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Thermo-osmotic flow in slit channels with
boundary slip: giant flow amplification between
polarized graphene surfaces
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The thermo-osmotic flow (TOF) of an electrolyte solution in a slit channel with a Navier
slip condition at the channel walls is studied. An analytical expression for the TOF velocity
profile, based on the long-wavelength and Debye–Hückel approximations, is derived and
compared to numerical solutions based on the finite-element method. The TOF between
graphene surfaces whose charge is created via polarization through an applied electric
field is considered as a special case. Using the relationship between the surface charge and
the slip length obtained from molecular dynamics simulations, a giant flow amplification
is uncovered. Specifically, for such flow in a channel with a width of 10 nm, compared to
the flow between no-slip walls, a flow velocity enhancement by a factor of up to 250 is
predicted.
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1. Introduction

Thermally driven gas flow is a well-established and well-studied phenomenon (for an
overview, see Akhlaghi, Roohi & Stefanov (2023)) and has already found a number
of applications in the form of Knudsen pumps (Wang et al. 2020). By contrast, liquid
transport induced by temperature gradients, usually referred to as thermo-osmosis (note
that the same terminology is occasionally used for gases), has received much less attention,
probably because the underlying mechanisms are less universal and less well understood
than in the case of gases. An important class of liquids, forming the focus of the present
paper, are electrolyte solutions, for example, aqueous solutions with dissolved ions. At
the interface between a solid and an electrolyte solution, an electric double layer (EDL)
forms (Masliyah & Bhattacharjee 2006), whose modulations as a function of temperature
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provide an important driving force for thermo-osmosis. This was identified as one pivotal
mechanism responsible for the thermally induced transport of charged colloids (Würger
2010).

By comparison, for a long time, thermo-osmosis through micro- or nanochannels
remained a much less theoretically investigated subject. Dietzel & Hardt (2017) provided
a detailed study of the thermally driven flow field through a parallel-plate channel based
on analytical solutions of the coupled Navier–Stokes, Poisson, Nernst–Planck and heat
transport equations. Similar approaches were used to compute the thermo-osmotic flow
(TOF) in channels with polyelectrolytes attached to the channel walls (Maheedhara
et al. 2018; Sivasankar et al. 2021), the influence of thermo-osmosis on the Seebeck
coefficient (Zhang et al. 2019) and the influences of channel entrance effects and the
thermal conductivity of the channel walls (Zhang et al. 2022). Recently, by employing
molecular dynamics (MD) simulations, it was shown that not only the temperature-induced
modifications of the EDL structure can drive thermo-osmosis, but also the modifications
of the liquid enthalpy close to the solid surface due to ion solvation and water dipole
orientation (Fu, Merabia & Joly 2017; Herrero et al. 2022).

Usually, the thermo-osmotic velocities achievable with liquids are rather small, which is
probably why, up to now, this topic has been studied less intensively than electro-osmosis,
for example. An approach to increase the thermo-osmotic velocity very substantially could
amplify its relevance, for example, as a method for pumping liquids on small scales.
A general method for flow augmentation was identified in Ajdari & Bocquet (2006): on a
surface where the no-slip boundary condition is to be replaced by a Navier slip boundary
condition with slip length b, the flow is augmented by a factor of 1 + b/λD, where λD is
the Debye length. This raises the question about the achievable magnitude of b.

All of this needs to be considered under the constraint that, since the thermo-osmotic
driving we consider is related to thermal modulations of the EDL structure, an increase
of the slip length should not be compensated by a simultaneous decrease of the surface
charge. For non-overlapping EDLs, the diffuse part contains the same number of charges
as the surface, which is why a low surface charge translates to a low driving force for
thermo-osmosis (Dietzel & Hardt 2017). The relationship between surface charge and slip
length was studied in a number of experiments (Jing & Bhushan 2013; Pan & Bhushan
2013; Li & Bhushan 2015) and MD simulation studies (Joly et al. 2006; Huang et al.
2008; Botan et al. 2013; Geng et al. 2019). A conclusion that can be derived from these
is that the slip length decreases when surface charge increases, which represents a major
obstacle for the augmentation of thermo-osmosis.

