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Abstract

We consider a multitype branching random walk on d-dimensional Euclidian space.
The uniform convergence, asngoes to infinity, of a scaled version of the Laplace transform
of the point process given by the nth generation particles of each type is obtained. Similar
results in the one-type case, where the transform gives a martingale, were obtained in
Biggins (1992) and Barral (2001). This uniform convergence of transforms is then used
to obtain limit results for numbers in the underlying point processes. Supporting results,
which are of interest in their own right, are obtained on (i) ‘Perron–Frobenius theory’
for matrices that are smooth functions of a variable λ ∈ L and are nonnegative when
λ ∈ L− ⊂ L, where L is an open set in C

d , and (ii) saddlepoint approximations
of multivariate distributions. The saddlepoint approximations developed are strong
enough to give a refined large deviation theorem of Chaganty and Sethuraman (1993) as
a by-product.
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1. Introduction

We consider the multitype branching random walk on the d-dimensional Euclidian
space, R

d . The process starts with a single particle located at the origin. This particle produces
daughter particles, which are scattered in R

d , to give the first generation; these first-generation
particles produce daughter particles to give the second generation; and so on. As usual in
branching processes, the nth-generation particles reproduce independently of each other. Each
particle in this process is of one ofp types; the set of possible types is identified with {1, . . . , p}.
For each i ∈ {1, . . . , p} there is a vector of point processes (Zi1, Zi2, . . . , Zip). Then, when a
particle of type i reproduces, the positions of its daughter particles of the various types, relative
to the parent’s position, are given by a copy of (Zi1, Zi2, . . . , Zip). The one-type branching
random walk has received extensive treatment in the literature. The multitype extension has
received less attention, but discussion of it can be found in Mode (1971), Biggins (1976),
(1996), Bramson et al. (1992), and Kyprianou and Rahimzadeh Sani (2001).
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682 J. D. BIGGINS AND A. RAHIMZADEH SANI

We reserve the notation i, j , and k, drawn from {1, . . . , p}, for particle types. Let µij be
the intensity measure of Zij . We assume throughout that

there exists a ϑ ∈ R
d such that max

i,j

∫
Rd

e−ϑ�xµij (dx) < ∞, (1)

where ϑ�x = ∑
i ϑixi is the usual inner product of vectors. This condition is enough to ensure

that convolutions of the µij produce well-defined measures.
Technically, the description of the process outlines how to produce the probability measure

on the space of trajectories, given the type of the single initial ancestor. There are p such
measures, one for each possible initial type. Suppose that the initial ancestor has type i and let
Znij be the point process giving the resulting positions of the type-j particles in generation n;
then Z1

ij is distributed like Zij . The first objective here is to obtain the asymptotic behaviour,
as n → ∞, of the Laplace transform of Znij . Note that results for Znij are, in fact, results for
the measure on trajectories obtained when the single initial ancestor is of type i. Incorporating
the initial type into the notation in this way, rather than through the measure as Pi and Ei , is
helpful in calculations.

Before our theorems can be stated, further notation for intensity measures and their trans-
forms is needed. Define µn�ij inductively by

µ
(n+1)�
ij =

p∑
k=1

µik ∗ µn�kj

where ‘∗’ denotes ordinary convolution of measures. It is easy to confirm, by induction
on n, that the point process Znij has the intensity measure µn�ij . Furthermore, the counts of

the numbers of each type in each generation, given by (Zni1(R
d), . . . , Znip(R

d)), is a multi-
type Galton–Watson process, which is discussed in Athreya and Ney (1972), for example.
A matrix A of nonnegative entries is called positive regular when, for some positive integer n,
all the entries of An are strictly positive. The multitype Galton–Watson process is positive
regular when the matrix (P(Zij (Rd) > 0)) is positive regular. Throughout, the embedded
Galton–Watson process is assumed to be positive regular. This Galton–Watson process is
supercritical when the largest eigenvalue of its mean matrix, (EZij (Rd)), exceeds 1. (For a
positively regular process, this eigenvalue will be infinite when the mean matrix has any infinite
entries.) A supercritical process survives with positive probability. One of the conditions of
our theorems will imply that the process is supercritical.

