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Turbulent wakes are often characterized by dominant coherent structures over disparate
scales. Dynamics of their behaviour can be attributed to interscale energy dynamics and
triadic interactions. We develop a methodology to quantify the dynamics of kinetic energy
of specific scales. Coherent motions are characterized by the triple decomposition and
used to define mean, coherent and random velocity. Specific scales of coherent structures
are identified through dynamic mode decomposition, whereby the total coherent velocity
is separated into a set of velocities classified by frequency. The coherent kinetic energy
of a specific scale is defined by a frequency triad of scale-specific velocities. Equations
for the balance of scale-specific coherent kinetic energy are derived to interpret interscale
dynamics. The methodology is demonstrated on three wake flows: (i) Re = 175 flow over
a cylinder; (ii) a direct numerical simulation of Re = 3900 flow over a cylinder; and (iii)
a large-eddy simulation of a utility-scale wind turbine. The cylinder wake cases show that
energy transfer starts with vortex shedding and redistributes energy through resonance
of higher harmonics. The scale-specific coherent kinetic energy balance quantifies the
distribution of transport and transfer among coherent, mean and random scales. The
coherent kinetic energy in the rotor scales and the hub vortex scale in the wind turbine
interact to produce new scales. The analysis reveals that vortices at the blade root interact
with the hub vortex formed behind the nacelle, which has implications for the proliferation
of scales in the downwind near wake.

Key words: wakes

1. Introduction

While turbulent flows are characterized by a broad range of scales that often appear chaotic
with random fluid motions, persistent, organized coherent structures are often observed
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© The Author(s), 2023. Published by Cambridge University Press 971 A7-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:dvfoti@memphis.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.641&domain=pdf
https://doi.org/10.1017/jfm.2023.641


D.K. Kinjangi and D. Foti

(Brown & Roshko 1974; Hussain & Zaman 1985). The dynamics of these so-called
coherent structures play an important role in turbulent flow behaviour (Cantwell 1981;
Hussain 1983; Haller 2015). Multiple scales of coherent structures within any particular
flow can exist due to different origins, disparate characteristic scales, spatio-temporal
developments depending on the Reynolds number and other pertinent parameters in
the flow. Furthermore, they are often the dominant flow features and appear in many
flows, including wall-bounded flows (Guala, Hommema & Adrian 2006; Hutchins &
Marusic 2007; Jiménez 2018), jets (Hussain & Zaman 1985; Zaman 1996; Schmidt
et al. 2017; Towne, Schmidt & Colonius 2018) and wakes (Wygnanski, Champagne
& Marasli 1986; Sohankar, Norberg & Davidson 1999; Foti et al. 2016; Yang et al.
2016; Bai & Alam 2018). However, even if they share common traits, the interactions
of coherent structures among themselves or the surrounding flow, as well as other
associated dynamics and mechanisms such as genesis, instabilities and breakdown,
remain unclear. The objective of this work is to develop a framework and analyses to
elucidate the mechanisms of the interactions of coherent structures and other scales in the
flow.

The transfer of kinetic energy among scales, or interscale energy dynamics, can be
leveraged to identify the formation, evolution and destruction of coherent structures.
Multi-scale turbulence energy transfer has a long history based on the seminal
Richardson–Kolmogorov theory (Richardson 1922; Kolmogorov 1941) of the turbulent
energy cascade. The energy cascade postulates that at sufficiently large Reynolds numbers,
the energy transfers from the largest energy-containing scales to the smallest universal
scales. This is a consequence of the quadratic nonlinearity present in the Navier–Stokes
equations, which gives rise to triadic interactions whereby a triplet of wavenumber or
frequency scales sum to zero (i.e. κ i ± κ j ± κk = 0 or f i ± f j ± f k = 0). Pioneered by
Kraichnan (1967) and Kraichnan (1971), the role of triadic interactions in turbulence has
been subject to a number of investigations (Domaradzki & Rogallo 1990; Brasseur &
Wei 1994; Waleffe 1997). It has been shown that the largest scales can impact the small
scale velocity statistics (Mininni, Alexakis & Pouquet 2006) and that the nonlinearity
imposes significant complexity by promoting nonlocal interactions (Brasseur & Wei 1994;
Domaradzki et al. 1994) and extreme dissipation events (Zhou et al. 2019; Farazmand &
Sapsis 2017).

Energy transfer between the mean and fluctuating parts of the flow has been studied in
great detail in a variety of flows (Cal et al. 2010; Calaf, Meneveau & Meyers 2010; Yang
et al. 2015; Cimarelli et al. 2016; Gatti et al. 2018; Symon, Illingworth & Marusic 2021).
Energy transfer plays a key role in the organization of multi-scale coherent structures and
turbulent eddies, and insight into their self-sustaining mechanisms (Kravchenko, Choi &
Moin 1993; Hamilton, Kim & Waleffe 1995; Waleffe 1997). While energy transfer between
the mean and the fluctuating part (i.e. turbulence production) can provide insights into
high-Reynolds-number flows (Calaf et al. 2010; Cal et al. 2010; Yang et al. 2015; Gatti
et al. 2018; Symon et al. 2021), the multi-scale physics leads to anisotropy (Cimarelli et al.
2016), intermittency (Piomelli et al. 1991; Domaradzki, Liu & Brachet 1993; Cerutti &
Meneveau 1998; Dubrulle 2019), inhomogeneous spatial fluxes (Cimarelli et al. 2016)
and nonlinear redistribution of energy that is strongly scale- and position-dependent
(Piomelli, Yu & Adrian 1996; Hong et al. 2012). However, quantification of turbulence
production alone cannot assess these turbulence characteristics, and interscale dynamics
can be complicated by inverse cascade and energy redistribution (Alexakis & Biferale
2018; Carbone & Bragg 2020).

To capture the interscale dynamics of coherent structures, the spatio-temporal
fluctuations associated with coherent structures need to be identified and separated from
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the total fluctuations (Reynolds & Hussain 1972). A commonly employed technique to
quantify the turbulent fluctuations that are associated with coherent structures is the triple
decomposition of the velocity (Hussain & Reynolds 1970), but it requires additional
insights and operators to distinguish coherent quantities. The triple decomposition of the
velocity leads to three coupled equations that capture the evolution of kinetic energy: (i)
the mean kinetic energy equation; (ii) the coherent kinetic energy equation associated
only with the coherent fluctuations; and (iii) the random kinetic energy equation. The
three equations have been used to identify the exchange of energy between the mean,
coherent and random scales. In particular, the coherent kinetic energy equation has been
applied to scale-by-scale energy analysis (Thiesset et al. 2011), controls of coherent
structures (Chen, Yao & Hussain 2021) and analysis of interscale transfer (Reynolds
& Hussain 1972; Thiesset, Danaila & Antonia 2014; Chan, Schlatter & Chin 2021),
but they only consider the scale of one coherent motion. Further insight is needed
to identify multiple, specific scales and account for a scale-specific coherent kinetic
energy.

A precise definition of a coherent structure has never been fully established due to
disparate features observed ranging from strong vortical structures such as tip vortices
to large meandering features in turbulent boundary layers and wakes. This may be partly
why many techniques have been proposed to identify coherent structures. Methods include
Eulerian diagnostics (Hunt, Wray & Moin 1988; Jeong & Hussain 1995; Dubief &
Delcayre 2000), which threshold on various kinematic metrics. Temporal filtering methods
(Hussain 1986) have commonly been employed to identify a single coherent structure
with a regular Strouhal number; however, coarse-graining (Motoori & Goto 2019; Dong
et al. 2020) and Lagrangian methods (Chrisohoides & Sotiropoulos 2003; Haller 2015)
can also be employed. However, these aforementioned techniques almost always quantify
a single coherent fluctuation as part of the triple decomposition. These methods can be
much more cumbersome to employ where multiple coherent structures with different
scales are present in the flow. Building on a general definition of a coherent structure
that it is region of the flow over which a flow variable exhibits high spatio-temporal
correlation with itself or another (Robinson 1991), we pursue a methodology that allows
multiple coherent structures to be represented with dynamical properties through mode
decomposition (Sirovich 1987; Holmes et al. 2012; Mezić 2013). The method leverages
large quantities of data with a high spatio-temporal resolution that have become ubiquitous
in flow solutions and is restricted to statistically stationary flows. Mode decomposition
provides a method for analysis and data reduction where the flow variable is decomposed
into a sum of parts each defined by the tuple of amplitude, temporal coefficient and spatial
mode. When mode decompositions are paired with compressive sensing (Donoho 2006;
Fowler 2009), the objective reduction of the number of parts can be undertaken (Kutz
2013; Jovanović, Schmid & Nichols 2014). A common mode decomposition is proper
orthogonal decomposition (POD), which is the decomposition of the velocity covariance
matrix and produces orthogonal modes that optimally represent the variance of the data
(Sirovich 1987). Due to the orthogonality of the modes and ordered mode amplitude,
this is commonly employed for analysis (Berkooz, Holmes & Lumley 1993; VerHulst &
Meneveau 2015; Foti, Giorno & Duraisamy 2020) and reduced-order modelling (Rowley,
Colonius & Murray 2004; Holmes et al. 2012). However, spectral mode decompositions
such as dynamic mode decomposition (Schmid 2010), spectral POD (Towne et al.
2018) and Koopman mode decomposition (Mezić 2013) are eigendecompositions of an
operator that organizes modes based on their spectral characteristics (Rowley et al.
2009; Schmid 2010). There are several benefits of employing these methods to identify
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coherent structures for interscale energy dynamics that will be shown: (i) modes are
identified by a unique frequency scale which is directly associated with a specific
coherent quantity; (ii) support of the mode remains in physical space rather than spectral
space; (iii) coherent kinetic energy at specific frequency scales can be identified; (iv)
multiple and disparate scales are individually identified; and (v) triadic interactions
can be directly elucidated in the scale-specific coherent kinetic energy balance derived
herein.