In the present paper, we study the thermo-osmotic flow between parallel surfaces based
on analytical solutions of the coupled Navier–Stokes, Poisson, Nernst–Planck and heat
transport equations, for the case that the boundary condition for the velocity field at
the solid surface is a Navier slip condition. After obtaining a general expression for the
velocity field, we take into account the coupling between slip length and surface charge.
Specifically, we consider a recently reported scenario in which a homogeneous surface
charge distribution is obtained via polarization of graphene sheets (Xie et al. 2020). We
then show that, on this basis, a giant amplification of thermo-osmosis becomes possible.

2. Mathematical model and analytical solution

As depicted in figure 1, we consider a parallel-plate (slit) nanochannel of length l and
half-height h, connecting two sufficiently large identical reservoirs. The nanochannel and
the reservoirs are filled with an incompressible, Newtonian, binary, symmetric electrolyte
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Figure 1. Schematic of a slit nanochannel of length l and half-height h, connecting two identical reservoirs
at the ends. Generally, a temperature difference �T is applied between the reservoirs, as well as a pressure
difference �p0, an external electric field E and a concentration difference �n. The Debye length λD increases
(shrinks) with increasing (decreasing) temperature.

solution, where we assume water as solvent. The solution is characterized by a dynamic
viscosity η, mass density ρ and dielectric permittivity εrε0 with ε0 being the vacuum
permittivity. These temperature-dependent parameters attain values of η0, ρ0 and εr,0ε0 at
a reference temperature T0, the temperature at the left reservoir (cold). The nanochannel
wall is characterized by a constant zeta potential (ζ ) and, to neutralize this wall charge, an
EDL forms.

The thickness of the EDL is commonly captured by the dimensionless Debye parameter
κ̄ = κh, where κ−1 =

√
εrε0kBT/(2Z2e2n) ≡ λD is the Debye length. Here, kB, Z and e

represent the Boltzmann constant, the valence of the symmetric electrolyte and elementary
charge, respectively. The number concentration of the ions in the bulk, i.e. sufficiently far
away from any charged wall, is denoted by n. The boundary condition for the flow at
the channel wall, apart from a vanishing wall-normal velocity, is a Navier slip condition
u = β(∂u/∂ξ), where u is the x-velocity, β is the slip length and ξ is the wall-normal
coordinate.

In the following subsections, analytical solutions of the governing equations for the
thermo-osmotic flow inside the slit channel are derived, assuming an applied pressure
difference (�p0) combined with a temperature gradient (�T/l) and an applied electric
field (E). To achieve this, a long-wavelength approximation based on the small parameter
(A = h/l, A � 1) is employed. This means that all dependent quantities are expanded
as power series in A, and only the leading-order terms are kept. Also, the temperature
difference is assumed to be small compared to the reference temperature, i.e. �T/T0 < 1.

2.1. Temperature, electric potential and ion-concentration distributions
The temperature field T is governed by the energy equation, ρcp[∂tT + u · ∇T] =
∇ · (k∇T), where Joule heating and viscous dissipation effects are neglected (Dietzel
& Hardt 2017). Here, ∂t ≡ ∂/∂t denotes the partial derivative with respect to time,
u (= (u, v)) represents the velocity vector in the (x, y) plane, and k and cp denote
the thermal conductivity and heat capacity of the fluid, respectively. Neglecting the
temperature variation of density (ρ = ρ0) and heat capacity (cp = cp,0), assuming a linear
temperature profile in the X direction on the channel walls and considering a symmetry
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condition along the centre plane Y = 0, one obtains a linear variation of temperature along
the X direction, i.e. ∂XΘ = const. and ∂YΘ = 0, using the long-wavelength approximation
(Dietzel & Hardt 2017). Here and in the following, dimensionless variables τ = tU0/l,
(X, Y) = (x/l, y/h), Θ = (T − T0)/�T and (U, V) = (u/U0, v/AU0) are used, with
U0 = εr,0ε0(kBT0/Ze)2/η0h being the reference velocity.

