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Abstract

In this paper, we prove that if K is any periodic link in S3 whose quotient link is a 2-bridge link, then
one half of the degree of the reduced Alexander polynomial, the minimal genus, the free genus and the
canonical genus of K are all the same. We also give criteria to determine whether a given periodic link
has a 2-bridge link quotient and some properties of this kind of periodic link.
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1. Introduction

A link L in S3 is called a p-periodic link (p ≥ 2 an integer) if there exists an
orientation-preserving auto-homeomorphism h of S3 such that h(L)= L , h is of
order p and the set Fix(h) of fixed points of h is a circle disjoint from L . In this
case, the link L/〈h〉 ∪ Fix(h) in the orbit space S3/〈h〉 ∼= S3 is called the quotient link
of L and L/〈h〉 is called the factor link of L . Let K be an oriented link in S3 and U an
oriented trivial knot with K ∩U = ∅. For any integer p ≥ 2, let φ p

U :6
3
→ S3 be a p-

fold branched cyclic covering branched along U . Then63 is homeomorphic to S3 and
(φ

p
U )
−1(K ) is a p-periodic link in 63 with L = K ∪U as its quotient link. We give

an orientation to (φ p
U )
−1(K ) induced by the orientation of K . Note that any periodic

knot or link in S3 arises in this manner.
It is known [5, 9] that a 2-bridge link of 2-components can be represented by

a Conway normal form C(2, n1,−2, n2, . . . , nr , (−1)r 2), which is equivalent to
the diagram shown in Figure 1. Throughout this paper, the 2-bridge link L in S3

represented by Conway normal form C(2, n1,−2, n2, . . . , nr , (−1)r 2) with an
orientation as shown in Figure 1 will be denoted by L =

−→
C [[n1, n2, . . . , nr ]]. In

Figure 1, each tangle labeled with an integer ni (1≤ i ≤ r) denotes a 2-tangle as shown
in Figure 2.
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FIGURE 1. Diagram of a 2-bridge link of 2-components.

ni = ...

ni > 0

...

ni < 0

FIGURE 2. Tangle labeled with ni .

A link L̃ in S3 is called a p-periodic link with rational quotient if there exists
a 2-bridge link L =U1 ∪U2 in S3 such that L̃ is equivalent to the preimage
(φ

p
U2
)−1(U1) of the component U1 of L by a p-fold branched cyclic covering φ p

U2
:

63
→ S3 branched along the component U2 of L . Note that each component U1

and U2 of the 2-bridge link L is a trivial knot and they can be interchanged by an
orientation-preserving homeomorphism of S3 [7]. This guarantees that (φ p

U2
)−1(U1)

is equivalent to (φ p
U1
)−1(U2). Let L =

−→
C [[n1, n2, . . . , nr ]] be an oriented 2-bridge

link as shown in Figure 1. Then the diagram D(p) shown in Figure 3 is called the
canonical oriented p-periodic diagram of the oriented p-periodic link with rational
quotient L . In what follows, we denote the oriented p-periodic link by L(p) or
−→
C [[n1, n2, . . . , nr ]]

(p). Note that any p-periodic link with rational quotient can be
represented by

−→
C [[n1, n2, . . . , nr ]]

(p) for some nonzero integers n1, n2, . . . , nr . For
more details, we refer the interested reader to [6, 9].

Frankel and Pontrjagin [4] and Seifert [17] introduced a method to construct an
orientable closed surface having a given knot as its boundary. Seifert [17] defined the
(minimal) genus g(K ) of a knot K as the minimum of the genera of orientable closed
surfaces having K as a boundary and proved that

1
2 deg1K (t)≤ g(K ), (1.1)

where deg1K (t) is the degree of the Alexander polynomial 1K (t) of K . If K is a
torus knot, then the equality in (1.1) holds, but there are also cases where the equality
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FIGURE 3. Canonical oriented p-periodic diagram.

does not hold. In fact, the trivial knot is the only knot with genus zero and there are
many nontrivial knots whose Alexander polynomials are equal to one. The canonical
genus gc(K ) of a knot K is defined to be the minimum of the genera of orientable
closed surfaces obtained by Seifert’s construction (algorithm) [17]. Note that Seifert’s
algorithm applied to a knot or link diagram might not produce a minimal genus Seifert
surface. In addition, the free genus g f (K ) and slice genus gs(K ) of a knot K have
been introduced. It is easily seen that any canonical Seifert surface is free and, in
general, the following inequality holds:

gs(K )≤ g(K )≤ g f (K )≤ gc(K ). (1.2)

Up to now, many authors have constructed knots and links for which this inequality is
strict; see, for example, [15, 19]. On the other hand, Murasugi [10, 11] proved that if
K is an alternating knot, then the equality in (1.1) holds and g(K )= gc(K ) in (1.2).

