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Abstract

The ‘Borcherds products everywhere’ construction [Gritsenko et al., ‘Borcherds products everywhere’,
J. Number Theory 148 (2015), 164–195] creates paramodular Borcherds products from certain theta
blocks. We prove that the q-order of every such Borcherds product lies in a sequence {Cν}, depending
only on the q-order ν of the theta block. Similarly, the q-order of the leading Fourier–Jacobi coefficient of
every such Borcherds product lies in a sequence {Aν}, and this is the sequence {an} from work of Newman
and Shanks in connection with a family of series for π. Our proofs use a combinatorial formula giving
the Fourier expansion of any theta block in terms of its germ.
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1. Introduction

The papers [6, 8] by Newman and Shanks, with appended work by Zagier, feature a
family of series for π that involve a sequence of positive integers an. For each positive
integer N, and for a real algebraic number U = U(N) determined by N,

π =
1
√

N

(
−log |U | − 24

∞∑
n=1

(−1)n an

n
Un

)
.

As noted in [8], the rapid convergence of some of these series is astonishing. The
definition of an is rather complicated, but the sequence begins

{an}
∞
n=1 = {1, 47, 2488, 138799, 7976456, 467232200, . . .}.

We show that this sequence of Newman and Shanks appears in the theory of
paramodular Borcherds products.

Borcherds product theory can be used to construct meromorphic paramodular forms
from weakly holomorphic Jacobi forms of weight zero that have integral Fourier
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coefficients. Such a Jacobi form ψ ∈ Jw.h.
0,N (Z), having Fourier expansion ψ(τ, z) =∑

n,r∈Z c(n, r;ψ)qnζr (see the next section for notation), determines an infinite product

qAζBξC
∏

(m,n,r)≥0

(1 − qnζrξNm)c(nm,r;ψ),

taken over m, n, r ∈ Z such that m ≥ 0, and if m = 0 then n ≥ 0 and if m = n = 0 then
r < 0, and with the Weyl vector (A, B,C) given by

A =
1

24

∑
r∈Z

c(0, r;ψ), B =
1
2

∑
r≥1

rc(0, r;ψ), C =
1
4

∑
r∈Z

r2c(0, r;ψ).

This product is normally convergent on some open set of values Z =
[τ z

z ω
]

in the Siegel
space H2, with q = e(τ), ζ = e(z), ξ = e(ω), and it defines Borch(ψ) by meromorphic
continuation to all of H2 (see [1, Theorem 3.22]). In general Borch(ψ) transforms
by a character of the paramodular group K(N), but restricting to integral A makes
the character trivial and the weight k′ = 1

2 c(0, 0;ψ) integral, so that Borch(ψ) lies in
Mmero

k′ (K(N)), that is, it is a meromorphic paramodular form.
Even though the infinite product may converge normally only on a small open set,

Borch(ψ) still has a Fourier–Jacobi expansion there,

Borch(ψ)(Z) = φ1(Borch(ψ))(τ, z)ξC + φ2(Borch(ψ))(τ, z)ξC+N + · · · .

The leading Fourier–Jacobi coefficient of Borch(ψ) is given by the infinite product

φ1(Borch(ψ)) = qAζB
∏

(n,r)≥0

(1 − qnζr)c(0,r;ψ) = η(τ)2k′
∏
r≥1

(
ϑ(τ, rz)
η(τ)

)c(0,r;ψ)
,

where (n, r) ≥ 0 means that n, r ∈ Z and n ≥ 0 and if n = 0 then r < 0; these
meromorphic Jacobi forms are examples of theta blocks. Thus theta blocks arise
naturally as the leading Fourier–Jacobi coefficients of Borcherds products. See
Gritsenko et al. [5] for the general theory of theta blocks. When the powers of
ϑ(τ, rz)/η(τ) are nonnegative for all r ≥ 1, the theta block is without denominator.

It is natural to ask for weakly holomorphic Jacobi forms that produce holomorphic
paramodular forms. The Borcherds products everywhere construction from [4] ensures
holomorphy. Recall the index-raising Hecke operators V` : Jw.h.

k,N −→ Jw.h.
k,`N from [2].