Coherent structures have been shown to transfer energy to a range of scales (Goto,
Saito & Kawahara 2017; Motoori & Goto 2019). The scale-by-scale energy balances,
such as the Kármán–Howarth–Monin equation and its generalizations (Hill 2002; Gatti
et al. 2020), have been used to assess the spatial correlations and interscale dynamics
in specific areas of a large sub-set of flows (Gomes-Fernandes, Ganapathisubramani &
Vassilicos 2015; Valente & Vassilicos 2015; Portela, Papadakis & Vassilicos 2017; Zhou
et al. 2020). These analyses focus on the structure function and associated length scales
in the flow. While originally formulated in traditional Reynolds decomposition, other
derivations have employed the triple decomposition to identify a coherent scale (Thiesset
et al. 2011, 2014). Other analyses have focused on using the resolvent (McKeon & Sharma
2010); however, the nonlinear mechanisms preclude the employment of linear models to
predict nonlinear energy transfer (Jin, Symon & Illingworth 2021; Symon et al. 2021).
The bispectrum, a signal processing of time series with third-order spectra, can detect
quadratic phase coupling. The bispectrum, similar to the power spectrum, has also been
used to identify triadic interaction and energy transfer in atmospheric boundary layers
(Lii, Rosenblatt & Van Atta 1976) and jets (Corke, Shakib & Nagib 1991; Gee et al.
2010). Classic bispectrum signal processing analysis is capable of detecting quadratic
nonlinearity in a one-dimensional signal. Recently, a bispectral mode decomposition was
developed by Schmidt (2020) to identify triadic relationships that represent the dynamics
of the structure based on third-order statistics of spatio-temporal data. Similar to the
present work, Baj & Buxton (2017) used triple decomposition with a spectral mode
decomposition to derive energy balances. It has been applied to flows over a cylinder
(Biswas, Cicolin & Buxton 2022) and fractal turbulence generation (Baj & Buxton
2017). However, the analysis does not generalize the identification of triads within the
framework.

The present work develops a framework to quantify interscale dynamics of coherent
structures through kinetic energy budgets with explicitly imposing triadic interactions.
While the range of scales is large and pertinent at very large Reynolds numbers, in this
work, we focus on three cases of varying Reynolds number and complexity. We are
motivated by considering: (i) that the interaction between the most dominant coherent
structures is not fully understood; (ii) triadic interactions occur over all scales; and (iii)
wake-like flows exhibit strong coherence of specific scales, which are easy to identify and
validate. In what follows, we will develop a set of equations for the scale-specific coherent
kinetic energy balance based on identifying prominent modes that are associated with
coherent structures. Section 2 formulates and describes the scale-specific coherent kinetic
energy balance methodology. Compressive sensing is included to identify prominent
scales for analysis. Section 3 discusses the numerical methods employed for computational
simulation. Section 4 details analysis of three wake-like flows from low-Reynolds-number
flow over a cylinder to a utility-scale wind turbine and § 5 provides final conclusions and
discussion.
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2. Methodology

The incompressible Navier–Stokes equations are the following (i, j = 1, 2, 3 and repeated
indices imply summation):

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
, (2.2)

where xi indicates the streamwise, vertical and spanwise directions, ui is the velocity and p
is the pressure. All variables are non-dimensionalized by the length scale D, mean inflow
velocity U∞ and kinematic viscosity ν giving a Reynolds number Re = U∞D/ν.

2.1. Transport of kinetic energy
The effects of coherent structures can be separated from turbulent fluctuations through
triple decomposition (Hussain & Reynolds 1970) of a quantity q:

q(x, t) = Q(x)+ q̃(x, t)+ q′′(x, t), (2.3)

where Q(x) is the average, q̃(x, t) represents the coherent contribution and q′′(x, t) is the
incoherent or random residual. The triple decomposition to the velocity and pressure are
given by

ui = Ui + ũi + u′′
i , p = P + p̃ + p′′, (2.4a,b)

u′
i = ũi + u′′

i , p′ = p̃ + p′′, (2.5a,b)

〈ui〉 = Ui + ũi, 〈p〉 = P + p̃, (2.6a,b)

and follow the properties ¯̃q = q′′ = q̃′′ = 0. Following Reynolds & Hussain (1972),
equations of the coherent velocity can be obtained from (2.2) expanded with the triple
decomposition by first averaging (often referred to as filtering) over the coherent scale and
then subtracting the equations of the mean velocity. The equations of the coherent velocity
are the following:

∂ ũi

∂t
+ Uj

∂ ũi

∂xj
+ ũj

∂Ui

∂xj
= − ∂ p̃

∂xi
+ 1

Re
∂2ũi

∂xj∂xj
+ ∂

∂xj
(ũiũj − ũiũj)

− ∂

∂xj
(ũ′′

i u′′
j − u′′

i u′′
j ). (2.7)

Similarly, the equations for the random velocity are obtained by removing (2.7) from (2.2)
to obtain the following:

∂u′′
i

∂t
+ Uj

∂u′′
i

∂xj
+ ũj

∂u′′
i

∂xj
+ u′′

j
∂Ui

∂xj
+ u′′

j
∂ ũi

∂xj

= −∂p′′

∂xi
+ 1

Re
∂2u′′

i
∂xj∂xj

+ ∂

∂xj
(u′′

i u′′
j − u′′

i u′′
j ). (2.8)
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The triple decomposition of the average kinetic energy is given as the sum of the average
of each component as follows:

E = 1
2

UiUi + 1
2

ũiũi + 1
2

u′′
i u′′

i , (2.9)

= K + k̃ + k′′. (2.10)

The equations for the evolution for all three components of the average kinetic energy
can be obtained by multiplying the corresponding momentum equations by Ui, ũi and u′′

i ,
and averaging. The balance of mean kinetic energy (MKE), K = 1

2 UiUi, is obtained as the
following:

∂K
∂t

+ Ui
∂K
∂xi

= ∂

∂xi

(
1

Re
∂K
∂xi

− UiP − ũiũjUj − u′′
i u′′

j Uj

)
+ũiũj

∂Ui

∂xj
+ u′′

i u′′
j
∂Ui

∂xj
− 2

Re
SijSij. (2.11)

The coherent kinetic energy is given as

k̃ = 1
2 ũiũi (2.12)

and contains the total energy that is present in the coherent motions in the flow. The
evolution of coherent kinetic energy (CKE) can be obtained from algebraic manipulation
of ũi multiplied by (2.7) and averaging as the following:

∂ k̃
∂t

+ Ui
∂ k̃
∂xi

= ∂

∂xi

(
1

Re
∂ k̃
∂xi

− ũip̃ − 1
2

ũjũiũj − ũ′′
i u′′

j ũj

)

−ũiũj
∂Ui

∂xj
+ ũ′′

i u′′
j
∂ ũi

∂xj
− 2

Re
s̃ijs̃ij. (2.13)

We will identify each term in (2.13) as

At + A = Tv − Tp − Tt − Tr − Pc + Pcr − ε̃. (2.14)

Terms produced include Tr, the transport due to random fluctuations; Pc, production of
CKE from the MKE; and Pcr, production of random kinetic energy from the coherent
strain rate.

The random kinetic energy (RKE) is computed by the random velocity as

k′′ = 1
2 u′′

i u′′
i , (2.15)

and the balance of RKE obtained from (2.8) is the following:

∂k′′

∂t
+ Ui

∂k′′

∂xi
+ ũi

∂ k̃′′

∂xi
= ∂

∂xi

(
1

Re
∂k′′

∂xi
− u′′

i p′′ − 1
2

u′′
i u′′

j u′′
i

)
−u′′

i u′′
j
∂Ui

∂xj
− ũ′′

i u′′
j
∂ ũi

∂xj
− 2

Re
s′′

ijs
′′
ij, (2.16)

where production from both the mean and coherent scales are present.
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2.2. Identification of coherent structure scales
To separate the coherent quantity from the random quantity, coherent structure
identification techniques are required beyond what is needed to separate the mean and
the fluctuating quantity.

In this work, we use the method of Schmid (2010) to identify coherent structures
referred to as dynamic mode decomposition (DMD). It is a linear approximation to the
Koopman operator (Rowley et al. 2009), but retains the unique characteristic scales based
on the frequency associated with a mode. It is designed to find the spectral characteristics
of the linear operator A of the discrete dynamical system xi+1 = Axi, where x is a
vector-valued quantity. The flow is decomposed in DMD into l tuples of scalar amplitude
αl, complex temporal coefficient μl(t) = iμl

i + μl
r = eλ

lt and spatial dynamic mode φl(x).
The algorithmic details to calculate the DMD tuple are given in Appendix A.

2.3. Scale-specific coherent energy balance
In what follows, a methodology will be developed to capture interscale energy dynamics
with both the spectral and physical space qualities. A generalized quantity fluctuation of
a coherent structure is quantified by a tuple obtained in DMD as the lth scale-specific
quantity:

q̃l = αlφlμl. (2.17)

The total contribution of R scales to the coherent quantity, which is the sum of all
scale-specific terms with associated modes as follows:

q̃ =
R∑

l=1

q̃l =
R∑

l=1

αlφlμl, (2.18)

and the instantaneous quantity in (2.3) can be written as

q(x, t) = Q(x)+
R∑

l=1

αlφlμl + q′′(x, t), (2.19)

where the random quantity q′′ is calculated from the residual of the instantaneous velocity
and sum of the mean and coherent velocity. The total coherent quantity is the sum of parts
with a specific frequency and is not assumed to be a periodic quantity itself (Cohen 1995).

The decomposition of the scale-specific coherent velocity and pressure are as follows:

ũi
l = φl

iα
lμl, p̃l = φl

pα
lμl, (2.20a,b)

and summation of R modes gives the coherent velocity and coherent pressure:

ũi =
R∑

l=0

ũi
l, p̃ =

R∑
l=0

p̃l. (2.21a,b)

Using the mode decomposition, the equations for the coherent velocity in (2.7) can be
rewritten as scale-specific quantities as follows:

∂ ũl
i

∂t
+ Uj

∂ ũl
i

∂xj
+ ũl

j
∂Ui

∂xj
= −∂ p̃l

∂xi
+ 1

Re
∂2ũl

i
∂xj∂xj

+ ∂

∂xj

R∑
m

(ũl
iũ

m
j − ũl

iũ
m
j )− ∂

∂xj
(ũ′′

i u′′
j

l − u′′
i u′′

j ), (2.22)
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Principal region

Conjugate region

± f
1  = ∓ f

2
f
1  + f

2  = fN

f 1
 =

 f 2

fN

–fN

–fN

f2

f1

fN/2

fNfN/2–fN/2

–fN/2

Figure 1. Regions of the bispectrum. The dark shaded region outlined in red is the principal region and
corresponds to sum-interactions. The light shaded region outlined in blue is the conjugate region and
corresponds to difference-interactions. Redundancy are outlined by dashed lines with the colour corresponding
to region.

where the second to last term incorporates the sum of the correlation between all modes
and the last term is projected into the space of ũl. The scale-specific CKE of two scales is
obtained by multiplying the lth and mth modes and averaging as follows:

k̃l,m = 1
2

ũl
iũ

m∗
i = 1

2
μlμm∗αlφl

iα
mφm∗

i , (2.23)

where ∗ is the complex conjugate and ·̄ averaging is temporal averaging. The averaging
assumptions could be weakened to include procedures such as ensemble averaging,
in which case averaging would be performed over all three components of the mode
decomposition. However, in this work, we will only focus on temporal averaging for a
statistically stationary flow. Only the temporal component μl = μl(t) is subject to the
averaging because φl

i = φl
i(x) only.