The d-dimensional complex space C
d is equipped with the maximum metric. Hence, for

x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ C
d , we have |x, y| = max{|xi − yi | : i = 1, . . . , d}

where |xi − yi | is the usual absolute value in C. Let B(x, r) be the open ball centred at x and
of radius r using this metric, and let B(x, r) be its closure. (Later, we will also need S(x, r)
and S(x, r), the open and closed balls in R

d .) In all that follows, we reserve the letters θ and η

for the real and imaginary parts of λ ∈ C
d , so that, with this convention, λ = θ + iη. For any

A ⊂ C
d , let A− be its intersection with R

d ; thus

A− = {λ ∈ A : λ = θ + iη with η = 0}.
Define the Laplace transforms mij (λ), for λ ∈ C

d , by

mij (λ) =
∫

Rd
e−λ�xµij (dx)

(
= E

∫
Rd

e−λ�xZij (dx)

)
.
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Convergence in a multitype branching random walk 683

Then |mij (λ)| ≤ mij (θ) and, by Hölder’s inequality, {θ ∈ R
d : mij (θ) < ∞} is a convex set.

Let intA be the interior of A and let

L =
⋂
i,j

int{λ = θ + iη ∈ C
d : mij (θ) < ∞}.

Assumption (1) is now strengthened to the following:

L is nonempty.

In fact, L is a nonempty, open, convex subset of C
d and each mij (λ) is analytic in λ ∈ L.

Let M(λ) be the matrix given by M(λ) = (mij (λ)) and let Mn(λ) be its nth power, with
(i, j)th entry mnij (λ). Furthermore, let

Mn
ij (λ) =

∫
Rd

e−λ�xZnij (dx).

Then

mnij (λ) =
∫

Rd
e−λ�xµn�ij (dx) = E Mn

ij (λ).

By analogy with the case in which the entries are nonnegative, the eigenvalue ρ of M is
called the maximum-modulus eigenvalue if it is a simple root of det[zI − M] and its modulus
is strictly larger than that of all the other roots (I being the identity matrix). Note that, when a
maximum-modulus eigenvalue exists, it is automatically unique.

When ϑ ∈ L−(= L ∩ R
d), the entries of M(ϑ) are finite, nonnegative real numbers.

The positive regularity of the embedded Galton–Watson process clearly implies that M(ϑ) is
then positively regular. This means that the following extension of Perron–Frobenius theory
which, is discussed in the final section, applies to M . In essence, in the present context, it says
that Perron–Frobenius properties extend smoothly to complex arguments with suitably small
imaginary parts. Part (iii) of Theorem 1, below, gives an asymptotic estimate, (2), of Mn(λ) as
n → ∞. The key point about (2) is that it gives a uniform bound on the rate of convergence in
a suitable neighbourhood. This uniformity has no direct parallel in Perron–Frobenius theory
and requires a little care to establish.

Theorem 1. Suppose that the p × p matrix M = (mij ) of functions defined on the open set
L ⊂ C

d satisfies the following conditions: for all i and j , mij (λ) are analytic functions in
λ ∈ L, and, for all λ̃ ∈ L̃ ⊂ L, M(λ̃) is positive regular. Then there is an open set � ⊂ L

containing L̃ such that, for λ ∈ �, the following statements hold.

(i) M(λ) has a maximum-modulus eigenvalue, ρ(λ), that is analytic in λ.

(ii) The left- and right-eigenvectors associated with ρ(λ), namely u(λ) and v(λ), normalised
so that

∑p
i=1 ui(λ) = 1 and

∑p
i=1 ui(λ)vi(λ) = 1, are analytic in λ and, for all i,

ui(λ) 	= 0 and vi(λ) 	= 0.