Take a theta block without denominator φ ∈ Jk,N , and set ψ = (−1)ν φ|V2 /φ ∈ Jw.h.
0,N ,

where ν = ordq φ is the leading power of q in the Fourier expansion of φ. The resulting
Borcherds product is holomorphic, that is, Borch(ψ) ∈ Mk′(K(N)). In particular, the
character of Borch(ψ) is trivial, and k′, A and C/N are integral. In this way we associate
a holomorphic Borcherds product with every theta block without denominator that
is actually a Jacobi form. It is helpful to keep in mind that there are two theta
blocks in play when we use the Borcherds products everywhere construction. The
initial theta block φ has weight k, index N and q-order ν. We set ψ = (−1)ν φ|V2 /φ
and construct Borch(ψ). The leading Fourier–Jacobi coefficient φ1(Borch(ψ)) of this
Borcherds product is a secondary theta block, of weight k′, index C and q-order A.

https://doi.org/10.1017/S000497271800031X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271800031X


50 C. Poor, J. Shurman and D. S. Yuen [3]

We will prove that only in the case ν = 1 do we have φ1(Borch(ψ)) = φ, because in the
Borcherds products everywhere construction the q-order A grows quickly with ν. Our
main result, Theorem 5.2, is that, unexpectedly, C/N and A depend only on ν, with no
reference to any other particulars of the suitable theta block φ. Thus we may define
two sequences of positive integers,

Aν = ordq φ1(Borch(ψ)), Cν = ordq Borch(ψ),

by choosing any theta block φ without denominator of q-order ν, and by setting
ψ = (−1)ν φ|V2 /φ. As intimated, we prove that {Aν} is the sequence of Newman and
Shanks. We do not know whether our sequence {Cν} arises in some other context.

Our proofs rely on a grand theta block Fourier expansion formula, expressing the
Fourier expansion in terms of double partitions, which we hope will be useful beyond
this one application. The grand theta block formula is given in Proposition 3.1.

2. Notation

We assume that the reader has some acquaintance with the notation in [4], and
with Jacobi forms, whose theory can be found in [2] and [3]. The space of Jacobi
forms of weight k ∈ 1

2Z and nonnegative integral index N is denoted Jk,N . The Fourier
expansion of such a Jacobi form, φ(τ, z) =

∑
n,r∈Z c(n, r; φ)qnζr, is supported only on

(n, r) with 4nN − r2 ≥ 0. For Jcusp
k,N the support condition is 4nN − r2 > 0, for Jweak

k,N it is
n ≥ 0 and for Jw.h.

k,N it is that n be bounded from below. The space Jmero
k,N of meromorphic

Jacobi forms consists of the quotients of holomorphic Jacobi forms, the weight and
index being the differences of those in the numerator and denominator. When φ has
integral Fourier coefficients we write φ ∈ Jk,N(Z), and similarly for other subrings of C.
When φ transforms by a multiplier we indicate so in the notation; for example, the odd
Jacobi theta function ϑ lies in Jcusp

1/2,1/2(ε3vH), where ε is the multiplier of the Dedekind
eta function and vH is a certain character of order two [3]. Elliptic modular forms are
considered to be Jacobi forms of index zero, so that, for example, the Dedekind eta
function lies in Jcusp

1/2,0(ε).
For paramodular forms we refer to [4]. The Siegel upper half space of degree

two is denoted H2. For N ∈ Z≥1 the paramodular group K(N) is the stabiliser of
Z ⊕ Z ⊕ Z ⊕ NZ (as a column vector) in Sp2(Q). The C-vector space of weight k
paramodular forms for K(N) is denoted Mk(K(N)), and Mmero

k (K(N)) is given by
quotients of holomorphic paramodular forms for K(N) whose respective difference
of weights is k.

3. Theta block Fourier expansion

We quickly review some basic terminology of theta blocks. Throughout, τ is
a variable from the complex upper half plane and z is a complex variable, and
q = e(τ) = e2πiτ and ζ = e(z) = e2πiz. The Dedekind eta function and the odd Jacobi
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theta function are

η(τ) = q1/24
∏
n≥1

(1 − qn) ∈ Jcusp
1/2,0(ε),

ϑ(τ, z) =
∑
n∈Z

(−1)nq(n+1/2)2/2ζn+1/2

= q1/8(ζ1/2 − ζ−1/2)
∏
n≥1

(1 − qnζ)(1 − qnζ−1)(1 − qn) ∈ Jcusp
1/2,1/2(ε3vH).

For any r ∈ Z≥1, define ϑr(τ, z) = ϑ(τ, rz) ∈ Jcusp
1/2,r2/2(ε3vr

H), so that

ϑr(τ, z)/η(τ) = q1/12(ζr/2 − ζ−r/2)
∏
n≥1

(1 − qnζr)(1 − qnζ−r) ∈ Jcusp
0,r2/2(ε2vr

H).