Triadic interactions due to the quadratic nonlinearity in (2.2) are a triplet of
wavenumbers or frequencies that sum to zero (Kraichnan 1971; Waleffe 1992). A
dispersion relationship between the wavenumber vectors and frequencies can be defined
(see Schmidt 2020). In terms of a triplet of frequencies, the zero-sum condition is given
by

f l ± f m ± f n = 0, (2.24)

where we can consider both sum-interactions (e.g. f 3 = f 1 + f 2) and difference-
interactions (e.g. f 3 = f 1 − f 2) in our algorithm. Triadic interactions can be visualized
with the bispectrum sketched in figure 1. The hexagonal region is restricted by the Nyquist
frequency fN of the DMD algorithm. The principal region corresponds to sum-interactions
and the conjugate region corresponds to difference-interactions. The other regions due to
symmetry contain only redundant information.

The zero-sum condition is implied in the product of two scale-specific velocities
through the temporal component of the tuple: μlμm = exp[(λl + λm)t] = exp[λnt], a
sum-interaction. Furthermore, the zero-sum condition can be seen in the summation of the
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penultimate term on the right-hand side in (2.22). The sum of lth and mth term must follow
the zero-sum condition. For notation simplicity, the index tuple (l,m, n) or (l,m, l + m)
will be used to denote frequencies.

Using the zero-sum condition, the scale-specific CKE can be summed over all triads to
obtain the summed scale-specific CKE of one scale:

k̃l =
∑

l=±m±n

k̃m,n. (2.25)

Finally, the total CKE is obtained by summing over all combinations as follows:

k̃ =
∑

l

k̃l =
∑

l

∑
l=±m±n

k̃
m,n
. (2.26)

By multiplying (2.22) by ũm∗
i and time averaging, all terms in (2.14) can be written as

the product of modes.

(i) The scale-specific temporal CKE advection captures how the interaction of two
modes changes the scale-specific CKE in time. Due to the assumption of temporal
averaging of statistically stationary flows, this term is zero. The term is defined as

Al,m
t = ∂

∂t
k̃

l,m = 1
2
∂

∂t

(
μlμm∗

)
αlφl

iα
mφm∗

i = 0. (2.27)

(ii) Scale-specific mean CKE advection describes how the mean flow advects the
scale-specific CKE. The term is defined as

Al,m = Ui
∂ k̃

l,m

∂xi
= 1

2
Uiμlμm∗αlαm ∂

∂xi
(φl

jφ
m∗
j ). (2.28)

(iii) Scale-specific transport of CKE via viscous forces captures the interaction of two
modes associated with viscosity. This term is

T l,m
v = 1

Re
∂2k̃

l,m

∂xi∂xi
= 1

2Re
μlμm∗αlαm ∂2

∂xi∂xi
(φl

jφ
m∗
j ). (2.29)

(iv) Scale-specific transport of CKE by pressure is defined as

T l,m
p = ∂

∂xi
(ũm∗

i p̃l) = μlμm∗αlαm ∂

∂xi
(φm∗

i φl
p), (2.30)

where φl
p is the lth mode of the scalar pressure field.

(v) The scale-specific interscale transport and transfer via turbulence are the
nonlinear, non-local terms. Both terms appear due to the multiplication of um∗

i
with the second-to-last term in (2.22) before averaging as ũm∗

i ∂j
∑

l ũl
iũ

n
j . The

summation follows the zero-sum condition such that the (l,m, n) tuple are related
through (2.24), i.e. (l,m, l + m). After manipulation and averaging, the individual
contribution from each triad is split between turbulent transport T l,m,n

t and
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interscale transfer P l,m,n
t :

T l,m,n
t + P l,m,n

t = ∂

∂xi

(
ũl

iũ
m∗
j ũn

j

)
− ũl

iũ
n
j

∂ ũm∗
j

∂xi
(2.31)

= μlμm∗μnαlαmαn ∂

∂xi

(
φl

iφ
m∗
j φn

j

)
− μlμm∗μnαlαmαnφl

iφ
n
j

∂φm∗
j

∂xi
,

(2.32)
where the first term on the right-hand side represents the turbulent transport and
the second term on the right-hand side is the interscale transfer. The sum over
all triads in the interscale transfer can be reduced to

∑
P l,m,n

t = 1
2
∑

T l,m,n
t and

the total turbulent transport term in (2.13) is recovered. The total effects of both
the scale-specific turbulent transport and interscale transfer on the evolution of the
scale-specific CKE are the following:

T l,m
t =

∑
n=l+m

T l,m,n
t , (2.33)

P l,m
t =

∑
n=l+m

P l,m,n
t . (2.34)

(vi) Scale-specific transport of CKE via random fluctuations captures how random
velocity fluctuations affect a single coherent scale, but the correlation of the random
fluctuations is projected in the space of the lth mode. The term is defined as

T l,m
r = ∂

∂xi

(
ũ′′

i u′′
j

l
ũm∗

j

)
= ∂

∂xi

(
ũ′′

i u′′
j

l
μm∗αmφm∗

j

)
. (2.35)

(vii) The scale-specific CKE production reveals how MKE is transferred to a specific
mode (or scale) by the following:

P l,m
c = ũl

iũ
m∗
j
∂Ui

∂xj
= −μlμm∗αlφl

iα
mφm∗

j
∂Ui

∂xj
. (2.36)

(viii) Scale-specific RKE production from CKE identifies specific contributions of modes
to produce RKE by the following:

Pm
cr = u′′

i ũ′′
j
∂ ũm∗

i
∂xj

= u′′
i ũ′′

j μ
m∗αm ∂φ

m∗
i
∂xj

. (2.37)

(ix) Scale-specific CKE dissipation is the mechanism where the interaction of two
modes removes CKE from the flow by the following:

ε̃l,m
c = 2

Re
s̃l,m

ij s̃l,m
ij = 1

2Re
μlμm∗αlαm

(
∂φl

i
∂xj

+
∂φl

j

∂xi

)(
∂φm∗

i
∂xj

+
∂φm∗

j

∂xi

)
. (2.38)

Overall, each term plays a role in the evolution of the scale-specific CKE and allows
us to quantify both the spectral effects of coherent structures and the spatial fluxes of
coherent structures. The equation for the evolution of the scale-specific CKE is given as
the following:

Al,m
t + Al,m = T l,m

v − T l,m
p − T l,m

t − P l,m
t − T l,m

r − P l,m
c + Pm

cr − ε̃l,m, (2.39)
and all terms can be summed over triads to obtain terms equivalent to the summed
scale-specific CKE of one scale in (2.25). This is similar to the energy budget derived
by Baj & Buxton (2017).
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3. Numerical methods

We employ the CURVIB method (Ge & Sotiropoulos 2007) to undertake direct numerical
simulation and large-eddy simulation (LES) of the flow over an immersed body. The
three-dimensional, incompressible continuity and momentum equations in generalized
curvilinear coordinates are formulated as follows (i, j, k, l = 1, 2, 3 and repeated indices
imply summation):

J
∂Ui

∂ξ i = 0, (3.1)

1
J
∂Ui

∂t
= ξ i

l
J

(
− ∂

∂ξ j (U
jul)+ μ

ρ

∂

∂ξ j

(
gjk

J
∂ul

∂ξ k

)
− 1
ρ

∂

∂ξ j

(
ξ

j
l p
J

)
− 1
ρ

∂τlj

∂ξ j

)
, (3.2)

where ξ i are the curvilinear coordinates, ξ i
l = ∂ξ i/∂xl are the transformation metrics, J

is the Jacobian of the geometric transformation, ui is the ith component of the velocity
vector in Cartesian coordinates, Ui=(ξ i

m/J)um is the contravariant volume flux, gjk = ξ
j

l ξ
k
l

are the components of the contravariant metric tensor, ρ is the density, μ is the dynamic
viscosity and p is the pressure. If LES is employed, τij represents the anisotropic part of
the subgrid-scale stress tensor. The closure for τij is provided by a dynamic Smagorinsky
model (Smagorinsky 1963) developed by Germano et al. (1991):

τij − 1
3τkkδij = −2μtS̃ij, (3.3)

where the (̃·) denotes the grid filtering operation and S̃ij is the filtered strain-rate tensor.
The eddy viscosity μt is given by

μt = ρCsΔ
2|S̃|, (3.4)

where Cs is the dynamically calculated Smagorinsky coefficient (Germano et al. 1991),
Δ is the filter size taken as the cubic root of the cell volume and |S̃| = (2S̃ijS̃ij)

1/2. In
computing Cs, contraction of the Germano identity is carried out using the formulation
for general curvilinear coordinates presented by Armenio & Piomelli (2000). A local
averaging is then performed for the calculation of Cs since there are no assumed
homogeneous directions.

The governing equations are discretized using the three-point central, second-order
accurate finite difference scheme on a hybrid staggered/non-staggered grid and integrated
in time using a second-order accurate projection method employing a Newton–Krylov
method to advance the momentum equation. An algebraic multigrid acceleration along
with a generalized minimal residual solver is used to solve the pressure Poisson equation
as described by Kang et al. (2011).

The CURVIB method is designed to capture immersed boundaries embedded in the
background domain rather than using a body-fitted grid. The method treats boundaries
on the immersed body as a sharp interface and boundary conditions are reconstructed on
the grid node of the background grid. The boundary condition is interpolated to the grid
nodes in the vicinity. Previously, the CURVIB method has been used for direct numerical
simulation of cardiovascular flows (Borazjani, Ge & Sotiropoulos 2008) and large-eddy
simulations of hydrokinetic turbines (Kang, Yang & Sotiropoulos 2014) and wind turbines
(Foti et al. 2016). Details can be found from Ge & Sotiropoulos (2007) and Kang et al.
(2011).
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4. Results

In what follows, we will demonstrate the methodology on three flows. Different aspects
of the methodology will be investigated, but an exhaustive analysis of the flow physics of
each case is beyond the scope of this paper. The case of a laminar flow over a cylinder
in § 4.1 is used for validation and discussion of the implications of parameter selection.
A turbulent flow over a cylinder in § 4.2 and wind turbine wake flow in § 4.3 analyse
the coherent kinetic energy budget and interscale transfer between dominant coherent
structures.