In this paper, we prove that if K is any p-periodic knot with rational quotient
−→
C [[n1, n2, . . . , nr ]], then the equality in (1.1) holds and g(K )= g f (K )= gc(K )=
r(p − 1)/2 (see Theorem 3.2). Indeed, we study this for the class of all periodic
knots and links with rational quotients. It should be noted that the class of all periodic
knots and links with rational quotients includes all 2-bridge knots and links [6] and all
torus knots and links, and also contains some nonalternating knots and links. We also
investigate some other properties of knots and links contained in this interesting class
and we give criteria to determine whether a given periodic link has a rational quotient
or not (see Corollaries 2.4 and 3.3).

In Section 2, we determine the degree of the reduced Alexander polynomial of
periodic links with rational quotients (see Theorem 2.3). In Section 3, we determine
the minimal genus and prove that the free genus, the canonical genus of this kind of
periodic link are all equal to the minimal genus, and that the orientable closed surface
obtained from the canonical periodic diagram D(p) as shown in Figure 3 by Seifert’s
construction is a minimal genus surface (see Theorem 3.2). We also give a certain
class of 3-periodic links with rational quotients for which the equality in (1.2) holds
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(see Theorem 3.5). In Section 4, we show that these periodic links are all homogeneous
and give some related properties (see Theorem 4.1).

2. The degree of the reduced Alexander polynomial

We begin by reviewing a recursive formula for the Alexander polynomials of
2-bridge links given by the authors [9]. For a given integer n, let Ra(t; n), Rb(t; n),
La(t; n), Lb(t; n) and Tn(t) be Laurent polynomials in Z[t±1

] defined by

Ra(t; n) = (−1)nt−(1+(−1)n)/2
{⌊

n

2

⌋
t −

(⌊
n

2

⌋
+

1− (−1)n

2

)}
,

Rb(t; n) = (−1)n+1t−(1+(−1)n)/2
{⌊

n

2

⌋
t −

(⌊
n

2

⌋
−

1+ (−1)n

2

)}
,

La(t; n) = (−1)nt−(1+(−1)n)/2
{(⌊

n

2

⌋
+

1− (−1)n

2

)
t −

(⌊
n

2

⌋
+ 1

)}
,

Lb(t; n) = (−1)n+1t−(1+(−1)n)/2
{(⌊

n

2

⌋
+

1− (−1)n

2

)
t −

⌊
n

2

⌋}
,

Tn(t) = (−1)n+1t−(1+(−1)n)/2,

where bxc is the largest integer less than or equal to x . Let n1, n2, . . . , nr be given
integers (r ≥ 1). For each k = 1, 2, . . . , r , we put

ε0 = 1, εk = (−1)n1+···+nk+k, T k(t)= Tnk (t
εk−1)

and

Rk
a(t)= Ra(t

εk−1; nk), Rk
b(t)= Rb(t

εk−1; nk),

Lk
a(t)= La(t

εk−1; nk), Lk
b(t)= Lb(t

εk−1; nk).

Since Ra(t; n)= t (−1)n+1
Lb(t−1

; n) for any integer n,

Rk
a(t)= tεk Lk

b(t
−1). (2.1)

For each k = 1, 2, . . . , r + 1, let Ak and Bk be Laurent polynomials in Z[t±1, u±1
]

defined by the following recursive relations:

A1 = 1;

B1 = 1;

Ak+1 =Rk
a(t)Ak + uRk

b(t)Bk;

Bk+1 = Lk
a(t)Ak + uLk

b(t)Bk .

THEOREM 2.1 [9]. For given nonzero integers n1, n2, . . . , nr , let 1k(t, u)
(1≤ k ≤ r) be the Laurent polynomial in Z[t±1, u±1

] given by

1k(t, u)=
uBk+1 −Ak+1

u − 1
.
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Then 1k(t, u) is the Alexander polynomial of a 2-bridge link
−→
C [[n1, n2, . . . , nk]] up

to units and

10(t, u) = 1,

11(t, u) = uL1
b(t)+R1

a(t),

1k(t, u) = (uLk
b(t)+Rk

a(t))1
k−1(t, u)+ uT k(t)(Rk−1

b (t)− Lk−1
b (t))1k−2(t, u).