A theta block is a meromorphic function of the form

TB(τ, z) = TB(ϕ)(τ, z) = η(τ)ϕ(0)
∏
r≥1

(ϑr(τ, z)/η(τ))ϕ(r),

where ϕ : Z −→ Z is even and finitely supported. A theta block such that ϕ(r) ≥ 0 for
each r ∈ Z≥1 is a theta block without denominator. The theta block of ϕ has the product
form

TB(τ, z) = qνb(ζ)
∏

i≥1,r∈Z

(1 − qiζr)ϕ(r), (3.1)

where the leading exponent of q is

ν =
1
24

∑
r∈Z

ϕ(r),

and the baby theta block is defined by b(ζ) =
∏

r≥1(ζr/2 − ζ−r/2)ϕ(r), or by

b(ζ) = ζ−B
∏
r≥1

(ζr − 1)ϕ(r), B =
1
2

∑
r≥1

rϕ(r).

Introduce also the weight k = 1
2ϕ(0) and the index N = 1

2
∑

r≥1 r2ϕ(r) of TB so that
TB(ϕ) ∈ Jmero

k,N (ε24νv2B
H ). The multiplicity function ϕ determines a germ

G(ζ) = G(ϕ)(ζ) =
∑
r∈Z

ϕ(r)ζr,

which itself determines the theta block TB(ϕ). Wanting to think of the germ as a
function either of the multiplicity function or of the theta block, we freely write it
both ways, G(ζ) = G(ϕ)(ζ) = G(TB(ϕ))(ζ). The germ has the properties G(1) = 24ν,
G′(1) = 0 and G′′(1) = 4N, recovering the q-order and index of the theta block. We
know that this germ determines the coefficients Bn(ϕ) in the q-expansion of the double
product in (3.1), ∏

i≥1,r∈Z

(1 − qiζr)ϕ(r) =
∑
n≥0

Bn(ϕ)(ζ)qn.
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The following proposition is important because it calculates the q-expansion of
an arbitrary theta block by giving the coefficients Bn(ϕ) in terms of universal
polynomials bn in the functions G(ζ),G(ζ2), . . . ,G(ζn). Our calculations use the
partitions and the double partitions of nonnegative integers,

P(n) =

{
d : Z≥1 −→ Z≥0 : n =

∑
i

d(i)i
}
,

DP(n) =

{
u : Z≥1 × Z≥1 −→ Z≥0 : n =

∑
i, j

u(i, j)i j
}
.

The sign of a partition d is sgn(d) = (−1)
∑

i d(i), and similarly the sign of a double
partition u is sgn(u) = (−1)

∑
i, j u(i, j). Addition gives P(`) × P(m) −→ P(` + m), with

sgn(d1 + d2) = sgn(d1) sgn(d2) for partitions d1, d2, and similarly for double partitions,
with sgn(u1 + u2) = sgn(u1) sgn(u2).

Proposition 3.1 (Grand theta block formula). For any even, finitely supported function
ϕ : Z −→ Z, define a corresponding product

P(ϕ) = P(ϕ)(τ, z) =
∏

i≥1, r∈Z

(1 − qiζr)ϕ(r).

This product has a formal q-expansion

P(ϕ)(τ, z) =
∑

n∈Z≥0

Bn(ϕ)(ζ)qn,

given as follows. For each n ∈ Z≥0, the qn-coefficient of P(ϕ) is

Bn(ϕ)(ζ) =
∑

u∈DP(n)

sgn(u)
∏
i, j≥1

1
u(i, j)!

(G(ϕ)(ζ j)
j

)u(i, j)
.

Thus Bn(ϕ)(ζ) = bn(G(ϕ)(ζ),G(ϕ)(ζ2), . . . ,G(ϕ)(ζn)), where the polynomial bn lies in
(1/n!)Z[x1, x2, . . . , xn] and is independent of ϕ.

Before proving the proposition, we give the first few Bn. Omitting ϕ from the
notation for brevity, B0(ζ) = 1 and then

B1(ζ) = −G(ζ),

B2(ζ) = 1
2 (−G(ζ2) + G(ζ)2 − 2G(ζ)),

B3(ζ) = 1
6 (−2G(ζ3) + 3G(ζ2)G(ζ) −G(ζ)3 + 6G(ζ)2 − 6G(ζ)),

B4(ζ) = 1
24

 − 6G(ζ4) + 8G(ζ3)G(ζ) − 6G(ζ2)G(ζ)2 + 12G(ζ2)G(ζ)

+ 3G(ζ2)2 − 12G(ζ2) + G(ζ)4 − 12G(ζ)3 + 36G(ζ)2 − 24G(ζ)