(iii) For any ϑ ∈ L̃, there is a neighbourhood, B ∈ �, containing B(ϑ, δ) for some δ > 0,
and constants K < ∞ and γ ∈ (0, 1) such that, for all n, i, and j ,

sup
λ∈B

|ρ(λ)−n(M(λ)n)ij − vi(λ)uj (λ)| ≤ Kγ n. (2)
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All the notation introduced in Theorem 1 is now applied to M , the matrix of Laplace
transforms, with L̃ = L−. Thus, M has maximum-modulus eigenvalue ρ and eigenvectors u

and v defined on the set �, with the properties described in Theorem 1. For all λ ∈ �,
n = 1, 2, . . . , and i and j , define

Wn
ij (λ) = vj (λ)

vi(λ)
ρ(λ)−nMn

ij (λ) = vj (λ)

vi(λ)
ρ(λ)−n

∫
Rd

e−λ�xZnij (dx), (3)

which is a scaled version of the Laplace transform of the point process Znij . Establishing the
uniform convergence of such transforms in the one-type case is an integral part of the approach
to results on the distribution of the points described in Biggins (1992). For the multitype case,
results on the distribution of points were obtained in Bramson et al. (1992), where particles
were confined to the integer lattice of R. More precise results, of the kind given in Biggins
(1992), should hold and should not be limited to the lattice case. One such result is given in
Theorem 7, below.

Let Fn be the σ -algebra that contains all information on the multitype branching random
walk up to generation n. In the one-type case, (3) defines a martingale with respect to Fn,
which makes aspects of the study simpler. In the multitype case, it is the sequence

Wn
i (λ) =

∑
j

Wn
ij (λ) =

∑
j

vj (λ)

vi(λ)
ρ(λ)−n

∫
Rd

e−λ�xZnij (dx) (4)

that is a martingale; this is well known and proved here in Lemma 1. Our approach to the
convergence of {Wn

ij (λ)} involves first considering the convergence of the martingale {Wn
i (λ)}.

Note that, given any sample path of the process, each Wn
ij (λ) and Wn

i (λ) is analytic in λ ∈ �.
We now introduce certain sets that will be used to define the region where convergence

occurs. For α ∈ (1, 2], let

�2
α =

{
λ ∈ � : αλ ∈ �, ρ(αθ)

|ρ(λ)|α < 1

}
, (5)

�3
α = int

{
λ = θ + iη ∈ � : max

i
E[W1

i (θ)
α] < ∞

}
, (6)

	α = �2
α ∩�3

α and 	 =
⋃

1<α≤2

	α.

These are all open sets in C
d . Error estimates we derive involve (ρ(αθ)/|ρ(λ)|α)n. Hence,

having λ ∈ �2
α ensures that such bounds decay quickly with n. Obviously, having λ ∈ �3

α

imposes a moment condition. The approach requires λ to satisfy both these conditions for the
same α ∈ (1, 2], which leads to the definition of 	α and then 	.

The process is supercritical, that is, ρ(0) > 1, whenever there exists a θ ∈ �2
α for some

α ∈ (1, 2]. To check this, first note that log ρ(θ) is a convex function; see Kingman (1961),
Miller (1961), or Seneta (1973, Theorem 3.7). Hence,

(α − 1)

α
log ρ(0)+ 1

α
log ρ(αθ) ≥ log ρ(θ),

and log(ρ(αθ)/ρ(θ)α) < 0 when θ ∈ �2
α . Then (α − 1) log ρ(0) > 0 and, so, ρ(0) > 1.

Theorem 2. Let α ∈ (1, 2] and λ = θ + iη ∈ 	α . Then {Wn
i (λ)} converges almost surely and

in αth mean, as n → ∞, for each i.
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This gives the following result on mean convergence as an immediate consequence.

Corollary 1. Suppose that λ ∈ 	. Then {Wn
i (λ)} converges almost surely and in mean, as

n → ∞, for each i.

The mean convergence of {Wn
i (λ)} for real λ was also discussed in Bramson et al. (1992),

Kyprianou and Rahimzadeh Sani (2001), and, rather briefly, in Biggins and Kyprianou (2004).

Theorem 3. Assume that	− 	= ∅. Then there is an open set 
, with	− ⊂ 
 ⊂ 	, such that,
for each i, the martingale {Wn

i (λ)} converges uniformly in any compact subset of 
, almost
surely and in mean, as n → ∞. Furthermore, the limit Wi (λ) is analytic in λ ∈ 
.