Ion transport is assumed to be governed by the Nernst–Planck equation,
∂tnk + ∇ · [unk − Dk∇nk − DT,knk∇T − Dknk(zke/kBT)∇φ] = 0 (k = 1, 2), which con-
tains advection (unk), diffusion (−Dk∇nk), electromigration (−zkeDknk∇φ/kBT) and
thermodiffusion fluxes (DT,knk∇T). Here, Dk represent diffusion coefficients and DT,k
thermophoretic mobility coefficients, which are associated with intrinsic Soret coefficients
via Sk = DT,k/Dk (Würger 2010). Integrating the Nernst–Planck equations using the
long-wavelength approximation with Zk = zk/Z and Nk = nk/n0, one obtains (Dietzel &
Hardt 2017)

Nk = N exp[−ZkΨ/(1 + Θ̂)]. (2.1)

Here, Θ̂ = Θ�T/T0 and, according to the conventional Soret equilibrium, N = exp(−S̄0

T0Θ̂), with S̄0 = (S1 + S2)/2 representing the average intrinsic Soret coefficient at T0.
Moreover, Ψ in (2.1) denotes the dimensionless EDL potential, which in combination

with the scaled applied electric potential Ψ0 forms the scaled total electric potential Φ,
i.e. Φ(X, Y) = Ψ (X, Y) + Ψ0(X), with ∂XΨ0 = −Ē. In all cases, the electric potentials
are scaled by the thermal potential (kBT0/Ze). The total dimensional electric potential
φ obeys the Poisson equation ∇ · (εrε0∇φ) = ρf , with ρf = −e

∑2
k=1 zknk being the

space charge density. Invoking the long-wavelength approximation with the Dirichlet
boundary condition Ψ = ζ̄ = ζ/(kBT0/Ze) on the wall Y = 1, and symmetry condition
∂YΨ = 0 along the centre plane Y = 0, for sufficiently small ζ , the EDL potential can
derived as Ψ DH = ζ̄ [cosh(κ̄Y)/cosh(κ̄)] (Dietzel & Hardt 2017), which is essentially
the Debye–Hückel approximation. The spatially varying Debye parameter (κ̄) is related
to the standard Debye parameter (κ̄0) as κ̄ = κ̄M

√
N/(1 + Θ�T/T0), with κ̄M =

κ̄0/
√

1 + M0�TΘ and M = dTεr/εr (i.e. at T0, M0 = dTεr/εr,0) (Dietzel & Hardt 2017).

2.2. Flow field
While the previous subsection was merely a recapitulation of the results obtained in
Dietzel & Hardt (2017), computing the flow field requires some major deviation from
this preliminary work. The reason is that, in Dietzel & Hardt (2017), the no-slip
boundary condition was employed, whereas here a Navier slip condition is assumed
at the channel walls. The motion of an incompressible, homogeneous electrolyte
solution with a fixed density ρ0 and a temperature-dependent viscosity η is governed
by the Navier–Stokes equation ρ0[∂tu + u · ∇u] = −∇p + ∇ · η[∇u + ∇uT] − ρf ∇φ −
(�T/2)∂T(εrε0)(∇φ)2. The last two terms on the right-hand side correspond to the
Korteweg–Helmholtz force (Russel et al. 1991) obtained from the Maxwell stress tensor.