 .
The corresponding polynomials bn are easily read off from these.
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Proof. First consider the case where ϕ is nonnegative, that is, ϕ(r) ≥ 0 for all r ∈ Z.
For each i ∈ Z≥0, view the finite product

∏
r∈Z(1 − qiζr)ϕ(r) as a polynomial in qi whose

reciprocal roots are the multiset that contains ϕ(r) copies of ζr for each r ∈ Z. This
multiset is independent of i, and its power-sum functions are s j =

∑
r∈Z ϕ(r)ζ jr =

G(ϕ)(ζ j) for j ∈ Z≥0. Now, letting deg(ϕ) =
∑

r∈Z ϕ(r) and letting σd denote the
dth elementary symmetric function over the multiset defined above, the finite
product is

∏
r∈Z(1 − qiζr)ϕ(r) =

∑deg(ϕ)
d=0 (−1)dσdqdi. Thus the given double product∏

i,r(1 − qiζr)ϕ(r) in the proposition is

P(ϕ)(τ, z) =
∏
i≥1

deg(ϕ)∑
d=0

(−1)dσdqdi,

and so its qn-coefficients are

Bn(ϕ)(ζ) =
∑

d∈P(n)

sgn(d)
∏
i≥1

σd(i), n ∈ Z≥0.

Newton’s identities
∑m−1
`=0 (−1)`σ`sm−` + (−1)mmσm = 0 give the elementary symmetric

functions in terms of the power-sum functions,

σd = (−1)d
∑

u∈P(d)

∏
j≥1

1
u( j)!

(
−s j

j

)u( j)
.

Since the power-sum functions are s j = G(ϕ)(ζ j) in our setting, the values of Bn(ϕ) for
any nonnegative ϕ as n varies through Z≥0 are given by

Bn(ϕ)(ζ) =
∑

d∈P(n)

∏
i≥1

∑
u(i,·)∈DP(d(i))

∏
j≥1

1
u(i, j)!

(
−G(ϕ)(ζ j)

j

)u(i, j)
,

and these are just the values given in the proposition,

Bn(ϕ)(ζ) =
∑

u∈DP(n)

sgn(u)
∏
i, j≥1

1
u(i, j)!

(G(ϕ)(ζ j)
j

)u(i, j)
. (3.2)

The corresponding polynomial bn(x1, . . . , xn) with x j in place of G(ϕ)(ζ j) lies in
(1/n!)Z[x1, . . . , xn], because u(i, j)! ju(i, j) divides (u(i, j)i j)! and the multinomial
coefficient (n/{u(i, j)i j}) is integral.

We now drop the restriction that ϕ is nonnegative. The product-formation map
ϕ 7→ P(ϕ) takes sums to products, and the relation P(ϕ + ϕ̃) = P(ϕ)P(ϕ̃) shows that
P(ϕ) is determined by P(ϕ + ϕ̃) and P(ϕ̃). This says that the sequence {Bn(ϕ)} is
determined by the sequences {Bn(ϕ + ϕ̃)} and {Bn(ϕ̃)} and by the convolution relations

Bn(ϕ + ϕ̃) =
∑
`+m=n

B`(ϕ)Bm(ϕ̃), n ∈ Z≥0. (3.3)

In particular, we decompose any ϕ as ϕ = ϕ+ − ϕ−, with ϕ+(r) = max{ϕ(r), 0} and
ϕ−(r) = −min{ϕ(r), 0}, and we take ϕ + ϕ̃ = ϕ+ and ϕ̃ = ϕ− in (3.3). Because the ϕ±
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are nonnegative, the coefficient sequences {Bn(ϕ±)} are given by (3.2), and what needs
to be shown is that the coefficient formula (3.2), which makes sense for general ϕ,
also satisfies the convolution relation (3.3). Because Laurent polynomial formation
ϕ 7→ G(ϕ) takes sums to sums, that is, G(ϕ + ϕ̃) = G(ϕ) + G(ϕ̃), the binomial theorem
gives

1
u(i, j)!

(G(ϕ + ϕ̃)(ζ j)
j

)u(i, j)

=
∑

v(i, j)+w(i, j)=u(i, j)

1
v(i, j)!

(G(ϕ)(ζ j)
j

)v(i, j) 1
w(i, j)!

(G(ϕ̃)(ζ j)
j

)w(i, j)
,

and the desired result follows,

Bn(ϕ + ϕ̃) =
∑

u∈DP(n)

sgn(u)
∏
i, j≥1

1
u(i, j)!

