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ABSTRACT

A simple upper bound for the variance of the frequency estimates in a multi-
variate tariff using class criteria is deduced. This upper bound is based exclu-
sively on univariate statistics and can, therefore, be calculated before a GLM
analysis is carried out. It can be used to estimate the number of claims that
will be needed for a tariff calculation depending on the number of tariff cri-
teria and the number of levels of each criterion.

The article is a revised version of a paper presented at the XXXIst ASTIN
Colloquium in Porto Cervo.
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1. INTRODUCTION

When the estimate of the Poisson parameter for identical risks is required to
lie close to the true value (e.g. within 10%) with high probability (e.g. 95%),
the number of observed claims must exceed a certain minimum which can be
determined in a straightforward way. Let l be the Poisson parameter, s the
number of risks, Y the Poisson-distributed number of claims and y an obser-
vation of Y, i.e. the observed number of claims. This means

Prob / ,Y s c pl l# $-" , (1)

when we write c and p instead of 10% and 95%.
Using the normal approximation with expected value and variance equal to
ls and rewriting (1) as

Prob /Y s s c s pl l l# $-# -

we have

0.1 sl $ 1.96
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in our example with c = 0.1 and p = 0.95 and hence ls ≥ 384.16. This means
the expected number of claims must exceed 384.16. Estimating the expected
ls by the observed number y we thus get y ≥ 384.16. Applying this result to
the calculation of a tariff for identical risks one needs a sample with at least 385
claims (or any other minimum depending on appropriate values for c and p)
in order to determine the claims frequency with the precision required.

To the author’s knowledge no such rules guaranteeing sufficient precision
are known in the case of tariffs using several rating criteria. It is intuitively clear
that the minimum sample size will increase as the number of criteria increases
but whether or not the available data is extensive enough is not known in advance.
Often only after time-consuming analyses does one discover that the statistical
basis for the calculation of a sophisticated tariff was in fact too small.

The purpose of the present paper is to give simple rules for checking
whether or not the available sample is large enough to allow the frequencies
of a multivariate tariff to be calculated. The result is presented in the form of
an upper bound which can be calculated based on simple statistics. If the sam-
ple is larger than this upper bound, then the frequencies can be determined with
the required accuracy. If, on the other hand, the sample is smaller than the
upper bound, then the pre-defined accuracy is not guaranteed.

2. NOTATION

We use the following notation:

Yi Poisson-distributed random number of claims of risk i (i = 1, ...., n).
The Yi are assumed to be independent.
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li is the Poisson parameter of risk i. (2) shows that we assume the dependence
of the expected number of claims on the tariff criteria to be multiplicative.
The xij are called covariates, the bj parameters. In the following we assume
xi1 = 1 for all i. In this case the first parameter b1 is called intercept.
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yi observed number of claims of risk i
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For Ln(b, y) to reach a maximum, the r partial derivatives with respect to
b1,…,br must be equal to 0. If we replace the observations yi by the random
variables Yi in Ln(b, y), the partial derivatives are also random variables.
Let Un(b) be the vector of the partial derivatives which is also called the score
vector. Because the Yi are Poisson-distributed this vector is
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If we require the partial derivatives of Ln(b, Y) to be equal to 0, then the result-
ing b1,…,br are also random variables which we designate as B1,…,Br and,
when arranged in vector form, as B.

