, ·)|X\∂eF = 0, we deduce that θE∩F � θE and θE∩F � θF

hold Hh-a.e. in ∂eE \ ∂eF and ∂eF \ ∂eE, respectively. Moreover, we deduce from´
∂eF

θE dHh|∂eE = P (E, ∂eF ) = 0 that Hh(∂eE ∩ ∂eF ) = 0. Given that ∂e(E ∩
F ) = (∂eE ∩ F (1)) � (∂eF ∩ E(1)) up to an Hh-negligible set, which is shown e.g.
in the proof of [6, Lemma 2.5], we conclude that

P (E ∩ F, ·) = θE∩FHh|∂e(E∩F ) = θE∩FHh|∂eE∩F (1) + θE∩FHh|∂eF∩E(1)

� θEHh|∂eE∩F (1) + θFHh|∂eF∩E(1) ,

which yields the statement. �

The following is a direct consequence of the study in [3], taking remark 2.5 into
account.

Theorem 2.7 (Relative isoperimetric inequality [3, Remark 4.4]). Let (X, d,m)
be a length PI space. Then, there exists a function CI = CI(CD, CP ) : (1,+∞) ×
(0,+∞) → (0,+∞) such that the following property holds: given a set E ⊆ X of
finite perimeter, a radius R > 0, and an exponent α > max{log2(CD(R)), 1}, we
have that

min
{
m(Br(x) ∩ E),m(Br(x) \ E)

}

� CI(α,R)
(

rα

m
(
Br(x)

)
)1/(α−1)

P
(
E,Br(x)

)α/(α−1)
,

for every x ∈ X and r ∈ (0, R).

In the next proposition, we recall the well-known fact that in the class of PI spaces
where unit balls have measure uniformly bounded away from zero, there holds an
isoperimetric inequality for sets of small volume. Such a result is essentially due
to [23], after [15, 20, 30]. For a proof, we refer the reader to the argument in
[19, Lemma V.2.1].

Proposition 2.8 (Isoperimetric inequality for small volumes). Let (X, d,m) be a
length PI space. Then, there exist constants α > 1, C > 0 such that the following
holds. If v0 := infx∈X m(B1(x)) > 0, then for all Borel sets E ⊆ X with m(E) < v0/2
it holds that

P (E) � Cv
1/α
0 m(E)(α−1)/α.

Remark 2.9. Let (X, d,m) be a length PI space and E ⊆ X a set of finite
perimeter such that m(E),m(X \ E) > 0. Then, the relative isoperimetric inequal-
ity ensures that P (E) 
= 0. In order to prove it, fix any x ∈ X and notice that
we have m(BR(x) ∩ E),m(BR(x) \ E) > 0 for some R > 0 sufficiently large, thus
P (E) � P (E,BR(x)) > 0. �
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Topological regularity of isoperimetric sets in PI spaces 9

Lemma 2.10. Let (X, d,m) be a length PI space. Then, there exists c = c
(inf CD, inf CP ) ∈ (0, 1) such that

cm � |Ddx| � m for every x ∈ X, (2.1)

where we denote dx := d(·, x) ∈ LIPloc(X). In particular, it holds that

m
(
∂Br(x)

)
= 0 for every x ∈ X and r > 0. (2.2)

Proof. Recall that |Ddx| � lip(dx)m. Moreover, we deduce from [5, Equation (4.5)]
that there exists a constant c = c(inf CD, inf CP ) ∈ (0, 1) such that c lip(dx)m �
|Ddx|. To obtain (2.1), observe that lip(dx) ≡ 1: the inequality lip(dx) � 1 holds in
any metric space, while the converse inequality readily follows from the fact that
(X, d) is geodesic. Finally, (2.2) can be proved by combining (2.1) with the coarea
formula: we can estimate

m
(
∂Br(x)

)
� 1

c
|Ddx|

(
∂Br(x)

)
=

1
c

ˆ
R

P
(
Bs(x), ∂Br(x)

)
ds = 0,

where the last identity follows from the fact that P (Bs(x), ·) is concentrated on
∂eBs(x) ⊆ ∂Bs(x). �

3. Topological regularity

Let us begin with the definition of a volume-constrained minimizer of the perimeter.

Definition 3.1 (Volume-constrained minimizer). Let (X, d,m) be a metric measure
space. Then, a set E ⊆ X of locally finite perimeter is said to be a volume-
constrained minimizer of the perimeter if the following property is verified: given
a Borel set F ⊆ X and a compact set K ⊆ X satisfying m((EΔF ) \ K) = 0 and
m(E ∩ K) = m(F ∩ K), it holds P (E,K) � P (F,K).

Observe that E is a volume-constrained minimizer if and only if X \ E is a volume-
constrained minimizer.

Remark 3.2. An isoperimetric set, i.e. a set E ⊆ X of finite perimeter with 0 <
m(E) < +∞ such that P (E) � P (F ) for any Borel set F ⊆ X with m(F ) = m(E),
is a volume-constrained minimizer of the perimeter. �

Next, we introduce our definition of a metric measure space having the defor-
mation property, which will be our standing assumption throughout the rest of the
paper.