(G(ϕ + ϕ̃)(ζ j)
j

)u(i, j)

=
∑
`+m=n

( ∑
v∈DP(`)

sgn(v)
∏
i, j≥1

1
v(i, j)!

(G(ϕ)(ζ j)
j

)v(i, j))
·

( ∑
w∈DP(m)

sgn(w)
∏
i, j≥1

1
w(i, j)!

(G(ϕ̃)(ζ j)
j

)w(i, j))
=

∑
`+m=n

B`(ϕ)(ζ)Bm(ϕ̃). �

4. The polynomials fn

We define the sequences {Aν} and {Cν} in this section and explain them conceptually
in the next.

Given any sequence of polynomials bn with b0 = 1, bn ∈ (1/n!)Z[x1, x2, . . . , xn],
the conditions f0 = 1 and bn(x) =

∑
2`+m=n b`(x) fm(x) recursively define another such

sequence fn. These conditions are equivalent to an equality of formal series,∑
n≥0 bn(x1, x2, . . . , xn)qn/2∑
n≥0 bn(x1, x2, . . . , xn)qn =

∑
n≥0

fn(x1, x2, . . . , xn)qn/2.

Definition 4.1. Let bn ∈ (1/n!)Z[x1, x2, . . . , xn] be defined by

bn(x1, x2, . . . , xn) =
∑

u∈DP(n)

sgn(u)
∏
i, j≥1

1
u(i, j)!

( x j

j

)u(i, j)
.

Define fn ∈ (1/n!)Z[x1, x2, . . . , xn] recursively by the conditions f0 = 1 and bn(x) =∑
2`+m=n b`(x) fm(x). Define two sequences,

Aν = 1
24 (−1)ν fν(24ν, 24ν, . . . , 24ν),

Cν = (−1)ν
ν∑

i=1

i2∂i fν(24ν, . . . , 24ν).
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The first few polynomials fn after f0 = 1 are

f1(x1) = −x1,

f2(x1, x2) = 1
2 (x2

1 − x2),

f3(x1, x2, x3) = 1
6 (−2x3 + 3x1x2 − 6x1 − x3

1),

f4(x1, x2, x3, x4) = 1
24 (−6x4 + 8x1x3 − 6x2

1x2 + 24x2
1 + 3x2

2 + x4
1).

These give the first few values Aν and Cν,

{Aν} = {1, 47, 2488, 138799, . . .},
{Cν} = {1, 46, 2416, 134236, . . .}.

From the definition only the rationality of the sequences is clear for now, but the terms
will be proven to be positive integers in the next section.

5. The main theorem
Although the introduction to this article emphasised holomorphic Borcherds

products produced by the Borcherds products everywhere construction, the
construction can be applied more generally if ψ = (−1)ν φ|V2 /φ is weakly
holomorphic. As shown in [7], weak holomorphy holds precisely when the baby theta
block of φ satisfies the condition b(ζ) | b(ζ2) in Z[ζ, ζ−1]. This divisibility condition
holds automatically for a theta block φ without denominator. This section considers
a meromorphic Borcherds product Borch(ψ) ∈ Mmero

k′ (K(N)) made by the Borcherds
product everywhere construction from a theta block φ ∈ Jw.h.

k,N satisfying b(ζ) | b(ζ2) and
having ordq φ = ν. The idea is to construct the germ of the theta block φ1(Borch(ψ))
from the germ of the theta block φ. From this it will follow that Aν is the q-order of
φ1(Borch(ψ)) and that Cν is the q-order of Borch(ψ).

Lemma 5.1. Let k, ν ∈ Z≥1 and N ∈ Z≥0. Let φ ∈ Jw.h.
k,N be a theta block with b(ζ) | b(ζ2) in

C[ζ, ζ−1] and with ordq φ = ν. Let G be the germ of φ. Then ψ = (−1)νφ|V2/φ ∈ Jw.h.
0,N (Z).

Define G : C∗ → C by G(ζ) = Coeff(ψ, q0). Then

G(ζ) = (−1)ν Coeff

(
φ(τ/2, z)
φ(τ, z)

, q0
)

= (−1)ν fν(G(ζ),G(ζ2), . . . ,G(ζν)),

and G(1) = 24Aν, G′(1) = 0 and G′′(1) = 4NCν.

Proof. Theorem 4.2 in [7] shows that b(ζ) | b(ζ2) implies ψ ∈ Jw.h.
0,N (Z), including the

case N = 0. Write the theta block φ as a double product,

φ(τ, z) = qνb(ζ)
∏

i≥1,r∈Z

(1 − qiζr)ϕ(r),

and recall that the operator V2 acts on φ ∈ Jw.h.
k,N as

(φ|V2)(τ, z) = 2k−1φ(2τ, 2z) + 1
2 (φ(τ/2, z) + φ(τ/2 + 1/2, z)).