Because the Yi are independent and because Var(Yi) = li, the covariance of
two elements of the score vector Un(b), for instance the first and the second,
is equal to

i iE x Y x Y x xl l li i i i i i i1 2 1 2- - =!! !^ ^h h6 @ . (3)

Let Q be the r·r-matrix with elements as in (3), i.e. Q = Cov(Un(b)). In maxi-
mum likelihood theory, it is shown that the distribution of the vector B, i.e. of
the estimates of the parameters b1,…,br, is asymptotically normal (as n → ∞),
and that the inverse of Q tends to the covariance matrix of B :

Q –1 → Cov(B).
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3. THE CASE OF CLASS VARIABLES WITH TWO LEVELS

Following the example in the introduction the estimate for every frequency li
should be close, e.g. within cli (e.g. c = 0.1) to the true value with high proba-
bility (e.g. 95%). For practical purposes we assume B actually follows a joint
normal distribution with covariance matrix Q –1 although this holds true only
asymptotically. In this case, according to (2), the logarithm of the frequency
estimate of risk i is the sum of r normally distributed variables xij Bj and,
therefore, also normally distributed. The probability of the estimate of l i to
lie tolerably close to its expected value depends on the variance of SxijBj. Writ-
ing M for Q –1 with elements mjk we have

j j .x B x x mVar ij
j

ij ik k
kj

$ $ $=! !!e o (4)

When the tariff criteria take on only two values, e.g. the driver’s sex which is male
or female, the place of residence (rural or urban), the car size (big or small),
the engine size (large or small) and so on, then the covariates xij have only two
possible values for which it is convenient to choose 0 and 1. Thus xij = 1 when
risk i meets criterion j and xij = 0 otherwise. As can be seen from (3), in this
case the elements qjk of Q represent the expected numbers of claims of risks
which simultaneously meet criteria j and k. The variance (4) is particularly sim-
ple if all xij = 1 for j = 1, ..., r. For such a risk (4) becomes

j .B mVar
j

jk
kj

=! !!e o (5)

There exists an upper bound for this variance since, as we are going to show
in the following

...... .m q q q
1 1 1

j k
kj rr11 22

# + + +!! (6)

Note that the qjj on the right side of the sign of inequality are the expected
numbers of claims of risks which meet criterion j and can be estimated with
simple univariate statistics.

If in (4) some xij = 0 then the variance of Sxij ·Bj cannot be estimated
immediately by (5) and (6). We first have to replace the parameters Bj by new
parameters B*

j for which

x B Bij j
j

j
j

$ = *! !

before we can apply (6). The relation between B and B*, B = A · B*, is given
by an r · r matrix A which we define as follows: Let s – 1 be the number of
covariates which are equal to 0 (2 ≤ s ≤ r), so that, possibly after renumbering
the parameters Bj,
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xi1 = 1
xi2 = .... = xis = 0
xi , s + 1 = .... = xir = 1.

The elements of A are all equal to 0 except

ajj = 1 if xij = 1
ajj = –1 if xij = 0
a1j = 1 if xij = 0.

Note that A = A–1. Therefore, the solution B* of B = A · B* can be easily calcu-
lated as
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Let X be the n· r matrix of the covariates with respect to B and Z the n· r
matrix of the covariates with respect to B* defined by Z = X ·A. As a result
of the matrix multiplication zi1 = zi2 = … = zir = 1.

Let Q* be the matrix with elements qjk
* defined as in (3) but with the covari-

ates zij instead of xij. Then Q*–1 is the covariance matrix of B* and its elements
mjk

* fulfil (6) when q11, …, qrr are replaced by q11
*, …, qrr

* to the right of the
inequality sign.

The transition from X to Z should be interpreted in the following way: If
e.g. xi2 = 1 means risk i is male, then zi2 = 1 means risk i is female etc.

An upper bound (6) can be calculated for every risk i. The highest of these
upper bounds is the one with the lowest qjj. It is found in the following way:

q11 is the total number of expected claims of the whole sample. qjj, where j > 1,
is the number of expected claims of those risks which meet criterion j. The num-
ber of expected claims of risks which do not meet criterion j is the difference
q11 – qjj. Define criterion j so that qjj ≤ q11 – qjj .