4.1. Validation case: laminar flow over cylinder
A simulation of the flow around a square cylinder is carried out with Re = U∞D/ν = 175,
where U∞ is the incoming velocity, D is the width of the cylinder and ν is the kinematic
viscosity. At this Reynolds number, the well-known two-dimensional von Kármán vortex
street forms in the wake (Williamson 1996) with Sts = fsD/U∞ = 0.15, where fs is the
shedding frequency. The flow is simulated within a quasi-two-dimensional computational
domain in the vertical and streamwise directions (Lx × Ly) = (18D × 12D), with periodic
boundaries in the spanwise z-direction. A negligible thickness in the Lz direction is
included due to the three-dimensional implementation of the CURVIB method. The
computational domain is discretized with (Nx × Ny × Nz) = (351 × 201 × 6) grid points
with a uniform spacing within D from the square cylinder and stretching in the vertical
and streamwise directions towards all of the boundaries. Slip-wall boundary conditions
are used on the upper and lower walls with an imposed incoming constant volumetric flux
at the inlet boundary and a convection outflow condition.

The simulation is integrated forward with a time step �tU∞/D = 0.2. After an initial
period in which the initial transients are removed, the instantaneous snapshots and flow
statistics are obtained. A total of M = 4000 instantaneous snapshots are collected at
a uniform interval of �tU∞/D to be used to construct the dynamic modes. The time
period of the snapshots is over 40 periods of the von Kármán vortex shedding. The
snapshot matrix, X, is formed from the variables, u, v, p and k, where k = 1

2 (u
2 + v2).

The optimal selection of variables as observables in the snapshot matrix is not known a
priori. Commonly, only velocity is used. Herein, we also include kinetic energy, which
produces a kinetic energy dynamic mode to reconstruct summed scale-specific CKE. We
compared this with the summed scale-specific CKE from (2.25) obtained by summing the
scale-specific CKE from velocity modes and found negligible difference. Furthermore,
we found that including kinetic energy improved convergence of compressive sensing.
The average of the variables is subtracted from the snapshots and the snapshot matrix is
normalized by the maximum value. The simulation is run for an additional 360 periods,
where statistics of the flow are obtained to compare convergence with the statistics from
the selected snapshot interval. The first, second and third order moments of the statistics
show similar convergence over the snapshot and total simulation intervals.

The instantaneous out-of-plane vorticity ωzD/U∞ in figure 2(a) captures successive
pairs of vortices shed from the cylinder. Figure 2(b) shows that the CKE in the wake is
not negligible, and around x/D = 1 − 2, the maximum is approximately one-half of the
incoming mean kinetic energy, Kin/U2∞ = 0.5, in the near wake. The contours of high
CKE are contained primarily in the wake, where the shed vortices convect. The maximum
CKE appears about a diameter behind the cylinder in the shear layer. The power spectral
densities of the streamwise velocity component Euu behind the square cylinder at x/D = 1
and x/D = 9 along the centreline are shown in figure 2(c). The shedding frequency, Sts,
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Figure 2. (a) Instantaneous out-of-plane vorticity ωzD/U∞, (b) coherent kinetic energy k̃/U2∞ and (c) the
power spectral density of the streamwise velocity Euu at x/D = 1 and x/D = 9 along the centreline. Vertical
dotted red lines indicate multiples of St/Sts = {1, 2, 3, 4}.

is similar to those identified in previous studies (Sohankar et al. 1999; Sharma & Eswaran
2004).

We employ the DMD algorithm using SVD regularization, which projects the snapshot
matrix into POD modes, to enable dimensionality reduction to improve efficiency and
remove spurious modes. Figure 3(a) shows the largest 69 singular values, σi. The first
S = 5, 11, 31 and 69 singular values correspond to 99 %, 99.9 %, 99.99 % and 99.999 % of
the cumulative turbulence kinetic energy (TKE), respectively. A second, sparse sampling
method is employed to select the employed DMD modes. The sum of the kinetic energy
associated with the selected DMD modes is the CKE. Three metrics are defined to evaluate
the mode selection. The first is the sparse sampling residual defined by Jovanović et al.
(2014) and is given by

εsp = ‖ΣVH − WDαVand‖2

‖ΣVH‖2
, (4.1)

where Σ is the diagonal matrix of singular values, V is the left singular vectors, W
is columns of the eigenvectors, Dα = diag(α) and Vand is the Vandermode matrix of
eigenvalues. The second residual is the snapshot matrix reconstruction error of the R
modes given by the following:

εu = ‖X −ΦDαVand‖2

‖X‖2
, (4.2)

where Φ is columns of the dynamic modes. The third is the error in the L2 sense of
the difference between the summation of the scale-specific CKE (2.26) and the TKE, k′,
obtained from the velocity variance throughout the runtime of the simulation. It is given
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Figure 3. (a) The singular values σi and the cumulative TKE,
∑S

i=0 σ
2
i /
∑N

i=0 σ
2
i . Vertical lines show 99 %,

99.9 %, 99.99 % and 99.999 % of cumulative TKE. (b) The error metrics εsp, εu and εk based on the number of
selected modes R. Colour scheme is same as in panel (a).

by the following:

εk = ‖k′ − k̃‖2

‖k′‖2
, (4.3)

= ‖k′ −∑R,R
k=0,m=0

1
2μ

kμmαkφk
i α

mφm
i ‖2

‖k′‖2
, (4.4)

where all pairs of DMD modes are summed to reconstruct the CKE based on the DMD
modes. This metric is used to quantify the total kinetic energy of fluctuations present
in coherent scales compared with random scales. As εk decreases, the portion of TKE in
coherent scales increases. Figure 3(b) shows the three error metrics with the corresponding
number of sampled modes R with four different retained TKE cases. As the number
of modes sampled increases, the residual εsp decreases. Likewise, the other residuals
generally decrease to a minimum value, which is reached when the sampled modes equal
the total modes, i.e. S = R. Except for the S = 5 case, the minima for all residuals are less
than 5 %. Interestingly, for the S = 69 case, the εu is higher when the minima of lower
dimensionality reduction cases are non-monotonic. For all total mode cases, sets of modes
are selected that contain over 95 % of TKE.

The spectra in figure 4(a) show the frequency and amplitude of selected modes for the
different sets of DMD modes. As more modes are selected, DMD modes with a larger
imaginary component of the Ritz values μ, and their complex conjugates, are selected.
The imaginary component of the Ritz value is related to the non-dimensional frequency
of each mode: St = I(logμi)/�t(D/U∞). The frequencies of the selected DMD modes
are most related to harmonic multiples of the shedding frequency Sts. There is at least
one mode that captures the shedding frequency, and one of them has the highest overall
amplitude. This demonstrates that this is the most dominant mode in the set. For the
case representing 99.99 %, there are two modes that have frequencies near the shedding
frequency as well as the second and third integer multiples of the shedding frequency.
Furthermore, the DMD spectra confirm that the DMD algorithm is able to identify modes
that are based on frequencies and is corroborated by the discrete spectral energy signatures
in figure 2(c). The spectra show that as more DMD modes are selected, the number
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Figure 4. (a) Amplitudes |αi|/max(α) and positive St for 99 %, 99.9 %, 99.99 % and 99.999 % of cumulative
TKE. The vertical dotted red lines identify integer multiples of the shedding frequency. (b) Streamwise velocity
modes φu and (c) kinetic energy modes φk with the four largest amplitudes.

of shedding frequency integer multiples represented increases; however, more, possibly
spurious modes, are selected around Sts = 0.

The modes for the streamwise velocity associated with positive increasing Strouhal
numbers are shown in figure 4(b). The mode associated with the shedding frequency
consists of alternating pairs in the wake behind the cylinder. Modes associated with higher
multiples of the shedding frequency consist of additional alternating patterns. The modes
associated with the kinetic energy φk are shown in figure 4(c). The mode associated with
St = 0 is qualitatively similar to the TKE in figure 2(b). It will be shown that kinetic
energy modes are related to the product of velocity modes where their frequencies sum to
the frequency of the kinetic energy mode and signify where the modes interact with each
other.

A relationship between scales can be quantified by the magnitude of the
correlation of mode coefficients αlμlαmμm and appears in all the terms in (2.39).
Importantly, triadic interactions, f n = f l + f m, are imposed by the coefficient: μlμm =
exp(i2πf lt/�t) exp(i2πf mt/�t) = exp(i2π( f l + f m)t/�t). The bispectrum of the log of
the coefficient, logαlμlαmμm, is shown in figure 5(a,b) for a sampled and total case,
respectively, where the total modes contain 99.99 % of the cumulative TKE. The sampled
case corresponds to a total of R = 21 modes selected from the total of S = 31 modes.
The bispectrum herein shows the sum-interaction ( fn = fl + fm) and difference-interaction
( fn = fl − fm) regions, above and below the Stm = 0 line, respectively. Outside these
regions, the information is redundant or outside the Nyquist limit. Algorithmically, DMD
produces a set of discrete frequencies. In obtaining the sum- and difference-interactions,
fn is matched with a frequency in the set obtained from DMD. We apply a thresholding
of 1 % of the relative error in frequency to select the fn. While the DMD is discrete
and an approximation, we found that the sum-zero condition can be imposed within
this small relative error. The bispectrum is non-zero only at discrete frequencies (Stl
and Stm) as shown in both figure 5(a,b). The peaks correspond to frequencies based on
the sum-interactions and difference-interactions of the integer multiples of the shedding
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Figure 5. The principle region of triad correlations for (a) sampled modes and (b) total modes containing
99.99 % of cumulative TKE.

frequency, only. Because traidic interactions only correspond to integer multiples, it
is corroborated by the energy spectrum in figure 2(c), energy is mostly contained in
the modes of the integer multiples of the shedding frequency and a broad frequency
range does not exist. There is no indication of spectral leakage between the discrete
frequencies. The global maximum corresponds to the sum-interaction (Sts, Sts) and triad
(Sts, Sts, 2Sts), the mechanism that generates the first harmonic of the shedding frequency.
Other maxima include the difference-interaction of (Sts,−Sts), which produces the triad
(Sts,−Sts, 0) and captures the mean-flow distortion of the instability mechanisms of the
bluff body vortex shedding. The magnitude of the local maxima quickly decreases with
higher frequencies. The sampled modes in figure 5(a) show the maximum frequency
obtained by the sum-interaction as (4Sts, 4Sts, 8Sts). As discussed earlier, < 0.01 % of
the CKE is not selected by the sparse sampling algorithm. While this is mainly trivial in a
low-Reynolds-number case, sampling will become vital in sorting interactions of certain
scales in high-Reynolds-number cases.