Definition 3.3 (Deformation property). Let (X, d,m) be a metric measure space
with (X, d) proper. Then, we say that (X, d,m) has the deformation property if the
following property holds: for every set of locally finite perimeter E ⊆ X and any

https://doi.org/10.1017/prm.2023.105 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.105


10 G. Antonelli, E. Pasqualetto, M. Pozzetta and I. Y. Violo

point x ∈ X, there exist constants R ∈ (0, 1] and C � 0 such that

P (E \ Br(y), B2R(x)) � C
m(Br(y) ∩ E)

r
+ P (E,B2R(x)) ∀y ∈ BR(x), r ∈ (0, R),

(3.1a)

P (E ∪ Br(y), B2R(x)) � C
m(Br(y) \ E)

r
+ P (E,B2R(x)) ∀y ∈ BR(x), r ∈ (0, R),

(3.1b)

For convenience, we define from now on Rx(E) ∈ (0, 1] to be the maximal
R ∈ (0, 1] such that the above holds for some C � 0 and we define Cx(E) � 0 to
be the minimal constant such that (3.1a) and (3.1b) hold with R = Rx(E). Note
that, by symmetry, we have that Rx(E) = Rx(X \ E) and Cx(E) = Cx(X \ E); this
is the reason why in definition 3.3 we require the validity of both (3.1a) and
(3.1b) with the same constants C and R. We also observe that if E ⊆ X is a
given set of finite perimeter (resp. of locally finite perimeter), then (3.1a) is equiva-
lent to asking that P (E \ Br(y), S) � C(m(Br(y) ∩ E)/r) + P (E,S) holds for every
(y, r) ∈ BR(x) × (0, R) and every Borel set (resp. bounded Borel set) S ⊆ X with
B2R(x) ⊆ S. Similarly for (3.1b). We will often make use of this observation without
further notice. Also,

inf
x∈B

Rx(E) > 0 for every bounded set B ⊆ X. (3.2)

Indeed, the compactness of the closure of B ensures that B ⊆ ⋃n
i=1 BRxi

(E)/2(xi) for
some x1, . . . , xn ∈ B, which gives Rx(E) � δ := min

{
Rxi

(E)/2 : i = 1, . . . , n
}

> 0
for every x ∈ B. The same argument shows also that (3.1a) and (3.1b) hold for
every x ∈ B for some R and C that depend only on B and E, e.g. by taking R := δ
and C := max

{
Cxi

(E) : i = 1, . . . , n
}
.

Remark 3.4 (Spaces having the deformation property). These are some spaces
with the deformation property:

(i) Euclidean spaces (see e.g. [25] and the references therein).

(ii) Riemannian manifolds (this can be proved e.g. by following the proof of
[6, Theorem 1.1] and using the fact that the Ricci curvature is locally bounded
from below).

(iii) RCD(K,N) spaces with K ∈ R and N ∈ [1,∞) (proved in [6, Theorem 1.1]
building upon the Gauss–Green formula in [14, Theorem 2.4]).

We point out that in the above cases a stronger version of the deformation property
holds, since, given an arbitrary R > 0, the constants Cx(E) for which the deforma-
tion property holds at every point x ∈ X and for every 0 < r < R, can be chosen
to be independent of E, x, and to be dependent only on K,N,R.

It would be interesting to study whether there are other distinguished examples
of PI spaces having the deformation property. One natural class to investigate is the
one of sub-Riemannian manifolds, or, more specifically, the one of Carnot groups.
For example, in the first Heisenberg group one has a sub-Laplacian comparison
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theorem. Being r the Carnot–Carathéodory distance from the origin, we have that
ΔHr � 4/r holds in the distributional sense, where ΔH is the horizontal Lapla-
cian. See [11] for the study of sub-Laplacian comparison theorems in more general
sub-Riemannian structures, and [18, Corollary 4.19] for the Laplacian comparison
theorem in arbitrary essentially non-branching MCP spaces. Then, coupling this
with the Gauss–Green formulae for Carnot groups in [22], one could argue follow-
ing the lines of [6, Theorems 2.32 and 1.1] to obtain that at least H

1, and more in
general all the groups that are essentially non-branching MCP(K,N) spaces, with
K ∈ R and N ∈ (1,∞) (cf. [10], [8]), have the deformation property. Since this is
out of the scope of the present paper, and since there are also some regularity issues
of the distance function to deal with, we do not treat these examples here, but we
leave it to possible future investigations.