We see that φ(2τ, 2z)/φ(τ, z) = qνb(ζ2)/b(ζ)
∏

j≥1,r∈Z(1 + q jζr)ϕ(r) contains only
positive powers of q because ν ≥ 1. Further, because φ(τ/2, z) contains the same terms
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with integral powers of q as (1/2)(φ(τ/2, z) + φ(τ/2 + 1/2, z)), we deduce

G = Coeff(ψ, q0) = (−1)ν Coeff

(
φ(τ/2, z)
φ(τ, z)

, q0
)
.

Furthermore, using the Fourier expansion of φ from Proposition 3.1 in terms of Bn(ζ) =

bn(G(ζ),G(ζ2), . . . ,G(ζn)), and using the functions fn introduced in the previous
section,

φ(τ/2, ζ)
φ(τ, ζ)

=
qν/2b(ζ)

∑
n∈Z≥0

Bn(ζ)qn/2

qνb(ζ)
∑

n∈Z≥0
Bn(ζ)qn

= q−ν/2
∑

n∈Z≥0

fn(G(ζ),G(ζ2), . . . ,G(ζn))qn/2.

Therefore G(ζ) = (−1)ν fν(G(ζ),G(ζ2), . . . ,G(ζν)) as asserted. As a consequence of the
relations G(1) = 24ν, G′(1) = 0, G′′(1) = 4N, and basic differentiation,

G(1) = (−1)ν fν(24ν, . . . , 24ν) = 24Aν,

G′(1) = 0,

G′′(1) = 4N
ν∑

i=1

i2∂i fν(24ν, . . . , 24ν) = 4NCν,

and these are the last three statements of the lemma. �

Theorem 5.2 (Main theorem). Let k, ν, N ∈ Z≥1. Let φ ∈ Jw.h.
k,N be a theta block with

b(ζ) | b(ζ2) in C[ζ, ζ−1] and with ordq φ = ν. Let G(φ) be the germ of φ. Then
ψ = (−1)νφ|V2/φ ∈ Jw.h.

0,N (Z) and Borch(ψ) ∈ Mmero
k′ (K(N)) for some k′ ∈ Z. The leading

theta block φ1(Borch(ψ)) ∈ Jmero
k′,C has its germ given by

G(φ1(Borch(ψ)))(ζ) = (−1)ν fν(G(φ)(ζ),G(φ)(ζ2), . . . ,G(φ)(ζν)).

Furthermore,

• the q-order of Borch(ψ) depends only on ν and is Cν;
• the q-order of φ1(Borch(ψ)) depends only on ν and is Aν;
• the sequences {Aν} and {Cν} consist of positive integers and Aν ≥ Cν.

Remark 5.3. The q-order and the ξN-order of Borch(ψ) are both C/N. This follows
from the fact that Borch(ψ) is an eigenform under an involution that sends (q, ζ, ξN) 7→
(ξN , ζ−1, q) (see [3, Theorem 2.1]).

Proof. We have ψ ∈ Jw.h.
0,N (Z) by [7]. Then Borch(ψ) is a meromorphic paramodular

form for some character of K(N) and some weight k′ ∈ 1
2Z by the general theory

(see [3, Theorem 2.1]). Eventually we will show that the character is trivial and the
weight is integral. First we show that the germ of φ1(Borch(ψ)) is Coeff(ψ, q0).

There exists some λ > 0 such that the infinite product for Borch(ψ) is normally
convergent, as an infinite product, on the set U = {Z ∈ H2 : Im(Z) > λI2}. The
expansion of this product into a Fourier–Jacobi series is normally convergent, as a
series, on the complement of the zeros and poles of Borch(ψ) in U. Thus the infinite
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product for Borch(ψ) gives the first Fourier–Jacobi coefficient φ1(Borch(ψ))(τ, z) as

qAζB
∏

(n,r)≥0

(1 − qnζr)c(0,r;ψ) = η(τ)c(0,0;ψ)
∏
r≥1

(ϑr(τ, z)/η(τ))c(0,r;ψ),

so that
G(φ1(Borch(ψ))) =

∑
r∈Z

c(0, r;ψ)ζr = Coeff(ψ, q0).