The spatial structure of the summed scale-specific CKE in (2.25) and the three
largest components are shown in figures 6(a) and 6(b), respectively, for the four largest
contributions of the total CKE. The summed scale-specific CKE terms can be obtained
from two different sources: (i) the modes of the kinetic energy as shown in figure 4(c)
or (ii) the sum of the sum- and difference-interactions that result in the same frequency,
i.e. (2.25). Both result in the same scale-specific CKE. The contributions are all integer
multiples of the shedding frequency. The largest contribution to the CKE are the triadic
interactions that sum to zero and contain approximately 94 % of the total CKE. The overall
spatial structure is similar to the CKE in figure 2(b). The interactions shown in figure 6(b)
sum to zero and are all the conjugate pairs of the modes. The three largest pairs are
associated with the shedding frequency and its conjugate. Note that the repeated pair is
associated with a secondary mode at the shedding frequency, which can be observed in
figure 4(a). The CKE at the shedding frequency has an alternating pattern in the wake.
The cascade of energy to higher modes is evident as the (0, Sts) pair leads to energy
in the shedding frequency, which contributes to the first harmonic with the (Sts, Sts)
pair. Furthermore, the first harmonic contributes to the second harmonic. There is clear
evidence for a reverse cascade where higher frequency modes interact to transfer energy
to a lower frequency. This is evident in the summed scale-specific CKE k̃1, where pairs
(−Sts, 2Sts) transfer energy to Sts. A similar pair is (−Sts, 3Sts) to 2Sts. Overall, the triadic
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Figure 6. Contours of the (a) summed scale-specific CKE k̃l where l = 0Sts − 3Sts and (b) scale-specific
CKE k̃l,m are the three largest components. The l and m superscripts refer to integer multiples of Sts.

interactions captured reveal that even in low-Reynolds-number flows, the role of triads and
nonlinearity distribute energy into different frequency bins with cascading effects.

4.2. Turbulent flow over cylinder
A direct numerical simulation of the flow over a square cylinder at ReD = 3900 is
undertaken to create a database of flowfield snapshots in a turbulent regime. The size of the
computational grid in the streamwise, vertical and spanwise directions is (Lx × Ly × Lz) =
(25D × 20D × πD) similar to simulations performed by Portela et al. (2017). The domain
is discretized in the streamwise, vertical and spanwise direction with (Nx × Ny × Nz) =
(780 × 352 × 150) points. Grid stretching is employed in the streamwise and vertical
directions such that the smallest cell has a size of 0.0015D at the cylinder corner. A uniform
grid is used in the spanwise direction. The time step of �t = 0.0025U∞/D is used so the
time step is approximately an order of magnitude lower than the Kolmogorov time scale.
The simulation is performed for over 75 shedding periods. A square cylinder with length
D is centred in the vertical direction 10D from the inlet, where a constant uniform mass
flow rate is imposed. Validation of the simulation is detailed in Appendix B.

To demonstrate the scales in the flow, figure 7(a) shows an instantaneous snapshot of the
vertical velocity, and figure 7(b) shows the instantaneous out-of-plane vorticity. Both show
the presence of large-scale fluctuations in the flow stemming from vortex shedding and
small turbulent fluctuations throughout the wake of the cylinder. The repeated spanwise
oscillations in the wake are convoluted by a broad range of fluctuations that increase with
distance from the cylinder. The TKE is shown normalized by the incoming velocity in
figure 7(c). The peak TKE occurs at the centreline approximately a diameter downstream
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Figure 7. (a) Instantaneous vertical velocity v/U∞, (b) instantaneous out-of-plane vorticity ωzD/U∞,
(c) turbulence kinetic energy k′/U2∞, (d) the power spectral density of the streamwise velocity Euu and (e)
the 5/3 compensated power spectral density of the vertical velocity f −5/3Evv . Vertical dotted red lines labelled
on spectra indicate multiples of Sts.

of the cylinder due to the large contributions of vertical fluctuations. High TKE persists in
the wake but diminishes as the wake expands downstream.

We begin by assessing the energy spectra in the wake to identify the dominant
frequencies in the flow, which will be compared with the modes selected in the
scale-specific energy analysis below. The energy spectra of the streamwise velocity
fluctuations at several locations are along the centreline shown in figure 7(d). The spectra
all exhibit strong −5/3 power law behaviour. The range of frequencies covered by the
power law reduces with increasing downstream distance. The streamwise fluctuations
clearly show a strong peak at twice the shedding frequency Sts = 0.134, which is consistent
with numerous studies (Mizota & Okajima 1981; Norberg 1993; Arslan et al. 2012;
Portela et al. 2017). The 5/3 compensated spectra of the vertical fluctuations shown in
figure 7(e) highlight the power law relationship, which lasts for approximately a decade of
frequencies. The shedding frequency and its multiples are also shown. Both the shedding
and the second harmonic are strong at all locations in the wake. Another peak, at 1.5Sts,
also emerges downstream at x/D = 7.

Instantaneous flowfield snapshots of the u, v,w, p and k, where k = 1
2(u

2 + v2 + w2)
are collected at all time steps. The k variable is included in the snapshot matrix to
provide a direct comparison between summed scale-specific CKE based on (2.25) and
summed scale-specific CKE directly from dynamic modes of k. Throughout the analysis,
we find that both provide approximately the same magnitude and spatial distribution.
A snapshot matrix is created from the snapshot using a uniform time step at 8�t, a
coarse grid of (350 × 175) using every other grid point along the centre plane, and a
total of 10 000 snapshots obtained covering over 25 oscillations of the shedding. The three
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Figure 8. (a) Amplitudes |αi|/max(α) and positive St for 99 % of cumulative TKE and selected modes
through sparse sampling. The vertical dotted red lines identify integer multiples of the shedding frequency.
(b) Streamwise velocity modes φu with the four largest amplitudes.

hyper-parameters of time step, grid size and duration are selected after varying each to
minimize the difference between the simulation TKE and the TKE based on information
from the snapshot, minimize the difference between the frequencies of dominant modes
and integer multiples of the shedding frequency, and reduce the computational costs of
performed SVD. The DMD algorithm is performed on the snapshot matrix after SVD
regularization where only 99 % of the energy is retained in 1300 POD modes. The
final number of DMD modes and their corresponding CKE are down-selected based on
sparsity-promoting DMD similar to the validation case. Using all dynamic 1300 modes,
CKE is approximately 99 % of the TKE.

The relative amplitudes of the DMD modes are shown in figure 8(a). Even before
sparse sampling, prominent peaks relate to many of the integer multiples of the shedding
frequency. On closer inspection, the frequencies of the modes are dominant around
one-half, one-quarter and one-eighth multiples of the shedding frequency as well. As we
are interested in identifying the behaviour of the largest coherent structures, we employ
sparse sampling to select and scale the dominant modes. Figure 8(a) also shows the
sparse-selected modes, which reduces the number of modes to a total of M = 43. The sum
of the scale-specific CKE in the 43 modes contains the overwhelming majority of TKE
at approximately 90 %. Similar to the laminar case, the shedding frequency and harmonic
multiples are the modes with the largest amplitudes. Additionally, selected modes are the
prominent one-half and one-quarter harmonics. Figure 8(b) shows the streamwise velocity
mode of the four largest amplitudes: Sts, 2Sts, 3Sts and 0. The modes capture the prominent
behaviour of the oscillations due to the shedding and the average wake expansion in the
St = 0 mode.

The contours of the principle region of the bispectrum of the mode coefficients
shows the sum-interaction and difference-interaction regions due to the triadic zero-sum
condition in figure 9(a) with a zoomed-in view of the low frequencies in figure 9(b).
Due to the numerous scales present in the turbulent flow, the spectra show fine-grained
relationships between many different frequencies, unlike the validation case shown in
figure 5. Prominent interactions occur with the shedding frequency indicating its scale
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Figure 9. (a) The principle region of bispectrum for all modes containing 99 % of cumulative TKE and
sparse-selected modes. (b) Zoomed-in view.

interacts over a broad range of scales. Similar interactions of a Re = 500 circular cylinder
of Schmidt (2020) are observed using bispectral mode decomposition. The largest peak
in the spectra is located at the self-interaction mode: (Sts, Sts), which is similar for the
laminar bluff-body. The self-interaction is at the centre of the hydrodynamic instability
and transfers energy to higher frequency scales. The shedding frequency also has high
interactions with high frequency modes. Additional peaks are around integer multiples
including interactions with the St = 0 mode, the signature of the mean flow. Sparse
sampling selects the largest interactions.

The bispectrum can also be assessed from the third frequency of the triad, by summing
the mode coefficients over the zero-sum condition (l ± m = ∓n). Figure 10 shows the
summed mode bispectrum for all modes (1300 modes) and the sparse-selected modes (42
modes) over a range of 15Sts. The energy in the bispectrum overall slowly decreases at
higher frequencies for all the modes, but peaks at several distinct frequencies: 0, 2Sts, 4Sts
and 8Sts. Smaller-peaked extrema are also observed for non-integer multiples of the
shedding frequency. Similar behaviour is observed for the sparse-selected modes, which
are down-selected to the most dominant interactions. The energy in high frequencies
for the sparse-selected case quickly drops by several orders of magnitude as only the
largest interactions are captured. These interactions are consistent with the bispectrum
of all modes, such that local maxima occur at 0, 2Sts, 4Sts and 8Sts as well. Intermediate,
non-integer multiples of the shedding frequency such as 1/4 or 3/4 also are captured but
at an order of magnitude smaller than the integer harmonics or bispectrum for all modes.
Interestingly, for both bispectra, the shedding frequency does not show a strong signal,
indicating that interactions of modes that combine to a frequency of one do not have strong
interactions. However, the bispectrum in figure 9 indicates that the shedding frequency is
dominant as one of the first two legs of the triads.