By building on these convergence results for the martingale, we will obtain analogous results
for {Wn

ij (λ)}.
Theorem 4. Let α ∈ (1, 2] and assume that (	α)− 	= ∅. Then there is an open set 
1, with
(	α)− ⊂ 
1 ⊂ 	α , such that, for all λ ∈ 
1, {Wn

ij (λ)} converges to uj (λ)vj (λ)Wi (λ), almost
surely and in αth mean, as n → ∞, where Wi (λ) is the limit of the martingale {Wn

i (λ)} as
n → ∞.

Theorem 5. Assume that 	− 	= ∅. Then there is an open set 
2, with 	− ⊂ 
2 ⊂ 	, such
that, for all i, j , {Wn

ij (λ)} converges uniformly in any compact subset of 
2, almost surely and
in mean, as n → ∞, to the random variable uj (λ)vj (λ)Wi (λ), where Wi (λ) is the limit of the
martingale {Wn

i (λ)} as n → ∞.

The sequences {Wn
i (λ)} and {Wn

ij (λ)} converge on the set 
2 introduced in Theorem 5.
However, to move from information on transforms to information on the associated measures,
a result on the behaviour of Mn

ij (λ) is needed for θ ∈ L−, but in the case where λ need not be
in 
2.

The branching random walk is strongly nonlattice when it is positively regular and, for some
(k, l) and some θ ∈ {ϑ : mkl(ϑ) < ∞},∣∣∣∣mkl(θ + iη)

mkl(θ)

∣∣∣∣ = 1 only when η = 0. (7)

This follows the usage of ‘strongly nonlattice’ in Bhattacharya (1977, Equation (1.64)), rather
than that in Stone (1965).

Theorem 6. For a strongly nonlattice branching random walk, for any set K ⊂ 	− that is
compact in R

d and any ε ∈ (0, 1), there is an ε < 1 such that

ε−n sup
i,j

sup
θ∈K

sup
ε≤|η|≤ε−1

∣∣∣∣M
n
ij (θ + iη)

ρn(θ)

∣∣∣∣ → 0 as n → ∞, (8)

almost surely.

Between them, Theorems 5 and 6 provide enough information on the behaviour of the
transforms Mn

ij (λ) to develop good estimates of the associated measures. In the one-type case,
in Biggins (1992), this step relies heavily on the corresponding results for sums of independent,
identically distributed random variables, obtained in Stone (1967). Unfortunately, this approach
does not extend directly, since the existing results for Markov additive processes, which are here
the analogue of independent, identically distributed random variables, are not suitable. Instead,
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the treatment has to go back to the general methods for saddlepoint approximations. The results
needed, which give an approximation to a measure based only on a few of its characteristics,
are contained in Theorems 9 and 10 in Section 5. That section is independent of the rest of the
paper and is of more general interest. We illustrate there how Theorems 9 and 10 connect with
refined large deviation results of Chaganty and Sethuraman (1993) and Stone (1967).

It is worth noting that, in this study, the measures of interest, Znij , are atomic. Hence, if
(7) were replaced by the stronger, but more tractable, Cramér’s condition (Bhattacharya (1977,
Equation (1.36))), that condition could not transfer to the Znij .

The assumption that log ρ is strictly convex will be imposed. This amounts to saying that the
branching random walk is truly d-dimensional, but we do not demonstrate this. For θ ∈ L−, let
(−1)iυi (θ) be the array of ith derivatives of log ρ(θ). Then υ2(θ) is a positive-definite matrix
when log ρ is strictly convex. Let D be the space of continuously differentiable real-valued
functions on R

d and, if f ∈ D, let its vector of derivatives be ∇f . We need functions that
decay suitably at infinity, so we introduce

G(G) =
{
f ∈ D :

∫ ∞

0
sup{|f (x)|, |∇f (x)| : |x| ≥ (r − 1)}(r + 1)d+1 dr ≤ G

}
.

Furthermore, for C ⊂ R
d , we use the notation C + a = {c + a : c ∈ C}.

Theorem 7. Assume that log ρ is strictly convex and that the process is strongly nonlattice.
Let K be a compact subset of 	−. Let h be such that, for some finite G and all θ ∈ K , the
function eθ�xh(x) is in G(G). Then, with

ξ(θ) = −θ�υ1(θ)− log ρ(θ)

and C any convex set in R
d ,

nd/2enξ(θ)
∫
C

h(x)Znij (dx + nυ1(θ)) → vi(θ)uj (θ)Wi (θ)√
(2π)d det[υ2(θ)]

∫
C

eθ�xh(x) dx

uniformly in θ ∈ K and C, almost surely on S, where S is the survival set of the underlying
Galton–Watson process.