We mention that, on the contrary, the topological regularity of isoperimetric sets
is already proved in [32] in the setting of Carnot groups and in [24] on a certain
class of sub-Riemannian manifolds. �

Remark 3.5. There exist PI spaces where the deformation property fails. For
example, fix a sequence of pairwise well-separated non-empty balls Bn := Brn

(xn)
in R

2 such that xn → 0 and
∑

n rn < +∞. Now, consider the density function
ρ : R

2 → [1, 2] given by ρ := χE + 2χ
R2\E , where E :=

⋃
n Bn. Letting m := ρL2 we

have L2 � ρL2 � 2L2, so that (R2, | · |,m) is an Ahlfors regular geodesic PI space.
We claim that the deformation property is not valid for the set of finite perimeter
E at the origin 0. To check it, notice that for any n ∈ N it holds P (Bn) = 2πrn,
while P (Brn+ε(xn)) = 4π(rn + ε) and m(Brn+ε(xn) \ Bn) = 2π(2rnε + ε2) for any
ε ∈ (0, εn) for some εn > 0 sufficiently small. Therefore,

P (E ∪ Brn+ε(xn)) − P (E)
m(Brn+ε(xn) \ E)/(rn + ε)

=
(2πrn + 4πε)(rn + ε)

2π(2rnε + ε2)
→ +∞ as ε ↘ 0,

which shows that the deformation property fails at the origin. However, we are not
aware of any example of a PI space where the deformation property fails when
tested on an isoperimetric set, nor of an example of a PI space where the essential
interior of some isoperimetric set is not topologically open. �

Remark 3.6. The validity of the deformation property on a metric measure space
(X, d,m) entails a growth condition: given x ∈ X, there exist Cx, rx > 0 such that

P (Br(y)) � Cx
m(Br(y))

r
for every y ∈ Brx

(x) and r ∈ (0, rx). (3.3)

Equation (3.3) follows just by taking E := ∅ in the deformation property. We have
that (3.3) is not equivalent to the deformation property (e.g. in the example in
remark 3.5 property (3.3) is satisfied). However, there are examples of PI spaces
where also (3.3) fails. The example we are going to describe has been pointed out
to the authors by Panu Lahti. Consider the measure m := |x|−1/2dx in R. Since
the function |x|−1/2 is an A1-Muckenhoupt weight, we know that (R, | · |,m) is a
PI space (see e.g. [28]). Using that m(Br(0))/r = 2

ffl r

0
(1/

√
x) dx = 4/

√
r → +∞ as

r ↘ 0, one can easily check that the codimension-one Hausdorff measure of the
singleton {0} diverges, i.e. Hh({0}) = +∞. It follows from [3, Theorem 5.3] that
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B|y|(y) is not a set of locally finite perimeter when y ∈ (0,+∞). Hence, (3.3) fails
for x = 0. �

Given a metric measure space (X, d,m), a point x ∈ X, and a Borel set E ⊆ X,
we introduce the notation

vE,x(r) := m(Br(x) ∩ E), wE,x(r) := m(Br(x) \ E) for every r > 0. (3.4)

The core of the proof of our main theorem 1.1 is contained in the following
technical result.

Lemma 3.7. Let (X, d,m) be a length PI space having the deformation property.
Let E ⊆ X be a volume-constrained minimizer of the perimeter. Fix any x ∈ E(0)

and y ∈ E(1). Define the functions vE,x, wE,y : (0,+∞) → [0,+∞) as in (3.4). Fix
a sequence (rn)n ⊆ (0, 1) such that rn → 0. For any n ∈ N, we define the Borel set
Ax,y

E,rn
⊆ (0, rn) as

Ax,y
E,rn

:=
{
r ∈ (0, rn)

∣∣ vE,x(r) � wE,y(r)
}
. (3.5)

Suppose the following conditions are verified:

(i) There exists δ ∈ (0, Ry(E)) such that B̄δ(x) ∩ B̄δ(y) = ∅, vE,x(δ) > 0, and
wE,y(δ) > 0.

(ii) The inequality L1(Ax,y
E,rn

) � rn/2 holds for infinitely many n ∈ N.

Then, it holds that x ∈ int(E(0)).

Proof. We argue by contradiction: suppose that x /∈ int(E(0)). Recalling that
m(Bδ(y) \ E) = wE,y(δ) > 0 and noticing that m(Br(x) ∩ E) → 0 as r → 0, we can
extract a (not relabelled) subsequence of (rn)n for which

rn < δ, m(Brn
(x) ∩ E) < m(Bδ(y) \ E), L1(Ax,y

E,rn
) � rn

2
, (3.6)

for every n ∈ N. Now, let n ∈ N be fixed. We claim that for any r ∈ An := Ax,y
E,rn

there exists s(r) ∈ [r, δ) such that

vE,x(r) = m(Br(x) ∩ E) = m(Bs(r)(y) \ E) = wE,y(s(r)).

Indeed, if wE,y(r) = vE,x(r), then we can take s(r) := r. If wE,y(r) 
= vE,x(r), then
vE,x(r) > wE,y(r) by definition of An, thus the continuity of wE,y (which follows
from (2.2)) ensures that wE,y(s(r)) = vE,x(r) for some s(r) > 0. Since wE,y is non-
decreasing, we infer that s(r) � r. Moreover, the second inequality in (3.6) implies
that s(r) < δ.