The spatial structure of the scale-specific CKE of several mode interactions associated
with the cascade of energy is shown in figure 11. All interactions shown herein have the
highest proportion of the total CKE for sum-interaction modes. The first interaction is k̃0,1

of the shedding frequency with the mean flow. The interaction shows that there are regions
of energy gain and loss in the wake near the cylinder and several diameters downstream,
respectively. This fundamental interaction generates the self-interaction mode of k̃1,1.
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Figure 11. The scale-specific CKE k̃l,m of several sum-interaction modes related the shedding frequency.

The self-interaction is the strongest sum-interaction and shows a streamwise alternating
pattern of energy gain/loss with a wavenumber similar to the wavenumber of vortex
shedding. The scale-specific CKE expands in the transverse direction with the expansion
of the wake and mean velocity deficit. The self-interaction mode, in turn, generates
k̃1,2 and k̃2,2. The higher harmonics are produced by the latter interactions. The spatial
patterns in the wake exhibit new wavenumber patterns that increase in the streamwise and
transverse direction with higher frequency interactions.

The scale-specific CKE is examined further through the triadic sum of all the
interactions in figure 12. The sum-interaction and difference-interaction of all triads
are summed. The modes with the highest energy contributions are the mean, shedding
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Figure 12. The summed scale-specific CKE k̃l of largest CKE contributions.

frequency, and the first and second harmonic. The mode with the most CKE is the zeroth
or mean contribution, where all frequencies sum to zero. The spatial pattern compares well
with the CKE in figure 7(c) and contains approximately 99 % of the total CKE. The CKE
in the fundamental and first harmonic of the shedding frequency mode contains less than
1 % of the total CKE. However, they capture the spatial distribution and CKE gain/losses
similar to vortex shedding. The wavenumbers change with higher frequencies. The CKE
in the second harmonic is less than 0.1 % of the total CKE.

Now, we take a closer look at the scale-specific CKE balances of the four dominant
modes along the centreline at x/D = 0.5, 1, 1.5 and 2 in figure 13. Included are details
of the interscale transfer through coherent transfer Pt and coherent to random production
for each term. Starting with the mean mode, l = 0, the relative gain and loss and each
location is mainly dominated by the production, transport and advection. These suggest
that CKE enters the wake through the mean mode. At x/D = 0.5 and 2, a small portion
of CKE is transferred through triadic interactions into the mean mode, indicating some
inverse cascade in the wake. The fundamental shedding frequency mode, l = 1, shows
that along the centreline, the interscale transfer is the dominant source or sink (depending
on the location) of CKE into or out of the mode. The switch between sink and source of
interscale transfer is related to the spatial distribution of the mode and the wavenumber
patterns that are observed in figure 11. The interscale transfer is balanced by production to
random Pcr when Pt, among others, is positive and CKE production when negative. This
indicates that CKE enters in the fundamental frequency mode through CKE production
and is transferred to other scales, but when energy is entering through interscale transfer,
some of that energy leaves through production to random scales. A similar behaviour is
observed for higher frequency modes. This behaviour in the near wake of forward and
reverse energy transfer is also observed through the scale-by-scale energy balance of the
Kármán–Howarth–Monin–Hill equation by Portela et al. (2017). Similarly, changes in the
sign of energy transfer to coherent structures in a completely different flow are observed by
Baj & Buxton (2017). In the first harmonic mode, l = 2, the interscale transfer also changes
sign, but CKE production occurs only immediately behind the cylinder, but not further
downstream. The interscale transfer is balanced by the mean convection at x/D = 1. When
interscale transfer is positive at x/D = 1.5 and 2, the energy partially leaves through
coherent to random production, similar to the fundamental frequency. Similar trends in
the second harmonic are also observed. The interscale transfer of energy dominates the
balance in higher frequencies and is both a source and sink. Finally, we observe that
coherent dissipation plays a larger role in the balance at higher frequencies as well.

The energy transfer is investigated further with the spatial distributions of the
scale-specific CKE production in figure 14(a) for the modes with frequency 0, Sts, 2Sts
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Figure 13. Terms of the scale-specific CKE balance of the four largest frequency modes: 0, Sts, 2Sts, and 3Sts
at the centreline at (a) x/D = 0.5, (b) 1, (c) 1.5 and (d) 2. Values are expressed as a fraction of the respective
total gains.

and 3Sts. The CKE production of the mean mode is two orders of magnitude greater than
the scale-specific CKE production for the higher frequency modes and is strongly positive
in the wake, especially in the shear layers. The CKE production of the higher frequencies
shows unique wavenumber patterns in the wake that reveal gain and loss patterns to
the mean flow. As the frequency increases, the production becomes more concentrated
towards the centreline. The spatial distribution of the interscale transfer Pt from/to the
mode is shown in figure 14(b). The magnitude of the interscale transfer is similar across
the mode frequency range, which is consistent with the energy cascade. In comparison
to figure 13, the interscale transfer does not have a large impact on the CKE budget for
the mean mode, but shows that substantial energy is transferred to other large coherent
modes. A regular pattern of the vortex shedding modes is present in the interscale transfer
consistent with results from the CKE budget. The spatial distribution for the coherent to
random production in figure 14(c) is consistent with the CKE budget and energy cascade,
as energy transfers from the largest modes to the random modes, with few exceptions of
reverse transfer.

Finally, we decompose the interscale transfer into specific triadic interactions that
are large contributors to the overall interscale transfer. Their spatial distributions are
shown in figure 15. All the triads involve the fundamental frequency. The first shows
the self-interaction (1, 1,−2) to produce interscale transfer to the first harmonic. This
transfer is the main mechanism of energy from vortex shedding to harmonics. The second
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triad is a reverse interaction from the first harmonic back to the fundamental (1,−2, 1),
which creates a feedback loop of energy. Similarly, the interaction with the second
harmonic transfer energy to the first harmonic. Finally, the interaction with the mean mode
redistributes energy in the fundamental frequency. The interactions all exhibit wavenumber
oscillations in the wake.

4.3. Wind turbine vortex system
In this case, the uniform flow over a wind turbine, which produces a helical vortex system
in its wake (Joukowski 1912; Okulov et al. 2015), is investigated. Here, we employ LES due
to the high Re to simulate the turbulent wake. The wind turbine rotor is modelled on the
Clipper Liberty C96 2.5 MW turbine, with a diameter D = 96, deployed at the University
of Minnesota EOLOS Wind Energy Research Field Station in Rosemount, MN, USA due
to both the fact that the LES methodology has been validated for this case (Yang et al.
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2016; Foti, Yang & Sotiropoulos 2018b) and its well-documented description (Hong et al.
2014; Yang et al. 2016; Foti et al. 2018b). A constant tip-speed ratio Γ = ΩD/2U∞ = 8.0,
whereΩ is the rotor angular velocity and U∞ is the hub height velocity, is enforced on the
rotation of the turbine as employed in previous simulations (Yang et al. 2016; Foti et al.
2018b). The rotational speed is chosen to operate the variable-speed turbine in the optimal
condition for maximum power production. The Reynolds number based on the incoming
velocity Re = U∞D/ν, where ν is the kinematic viscosity, is set to be 2 × 107. Further
information on the setup can be found from Qatramez & Foti (2021).

The sharp-interface immersed boundary method is too computationally expensive for
a utility-scale wind turbine. Instead, the forces exerted by the wind turbine and nacelle
are parameterized by the actuator surface model by Shen, Sørensen & Zhang (2007)
and for the nacelle by Yang & Sotiropoulos (2018). The lift L = 1

2ρCLc|V rel|2nL and
drag D = 1

2ρCDc|V rel|2nD, where CL and CD are the lift and drag coefficients from
a look-up table based on the value of angle of attack, c is the chord, V rel is the
relative incoming velocity, and nL and nD are the unit vectors in the directions of lift
and drag, respectively. The relative incoming velocity V rel = ux(X LE)ex + (uθ (X LE)−
Ωr)eθ , where X LE represents the leading edge coordinates of the blade,Ω is the rotational
speed of the rotor, and ex and eθ are the unit vectors in the axial flow and rotor rotating
directions, respectively. A smoothed discrete delta function procedure (Yang et al. 2009)
is employed to interpolate the flow velocity to and from the surfaces. Stall delay model
(Du & Selig 1998) and the tip-loss correction (Shen et al. 2005) are employed to take into
account the three-dimensional effects on the blades. The blade geometry is represented by
a surface formed by the chord lines at every radial location of the blade, and the nacelle is
represented by the actual surface of the nacelle with distributed forces.

The idealized uniform inflow is employed to analyse the interscale dynamics in the
vortex system created in the wake. The computational domain is set to be Lx × Ly × Lz =
5D × 4D × 4D, in the streamwise, vertical and spanwise directions, respectively. The
domain is discretized with a stretched Cartesian grid Nx × Ny × Nz = 336 × 251 × 251,
where a 2D × 2D × 2D uniform mesh with grid size of D/50 is located around the turbine
blades. The grid is stretched towards all domain boundaries. The turbine is positioned
1.5D downwind of the inflow at the centre of the y–z plane. The solution is integrated
forward in time with a time step �tU∞/D = TU∞/(750D), where T is the time for a
single rotor revolution. The simulation is first run to remove initial transients from the flow
field. After the initial transients are removed, the solution is obtained for 170TD/U∞ such
that the second- and third-order velocity statistics are converged. The three-dimensional
instantaneous velocity is acquired at uniform intervals of TU∞/(30D).

An unsteady, turbulent wake forms behind the wind turbine despite the uniform inflow
velocity due to vortex shedding off the rotating blades and the solidity of the rotor.
Figure 16(a) shows the instantaneous streamwise velocity. There is a velocity deficit in the
the streamwise velocity u/U∞ behind the rotor forming the outer wake and an inner wake
behind the nacelle (Foti et al. 2016). Individual, strong vortices from the blade tips can be
observed and continue to be identified over 0.5D behind the rotor plane. The instantaneous
streamwise velocity also shows the formation of an inner wake along the centreline due
to the blockage and drag on the nacelle. The nacelle creates a strong inner wake along
the centreline, which induces an unstable hub vortex that expands radially outward. The
hub vortex and root vortices formed at the root of the blades immediately interact and
merge in the inner wake. The expansion of the inner wake intersects the outer wake
several diameters downwind. The domain intentionally includes only 2.5D downwind for
the subsequent analysis, but if extended further, wake meandering, a dynamic oscillation
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Figure 16. (a) Instantaneous streamwise velocity u/U∞, (b) iso-surface of instantaneous azimuthal vorticity
(ωθD/U∞ = 4) coloured by the streamwise velocity and (c) average streamwise vorticity ωxD/U∞ in the wind
turbine wake.

of the wake, would be present (Kang et al. 2014; Foti et al. 2016, 2019). The unsteadiness
and three-dimensionality of the tip vortices, root vortices and hub vortex wake are apparent
in the iso-surface of the instantaneous azimuthal vorticity, ωθD/U∞, in figure 16(b). The
specific vortices persist relatively far downwind due to a lack of incoming turbulence,
which would induce breakdown further upwind. We can observe that relatively few strong
coherent structures are present in the wake. Figure 16(c) shows the average streamwise
vorticity, ωxD/U∞. The average vorticity shows clearly the signature of the strong tip
vortices, root vortices and a hub vortex. The tip vortices remain strong throughout the
domain, while the centreline vortices breakdown in the expanding inner wake.