The condition that eθ�xh(x) be in G(G) becomes more restrictive as K becomes larger.
In particular, it forces h(x) to decay rapidly with |x| when the origin is in the interior of K .

Corollary 2. Let b < ∞. Under the conditions of Theorem 7,

nd/2enξ(θ)Znij (C + nυ1(θ)) → vi(θ)uj (θ)Wi (θ)√
(2π)d det[υ2(θ)]

∫
C

eθ�x dx

uniformly in convex C ⊂ {x : |x| ≤ b} and θ ∈ K , almost surely on S.

It is worth pointing out that if, for some y, K lies inside the half-space {θ : θ�y > 0}, then
the result of this corollary can also hold for some sets C that are not bounded.

The relationships between ρ, υ1, and ξ are the usual ones associated with large deviation and
saddlepoint calculations; see Jensen (1995, Section 2.2), for example. The assumption that ρ
is strictly convex means that compact subsets of 	− translate, under y = υ1(θ), into compact
subsets of int{υ1(θ) : θ ∈ L−}.
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Theorem 7 has the following analogue for the measures µn�ij , with the proof requiring only
obvious changes.

Theorem 8. Under the conditions of Theorem 7,

nd/2enξ(θ)
∫
C

h(x)µn�ij (dx + nυ1(θ)) → vi(θ)uj (θ)√
(2π)d det[υ2(θ)]

∫
C

eθ�xh(x) dx

uniformly in θ ∈ K and C.

2. Proofs of Theorems 2 and 3

For any λ = θ + iη ∈ �, define the functions

v̄(λ) = max
i,j

∣∣∣∣vj (λ)vi(λ)

∣∣∣∣, v(λ) = min
i,j

∣∣∣∣vj (λ)vi(λ)

∣∣∣∣, ν(λ) = v̄(λ)

v(θ)
,

and

φ(λ) = ρ(θ)

|ρ(λ)| .
All of these are strictly positive, continuous functions of λ ∈ �, where � is as in Theorem 1.
Also, since |mij (λ)| ≤ mij (θ), we know that |ρ(λ)| ≤ ρ(θ) (Lancaster and Tismenetsky (1985,
Theorem 15.2.1)) and, so, φ(λ) ≥ 1.

For each α ∈ (1, 2], define �α by �α = {λ ∈ � : αλ ∈ �}. Then �α is an open subset
of �. For α ∈ (1, 2] and λ ∈ �α , let

ν1(λ) = v̄(λ)α

v(αθ)
and κ(λ) = ρ(αθ)

|ρ(λ)|α .

Then ν1 and κ are strictly positive, continuous functions of λ ∈ �α; they depend on α, but
this has been suppressed in the notation. Note that �2

α , defined in (5), can now be written as
�2
α = {λ ∈ �α : κ(λ) < 1} and is an open subset of �α . Define

β(θ) = max
i

E[W1
i (θ)

α].

Then �3
α , defined in (6), can be written as �3

α = int{λ = θ + iη ∈ � : β(θ) < ∞} and β is a
real-valued, continuous function on �3

α .
Let α ≥ 1. Define the αth absolute central moment of a random (complex-valued) variable

X, σα(X), by
σα(X) = E[|X − EX|α],

and the αth absolute central moment conditional on the σ -algebra G by

σα(X | G) = E[|X − E[X | G]|α | G].
Let {zl

ik;s : s} be the positions of the particles making up Zlik , where by zl
ik;s we denote the

position of the sth particle of type k in generation l when the initial ancestor is of type i. Now, by
looking at the particles in the nth generation as the (n− l)th-generation children of the particles
in generation l, we can introduceZnkj (·|l, s) as the point process giving the positions of the type-j
particles in generation n descended from the sth particle of type k in generation l, relative to the
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latter particle’s position. Given Fl , {Znkj (·|l, s) : s} are independent copies of the point process
Zn−lkj . Thus, conditional on Fl , the random variables

Wn−l
k (λ|l, s) =

∑
j

vj (λ)

vk(λ)

1

ρ(λ)n−l

∫
Rd

e−λ�xZnkj (dx|l, s) (9)

are, as s varies, independent and identical copies of Wn−l
k (λ). Furthermore,

Wn
i (λ) =

∑
k

vk(λ)

vi(λ)

1

ρ(λ)l

∑
s

exp(−λ�zlik;s)W
n−l
k (λ|l, s). (10)

Lemma 1. {Wn
i (λ)} is a martingale with respect to {Fn}.