Given any r ∈ An, we define the Borel set Er ⊆ X as Er := (E \ Br(x)) ∪
Bs(r)(y). The first inequality in (3.6) ensures that B̄r(x) ∩ B̄s(r)(y) = ∅, whence
it follows that m

(
Er ∩ (B̄r(x) ∪ B̄s(r)(y))

)
= m

(
E ∩ (B̄r(x) ∪ B̄s(r)(y))

)
. Denote

K := B̄2δ(x) ∪ B̄2δ(y) for brevity. The assumption that E is a volume-constrained
minimizer of the perimeter then implies that P (E,K) � P (Er,K). For ease of nota-
tion from now on we will denote Cy(E) simply by Cy. Thanks to proposition 2.6,
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remark 2.1, the deformation property, and s(r) � r, we deduce that for L1-a.e.
r ∈ An one has

P (E,K) � P (Er,K)

� P
(
E ∪ Bs(r)(y), Br(x)(0) ∩ K

)
+ P

(
Br(x), (E ∪ Bs(r)(y))(1) ∩ K

)
= P (E ∪ Bs(r)(y),K) − P

(
E ∪ Bs(r)(y), ∂eBr(x) ∪ Br(x)(1)

)
+ P (Br(x), E(1))

� P (E ∪ Bs(r)(y),K) − P (E,Br(x)) + P (Br(x), E(1))

� P (E,K) + Cy

m(Bs(r)(y) \ E)
s(r)

− P (E,Br(x)) + P (Br(x), E(1))

= P (E,K) + Cy
m(Br(x) ∩ E)

s(r)
− P (E,Br(x)) + P (Br(x), E(1))

� P (E,K) + Cy
m(Br(x) ∩ E)

r
− P (E,Br(x)) + P (Br(x), E(1)).

Notice that the constant Cy depends on y and E, but neither on n nor on r.
Therefore, we have shown that

P (E,Br(x))

� Cy
m(Br(x) ∩ E)

r
+ P (Br(x), E(1)) for all n ∈ N and L1-a.e. r ∈ An.

(3.7)

Now, fix any α > max{log2(CD(δ)), 1}. We know from the relative isoperimetric
inequality, i.e. theorem 2.7, that

P (E,Br(x))

� 2C̃ min{vE,x(r), wE,x(r)
}1−1/α m(Br(x))1/α

r
for every n ∈ N and r ∈ An,

(3.8)

where we define C̃ := 1/2CI(α, δ)(α−1)/α. Exploiting the fact that x ∈ E(0), we can
find n̄ ∈ N such that

vE,x(r) < wE,x(r), Cy

(
m(Br(x) ∩ E)

m(Br(x))

)1/α

� C̃ for every n � n̄ and r ∈ An.

(3.9)
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By combining (3.7), (3.8), and (3.9), we deduce that for every n � n̄ and L1-a.e.
r ∈ An it holds that

2C̃m(Br(x) ∩ E)1−1/α m(Br(x))1/α

r

� P (Br(x), E(1)) + m(Br(x) ∩ E)1−1/αCy

(
m(Br(x) ∩ E)

m(Br(x))

)1/α
m(Br(x))1/α

r

� P (Br(x), E(1)) + C̃m(Br(x) ∩ E)1−1/α m(Br(x))1/α

r
.

Rearranging the terms, we infer that

C̃
m(Br(x))1/α

r
m(Br(x) ∩ E)1−1/α

� P (Br(x), E(1)) for every n � n̄ and L1-a.e. r ∈ An. (3.10)

Now, define the function f : (0,+∞) → R as f(r) := |Ddx|(Br(x) ∩ E(1)) for every
r > 0. Corollary 2.3 tells that f is locally absolutely continuous and f ′(r) =
P (Br(x), E(1)) for L1-a.e. r > 0. Moreover, lemma 2.10 gives f(r) � m(Br(x) ∩ E)
for every r > 0. Consequently, it follows from (3.10) that

C̃
m(Br(x))1/α

r
f(r)1−1/α � f ′(r) for every n � n̄ and L1-a.e. r ∈ An. (3.11)

Using that x /∈ int(E(0)), which is the contradiction assumption, and lemma 2.10
we see that f(r) � cm(Br(x) ∩ E) > 0 for every r > 0, thus we can divide both
sides of (3.11) by αf(r)1−1/α, obtaining that

C̃

α

m(Br(x))1/α

r
� f ′(r)

αf(r)1−1/α
= (f1/α)′(r) for every n � n̄ and L1-a.e. r ∈ An.

(3.12)

The third inequality in (3.6) implies that L1([rn/4, rn] ∩ An) � rn/4 for every n ∈
N, thus integrating (3.12) (and taking into account that (f1/α)′(r) � 0 holds for
L1-a.e. r > 0) we get that

C̃

4α
m(Brn/4(x))1/α � C̃

α

m(Brn/4(x))1/α

rn
L1([rn/4, rn] ∩ An)

� C̃

α

ˆ
[rn/4,rn]∩An

m(Br(x))1/α

r
dr

�
ˆ

[rn/4,rn]∩An

(f1/α)′(r) dr �
ˆ rn

0

(f1/α)′(r) dr

= f(rn)1/α � m(Brn
(x) ∩ E)1/α

for every n � n̄. Letting C := (1/CD(δ)2)(C̃/4α)α, we can conclude that
m(Brn

(x) ∩ E) � Cm(Brn
(x)) for every n � n̄. This leads to a contradiction with

the fact that x ∈ E(0). Therefore, the proof of the statement is achieved. �
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Having lemma 3.7 at our disposal, we can now easily prove theorem 1.1.

