
JFP 13 (3): 453–454, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004677 Printed in the United Kingdom

453

Special issue on

‘Semantics, Applications, and Implementation
of Program Generation’

WALID TAHA

Department of Computer Science, Rice University, Houston, TX 77025, USA

This special issue of the Journal of Functional Programming follows up on the

First International ACM SIGPLAN Workshop on the Semantics, Applications, and

Implementation of Program Generators (SAIG 2000). The special issue contains

eight full length papers, which were received based on an open call for papers.

Six of these papers are substantially extended revisions of papers presented at the

workshop itself.

Increasingly, we find both end users and software developers either building or

using programs that produce other programs. Notable examples include systems like

the Fastest Fourier Transform in the West (FFTW), which adaptively produces

algorithms optimized for specific architectures, and like many generation- and

translation-based implementations of domain-specific languages. At the same time,

program generators introduce new research challenges: what are good engineering

practices for exploiting program generation? How can we guarantee useful prop-

erties (such syntactic or type correctness) of generated programs, before they are

generated? How do we reconcile the idea of program generation with traditional

(and more well-understood) paradigms in various programming languages? This

special issue addresses these challenges.

The selected papers cover a diverse spectrum of techniques and approaches,

exposing many facets of program generation that deserve systematic study, as well

as a range of techniques available for building generative software. The collection

includes detailed experience reports from researchers who built significant program

generation systems, novel uses of logic programming languages for the automatic

synthesis of scientific programs, a successful application of partial evaluation

to a security problem, a new approach to compiling domain specific languages

via generative combinators, and a number of foundational studies into program

transformation and multi-stage languages.

Since its inception, SAIG has continued to grow. Starting from the year 2002,

SAIG is held jointly with the conference on Generative and Component Based

Software Engineering (GCSE) as one unified conference called the International

ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Com-

ponent Engineering (GPCE’02). Whereas the SAIG community focuses on formal

programming language aspects of generation, the GCSE community approaches

program automation from a contemporary software engineering viewpoint. Together,

the combination of SAIG and GCSE is expected to provide simultaneously the depth

https://doi.org/10.1017/S0956796802004677 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004677


454 W. Taha

of theory and practice that one would expect in a premier research conference.

Excellent submissions from both the programming languages and the software

engineering communities will be essential for sustaining an intellectually sound

conference with real relevance to the world around us. So keep an eye for the next

call for papers!

https://doi.org/10.1017/S0956796802004677 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004677