Proof. From Theorem 1, E W1
k (λ) = 1. Therefore, decomposition (10) with l = n−1 gives

the result.

The following result, which is an extension of von Bahr and Esseen (1965, Equation (4))
to complex-valued random variables, was proved in Biggins (1992). Barral (2001) provided
a very pretty approach to uniform convergence in the one-type case by applying a lemma like
this to Banach-space-valued random variables.

Lemma 2. If {Xn} are independent, complex-valued random variables with EXn = 0 or, more
generally, martingale differences, then for α ∈ (1, 2] there exists a constant C > 0, depending
on α but independent of n and the sequence {Xn}, such that

E

[∣∣∣∣
n∑
j=1

Xj

∣∣∣∣α
]

≤ C

n∑
j=1

E[|Xj |α].

The next lemma, which is the multitype version of Biggins (1992, Lemma 2), gives some
bounds related to the martingale {Wn

i (λ)}. In bounding formulae like these, the argument λ

will often be omitted; thus, for example, φ ≡ φ(λ).

Lemma 3. Let α ∈ (1, 2], λ = θ + iη ∈ 	α , and ϕ = ν1φ
αναβ. Then there are constants c1,

c2, and c3, depending on α but not on λ, i, or n, such that the following statements hold.

(i) (E |Wn+1
i (λ)− Wn

i (λ)|)α ≤ E[|Wn+1
i (λ)− Wn

i (λ)|α] ≤ c1ϕκ
n.

(ii) σα(Wn
i (λ)) ≤ c2ϕ(1 − κ)−1.

(iii)
∑∞
k=n E |Wk+1

i (λ)− Wk
i (λ)| ≤ c3ϕ

1/ακn/α(1 − κ1/α)−1.

(iv) For ϑ ∈ (	α)−, there exists a δ > 0 such that

sup{E |Wn
i (λ)|α : λ ∈ B(ϑ, δ), i, n} < ∞.

Proof. The first inequality in part (i) is just E[|X|α] ≥ (E |X|)α . Since E[|W1
i (λ)|α] ≥ 1,

we obtain

E[|W1
i (λ)− 1|α] ≤ 4 E[|W1

i (λ)|α] ≤ 4φαναβ.
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Using (10), Lemma 2, and the fact that, given Fn, W1
k (λ|n, s) are independent copies of W1

k (λ),
we have

σα(Wn+1
i (λ) | Fn) = E[|Wn+1

i (λ)− Wn
i (λ)|α | Fn]

≤ C
∑
k

∣∣∣∣ vk(λ)

vi(λ)ρ(λ)n

∣∣∣∣α ∑
s

|exp(−λ�znik;s)|α E[|W1
k (λ)− 1|α]

≤ c1ν1κ
nWn

i (αθ)(φαναβ)

= c1ϕκ
nWn

i (αθ).

Taking expectations now gives part (i).
Note that, since λ ∈ 	α , we have κ < 1. Part (ii) now follows directly from summing over

n in part (i) and using Lemma 2. To prove part (iii), sum the inequalities in part (i).
The continuity of the functions ν, ν1, φ, and κ on 	α and part (ii) mean that there exists

a constant C > 0, depending only on α and δ > 0, such that, for any λ ∈ B(ϑ, δ), we have
σα(Wn

i (λ)) ≤ C. Since E[|Wn
i (λ)|α] ≤ 2 + 2σα(Wn

i (λ)), this implies part (iv).