Now, substituting the expressions for ρf and φ, as derived in the previous subsection,
the non-dimensional x- and y-momentum equations are obtained as

ARe[∂τ U + U∂XU + V∂YU] − A2[η̄∂2
XU + 2∂X η̄∂XU + ∂Y η̄∂XV]

− A2(Ha/κ̄2
M)[∂2

XΨ (∂XΨ − Ē) + (M�T/2)(∂XΨ − Ē)2∂XΘ]
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= −∂XP + ∂Y(η̄∂YU) + (Ha/κ̄2
M)[∂2

YΨ (∂XΨ − Ē)

+ M�T{∂YΨ ∂YΘ(∂XΨ − Ē) − ∂XΘ(∂YΨ )2/2}] (2.2)

and

A3Re[∂τ V + U∂XV + V∂YV] − A2[A2η̄∂2
XV + η̄∂2

YV + A2∂X η̄∂XV + 2∂Y η̄∂YV

+ ∂X η̄∂YU] − A2(Ha/κ̄2
M)[∂2

XΨ ∂YΨ + M�T{(∂XΨ − Ē)∂YΨ ∂XΘ

− (∂XΨ − Ē)2∂YΘ/2}]
= −∂YP + (Ha/κ̄2

M)[∂2
YΨ ∂YΨ + M�T(∂YΨ )2∂YΘ/2]. (2.3)

In these equations, a number of dimensionless parameters are encountered, most notably
the Reynolds number Re = ρ0U0h/η0 and the Hartmann number Ha = 2Ahn0kBT0/U0η0,
where η0 stands for the viscosity of the fluid at temperature T0, which provides the
scale for the non-dimensional viscosity η̄ = η/η0. The Hartmann number compares the
velocity scale due to osmotic pressure with the reference velocity. The pressure is scaled as
P = p/(U0η0/Ah). In accordance with the long-wavelength approximation we can neglect
terms of O(A2) or higher. Also, we can neglect terms of O(ARe) or higher, since we assume
Re � 1, as characteristic for nano- and microscale flows.

Making use of the Poisson equation in (2.3), one obtains ∂Y [P − Ha(1 +
Θ̂)(N+ + N−)/2] = 0. Integrating this with respect to the Y-coordinate and using
the Debye–Hückel approximation yields [P − Ha(1 + Θ̂)N] = f (X). Here, the second
term on the left-hand side represents the osmotic pressure due to the ion cloud,
which leaves f (X) as the externally applied pressure P0(X). Thus, the pressure
can be rewritten as P = P0 + HaN(1 + Θ̂)[cosh(Ψ/(1 + Θ̂)) − 1], which yields
∂XP = dXP0 + (Ha/2)∂XΘ̂(N/(1 + Θ̂))[Ψ 2(∂

Θ̂
N/N) + 2Ψ ∂

Θ̂
Ψ − Ψ 2/(1 + Θ̂)] using

the Debye–Hückel approximation. Here, dX ≡ d/dX represents the ordinary derivative
with respect to X. On the other hand, employing ∂YΘ = 0 and N/(1 + Θ̂) = (κ̄/κ̄M)2,
and substituting ∂XP in (2.2) gives

∂Y(η̄∂YU) = dXP0 + Ha

κ̄2
M

Ē∂2
YΨ + Ha

2κ̄2
M

∂XΘ̂

[
κ̄2

{
∂
Θ̂

N
N

− 1

1 + Θ̂

}
Ψ 2

+ MT0 (∂YΨ )2 + 2κ̄

(
∂
Θ̂

κ̄

κ̄

)
{κ̄2Ψ − ∂2

YΨ }∂κ̄Ψ

]
. (2.4)

The last term of (2.4) vanishes under the Debye–Hückel approximation.
The viscosity of a binary aqueous electrolyte solution containing small ions primarily

depends on temperature and on ion concentration. As per the assumption, the latter does
not play a significant role here, since the Nernst–Planck equation used in this work
implicitly requires low enough ion concentrations. In accordance with the spatial variation
of temperature in the present analysis, viscosity can be considered to depend exclusively
on X. Without knowing the explicit distribution of viscosity, (2.4) can be integrated
twice with respect to Y , and employing ∂YU = 0 at Y = 0, and Navier slip on the wall,
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i.e. U = −β̄∂YU at Y = 1, one has