Proof of theorem 1.1. Since E(1) = (X \ E)(0), it is sufficient to check that E(0) =
int(E(0)). To prove it, we argue by contradiction: suppose there exists a point x ∈
E(0) \ int(E(0)). This implies that both m(E) > 0 (otherwise E(0) = X = int(E(0)))
and m(X \ E) > 0 (otherwise E(0) = ∅), thus we know from remark 2.9 that
P (E) 
= 0. Since P (E, ·) is concentrated on ∂eE, we can find a point z ∈ ∂eE.
Notice that m(Br(z) ∩ E) > 0 and m(Br(z) \ E) > 0 for all r > 0. Since z 
= x,
we can fix some radius δ ∈ (0, Rx(E)) ∩ (0, 2Rz(E)/3) ∩ (0, d(x, z)/3). Thanks to
the fact that m(Bδ/2(z) ∩ E) > 0, we can find a point y ∈ E(1) ∩ Bδ/2(z). Notice
that Bδ/2(z) \ E ⊆ Bδ(y) \ E, so that m(Bδ(y) \ E) � m(Bδ/2(z) \ E) > 0. The fact
that x /∈ int(E(0)) implies that also m(Bδ(x) ∩ E) > 0. Hence, letting vE,x, wE,y be
defined in (3.4), we have proved that vE,x(δ) > 0 and wE,y(δ) > 0. By our construc-
tion and by the definition of Rz(E), Ry(E) it holds 2Rz(E)/3 � Ry(E), hence we
have δ ∈ (0, Ry(E)). Moreover, the inequality δ < d(x, z)/3 implies that d(x, y) >
2d(x, z)/3 > 2δ, which means that B̄δ(x) ∩ B̄δ(y) = ∅. All in all, we showed that
item (i) of lemma 3.7 holds. Hence, fixed any sequence (rn)n ⊆ (0, 1) with rn → 0,
we deduce from the assumption x /∈ int(E(0)) that item (ii) of lemma 3.7 fails.
Letting Ax,y

E,rn
be as in (3.5), we get that

L1(Ax,y
E,rn

) � rn

2
holds only for finitely many n ∈ N. (3.13)

Since Ax,y
E,rn

∪ Ay,x
X\E,rn

= (0, rn) for every n ∈ N, we infer that L1(Ay,x
X\E,rn

) � rn/2
for infinitely many n ∈ N. Given that vX\E,y(δ) = wE,y(δ) > 0 and wX\E,x(δ) =
vE,x(δ) > 0, we are in a position to apply lemma 3.7 again, obtaining that
y ∈ int((X \ E)(0)) = int(E(1)). This gives some r̄ > 0 satisfying wE,y(r) = 0 for
every r ∈ (0, r̄). On the other hand, we know from x /∈ int(E(0)) that vE,x(r) > 0
for all r ∈ (0, r̄). Choosing n̄ ∈ N so that rn < r̄ for all n � n̄, we conclude that
Ax,y

E,rn
= (0, rn) for every n � n̄, in contradiction with (3.13). This proves that

E(0) = int(E(0)). �

Remark 3.8 (Some generalizations of theorem 1.1). To keep the presentation of
theorem 1.1 as clear as possible, we decided not to prove it in its utmost generality.
However, below we discuss some generalizations of our result that can be obtained
by slightly adapting our arguments. The standing assumption is that (X, d,m) is a
length PI space.

(i) By inspecting the proof of lemma 3.7, one can see that assuming the validity
of a weaker notion of deformation property is sufficient. Namely, one can allow
for the constant C appearing in (3.1a), (3.1b) to depend on y and it is sufficient
to require the deformation property only for volume-constrained minimizers E
of the perimeter.

(ii) A localized version of theorem 1.1 holds as well: let E ⊆ X be a volume-
constrained minimizer of the perimeter in some open set Ω ⊆ X (i.e. as in
definition 3.1 but requiring that K ⊆ Ω and with P (·) replaced by P (·,Ω)) sat-
isfying P (E,Ω) > 0. Then, E(1) ∩ Ω, E(0) ∩ Ω are open sets and ∂E(1) ∩ Ω =
∂E(0) ∩ Ω = ∂eE ∩ Ω.
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(iii) Theorem 1.1 can be generalized to volume-constrained minimizers of a suit-
able class of quasi-perimeters. Fix an open set Ω ⊆ X and a functional
G : B(Ω) → R ∪ {+∞} with G(∅) < +∞ having the following property:
for any U � Ω open, there exist constants C = C(U) > 0 and σ = σ(U) ∈(
1 − (1/max{1, log2(inf CD)}), 1]

such that

G(E) � G(F ) + Cm(EΔF )σ whenever E,F ∈ B(Ω) satisfy EΔF ⊆ U.