This shows that the germ of φ1(Borch(ψ)) is G in the notation of Lemma 5.1. The
q-order of φ1(Borch(ψ)) is A because the factors (1 − qnζr)c(0,r;ψ) in the infinite product
have only nonnegative powers of q. Thus, recovering the q-order from the germ G
and using Lemma 5.1 gives 24A = G(1) = 24Aν, or ordq φ1(Borch(ψ)) = A = Aν. The
ξ-order of Borch(ψ) is C because the factors (1 − qnζrξNm)c(nm,r;ψ) in the infinite
product have only nonnegative powers of ξ. The value of C is also the index of
φ1(Borch(ψ)). Thus, recovering the index from the germ G and using Lemma 5.1
gives 4C = G′′(1) = 4NCν, or ordξN Borch(ψ) = C/N = Cν. This implies that the q-
order of Borch(ψ) is also Cν. Because the factors (1 − qnζrξNm)c(nm,r;ψ) may contain
negative powers of q, we have ordq Borch(ψ) ≤ A, or Cν ≤ Aν.

We now use the identification of Aν and Cν as q-orders to prove that they are
integral and nonnegative. We exhibit, for each ν ∈ Z≥1, one Jacobi form that is
a theta block without denominator and has q-order ν. For example, we may take
φo = ϑ8ν ∈ J4ν,4ν. By the Borcherds products everywhere theorem [4], we know that
Borch(ψo) ∈M4ν(K(4ν)) is holomorphic with trivial character, and that φ1(Borch(ψo))
is holomorphic with trivial character and integral index. Since Borch(ψ) has trivial
character, Aν = A is integral; since φ1(Borch(ψo)) is holomorphic, its q-order Aν is
nonnegative. The index C of φ1(Borch(ψo)) is necessarily divisible by N = 4ν, as is
the index of every Fourier–Jacobi coefficient of a paramodular form inM4ν(K(N)), and
so Cν = C/N is integral; since Borch(ψ) is holomorphic, its q-order Cν is nonnegative.
Having established the integrality of A = Aν by a specific example, we return to the
general case and conclude that Borch(ψ) has trivial character and integral weight k′,
that is, Borch(ψ) ∈ Mmero

k′ (K(N)) with k′ ∈ Z.
Finally, we show that Cν > 0 by showing that φ1(Borch(ψo)) is a theta block without

denominator and with nonconstant germ Go(ζ); a theta block without denominator has
index zero if and only if its germ is a constant function. By Lemma 5.1, Go is the
q0-coefficient of (−1)νφo(τ/2, z)/φo(τ, z), which here is given by

(−1)νq−ν/2
∏

odd n≥1

(1 − qn/2ζ)8ν(1 − qn/2)8ν(1 − qn/2ζ−1)8ν.

The support of Go arises from partitions ν = n1 + · · · + n` of ν into positive odd
numbers, and each such partition gives, in general, many terms. Some terms are easy
to compute; for example, ζν arises in a unique way from the partition of ν into all ones,
and so Go is not constant. In general, each partition contributes terms that are (−1)ν

multiplied by all possible products of ` choices from {−ζ,−1,−ζ−1}. Since ` has the
same parity as ν, all the coefficients of Go are nonnegative and hence φ1(Borch(ψo)) is
a theta block without denominator. Hence Cν > 0 because Go is nonconstant. �
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6. Equality of the sequences {Aν} and {an}

Now we show that the sequence {Aν} is the sequence {an} of Newman and Shanks.
Since each Aν is a positive integer, this gives another proof that the an of Newman and
Shanks are positive integers, as shown in [6, Theorem 2].

Proposition 6.1. Aν = aν for all ν ∈ Z≥1.

Proof. Fix ν ≥ 1. By Lemma 5.1, Aν can be computed from any theta block φ that
has q-order ν, and we simply take φ(τ, z) = η(τ)24ν = qν

∏
i≥1(1 − qi)24ν, of index zero.

Thus Aν = G(1)/24, where G(ζ) is the q0-coefficient of

(−1)ν
φ(τ/2, z)
φ(τ, z)

= (−1)νq−ν/2
∏

i≥1(1 − qi/2)24ν∏
i≥1(1 − qi)24ν

= (−1)νq−ν/2
∏
i≥1

(1 − q(2i−1)/2)24ν.

The q0-coefficient is unchanged if q is replaced by q2 and then q is replaced by −q.
These substitutions give

Aν =
1
24

Coeff

(∏
i≥1

(1 + q2i−1)24ν, qν
)
,

and this is the formula for aν in [6, Theorem 1]. �

In particular, using only the i = 1 term of the product gives the weak bound
Aν ≥

(24ν
ν

)
/24, which is [6, Equation (55)], and which we use below.