We perform DMD with M = 400 snapshots, and the overall size of the snapshot matrix
is (N × M) = 2.1 × 106 × 400. The mean velocity is subtracted from the fluctuations and
normalized, similar to previous cases. The time step between snapshots is �tDMD/T =
1/25, which is 30 times the temporal resolution of the LES and 8.3 times greater than the
rotor frequency Str. The maximum frequency captured by DMD is subject to the Nyquist
criterion fmax = 1/(2�tDMD). Further analysis on DMD hyper-parameter selection can
be found from Qatramez & Foti (2021). Figure 17(a) shows the sparse sampling residual
error in (4.1) as the sparsity increases. The error is zero for small values of γ because
all modes are selected. However, as γ increases to no modes selected, εsp = 1. We select
three values: R = 391, which is almost all modes, R = 106 and R = 42, which select only
the most dominant modes. Elbow analysis of Qatramez & Foti (2021) is used to find the
optimal γ parameter for sparse sampling.

For all mode selections, the mode that is associated with rotor frequency Str = 7.62 has
the highest amplitude, indicating that this is the most dominant, energetic mode, as shown
in figure 17(b). Multiples of the rotor frequency, 2Str = 15.24, and the blade frequency,
3Str = Stb = 22.8, are both present. Low frequency hub vortex mode, Sth = 2.5, is also
selected. The frequencies are consistent with previous studies (Iungo et al. 2013; Foti
et al. 2018a) and are corroborated by spectral analysis of the velocity fluctuations from
Qatramez & Foti (2021). Additionally, other relatively high amplitudes are related to the
sum of the rotor and hub frequencies Str,h = 10.12 and similar multiples. While R = 391
selection contains a broad range of frequencies and the R = 43 case selects only the
hub and rotor frequencies, the R = 106 case contains frequencies with the sum- and
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Figure 17. (a) Sparse sampling residual error εsp and number of retained modes based on sparsity parameter
γ , (b) amplitudes |αi|/max(α) and positive St for selected modes (the vertical dotted red lines identify integer
multiples of the shedding frequency), and (c) DMD reconstruction error, εu, for select modes. All modes (green,
square), R = 106 selected modes (orange, triangle) and R = 42 selected modes (blue, circle).

difference-interactions of the hub and rotor frequencies, which will be employed for further
analysis of the energy transfer. The difference in reconstruction error, εu, in (4.2) shows
that there is significant energy in the largest 43 modes compared with the other modes.

The principle region of the bispectrum of the wind turbine wake is shown in figure 18.
The intensity of the bispectrum is strongly oriented along frequencies that are multiples
of the rotor frequency, Str, including the blade frequency Stb. The strongest interaction
is the self-interaction of (Str, Str), similar to the turbulent cylinder wake. Due to the
zero-sum condition, this produces a frequency of 2Str. Additionally, the self-interaction
of (Str,−Str) is strong creating interaction with the mean mode. The signs of the
energy cascade to higher harmonics are evident with (Str, 2Str) to increase the blade
frequency. Additionally, interactions of the hub vortex are also present. These include the
self-interactions of the hub vortex such that peaks occur at 2Sth. Multi-scale interactions of
the hub vortex and rotor scales create peaks at frequencies at the sum of the hub and rotor
frequency, Str,h, and higher harmonics of the rotor at St2r,h and St3r,h. These interactions
are relatively high compared with other mode interactions that are selected with R = 106,
but not at the sparsest selection presented of R = 42. Overall, the sparse sampling is able
to capture the dominant interactions of the strongest coherent structures in the wake.

Figure 19 shows the scale-specific CKE of the four largest sum-interactions of the rotor
frequency mode alone. These are all related to the interactions of the rotor with higher
harmonics and demonstrate the energy cascade from the fundamental frequency of the
rotation of the rotor and formation of the tip vortices to higher frequency modes. The
sub-figures in figure 19 show the cascade from the fundamental rotor frequency to first
harmonic to second harmonic, similar to figure 11. The scale-specific CKE related to
the self-interaction, forming the first harmonic through sum-interaction, is the strongest
sum-interaction component. It shows alternating wavenumber patterns of scale-specific
CKE along the tip position and root vortices. This feeds into the interaction of the rotor
frequency and first harmonic, (Str, 2Str), which is significantly smaller in magnitude than
the self-interaction. The scale-specific CKE is predominantly near the root vortices, which
quickly breakup due to the unstable hub vortex, while the scale-specific CKE near the

971 A7-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.641


D.K. Kinjangi and D. Foti

−20 −10 0 10 20

Stm

Stl

0

5

10

15

20

25

(Str,Str)

(Sth,Sth)(Sth,Str)

(Str,Stb)

log|αlμlαmμm|

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 18. The principle region of bispectrum for all modes. The R = 42 sparse-selected modes are outlined
in blue and R = 106 sparse-selected modes are outlined in green.
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Figure 19. Scale-specific CKE k̃l,m related to the rotor mode. Note the change in scale.

tip positions is low. This suggests that the energy in the tip vortices remains in the rotor
mode because they do not breakdown quickly due to the uniform inflow. The (Str, 3Str)
and (Str, 4Str) behave similarly indicating scale-specific CKE near the centreline.

The largest sum-interactions of the hub vortex scale-specific CKE are shown in
figure 20. The four largest in magnitude are the interactions of the hub vortex with
its fundamental frequency, first, second and third harmonic of the hub rotation. The
majority of scale-specific CKE of each interaction is located near the centreline where
the hub vortex forms behind the nacelle. The strength of the interaction is based on
the sum- or difference-interactions. The strongest interactions are the sum-interaction of
the first harmonic of the hub vortex and the hub vortex. The sum of the frequencies is
approximately the same as the rotor frequency frequency. A difference-interaction of the
first harmonic of the hub vortex and the hub vortex reveals how CKE in higher frequencies
interact to produce energy in a lower frequency.

Next, we focus on the multi-scale nature of the sum-interactions of the rotor and hub
vortex. Figure 21(a) shows the scale-specific CKE of the sum-interaction of the rotor and
hub. The majority of CKE of each interaction is located near the centreline where the
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Figure 20. Scale-specific CKE k̃l,m related to the hub vortex mode frequency. Note the change in scale.

hub vortex and root vortices interact downwind of the nacelle. The CKE associated with
the interactions suggests that the energy in this mode increases along the centreline due
to the interactions of the hub vortex and root vortices. The most prominent is the hub
vortex with the energy associated with the root vortices in the rotor frequency mode, but
there is relatively high energy also associated with the interaction of the hub or rotor
with the multi-scale Str,h scale-specific CKE. These interactions could be connected to
the instability analysis of the hub vortex found from Iungo et al. (2013) and Viola et al.
(2014) where multiple unstable mode growth rates are observed in the near wake along
the centreline. In terms of sum-interactions, these interactions form energy associated
with frequencies that are different than both the hub vortex and rotor frequencies, which
gives rise to new frequencies and modes further downwind in the wake. Further study
with larger domains are necessary to elucidate these effects. Figure 21(b) shows similar
interaction of the hub and first harmonic of the rotor, which produces energy at a new
frequency St2r,h. Again significant energy is present near where the root vortices and the
hub vortex interact near the centreline. The scale-specific CKE in these interactions persist
downstream similar to observations by Foti et al. (2016) of the persistence of the hub
vortex.

Figure 22 show the four largest contributions of the summed scale-specific CKE. The
largest contribution is the l = 0 mean mode. The CKE in this scale represents all the sum-
and difference-interactions that produce a frequency of 0. The kinetic energy is positive
and highest along the tip shear layer and the centreline behind the nacelle. This is similar to
the turbulence kinetic energy of wind turbine wakes shown by Foti (2016), Foti et al. (2019)
and Foti (2021). The next three scales are two orders of magnitude lower than the mean
mode. These include energy associated with the rotor frequency, first harmonic of the rotor
frequency and the hub vortex. The total CKE in the rotor frequency is spatially located near
the rotor plane and root vortices. Similar behaviour is observed in the first harmonics. The
summed scale-specific CKE in the hub vortex is present along the centreline where the
hub vortex dominates.

Energy transfer in the wind turbine vortex system is first accounted for by the
scale-specific CKE production shown in figure 23(a) for the rotor and hub vortex. These
indicate the spatial distribution where CKE is produced from the mean strain rates. For
both, scale-specific CKE production is concentrated near the centreline due to the root
and hub vortex. In the inner wake formed by the nacelle, there are strong mean velocity
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Figure 21. Sum-interactions of scale-specific CKE k̃l,m related to (a) the rotor and hub vortex mode and
(b) the first harmonic of the rotor and hub vortex. Note the change in scale.
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Figure 22. Summed scale-specific CKE k̃l of four largest CKE contributions. Note the change in scale.

gradients in the radial direction, which account for the production of CKE into these scales.
The overall interscale transfer to/from the rotor and hub vortex are shown in figure 23(b).
These account for all energy transferred from all coherent scales to/from the rotor and
hub vortex. There is significant energy transfer to the rotor mode along the rotor plane
suggesting other scales are both sources and sinks of the rotor scale-specific CKE in the
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Figure 24. Spatial distribution of the four largest triadic interscale transfers P l,m,n
t .

rotor plane. Additionally, there is significant transfer from the rotor frequency to the other
modes near the presence of the root vortices. The overall energy transfer of the hub vortex
shows how CKE in the hub vortex is transferred along the path of the hub vortex as it
expands in the inner wake. This energy is a source to the new scales, Str,h, etc.