We then define the quasi-perimeter PG restricted to Ω as PG(E,Ω) :=
P (E,Ω) + G(E ∩ Ω) for every E ∈ B(Ω). Then, an adaption of the previous
arguments yields the validity of the following statement: if E ⊆ X is a volume-
constrained minimizer of the quasi-perimeter PG in Ω (i.e. as in definition 3.1
but requiring that K ⊆ Ω, and with P (·) replaced by PG(·,Ω)) satisfying
P (E,Ω) > 0, then E(1) ∩ Ω and E(0) ∩ Ω are open sets, and it holds that
∂E(1) ∩ Ω = ∂E(0) ∩ Ω = ∂eE ∩ Ω. �

Once we know that volume-constrained minimizers of the perimeter have an open
representative, we can obtain the following expected boundary density estimates
by suitably adapting the arguments in the proof of lemma 3.7.

Theorem 3.9 (Boundary density estimates). Let (X, d,m) be a length PI space
having the deformation property. Let E ⊆ X be a volume-constrained minimizer
of the perimeter. Let B ⊆ X be a given bounded set. Then, there exist constants
r̄ = r̄(E,B,CD, CI) > 0 and C = C(E,B,CD, CI) > 1 such that

1
C

� m(Br(x) ∩ E)
m(Br(x))

� 1 − 1
C

,
1
C

� rP (E,Br(x))
m(Br(x))

� C, (3.14)

for every x ∈ ∂eE ∩ B and r ∈ (0, r̄).
In particular, there exists a constant C̃ = C̃(C,CD(r̄/2)) � 1 such that

P (E,B2r(x)) � C̃ P (E,Br(x)) for every x ∈ ∂eE ∩ B and r ∈ (0, r̄/2). (3.15)

Proof. If ∂eE contains only one point, the first one in (3.14) follows by the definition
∂eE, while the second follows from [3, Theorem 5.4]. Thus, we can assume that
∂eE contains at least two distinct points z and z̃, otherwise there is nothing to
prove. In particular, letting ρ := min

{
Rz(E), Rz̃(E), (1/5)d(z, z̃)

}
, we can find two

points y ∈ Bρ/2(z) ∩ E(1) and ỹ ∈ Bρ/2(z̃) ∩ E(1). In fact, theorem 1.1 ensures that
y, ỹ ∈ int(E(1)), so that there exists r0 ∈ (0, ρ) such that

m(Br0(y) \ E) = m(Br0(ỹ) \ E) = 0. (3.16)

Notice that m(Bρ(y) \ E) � m(Bρ/2(z) \ E) > 0 and similarly m(Bρ(ỹ) \ E) > 0.
The doubling assumption ensures that the closure K of B is compact, thus an
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application of Dini’s theorem yields the existence of r1 > 0 such that

m(Br(x) ∩ E)

< min
{
m(Bρ(y) \ E),m(Bρ(ỹ) \ E)

}
for every x ∈ K and r ∈ (0, r1).

(3.17)

Thanks to (3.2), we can also find r2 > 0 such that r2 < Ry(E), r2 < Rỹ(E),
and r2 < Rx(∅) hold for every x ∈ K. Now, define r̄0 := min{r0, r1, r2} > 0. Let
x ∈ ∂eE ∩ B be fixed. Our choice of ρ ensures that B̄ρ(x) is disjoint from at least one
between B̄ρ(y) and B̄ρ(ỹ). Up to relabelling y and ỹ, say that B̄ρ(x) ∩ B̄ρ(y) = ∅.
Given any r ∈ (0, r̄0), we deduce from (3.16), (3.17), and the continuity of s �→
m(Bs(y) \ E) that there exists s(r) ∈ (r̄0, ρ) such that m(Br(x) ∩ E) = m(Bs(r)

(y) \ E). Define the Borel set Er ⊆ X as Er := (E \ Br(x)) ∪ Bs(r)(y). By the
minimality assumption on E, arguing as we did in the proof of lemma 3.7 we
obtain

P (E,Br(x)) � max{Cz, Cz̃}m(Br(x) ∩ E)
r̄0

+ P (Br(x), E(1)), (3.18)

for any x ∈ ∂eE ∩ B and L1-a.e. r ∈ (0, r̄0). For any x ∈ ∂eE ∩ B, define Ax(E) :
=

{
r > 0 : |Ddx|(Br(x) ∩ E) � |Ddx|(Br(x) \ E)

}
. Fix α > max{log2(CD(ρ)), 1}.