Before proving (6) let us look at a numerical example which is known to all
readers who have learnt the theory of generalised linear models using SAS. In
the Technical Report P-243 [2] the following example is given:
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risks claims car type age group

500 42 small 1
1200 37 medium 1
100 1 large 1
400 101 small 2
500 73 medium 2
300 14 large 2

By way of example let us look at the third segment, risks with large cars and
age group 1, and estimate the variance of the logarithm of their frequency. In
order to include an intercept term in the model we define xi1 = 1 for all i. Com-
bining the car types small and medium into a new type “not large” we define
xi2 = 1 if the car type is large and xi2 = 0 if it is not large; likewise xi3 = 1 if
the age group is 1 and xi3 = 0 if it is 2. Estimating the expected numbers of
claims in Q by the observed numbers we get
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or, numerically instead of informally,
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According to (6) the variance of the logarithm of the frequency estimate is at
most equal to 1/268 + 1/15 + 1/80 = 0.08290. A check with the covariance matrix
in appendix 1 shows that a computer run does actually give a lower value for
the estimated variance, namely 0.08217.

In order to prove (6) we use some results from section 6 of chapter III
(Normal Densities and Distributions) of the second volume of Feller [1]:

a) A symmetric, positive definite r·r matrix Q defines an r-dimensional normal
density centred at the origin (Feller’s theorem 4). The form of this density is
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b) The vector X of the r normally distributed random variables X1,…, Xr has
expectation E(X) = 0 and its covariance matrix M = Cov(X) is the inverse
of Q (Feller’s theorem 3).

c) The variance of the marginal distribution of Xj is Var(Xj) = 1/qjj (Feller’s
theorem 1 and relation 6.5).

d) Expected value and variance of the conditional variable Xr | X1, …, Xr –1 are
E(Xr | X1, …, Xr –1) = – q1r / qrr · X1 – … – qr – 1, r / qrr · Xr –1 and

Var(Xr | X1, …, Xr –1) = 1 / qrr (Feller’s relation 6.13).

The definitions of r, Q and M used in this article are the same as in Feller,
whereas the random variables Bj – E(Bj) correspond to Xj in Feller’s notation.
From (3) it is seen that our covariance matrix Q has the following properties:

qjj > 0 for j = 1,…, r (7)

0 ≤ qjk ≤ qjj, qkk for j ≠ k. (8)

Moreover, Q is symmetric and positive definite. Therefore, according to a) it
defines the density of an r-dimensional normal distribution.

Since Feller’s variables Xj are our Bj – E(Bj) proving relation (6) is the same
as proving

Var(X1 + X2 + … + Xr) ≤ 1/q11 + 1/q22 + … + 1/qrr. (9)

We prove (9) by induction. For r = 1 (9) reduces to c) and is true. Assume it
is true for r – 1. According to d) expected value and variance of the variable
Xr | X1, …, Xr –1 are

E(Xr | X1, …, Xr –1) = – q1r /qrr · X1 – ……… – qr – 1, r /qrr · Xr –1 and

Var(Xr | X1, …, Xr –1) = 1/qrr.

Therefore

E(X1 + … + Xr | X1, …, Xr –1) = (qrr – q1r) /qrr · X1 + … + (qrr – qr – 1, r) /qrr · Xr –1

and

Var(X1 + … + Xr | X1, …, Xr –1) = 1/qrr.

Put for abbreviation cj = (qrr – qjr) /qrr.
Since for arbitrary conditional random variables X | Y the relation

Var(X) = E [Var(X |Y )] + Var[E(X |Y )] holds we have

Var(X1 + … + Xr) = 1/qrr + Var(c1 · X1 + … + cr – 1 · Xr – 1). We look for the coeffi-
cients cj which maximise this variance. Because of (7) and (8) we have 0 ≤ cj ≤ 1.
Since for every j ( j = 1,…, r – 1) the second derivative
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j1 r 1-... >
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c X c X XVar Var2 0
j

r2

2

1 12
2 + + =-^ _h i

the variance Var(c1 · X1 + … + cr – 1 · Xr – 1) is maximal either for cj = 0 or cj = 1.
If the cj are ordered appropriately then

c1 = … = cs = 1, where s ≤ r – 1. The remaining cj = 0 (for j > s). Thus

Var(X1 + … + Xr) ≤ 1/qrr + Var(X1 + … + Xs)
≤ 1/qrr + 1/q11 + 1/q22 + … + 1/qss

≤ 1/qrr + 1/q11 + 1/q22 + … + 1/qr – 1, r – 1

which proves (6).