THEOREM 2.2. Let 1L(t, u) be the Alexander polynomial of a 2-bridge link L =
−→
C [[n1, n2, . . . , nr ]] and let 1L(t, u)=

∑M
i=m φi (t)ui with φM (t) 6= 0 and

φm(t) 6= 0. Then M = r , m = 0,

φr (t)=±t i L1
b(t)L2

b(t) · · · Lr
b(t) and φ0(t)=±t j R1

a(t)R2
a(t) · · ·Rr

a(t)

for some integers i and j .

PROOF. In [9], we proved that M = r and φr (t)=±t i L1
b(t)L2

b(t) · · · Lr
b(t) for some

integer i by showing that Lk
b(t) 6= 0 for each k = 1, 2, . . . , r (see [9, Corollary 8].)

From (2.1), it follows that Rk
a(t) 6= 0 for each k = 1, 2, . . . , r . By Theorem 2.1, we

also have m = 0 and φ0(t)=±t j R1
a(t)R2

a(t) · · ·Rr
a(t). This completes the proof. 2

Let 1̂L(t) be the reduced Alexander polynomial of a link L . If 1̂L(t)=
∑M

i=0 ai t i

(a0 6= 0 6= aM ) up to units, then M is called the degree of the reduced Alexander
polynomial 1̂L(t) and we denote M by deg 1̂L(t). In 1971, Murasugi [13] showed
that if L = K ∪U , where U is unknotted, and K (p) is the p-periodic link in S3 with
L as its quotient link, then

1̂K (p)(t)=1K (t)
p−1∏
i=1

1L(t, ω
i ), (2.2)

where ω is a primitive pth root of unity and 1̂K (p)(t) the reduced Alexander
polynomial of K (p).

THEOREM 2.3. For given nonzero integers n1, n2, . . . , nr (r ≥ 1) and a positive
integer p ≥ 2, let L(p) be the p-periodic link with rational quotient L =
−→
C [[n1, n2, . . . , nr ]] and 1̂L(p)(t) its reduced Alexander polynomial. Then

deg 1̂L(p)(t)= r(p − 1).

PROOF. Let 1L(t, u)=
∑r

i=0 φi (t)ui be the Alexander polynomial of L =
−→
C [[n1, n2, . . . , nr ]] =U1 ∪U2. By Theorem 2.2, φ0(t) 6= 0 and φr (t) 6= 0. Since
every 2-bridge link is interchangeable [7], 1L(t, u)=1L(u, t) up to units. Since U1
is unknotted, by (2.2),

1̂L(p)(t)=
p−1∏
i=1

1L(t, ω
i )=

p−1∏
i=1

1L(ω
i , u)

∣∣∣∣
u=t
.
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FIGURE 4. A 4-periodic knot which has no rational quotient.

Put 1̂L(p)(t)=
∑r(p−1)

i=0 ai t i . Then

a0 =

p−1∏
i=1

φ0(ω
i ) and ar(p−1) =

p−1∏
i=1

φr (ω
i ).

From (2.1) and Theorem 2.2, we obtain that φ0(t)=±taφr (t−1) for some integer a.
In [9, Proof of Theorem 10], we showed that ar(p−1) 6= 0. Since

∏p−1
i=1 ω

i
= 1 and∏p−1

i=1 φr (ω
−i )=

∏p−1
i=1 φr (ω

i ), we also see that

a0 =

p−1∏
i=1

φ0(ω
i )=±

p−1∏
i=1

ωiaφr (ω
−i )=±

p−1∏
i=1

φr (ω
i ) 6= 0.

Hence, the degree of 1̂L(p)(t) is r(p − 1). This completes the proof. 2

The following corollary is an immediate consequence of Theorem 2.3.

COROLLARY 2.4. Let L be any p-periodic link in S3. If L has a rational quotient,
then

deg 1̂L(t)≡ 0 mod (p − 1).

EXAMPLE 2.5. Let K be an oriented knot in S3 with a diagram as shown in Figure 4.
Then K is a 4-periodic knot. Since the Alexander polynomial of K is

1K (t) = 1− t + t3
− t4
+ t6
− t7
+ t8
− t10

+ t11
− t13

+ t14,

deg1K (t) 6≡ 0 mod 3.