Applying the relative isoperimetric inequality to the left-hand side of (3.18) and
using lemma 2.10, we deduce that

2C0
m(Br(x))1/α

r
|Ddx|(Br(x) ∩ E)1−1/α

= 2C0
m(Br(x))1/α

r
min

{|Ddx|(Br(x) ∩ E), |Ddx|(Br(x) \ E)
}1−1/α

� 2C0
m(Br(x))1/α

r
min

{
m(Br(x) ∩ E),m(Br(x) \ E)

}1−1/α

� P (Br(x), E(1)) +
max{Cz, Cz̃}

c1−1/α

r

r̄0

m(Br(x))1/α

r
|Ddx|(Br(x) ∩ E)1−1/α

(3.19)

holds for L1-a.e. r ∈ (0, r̄0) ∩ Ax(E), where we set C0 := 1/
(
2CI(α, ρ)(α−1)/α

)
for

brevity. Therefore, if we let

r̄ := min
{

c1−1/αC0r̄0

max{Cz, Cz̃} , r̄0

}
∈ (0, r̄0],

then we infer from (3.19) that

C0
m(Br(x))1/α

r
|Ddx|(Br(x) ∩ E)1−1/α

� P (Br(x), E(1)) for L1-a.e. r ∈ (0, r̄) ∩ Ax(E). (3.20)
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This also proves (by considering X \ E instead of E) that, up to shrinking r̄ > 0, it
holds that

C0
m(Br(x))1/α

r
|Ddx|(Br(x) \ E)1−1/α

� P (Br(x), E(0)) for L1-a.e. r ∈ (0, r̄) ∩ Ax(X \ E). (3.21)

Let us now define the function fx : (0,+∞) → R as

fx(r) := min
{|Ddx|(Br(x) ∩ E(1)), |Ddx|(Br(x) ∩ E(0))

}
for every r > 0.

Corollary 2.3 ensures that fx is locally absolutely continuous and

f ′
x(r) =

{
P (Br(x), E(1))
P (Br(x), E(0))

for L1-a.e. r ∈ Ax(E),
for L1-a.e. r ∈ Ax(X \ E).

Observe that Ax(E) ∪ Ax(X \ E) = (0,+∞). Arguing as in lemma 3.7, we deduce
from (3.20) and (3.21) that

C0

α

m(Br(x))1/α

r
� (f1/α

x )′(r) for L1-a.e. r ∈ (0, r̄). (3.22)

Given any r ∈ (0, r̄), we can integrate the inequality in (3.22) over the interval
[r/2, r], thus obtaining that

C0

2α (CD(r̄/2))1/α
m(Br(x))1/α � C0

α

m(Br/2(x))1/α

r

r

2
� C0

α

ˆ r

r/2

m(Bs(x))1/α

s
ds

�
ˆ r

0

(f1/α
x )′(s) ds = fx(r)1/α � min

{
m(Br(x) ∩ E),m(Br(x) \ E)

}1/α
.

(3.23)

It follows that m(Br(x)) � C1m(Br(x) ∩ E) for every x ∈ ∂eE ∩ B and r ∈ (0, r̄),
where we define C1 := CD(r̄/2)

(
2α/C0

)α.
Let x ∈ ∂eE ∩ B and r ∈ (0, r̄) be fixed. Since m(Br(x)) � C1 min

{
m(Br(x)

∩ E),m(Br(x) \ E)
}

by (3.23), by using the relative isoperimetric inequality, and
recalling that 2C0 = 1/CI(α, ρ)(α−1)/α, we get that

2C0

C
1−1/α
1

m(Br(x))
r

� 2C0
m(Br(x))1/α

r
min

{
m(Br(x) ∩ E),m(Br(x) \ E)

}1−1/α � P (E,Br(x)).

On the contrary, up to shrinking r̄ (depending only on B), we can find a constant
C2 > 0 (depending only on B) such that P (Br̃(x)) � C2m(Br̃(x))/r̃ for every r̃ ∈
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(0, r̄); recall the discussion after (3.2). Then,

P (E,Br(x)) � P (E,Br̃(x)) � max{Cz, Cz̃}m(Br̃(x) ∩ E)
r̃

+ P (Br̃(x), E(1))

� max{Cz, Cz̃}m(Br̃(x))
r̃

+ P (Br̃(x))

�
(
max{Cz, Cz̃} + C2

)m(Br̃(x))
r̃

,

for L1-a.e. r̃ ∈ (r, r̄), thanks to (3.18) and to the deformation property. Hence,
rP (E,Br(x))/m(Br(x)) � max{Cz, Cz̃} + C2 for all x ∈ ∂eE ∩ B and r ∈ (0, r̄).
Taking

C := max
{
C1, C

(α−1)/α
1 /(2C0),max{Cz, Cz̃} + C2

}
,

we conclude that (3.14) holds. Finally, applying (3.14) we conclude that for every
x ∈ ∂eE ∩ B and r ∈ (0, r̄/2) it holds that

P (E,B2r(x))
P (E,Br(x))

� Cm(B2r(x))
2r

Cr

m(Br(x))
� C2CD(r̄/2)

2
,

which proves the validity of (3.15). Consequently, the statement is achieved. �

We conclude with a final comment on further minimality properties satisfied by
volume-constrained minimizers. Such properties can be derived by reproducing well-
known arguments, see, e.g. [6, Remark 3.23, Theorem 3.24], exploiting theorem 1.1
and the deformation property.