4. CLASS VARIABLES WITH MORE THAN TWO LEVELS

Class variables may assume more than two levels. For example the variable
“car size” in [2] can have one of the three levels “small”, “medium” or “large”.
A class variable v with k levels (k > 2) can be replaced by k – 1 variables each
having only 2 levels. In order to keep the notation simple, assume the covari-
ates corresponding to these 2-level-variables are numbered xi2,…, xik. This
means that they immediately follow the covariate xi1 = 1 for the intercept term.
Designate the k levels by l1, ..., lk and define the covariates xi2,…, xik as

xi2 = 1 if v = l1
0 otherwise

for j = 3, …, kxij = 1 if v ≠ l j – 1
0 otherwise

Consequently, a risk i for which the class variable v is equal to v = l1 has the
covariates xi2 = … = xik = 1.

In this way it is possible to apply the procedure of the previous section also
to the case of general class variables. The contribution of the class variable
v to the upper bound (6) is 1 /q22 + … + 1/qkk. From (3) and the definition
of xi2, …, xik it can be seen that q22 is the expected number of claims of risks
with v = l1. For j > 2, qjj is the expected number of claims of risks with v ≠
l j – 1.

The last level, lk, does not matter in the calculation of (6). If l1 is given, we
obtain the lowest value of (6) if we order the levels l1, …, lk so that lk is the level
with the highest number of expected claims. In the numerical example, l3 is thus
the level “small” with 143 expected claims.

Ordering l1, …, lk so that l1 is the level with the lowest number of expected
claims leads to the highest upper bound (6). In fact: let p2 be the expected
number of claims in level l1, p3 the expected number of claims in level l2 etc.
Then the contribution of the class variable to (6) is
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... .p q p q p
1 1 1

k2 11 3 11
+ - + + -

Since p2 ≤ pj for j > 2, it follows that

.p q p p q p
1 1 1 1

j j2 11 11 2
$+ - + -

so that exchanging levels l1 and l j – 1 would not increase the value of (6).

We illustrate the handling of class variables with more than two levels again
using the numerical example from [2] and estimating expected numbers of
claims by observed numbers.

The car size with the lowest number of expected claims is “large” and in age
group 1 there are less expected claims than in age group 2. Therefore, the risk
with the highest upper bound (6) is given by car size “large” and age group 1.
We define the covariates

xi1 = 1 for the intercept term
xi2 = 1 if car size = large

0 otherwise
xi3 = 1 if car size not medium

0 otherwise
xi4 = 1 if age group = 1

0 otherwise

Estimating the expected numbers of claims by inserting the observed numbers
in the matrix Q we have

.Q
268
15
158
80
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15
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43
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According to (6) the variance of the logarithm of the frequency estimate is at
most equal to 1/268 + 1/15 + 1/158 + 1/80 = 0.08923 which is in fact higher than
the value one obtains from the covariance matrix in appendix 2, namely 0.08224.

5. AN UPPER BOUND FOR THE MINIMUM NUMBER OF OBSERVED CLAIMS

NEEDED IN A SAMPLE

We now return to the problem stated in the introduction: the estimate of li should
lie with high probability p (e.g. 95%) close to its expected value (e.g. within 10%).
This means, writing c for 10%, the estimate eB1 + B2 + … + Br should not be lower
than (1 – c) · eb1 + b2 + … + br or higher than (1 + c) · eb1 + b2 + … + br. Consequently the
exponent B1 + B2 + … + Br which follows a normal distribution should not

THE SAMPLE SIZE NEEDED FOR THE CALCULATION OF A GLM TARIFF 257

https://doi.org/10.2143/AST.34.1.504964 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504964


deviate from its expected value by more than ln(1 – c). This defines the limit
for the standard deviation of B1 + B2 + … + Br: let zp be the value defined by
Prob{|Z| ≤ zp} = p, where Z follows the standard normal distribution (in the
example with p = 0.95 and c = 0.1, zp = 1.96).