Hence, K does not have a rational quotient as a 4-periodic knot.

REMARK 2.6. Let L be an oriented p-periodic link of µ components. If L has a
rational quotient

−→
C [[n1, n2, . . . , nr ]], then r = (1/(p − 1)) deg 1̂L(t) is an invariant

of L .

Let σ(L) denote the signature of an oriented link L in S3. In [18], Shinohara showed
that for a link L with 1̂L(t) 6= 0, |σ(L)| ≤ deg 1̂L(t). By Theorem 2.3, we have the
following result.

COROLLARY 2.7. For given nonzero integers n1, n2, . . . , nr (r ≥ 1) and a positive
integer p ≥ 2, let L(p) be the p-periodic link with rational quotient L =
−→
C [[n1, n2, . . . , nr ]]. Then |σ(L(p))| ≤ r(p − 1).
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3. Various kinds of genus

A Seifert surface for a link L in S3 is a compact, connected, and orientable surface
S in S3 such that the boundary of S is L , that is, ∂(S)= L . The minimum genus over
all Seifert surfaces for L is called the genus for L , denoted by g(L). For a diagram D
of a link L , it is well known that a Seifert surface for L can always be obtained from D
by applying Seifert’s algorithm [17]. A Seifert surface for a link L constructed via
Seifert’s algorithm for a diagram D is called a canonical Seifert surface associated
with the diagram D. Then the minimum genus over all canonical Seifert surfaces
for L is called the canonical genus for L , denoted by gc(L). A Seifert surface S for
a link L is said to be free if the fundamental group π1(S3

− S) of the complement of
the surface S is a free group. The minimum genus over all free Seifert surfaces for L
is called the free genus for L , denoted by g f (L). The slice genus gs(L) of L is the
minimum genus over all Seifert surfaces for L properly embedded in a 4-ball B4. We
first recall the following inequality.

THEOREM 3.1 [2, 17]. Let L be an oriented link in S3 with µ components. Then

1
2 (deg 1̂L(t)− µ+ 1)≤ g(L).

THEOREM 3.2. For given nonzero integers n1, n2, . . . , nr (r ≥ 1) and a positive
integer p ≥ 2, let L(p) be the p-periodic link with rational quotient L =
−→
C [[n1, n2, . . . , nr ]] and D(p) its canonical p-periodic diagram shown in Figure 3.
Then the canonical Seifert surface associated with the diagram D(p) is a Seifert
surface of minimal genus and

1
2 (deg 1̂L(p)(t)− µ(L

(p))+ 1) = g(L(p))= g f (L
(p))= gc(L

(p))

=
1
2 (r(p − 1)− µ(L(p))+ 1),

where µ(L(p)) denotes the number of components of L(p).

PROOF. Let S be the canonical Seifert surface of L(p) associated to the canonical
diagram D(p) and let g(S) denote the genus of the surface S. Then

2g(S)+ µ(L(p))− 1= c(D(p))− s(D(p))+ 1, (3.1)

where c(D(p)) denotes the number of crossings of D(p) and s(D(p)) denotes the
number of Seifert circles of D(p). Observing the diagram D(p), we obtain

c(D(p))= p
r∑

i=1

|ni |, s(D(p))= p
r∑

i=1

(|ni | − 1)+ r + 1.

Hence

c(D(p))− s(D(p))+ 1= p
r∑

i=1

|ni | −

(
p

r∑
i=1

(|ni | − 1)+ r + 1
)
+ 1= r(p − 1).
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By Theorem 3.1 and the equality (3.1) together with gc(L(p))≤ g(S),

deg 1̂L(p)(t) ≤ 2g(L(p))+ µ(L(p))− 1≤ 2gc(L
(p))+ µ(L(p))− 1

≤ c(D(p))− s(D(p))+ 1= r(p − 1).

Hence, it follows from Theorem 2.3 and (1.2) that

1
2 (deg 1̂L(p)(t)− µ(L

(p))+ 1) = g(L(p))= g f (L
(p))= gc(L

(p))

=
1
2 (r(p − 1)− µ(L(p))+ 1).

This completes the proof. 2

The following corollary is a direct consequence of Theorem 3.2.

COROLLARY 3.3. Let L be an oriented p-periodic link of µ components. If L has a
rational quotient

−→
C [[n1, n2, . . . , nr ]], then

2g(L)≡ 1− µ mod (p − 1).