U = 1
2η̄

dXP0[Y2 − 1 − 2β̄] + Ha

η̄κ̄2
M

Ēζ̄

[
cosh(κ̄Y)

cosh(κ̄)
− 1 − β̄ κ̄ tanh(κ̄)

]

+ Ha

η̄κ̄2
M

∂XΘζ̄ 2

8 cosh2 (κ̄)

[(
∂
Θ̂

N
N

− 1

1 + Θ̂
+ MT0

) (
cosh(2κ̄Y) − cosh(2κ̄)

2

− β̄κ̄ sinh(2κ̄)

)
+ κ̄2

(
∂
Θ̂

N
N

− 1

1 + Θ̂
− MT0

)
(Y2 − 1 − 2β̄)

]
, (2.5)

with β̄ = β/h.
Equation (2.5) describes the scaled axial velocity under the influence of an external

pressure gradient (dXP0), applied electric field (Ē) and axial temperature gradient (∂XΘ̂)
with a finite slip length β on the channel wall. Equation (2.5) takes into account the
axial concentration gradient (∂

Θ̂
N/N) due to the Soret equilibrium, i.e. ∂

Θ̂
N/N = −S̄0T0.

This means that, in the framework of our analysis, the axial concentration gradient is
solely due to the applied temperature gradient, i.e. it is not an independent quantity. In
the absence of a temperature gradient and at vanishing slip length, (2.5) reduces to the
well-known expression for superposed electro-osmotic and pressure-driven flow (Dietzel
& Hardt 2017).

However, substituting β̄ = 0 in (2.5) does not lead us to the corresponding TOF velocity
profile developed by Dietzel & Hardt (2017). The reason is that the expression for the
osmotic pressure derived in Dietzel & Hardt (2017) is not valid for overlapping EDLs. By
integrating (2.5) across the channel cross-section, we obtain the volume flux within the
Debye–Hückel limit as

Q
�z(2h)U0

= −1
η̄

dXP0

[
1
3

+ β̄

]
+ Ha

η̄κ̄2
M

Ēζ̄

[
tanh(κ̄)

κ̄
− 1 − β̄κ̄ tanh(κ̄)

]

+ Ha

η̄κ̄2
M

∂XΘζ̄ 2

8 cosh2 (κ̄)

[(
∂
Θ̂

N
N

− 1

1 + Θ̂
+ MT0

) (
sinh(2κ̄)

4κ̄
− cosh(2κ̄)

2

− β̄κ̄ sinh(2κ̄)

)
− 2κ̄2

(
∂
Θ̂

N
N

− 1

1 + Θ̂
− MT0

)(
1
3

+ β̄

)]
. (2.6)

As κ̄ → ∞ and in the absence of dXP0, Ē and β̄, the right-hand side of (2.6)
approaches −(Ha/8η̄κ̄2

M)∂XΘζ̄ 2(∂
Θ̂

N/N − 1/(1 + Θ̂) + MT0), which is identical to the
corresponding solution derived by Dietzel & Hardt (2017).

The physics underlying thermo-osmotic fluid propulsion was already discussed in detail
by Dietzel & Hardt (2017). Briefly, in thermal equilibrium, the electrostatic force on the ion
cloud in the Debye layer and the force due to the osmotic pressure exactly cancel, leaving
the entire liquid in local mechanical equilibrium. However, in the situation considered
here, temperature gradients result in a deviation from thermal equilibrium, which means
that the electrostatic and osmotic pressure forces no longer cancel. This induces a driving
force, which is the origin of thermo-osmotic propulsion.

3. Analysis and discussion of specific cases

This section serves two different purposes. The main focus of the first subsection is to
explore the accuracy and the limits of validity of our analytical solution by comparison
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with numerical results. The second subsection is devoted to making predictions for the
TOF through realistic nanochannels, with special consideration of the coupling between
surface charge and slip length. In all cases we solely consider the response of the system to
an axial temperature gradient, i.e. without any applied pressure gradient or electric field.