We estimate the variance of B1 + B2 + … + Br by the sum u of the recipro-
cal diagonal elements of Q. If u ≤ [ln(1 – c)]2 /z2

p then our frequency estimate
is sufficiently precise. Otherwise, assuming the composition of the sample
remains the same, we determine a factor f by which all diagonal elements of
Q are to be multiplied so that u/f = [ln(1 – c)]2 /z2

p.
As a numerical example take again the motor insurance sample from [2] (see

section 3). As has been shown in section 4 the segment of large cars and age
group 1 has the highest upper bound of the variance, namely 0.08923. The
factor f with which each qjj is to be multiplied in order to get the sufficiently
large sample is

f = z 2
p · u / [ln(1 – c)] 2

or in our numerical example f = 30.88. The sample size needed is thus 30.88 times
larger than the given sample with a total number of claims of 268 · f = 8,276.

As one anonymous referee points out the upper bound of the variance is
heavily influenced by q22 = 15 corresponding to the segment of large vehicles.
If we disregard the large vehicles and define xi2 to xi4 in another way so that
e.g. for the car type with the second lowest number of claims (i.e. medium) and
age group 1 all covariates are equal to 1, then the total number of claims
needed in the sample is much smaller (2,715). In practice, we might do exactly
that, i.e. tolerate that some rather insignificant tariff segments are less accu-
rately rated provided that the accuracy of the important segments is sufficient.
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APPENDIX 1

data insure;
input n c car$ age;
ln=log(n);
cards;
500 42 notlarge 1
1200 37 notlarge 1
100 1 large 1
400 101 notlarge 2
500 73 notlarge 2
300 14 large 2

Estimated Covariance Matrix

Prm1 Prm2 Prm4 

Prm1 0.005710 – 0.005293 – 0.005637
Prm2 – 0.005293 0.07164 0.004298
Prm4 – 0.005637 0.004298 0.01808

Parameter Information

Parameter Effect car age

Prm1 Intercept
Prm2 car large
Prm3 car notlarge
Prm4 age 1
Prm5 age 2

Class Level Information

Class Levels Values

car 2 large notlarge
age 2 1 2

The GENMOD Procedure

Model Information

Data Set WORK.INSURE
Distribution Poisson
Link Function Log
Dependent Variable c
Offset Variable ln
Observations Used 6

;
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APPENDIX 2

data insure;
input n c car$ age;
ln=log(n);
cards;
500 42 notlarge 1
1200 37 notlarge 1
100 1 large 1
400 101 notlarge 2
500 73 notlarge 2
300 14 large 2

Parameter Information

Parameter Effect car age

Prm1 Intercept
Prm2 car large
Prm3 car medium
Prm4 car small
Prm5 age 1
Prm6 age 2

Class Level Information

Class Levels Values

car 3 large medium small
age 2 1 2

The GENMOD Procedure

Model Information

Data Set WORK.INSURE
Distribution Poisson
Link Function Log
Dependent Variable c
Offset Variable ln
Observations Used 6

Estimated Covariance Matrix

Prm1 Prm2 Prm3 Prm5

Prm1 0.008150 – 0.007772 – 0.006344 – 0.004623
Prm2 – 0.007772 0.07418 0.006556 0.003113
Prm3 – 0.006344 0.006556 0.01645 – 0.002592
Prm5 – 0.004623 0.003113 – 0.002592 0.01847

;
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