EXAMPLE 3.4. Let K be the 4-periodic knot in Example 2.5. Since K is a positive
knot and deg1K (t)= 14, the genus of K is seven and, hence, 2g 6≡ 0 mod 3.

THEOREM 3.5. Let n1, n2, . . . , nr be given nonzero integers (r ≥ 1) and let L(3) be
the 3-periodic link in S3 with rational quotient L =

−→
C [[n1, n2, . . . , nr ]]. Suppose

that n1, n2, . . . , nr have the same sign and |ni ni+1ni+2ni+3| ≥ 2 for each i =
1, 2, . . . , r − 3. Then

gs(L
(3))= g(L(3))= g f (L

(3))= gc(L
(3))= r +

1− µ(L(3))
2

.

PROOF. In [8], the authors showed that if |ni ni+1ni+2ni+3| ≥ 2 for each i =
1, 2, . . . , r − 3, then the signature σ(L(3)) of L(3) is given by

σ(L(3))=−2
r∑

i=1

ni

|ni |
.

Since n1, n2, . . . , nr have the same sign, σ(L(3))=±2r . On the other hand,
Murasugi [12] proved that for a link L , |σ(L)| ≤ 2gs(L)+ µ(L)− 1. From this
inequality, together with (1.2) and Theorem 3.2, we obtain

r +
1− µ(L(3))

2
≤ gs(L

(3))≤ g(L(3))= r +
1− µ(L(3))

2
.

This completes the proof. 2
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EXAMPLE 3.6.

(1) The 3-periodic knots with rational quotients
−→
C [[1, 1, −1]] and

−→
C [[1, 2]] are

the knots 947 and 949 in Rolfsen’s table [16], respectively. They are neither alter-
nating links nor torus links. By Theorem 3.2, g(947)= g f (947)= gc(947)= 3.
However, gs(947)= 1 (see [7]). By Theorem 3.5, gs(949)= g(949)= g f (949)=

gc(949)= 2.
(2) Let L(p) be the p-periodic link in S3 with rational quotient L =

−→
C [[n1,

n2, . . . , nr ]], where n1 = n2 = · · · = nr = 1. Then L(p) is a torus link of type
(r + 1, p). By Theorem 3.2, g(L(p))= g f (L(p))= gc(L(p))= 1

2r(p − 1).

A Seifert surface S for a p-periodic link L in S3 is said to be p-equivariant if it
is invariant under an orientation-preserving auto-homeomorphism h : S3

→ S3 which
respects the period p of L . In [3], Edmonds proved that if K is a p-periodic knot,
then there exists a p-equivariant minimal genus Seifert surface S for K , that is,
g(S)= g(K ). Note that if K is a p-periodic knot with a p-periodic homeomorphism h,
then a Seifert surface for the factor knot K∗ = K/〈h〉 can be lifted to give a p-
equivariant Seifert surface S for K . Conversely, any p-equivariant Seifert surface
S for K gives a Seifert surface S∗ = S/〈h〉 for the factor knot K∗ of K .

THEOREM 3.7. Let K be a p-periodic knot with rational quotient
−→
C [[n1, n2, . . . ,

nr ]] (p ≥ 2). Let S be any p-equivariant Seifert surface for K with g(S)= g(K ) and
let h be an associated p-periodic homeomorphism. Then

g(S∗)=
p − 1
2p

(r − m + 1), m ≥ `, m ≡ `(mod 2), (3.2)

where

`= 1+
r∑

k=1

(−1)n1+n2+···+nk+k

and m = |Fix(h) ∩ S|, that is, the number of points of intersection of S (or S∗) with
Fix(h). Furthermore, S∗ is a 2-disk if and only if m = r + 1.