Remark 3.10. Let (X, d,m) be a length PI space having the deformation property.
Let E ⊆ X be a volume-constrained minimizer of the perimeter. Using theorem 1.1
and with arguments similar to those in the proof of theorem 3.9, it is possible to
prove that for any compact set K ⊆ X there exist Λ, r0 > 0 such that E is a (Λ, r0)-
perimeter minimizer on K, i.e. whenever FΔE ⊆ Br(x) for some x ∈ K and r < r0

it holds P (E,Br(x)) � P (F,Br(x)) + Λ m(EΔF ).
Moreover, for any given compact set K ⊆ X there exist constants L, r0 > 0 such

that E is (L, r0)-quasi minimal on K, i.e. whenever FΔE ⊆ Br(x) for some x ∈ K
and r < r0 it holds that P (E,Br(x)) � LP (F,Br(x)). The class of quasi-minimal
sets has been studied e.g. in [31].

It is worth pointing out that, once we know that volume-constrained minimizers
of the perimeter are (L, r0)-quasi minimal sets, theorem 3.9 follows directly from
[31, Theorem 4.2 and Lemma 5.1]. Nevertheless, we opted for a self-contained
proof of theorem 3.9, which takes advantage of the openness of volume-constrained
minimizers. �

4. Boundedness of isoperimetric sets

In this final section, we prove the boundedness of isoperimetric sets in length PI
spaces satisfying the deformation property and with a uniform lower bound on the
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volume of unit balls (theorem 1.2). The argument makes use of the topological
regularity given by our main result theorem 1.1.

Proof of theorem 1.2. Suppose by contradiction that E has no bounded representa-
tives, i.e. m(E \ BR(x)) > 0 for all R > 0 and x ∈ X. In particular X is unbounded
and, since

v0 := inf
x∈X

m(B1(x)) > 0,

we have m(X) = ∞ and m(X \ E) > 0. Then, P (E) > 0 and, arguing as in the proof
of theorem 1.1, we can find y ∈ E(1) and ρ ∈ (0, Ry(E)) such that δ := m(Bρ(y) \ E)
> 0. By theorem 1.1 it holds that y ∈ int(E(1)), i.e. there exists r0 > 0 such that
m(Br0(y) \ E) = 0. We consider the function f : (0,+∞) → R defined by

f(R) := |Ddy|(E(1) \ BR(y)) = |Ddy|(E(1)) − |Ddy|(E(1) ∩ BR(y)),

and observe that |Ddy|(E(1)) � lip(dy)m(E(1)) = m(E) < +∞. By corollary 2.3 the
function f is locally absolutely continuous and satisfies f ′(r) = −P (BR(x), E(1)) for
L1-a.e. R > 0. Thanks to lemma 2.10 and since m(E(1)ΔE) = 0, there also exists a
constant c > 0 such that

0 < cm(E \ BR(y)) � f(R) � m(E \ BR(y)), ∀R > 0. (4.1)

Observe that, since m(E) < +∞, it holds m(E \ BR(y)) → 0 as R → +∞. Hence,
f(R) → 0 as R → +∞ and so we can find R0 > ρ such that f(R) < min{δ, v0/2}
for all R � R0. By continuity, for every R � R0 there exists r(R) ∈ (0, ρ) such that

m(Br(R)(y) \ E) = m(E \ BR(y)). (4.2)

For every R � R0 we define the set FR := (E ∪ Br(R)(y)) ∩ BR(y), which satisfies
m(FR) = m(E) thanks to (4.2) and r(R) < R. Hence, by minimality, P (E) � P (FR)
for every R � R0. Moreover, using proposition 2.6 and the deformation property,
for L1-a.e. R � R0 we have

P (E) � P (FR)

= P ((E ∪ Br(R)(y)) ∩ BR(y))

� P (E ∪ Br(R)(y), BR(y)(1)) + P (BR(y), (E ∪ Br(R)(y))(1))

� P (E ∪ Br(R)(y)) − P (E ∪ Br(R)(y), BR(y)(0)) + P (BR(y), E(1))

� P (E) + Cy(E)
m(Br(R)(y) \ E)

r0
− P (E,BR(y)(0)) + P (BR(y), E(1))

� P (E) + Cy(E)
m(Br(R)(y) \ E)

r0
− P (E \ BR(y)) + 2P (BR(y), E(1))

� P (E) + Cy(E)
m(E \ BR(y))

r0
− Cv

1/α
0 m(E \ BR(y))(α−1)/α

+ 2P (BR(y), E(1)),

with C > 0, α > 1 constants independent of R, where in the fifth line we used again
proposition 2.6 and in the last line we used the isoperimetric inequality for small
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volumes in proposition 2.8 (recall that m(E \ BR(y)) < v0/2). This combined with
(4.1) shows that

2f ′(R) � Cy(E)c−1r−1
0 f(R) − Cv

1/α
0 f(R)(α−1)/α

� −C1f(R)(α−1)/α, for a.e. R � R1,

for some constant R1 � R0 big enough and where C1 > 0 is a constant independent
of R. Note that in the last inequality we used that f(R) → 0 as R → +∞ and
α > 1. Since f(R) > 0 for all R > 0, this shows that

(f1/α)′(R) � −C1

2α
, for a.e. R � R1,

which contradicts the fact that f(R) is strictly positive for any R > 0. �
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