The interscale transfer of the rotor is decomposed into some of the important
contributions as shown in figure 24. The most significant is the interscale transfer triad
of the rotor and the first harmonic of the rotor. There is positive and negative high transfer
of CKE between the two modes. This occurs along the rotor plane, the tip shear layer and
near the root vortices. The other three interscale transfers are the effects of interaction
of hub and rotor modes, which transfer energy to scales that are initially formed by the
rotation of the turbine blades. These interscale transfers show significant energy transfer
between the root and hub vortices. Furthermore, the transfer persists downstream as hub
vortex expands and the root vortices decay. In the study herein, we demonstrate that CKE
of specific interactions and coherent structures can be appropriately identified, follow the
sum-zero condition, and initiate the beginning of the nonlinear energy cascade.
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5. Conclusions

The scale-specific coherent kinetic energy (CKE) evolution methodology developed in
this work provides an explicit formulation to study the implications of specific scales
associated with coherent structures, triadic interactions and interscale energy dynamics
in a wake. The kinetic energy of multiple specific coherent motions can be quantified
based on spectral identification and spatial location. The methodology is subject to the
sum-zero condition of triadic interactions, which is based on the quadratic nonlinearity
of the governing equations. This is particularly useful in multi-scale flows that exhibit
inhomogeneity and anisotropy due to the effects of the coherent structures. Triads between
coherent scales can be easily identified and show how energy is transferred. The triads
are detected as part of the bispectrum to determine the contributions of a triad of
frequency scales to the energy transfer. The bispectrum and associated triads can be used
to elucidate the energy cascade and nonlinear deviations. The balance of scale-specific
CKE can be employed to reveal the impacts of energy transfer and transport on coherent
structures. This includes quantifying production terms, which accounts for energy transfer
from/to the mean or random components; interscale transfer terms, which identify energy
transfer between specific coherent scales; and flux-like transport terms including pressure,
viscosity and turbulence.

Specifically, we focus on the selection of the most dominant, large coherent scales in
wake flows, which exemplify resonant triads of harmonics that distribute energy from a
fundamental vortex shedding frequency. In this work, we quantified coherent scales based
on the dynamic mode decomposition of the spatio-temporal flow field. This is employed
because coherent scales in the flow are identified via their frequency, and it enables us to
quantify the CKE of interactions between two modes. First, the methodology was applied
to a low-Reynolds-number square cylinder wake flow, which produces dominant coherent
structures that persist into the far field of the wake, as a validation test. Compressive
sensing and various error residuals were used to determine an optimal set of modes. By
minimizing the error in turbulence kinetic energy between CKE to ensure that the random
kinetic energy is negligible, nearly all interactions from the largest to the smallest scales are
captured. The set of modes were used to identify triads, distribution of CKE and validate
the balance of scale-specific CKE.

The scale-specific CKE methodology was then used on a turbulent wake behind a square
cylinder at Re = 3900 and a wind turbine in uniform flow. Compressive sensing was
used to determine the coherent scales through a set of modes that contained over 90 %
of the energy. Overall, relatively few modes contain most of the CKE, which is dominated
by the zero-frequency mode and the fundamental shedding frequency mode in the
turbulent cylinder wake. Sum-interactions reveal complex interscale dynamics that overall
follow the energy cascade; however, the exchange of energy between the coherent and
random components and interscale transfer changes with downstream distance. The largest
contributions reside in the sum- and difference-interactions of the shedding frequency
mode. The balance of the scale-specific CKE for the largest scales reveals that pressure
transport, mean convection and energy transfer terms balance, while overall dissipation,
turbulence and viscous transport are RKE component mechanisms. The vortex system
defined by tip/root vortices and the hub vortex of a wind turbine are the dominant structures
in the wake. The scale-specific CKE enables the identification of the interactions between
the two scales. It provides further evidence for the implications of the unstable hub vortex
on dynamics of the downwind wake.

Finally, the present work constructs a methodology to analyse the energy transfer
between coherent structures in a flow. Future work will consider the multi-scale
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interactions, where broad range and disparate scales dominant the flow. Scale selection
will have to be carefully considered. Other scale identification methodologies such as
spectral proper orthogonal decomposition (Towne et al. 2018), multi-scale filtering and
bispectral mode decomposition (Schmidt 2020) may be employed. Overall, the present
work shows promise in elucidating details of coherent structure behaviour with respect to
energy transfer.
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Appendix A. Dynamic mode decomposition and compressive sensing

Koopman operator theory is a formalism that allows us to relate the observations on a
system to the underlying state-space dynamics. In particular, we seek a Koopman-invariant
subspace on the space of u that can be used to reduce the nonlinear spatio-temporal
dynamics to a linear combination of time-evolving spatial modes through a Koopman
mode decomposition. The Koopman operator Kτ acts on the observable of the state space
of the flow g(u) to map the time evolution such that

Kτg(u(x, t)) = g(u(x, t + τ)). (A1)

The Koopman operator is a linear operator, which allows us to analyse its
eigendecomposition and spectrum. The Koopman eigenfunction ψ l

i (u) is identified by a
eigenvalue, λl, which we associate with a specific time scale. The eigenfunction associated
with the Koopman operator is the following:

Kτψ l(u(x, t)) = eλ
ltψ l(u(x, t)). (A2)

The eigenvalue is associated with a specific real-valued frequency λl = iωl.
The Koopman mode decomposition is enabled by the expansion of the eigenfunctions

Kτg(u) =
∞∑

l=1

glψ l(u)eλ
lτ , (A3)

where gk are the Koopman modes obtained by projecting the observable into the
eigenfunction. An important aspect of Koopman mode decomposition is that if two
observables are related through a linear operator, then their modes are related through
the same linear operator.

We detail to the algorithm used for sparsity-promoting DMD (Jovanović et al. 2014). We
define two matrices such that one is offset from the other by one time instance as follows:

X =
⎡⎣ | | · · · |

x1 x2 · · · xM−1
| | · · · |

⎤⎦ , X
′ =

⎡⎣ | | · · · |
x2 x3 · · · xM
| | · · · |

⎤⎦ , (A4a,b)

where X,X′ ∈ RN×M , M is the number of degrees of freedom in a snapshot and M is the
number of snapshots. Each snapshot xi is uniformly sampled in time separated by a time
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step �t. We employ the DMD algorithm derived by Schmid (2010). The SVD of X is
computed as

X = UΣVT, (A5)

where T denotes the transpose, U ∈ RN×S are the left singular vectors, Σ ∈ RS×S is a
diagonal matrix of the singular values, V ∈ RM×S are the right singular vector and S is the
rank of the reduced SVD. A reduced linear operator Ã ∈ RS×S can be efficiently obtained
by projecting A with the left singular vectors U as follows:

Ã = U∗AU = U∗X
′
VΣ−1. (A6)

The matrix Ã is the reduced mapping of the dynamical system. Spectral information of Ã,
which has been shown to be the same as A, is obtained through an eigen-decomposition of
Ã:

ÃW = WΛ, (A7)

where columns of W ∈ CS×S are eigenvectors and Λ ∈ CS×S is a diagonal matrix
containing the corresponding eigenvalues λ = λr + ıλi. One can obtain the more familiar
complex frequency, ıωr = log(λr)/�t. The real part is the temporal frequency and the
imaginary part is an exponential growth rate of the dynamic mode. The matrix of the
spatial dynamic modes Φ ∈ CM×S are recovered with the following:

Φ = X
′
VΣ−1W. (A8)

The optimal amplitudes b can be solved through an L2 minimization as the following:

minimize
α

J(α) = ‖X −ΦDαVand‖2
2, (A9)

where Vand ∈ RS×R is the Vandermode matrix of the eigenvalues Λ. The row of the Vand
associated with the kth eigenvalue is μk. The calculation of the optimal amplitudes was
simplified by Jovanović et al. (2014) to the following:

J(α) = αTPα − qTα − αTq + s, (A10)

where P = (WTW)
 (VandVT
and)

∗, q = (diag(VandVΣW))∗ and s = trace(ΣTΣ). A
sparse solution is induced by including the L1-norm of vector α to the optimization
problem in (A10):

minimize
α

J(α)+ γ

R∑
i=1

|αi|, (A11)

where γ is a positive parameter that controls the sparse solution of the amplitudes vector
α. The solution is obtained by solving the optimization using the alternating direct method
of multiples. The sparsity-promoting DMD algorithm trained on a L1 norm regularization
(Jovanović et al. 2014) and a multi-task elastic net trained on a L1/L2 norm regularization
(Pan, Arnold-Medabalimi & Duraisamy 2020) produce similar results for sparsification of
the resultant DMD modes.
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Figure 25. (a) Profiles of mean streamwise velocity U, (b) standard deviation of the streamwise velocity u′,
and (c) standard deviation of the vertical velocity fluctuations v′ with experimental measurements and DNS
results over a range of relevant Re.

Appendix B. Validation of square cylinder DNS

In this section, we provide a detailed comparison of the velocity statistics from the square
cylinder DNS discussed in § 4.2 to experimental measurements and previous DNS studies.
Figure 25(a) shows the profile of the average streamwise velocity U/U∞ along the y = 0
centreline from the DNS and results from experimental studies (Durao, Heitor & Pereira
1988; Lyn et al. 1995; Lee & Kim 2001; Hu, Zhou & Dalton 2006) and DNS studies
(Arslan et al. 2012; Trias, Gorobets & Oliva 2015; Portela et al. 2017). The profile
throughout the entire domain falls well within the range previous experimental studies
and follow the trends of the DNS studies, in particular, Portela et al. (2017), which is
performed at the same Re. Significant ranges in the mean velocity in the experimental
studies are observed in the rear stagnation point and near wake due to blockage, Re, and
incoming turbulence levels. However, broad agreement with DNS studies are observed
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near the stagnation point and in the wake recovery. Further downstream, the profiles of
DNS studies tend to agree with respect to the present work.

Figure 25(b,c) show the differences among the experimental measurements, DNS
studies, and the present results of the streamwise and vertical standard deviation of the
velocity fluctuations, respectively. Similar to the mean streamwise velocity, the turbulent
fluctuations in the near wake show large variation in the experiments. The large values
of u′ observed in x/D < −0.5 by Durao et al. (1988) are due to their relatively high
turbulence in the incoming velocity. The streamwise and vertical fluctuations peak around
x ≈ D for both the streamwise and vertical components. Differences in peak value can
be attributed to different methodologies and experimental procedures. The present results
tend to closely follow those of the DNS studies.
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