PROOF. We first observe that the restriction h : S→ S∗ is a p-fold branched
cyclic covering branched along Fix(h) ∩ S∗. By Riemann–Hurwitz Formula,
it follows [3, 14] that

g(S)= p(g(S∗))+
(p − 1)(m − 1)

2
, m ≥ `, m ≡ `(mod 2),

where `= lk(K∗, Fix(h)), that is, the linking number of K∗ and Fix(h). Since
K∗ ∪ Fix(h)=

−→
C [[n1, n2, . . . , nr ]], it is easy to see from Figure 1 that

`= 1+
r∑

k=1

(−1)n1+n2+···+nk+k .
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Now, by Theorem 3.2, g(S)= g(K )= r(p − 1)/2 and hence (3.2) follows. Note that
S∗ is a 2-disk if and only if g(S∗)= 0. From (3.2), it is straightforward that g(S∗)= 0
if and only if m = r + 1. This completes the proof. 2

4. Homogeneity

Let D be an oriented diagram of a link L and F its canonical Seifert surface
associated with D. The spine of this surface is a graph, say G. The vertices of G
correspond to the disks in F which span the Seifert circles of D; the edges of G
correspond to the crossings in D. Each edge in G can be given a sign according to
the sign of the corresponding crossing. A signed graph constructed from a diagram in
this manner is called a Seifert graph. We assume that the links under consideration are
nonsplit. This implies that the corresponding Seifert graphs are connected.

Let G be any connected graph. An edge e in G is an isthmus if G − e is
disconnected. A vertex v in G is a cut vertex if G − v is disconnected. Suppose
that G contains a cut vertex v and let G1, . . . , Gn be the connected components of
G − v. Then the n subgraphs G1 ∪ v, . . . , Gn ∪ v are obtained from G by cutting
G at v. Cutting G at each of its cut vertices produces a set of connected components,
each one being a subgraph of G containing no cut vertices. Such a component is called
a block. A block of a Seifert graph is homogeneous if all of its edges have the same
sign. A Seifert graph is homogeneous if each of its blocks is homogeneous. A diagram
is homogeneous if its Seifert graph is homogeneous. A link is homogeneous if it has a
homogeneous diagram [1].

Let χ(L) denote the maximal Euler characteristic over all Seifert surfaces for a
link L . Then it is known [1] that for any link L with µ components,

1− χ(L)= 2g(L)+ µ− 1. (4.1)

Let max degz PL(v, z) and min degv PL(v, z) denote the highest and the lowest
degrees of z in the Homfly polynomial PL(v, z) of a link L .

THEOREM 4.1. For given nonzero integers n1, n2, . . . , nr (r ≥ 1) and a positive
integer p ≥ 2, let L(p) be the p-periodic link with rational quotient L =
−→
C [[n1, n2, . . . , nr ]]. Then:

(1) L(p) is a homogeneous link;
(2) max degz PL(p)(v, z)= 1− χ(L(p))= r(p − 1);
(3) min degv PL(p)(v, z)≤ 1− χ(L(p))= r(p − 1) with equality if and only if L(p)

is positive; and
(4) if α(v) denotes the coefficient polynomial of zr(p−1) in PL(p)(v, z) of a link L(p),

then α(v) is a polynomial in v and the coefficients of α(v) are all nonnegative or
all nonpositive.

PROOF. For any nonzero integer n, let G(n) be the signed graph as shown in Figure 5,
where there are p simple paths from v1 to v2 and each path consists of |n| edges
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FIGURE 5. Seifert graph associated with D(p).

whose signs are all positive or all negative according to whether n is positive or
negative. For the integers n1, n2, . . . , nr , let G(n1) ∗ G(n2) ∗ · · · ∗ G(nr ) be the
block sum of G(n1), G(n2), . . . , G(nr ) as shown in Figure 5. Then it is easy to see
that G(n1) ∗ G(n2) ∗ · · · ∗ G(nr ) is the Seifert graph associated with the canonical
diagram D(p) of L(p). Since all edges of G(ni ) have the same sign, the diagram D(p)

is homogeneous and, hence, L(p) is a homogeneous link. Combining [1, Theorem 4],
Theorem 3.2, and the equality (4.1), we obtain the properties (2) and (3). From
[1, Corollary 4.3], we obtain the property (4). This completes the proof. 2

REMARK 4.2. Let L(p) be the p-periodic link with rational quotient
−→
C [[n1, n2, . . . ,

nr ]] and let ∇L(p)(z) be the Conway polynomial of the link L(p). From
[1, Corollaries 5.2 and 5.3], [2, Corollary 7.6.5] and [9, Theorem 10], we also have
following properties:

(1) 2g(L(p))=max deg ∇L(p)(z)− µ(L
(p))+ 1 and the leading coefficient of

∇L(p)(z) is ±1 if and only if ni =±1 for all i = 1, 2, . . . , r ;
(2) L(p) does not have a special homogeneous diagram (r ≥ 2) and it is fibered if

and only if the leading coefficient of ∇L(p)(z) is ±1.
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