To numerically compute the TOF inside the nanochannel, the Poisson, Nernst–Planck,
Navier–Stokes and heat transfer equations were solved using the finite-element framework
of COMSOL Multiphysics 6.1. Quadratic elements were employed for the electric
potential, concentration, temperature and velocity fields, and linear elements for the
pressure field. The computational domain was discretized with a structured grid. The grid
independence of the numerical solutions was verified using systematic grid refinement and
Richardson extrapolation to estimate the grid-independent result. The total volume flux
through the channel was chosen as the representative value for grid-quality assessment,
and the relative error between a numerically computed and the extrapolated value was
required to fall below 10−3.

3.1. TOF within a charged nanochannel with a fixed slip length
Fundamentally, there are three different mechanisms that drive the flow due to an axial
temperature gradient (∂XΘ̂) (Dietzel & Hardt 2017): these are the temperature-dependent
ratio between the diffusivity and the electrophoretic mobility of the ions (the
Einstein–Smoluchowski relation), the temperature-dependent dielectric permittivity of the
fluid and the thermophoretic ion motion. The latter is incorporated in terms of the Soret
coefficient (S̄0), creating an axial concentration gradient in the nanochannel, which in turn
causes diffusio-osmosis (Marbach & Bocquet 2019). To obtain a quantitative measure of
this contribution to the TOF, we consider S̄0 = 1 × 10−3 K−1 (Dietzel & Hardt 2017),
which represents a characteristic order of magnitude for small ions. Figure 2(a) shows
that, without any thermophoretic ion motion, the centreline velocity gets reduced by
approximately 24 % (12 %) at κ0h = 1 (κ0h = 10). In all results to be presented in the
following, thermophoretic ion motion with S̄0 = 1 × 10−3 K−1 is included.

Figure 2(c–f ) shows the (dimensional) analytical and numerical profiles for various
values of the Debye parameter, slip length, wall zeta potential and temperature difference.
Figure 2(c) displays the variation of the velocity profile with κ0h. The curves essentially
cover the transition from overlapping EDLs to thin EDLs. The TOF velocity gradually
increases as the EDL becomes thinner and eventually the profile attains a plug-like shape
for higher values of κ0h. For the corresponding small value of ζ , an excellent agreement
between the analytical and numerical results is observed for all considered values of κ0h.

Figure 2(d) illustrates the impact of the slip length on the TOF velocity. The maximum
slip length (40 nm) is close to the value typically encountered for an uncharged graphene
surface (Xie et al. 2020). Generally, we expect material-specific relationships between
the surface charge and the slip length, similar to those reported in Xie et al. (2020).
However, in this section, the ζ potential and the slip length are regarded as independent
parameters to render the problem analytically tractable. Without losing generality, going
beyond such an approximation would require a universal relationship between the surface
charge and the slip length, which we are not aware of. In figure 2(d), a distinct increase
of the velocity with the slip length is visible. The results indicate a good agreement
between the analytical and the numerical velocity profiles at low to moderate slip length
values, beyond which the analytical velocity overestimates the values obtained from the
numerical simulations. The reason behind these deviations is due to entrance effects. With
increasing slip length, entrance effects become more and more prominent, and it becomes
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Figure 2. (a) Analytical (2.5) (solid lines) and numerical (symbols) TOF velocity profiles for S̄0 = 0 and
10−3 K−1 at β = 0 nm. (b) Interfacial thickness λ0/h (3.1) for TOF within a slit channel (solid line)
and interfacial thickness (1/2κh) for TOF over a planar surface (dashed line) as a function of κh (= κ̄).
(c–f ) Analytical (2.5) (solid lines) and numerical (dashed lines with symbols) TOF velocity profiles for
different values of (c) κ0h, (d) β, (e) ζ and ( f ) �T . Unless otherwise specified, the other parameters are
fixed to ζ = −15 mV, β = 0.1 nm, κ0h = 10, �T = 25 K, l = 100 × 2h, h = 5 nm, η̄ = 1, S̄0 = 10−3 K−1

and M0 = −5.1 × 10−3 K−1. The parameters are varied within a range that can be considered practically
feasible according to literature data (Joly et al. 2004; Masliyah & Bhattacharjee 2006; Balme et al. 2015; He
et al. 2015; Chen, Yao & Su 2019; Xie et al. 2020). Velocity profiles are obtained at the middle cross-section
of the nanochannel.

increasingly difficult to reproduce the results characteristic for a fully developed flow
profile with a channel of finite length, as represented through the computational domain
of our numerical simulations.