Proof of Theorem 2. From part (iii) of Lemma 3, E
∑∞
n=0 |Wn+1

i (λ)−Wn
i (λ)| is finite and,

so, {Wn
i (λ)} is a Cauchy sequence almost surely. Thus, as n → ∞, {Wn

i (λ)} converges to
Wi (λ) almost surely. Applying Fatou’s lemma, Lemma 2, and Lemma 3(i) gives

E[|Wi (λ)− Wn
i (λ)|α] ≤ lim inf

N→∞ E[|Wn+N
i (λ)− Wn

i (λ)|α]

≤ C

∞∑
j=0

E[|Wn+j+1
i (λ)− W

n+j
i (λ)|α]

≤ Cc1ϕ
κn

1 − κ
.

Since κ < 1, {Wn
i (λ)} converges in αth mean.

The distinguished boundary (see Hörmander (1973)) of B(x, r), which is a subset of the
topological boundary, is defined by

D(x, r) = {y ∈ C
d : |xs − ys | = r, s = 1, . . . , d}.

We assume D(x, r) to be parametrized such that

D(x, r) = {z(t) = (z1(t), . . . , zd(t)) : zs(t) = xs + reits , s = 1, . . . , d, t ∈ I },

where I = [0, 2π ]d is a d-dimensional closed cube in R
d . The next lemma, which is Biggins

(1992, Lemma 3), is the key to obtaining bounds that hold uniformly.

Lemma 4. If f is analytic on the open ball B = B(x, 2r ′) and r < r ′, then

sup{|f (λ)| : λ ∈ B(x, r)} ≤ π−d
∫
I

|f (z(t))| dt,

where z(t) ∈ D(x, 2r).
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Proof of Theorem 3. The proof closely follows that of the one-type result of Biggins (1992).
Let x ∈ 	− be fixed. There exist an α ∈ (1, 2] and a B = B(x, 3r) ⊂ 	α , which means that
B ⊂ �2

α and B ⊂ �3
α . For any two positive integers n and N ≥ n, we apply Lemma 4 to

WN+1
i (λ)− Wn

i (λ) to obtain

πd sup
λ∈B(x,r)

|WN+1
i (λ)− Wn

i (λ)| ≤
∫
I

N∑
m=n

|Wm+1
i (z(t))− Wm

i (z(t))| dt,

≤
∞∑
m=n

∫
I

|Wm+1
i (z(t))− Wm

i (z(t))| dt,

where z(t) ∈ D(x, 2r) ⊂ B. Applying Fubini’s theorem and Lemma 3(iii), we obtain

E
∞∑
m=n

∫
I

|Wm+1
i (z(t))− Wm

i (z(t))| dt ≤
∫
I

Cϕ1/α κn/α

1 − κ1/α dt,

where the argument z(t) has been suppressed on the right-hand side. Recall that κ < 1
throughout �2

α and β < ∞ throughout �3
α . Therefore, using the continuity of the various

functions, there exist constants δ < 1 and K < ∞ such that the integrand on the right-hand
side can be bounded by Kδn throughout B and, hence, throughout D(x, 2r). Thus,

E
∞∑
m=n

∫
I

|Wm+1
i (z(t))− Wm

i (z(t))| dt ≤ Kδn
∫
I

dt < ∞

and, so,
∞∑
m=0

∫
I

|Wm+1
i (z(t))− Wm

i (z(t))| dt < ∞ almost surely.

Therefore, {Wn
i (λ)} is a Cauchy sequence under the supremum norm ‖ · ‖ on B(x, r), which

implies uniform convergence on B(x, r), almost surely.
For the remainder of the proof, the supremum norm is defined over B(x, r). From the

almost-sure uniform convergence of the martingale, for fixed n, as N → ∞,

‖WN
i − Wn

i ‖ → ‖Wi − Wn
i ‖

almost surely. Let n be fixed; then, by taking the expectation of both sides and applying first
Fatou’s lemma and then Lemma 4, we obtain

E ‖Wi − Wn
i ‖ ≤ lim inf

N→∞ E ‖WN
i − Wn

i ‖

≤ π−d E
∫
I

∞∑
m=n

|Wm+1
i (z(t))− Wm

i (z(t))| dt

≤ π−dKδn
∫
I

dt < ∞
→ 0 as n → ∞.

This proves uniform convergence on B(x, r), in mean.
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Finally, define


 =
⋃

x∈	−
B(x, r).