We do not know whether the sequence {Cν} corresponds to any previously studied
sequence. Here are the first 14 Cν values:

1, 46, 2416, 134236, 7695136, 450001696, 26681441536, 1598114568376,
96466710289216, 5858827139417536, 357603570891951616,
21916784219466266176, 1347879537846576487936, 83138677749569762960896.

7. An application

We conclude with an application to Gritsenko lifts. For φ ∈ Jk,N , in the particular
case ν = ordq φ ≥ 1, the Gritsenko lift Grit(φ) ∈ Mk(K(N)) is given by the convergent
series

Grit(φ)(Z) =

∞∑
`=1

(φ|V`)(τ, z)ξ`N = φ(τ, z)ξN + (φ|V2)(τ, z)ξ2N + · · · .

In [4], the authors investigated when a Gritsenko lift of a theta block φ having q-order ν
is also the Borcherds lift of ψ = (−1)νφ|V2/φ, and the conjecture was that for a theta
block without denominator, the condition ν = 1 is sufficient.
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Conjecture 7.1. Let φ ∈ Jk,N be a theta block without denominator, having positive
index N and q-order 1. Then Grit(φ) = Borch(ψ) for ψ = −φ|V2/φ.

The hypotheses imply k < 12. This conjecture was proven in [4] for weights 4
through 11, leaving weights 2 and 3 open. With the results of this article, we can prove
a partial converse result that ν > 1 is impossible, subject to even weaker hypotheses on
the theta block.

Proposition 7.2. Let φ ∈ Jk,N be a theta block such that b(ζ)|b(ζ2) in C[ζ, ζ−1], and let
ν denote the q-order of φ. Assume that the theta block has weight k ≥ 1 and that ν ≥ 1.
If the Gritsenko lift Grit(φ) is a Borcherds lift as well, then ν = 1.

Proof. Suppose that Grit(φ) is a Borcherds lift, forcing it to be Borch(−φ|V2/φ). If
ν is even then Grit(φ) = Borch(−(−1)νφ|V2/φ) = 1/Borch((−1)νφ|V2/φ) has negative
q-order −Aν, which is impossible, so ν is odd and −φ|V2/φ = (−1)νφ|V2/φ. Now the
leading theta block of Borch(−φ|V2/φ) has q-order Aν, but because Borch(−φ|V2/φ) =

Grit(φ), this leading theta block is φ itself, which has q-order ν. Thus Aν = ν, and this
holds only for ν = 1 in consequence of the weak bound Aν ≥

(24ν
ν

)
/24 noted above. �
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Boston, Boston, MA, 1985).
[3] V. A. Gritsenko and V. V. Nikulin, ‘Automorphic forms and Lorentzian Kac–Moody algebras. II’,

Internat. J. Math. 9(2) (1998), 201–275.
[4] V. A. Gritsenko, C. Poor and D. S. Yuen, ‘Borcherds products everywhere’, J. Number Theory 148

(2015), 164–195.
[5] V. A. Gritsenko, N.-P. Skoruppa and D. Zagier, ‘Theta blocks’, in preparation.
[6] M. Newman and D. Shanks, ‘On a sequence arising in series for π’, Math. Comp. 42(1655) (1984),

397–463.
[7] C. Poor, J. Shurman and D. S. Yuen, ‘Finding all Borcherds lift paramodular cusp forms of a given

weight and level’, preprint, arXiv:1803.11092.
[8] D. Shanks, ‘Dihedral quartic approximations and series for π’, J. Number Theory 14 (1982),

397–423.

CRIS POOR, Department of Mathematics,
Fordham University, Bronx, NY 10458, USA
e-mail: poor@fordham.edu

JERRY SHURMAN, Department of Mathematics,
Reed College, Portland, OR 97202, USA
e-mail: jerry@reed.edu

DAVID S. YUEN, Department of Mathematics,
University of Hawaii, Honolulu, HI 96822, USA
e-mail: yuen@math.hawaii.edu

https://doi.org/10.1017/S000497271800031X Published online by Cambridge University Press

http://www.arxiv.org/abs/1803.11092
http://orcid.org/0000-0002-2290-8947
mailto:poor@fordham.edu
http://orcid.org/0000-0003-3859-1072
mailto:jerry@reed.edu
http://orcid.org/0000-0001-9827-0962
mailto:yuen@math.hawaii.edu
https://doi.org/10.1017/S000497271800031X

	Introduction
	Notation
	Theta block Fourier expansion
	The polynomials fn
	The main theorem
	Equality of the sequences {A} and {an}
	An application
	References