The enhancement of surface-driven transport by boundary slip was rationalized in
Ajdari & Bocquet (2006) for a surface bounded by an infinite half-space, where it was
shown that the effective slip velocity scales as (1 + β/λ), with λ being an interface
thickness parameter (λEOF ∼ 1/κ, λDOF ∼ 1/2κ for the case of electro-osmotic (EOF)
and diffusio-osmotic (DOF) flow, respectively). In our case, we can take the velocity at
the channel centre plane v0

s as a measure of flow enhancement. We analytically obtain
flow enhancement by a factor of (1 + β/λ0), where the dimensionless interfacial thickness
λ0/h is given as

λ0/h =

(
∂
Θ̂

N
N

− 1

1 + Θ̂
− MT0

)
κ̄2 +

(
∂
Θ̂

N
N

− 1

1 + Θ̂
+ MT0

)
sinh2 (κ̄)

(
∂
Θ̂

N
N

− 1

1 + Θ̂
− MT0

)
2κ̄2 +

(
∂
Θ̂

N
N

− 1

1 + Θ̂
+ MT0

)
κ̄ sinh(2κ̄)

. (3.1)

As κ̄ tends to infinity, λ0 approaches 1/2κ (cf. figure 2b), which is the corresponding
interfacial length for diffusio-osmotic flow identified in Ajdari & Bocquet (2006).
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Equation (3.1) represents a generalization of the results reported in Ajdari & Bocquet
(2006) and provides a simple means to estimate the flow velocity scale related to a specific
value of the slip length. Figure 2(d) reveals a quantitative measure of the flow enhancement
due to boundary slip. For β = 40 nm, the analytically determined velocity v0

s exhibits an
enhancement of ∼161 times relative to the no-slip case.

The results depicted in figure 2(e, f ) manifest the influence of the ζ potential and
the temperature gradient on the TOF. Figure 2(e) reveals that the velocity magnitude
is proportional to the magnitude of the ζ potential, as for electro-osmotic flow. The
increasing discrepancies between the analytical and the numerical solutions at higher
ζ potentials are attributed to the fact that the analytical results were derived under
the Debye–Hückel approximation. Similarly, the curves in figure 2( f ) evidence a good
agreement between the analytical and the numerical results for a sufficiently small
temperature gradient, i.e. �T/T0 ≈ 0.1. This is due to the fact that the long-wavelength
approximation was applied in deriving the flow field, which translates to the assumption of
local thermal equilibrium at each position in the channel (|�T/T0| � 1). For large applied
temperature gradients, this assumption will be violated.

3.2. TOF between polarized graphene surfaces
In this section, we analyse a specific case to demonstrate how large the flow augmentation
due to boundary slip can become in realistic scenarios. For this purpose, we need to
consider the relationship between the slip length and the charge density at the walls. Given
a fixed ζ potential at the channel walls, we arrive an axially varying charge density. The
reason is that the scale of the wall charge density is given by ζ divided by the Debye length,
which exhibits an axial variation because of the temperature dependence of the Debye
length. Specifically, we examine the case of a channel bounded by charged graphene walls,
for which the slip length–charge density relationship was reported in Xie et al. (2020).

Therefore, unlike in the previous scenarios with a uniform slip length along the channel
wall, here we encounter an axially varying slip length. The analytical model fails to capture
the corresponding flow field, which is why the results of this subsection were solely
obtained using finite-element simulations.

In order to model the TOF inside a slit nanochannel with polarized graphene walls,
we follow an iterative procedure, where the entire system of Poisson, Nernst–Planck and
Navier–Stokes equations is numerically solved at each iteration step. Initially we consider
a fixed ζ potential, i.e. ζ0, which corresponds to a fixed surface charge density σ0 through
the Grahame equation (Israelachvili 2011). Invoking the slip–charge relation (Xie et al.
2020), we obtain a fixed slip length β0 corresponding to σ0. We initiate the iteration with
a fixed pair (ζ0, β0). Based on that, we numerically solve for the TOF, resulting in an
axially varying surface charge density σ1(x), which is due to the temperature dependence
of the Debye length. The spatially varying surface charge densities σn(x) (n ≥ 1) lead us
to axially varying slip lengths βn(x) (n ≥ 1) (Xie et al. 2020) at each iteration step. We
repeat the iteration procedure until the difference between σn(x) and σn+1(x) becomes less
than 0.1 %.

The TOF velocity profiles obtained from the converged solutions are displayed in
figure 3. The profiles are evaluated at a cross-section at the centre of the nanochannel,
and the specific form of these profiles is attributed to the locally varying slip length β(x).
The non-uniform slip length results in an axial variation of the flow resistance. To ensure
mass conservation, an adverse pressure-driven flow builds up, which in combination with
the TOF results in non-monotonic velocity profiles. As apparent from figure 3, for a ζ
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Figure 3. Numerically obtained TOF axial velocity profiles between polarized graphene walls, corresponding
to ζ0 = −5, −10, −15 and −20 mV. The other parameters are c0 = 0.13 M (κ0h ≈ 6) and 1.3 M (κ0h ≈ 19),
�T = 25 K, l = 100 × 2h and h = 5 nm. Velocity profiles are obtained at the middle cross-section of the
nanochannel.

potential of −20 mV, TOF velocities as high as ∼1.6 mm s−1 are obtained. Compared to
a nanochannel with no-slip walls and considering a salt concentration of 1.3 M (0.13 M),
we obtain a flow velocity enhancement of ∼200 (78) times and of ∼250 (80) times,
corresponding to ζ0 = −20 mV and −5 mV, respectively.

4. Discussion, conclusion and outlook

In this article, we have derived an analytical expression for the thermo-osmotic flow in
a slit channel with boundary slip based on a continuum mechanical framework and the
Debye–Hückel approximation. The expression accounts for the additional effects of an
applied pressure gradient and an applied electric field. The analytical results for the flow
profile agree well with numerical results within the range of validity of the approximations
employed. To demonstrate the flow augmentation due to boundary slip, we have considered
the TOF between homogeneously charged graphene walls as a special case. Compared to
a channel with no-slip walls, a flow augmentation by more than two orders of magnitude
was found, which demonstrates the massive effects that boundary slip may have on TOF.

Especially for narrow channels, the question arises how accurate a model may be that is
solely based on a continuum mechanical framework. Clearly, our model does not account
for effects occurring on the molecular level in the utmost vicinity of the solid–liquid
interface. Close to the interface, the enthalpy density of the liquid will deviate from the
enthalpy density away from the interface, which determines the solid–liquid interfacial
tension. It was shown that this excess enthalpy can drive a thermoelectric response in
nanochannels (Fu, Joly & Merabia 2019). At least in narrow channels, the excess enthalpy
close to the solid–liquid interface is an effect that needs to be considered in addition to
the effects that have been included in our continuum mechanical model. It is expected that
the excess enthalpy is characteristic of the specific solid–liquid combination, i.e. finding
a universal expression for this contribution appears to be out of reach. By contrast, what
we have considered in the present work is a rather universal effect that plays a role in a
broad class of scenarios, i.e. dilute electrolyte solutions confined between walls with a low
to moderate surface charge density. In the future, the goal will be to formulate a more
complete description that takes into account the effects occurring on the continuum scale
as well as the specific molecular effects at the solid–liquid interface.
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