Then, by a compactness argument, the uniform convergence of {Wn
i (λ)} in the open balls in 


implies the uniform convergence in any compact subset of 
.

3. Proofs of Theorems 4 and 5

Let 1 ≤ l ≤ n and let i and j be fixed. We start with a decomposition that is similar to (10),

Wn
ij (λ) =

∑
k

∑
s

vk(λ)

vi(λ)

1

ρ(λ)l
exp(−λ�zlik;s)W

n−l
kj (λ|l, s), (11)

where, given Fl , Wn−l
kj (λ|l, s) are independent copies of Wn−l

kj (λ) as s varies. Hence,

E[Wn
ij (λ) | Fl] = vj (λ)

vi(λ)ρ(λ)n

∑
k

∑
s

exp(−λ�zlik;s)m
n−l
kj (λ). (12)

Therefore, given any sample path of the process, E[Wn
ij (λ) | Fl] is an analytic function of

λ ∈ �.
For all λ ∈ �, define

gnij (λ|l) = Wn
ij (λ)− E[Wn

ij (λ) | Fl]
and

hnij (λ|l) = E[Wn
ij (λ) | Fl] − uj (λ)vj (λ)W

l
i (λ).

The functions gnij (λ|·) and hnij (λ|·) are analytic functions of λ ∈ �. Furthermore,

|Wn
ij (λ)− uj (λ)vj (λ)Wi (λ)| ≤ |gnij (λ|l)| + |hnij (λ|l)| + |uj (λ)vj (λ)||W l

i (λ)− Wi (λ)|.
Hence, |Wn

ij (λ)− uj (λ)vj (λ)Wi (λ)|α is less than or equal to

3(|gnij (λ|l)|α + |hnij (λ|l)|α + |uj (λ)vj (λ)|α|W l
i (λ)− Wi (λ)|α). (13)

The idea now is to let l = � 1
2n�, where �x� is the greatest integer not exceeding x, and let n

tend to infinity. This motivates the lemmas we now give before returning to the main proof.
It is in these results that we need the uniformity proved in Theorem 1(iii).

Lemma 5. Suppose that ϑ ∈ (	α)−. Then there are positive constants c1, c2, and c3 depending
on α, a constant γ < 1, and a neighbourhood B of ϑ such that, for all λ ∈ B, n = 1, 2, . . . ,
and all i and j , we have

(i) |hnij (λ|l)| ≤ c1γ
n−lνφlW l

i (θ),

(ii) E
∑n
l=0 |hnij (λ|l)|α ≤ c2φ

nα , and

(iii) σα(Wn
ij (λ)) ≤ c3φ

nα.
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Proof. Substituting, using (4) and (12), we have

hnij (λ|l) = vj (λ)

vi(λ)ρ(λ)l

∑
k

∑
s

exp(−λ�zlik;s)[ρ(λ)−(n−l)mn−lkj (λ)− uj (λ)vk(λ)].

Therefore, by Theorem 1(iii), there exist constants c1 > 0 and γ ∈ (0, 1) and a neighbourhood
B of ϑ such that, for all λ ∈ B and all n,

|hnij (λ|l)| ≤ c1νφ
lγ n−l

∑
k

∑
s

[
vk(θ)

vi(θ)
ρ(θ)−l exp(−θ�zlik;s)

]

= c1νφ
lγ n−lW l

i (θ), (14)

as required. This and Lemma 3(iv) combine, after making B smaller if necessary, to show that,
for some constant c′1, E |hnij (λ|l)|α ≤ c′1να(γ /φ)(n−l)αφnα. Since γ < 1 and φ ≥ 1, we have
(γ /φ) < 1 for all λ ∈ B. Thus,

E
n∑
l=0

|hnij (λ|l)|α ≤ c′1να
1

1 − (γ /φ)α
φnα.

The continuity of the functions ν and φ now implies part (ii). Finally, using Lemma 2,

σα(Wn
ij (λ)) ≤ C

n∑
l=1

E[| E[Wn
ij (λ) | Fl] − E[Wn

ij (λ) | Fl−1]|α]

≤ 3αC

(
|uj (λ)vj (λ)|α

n∑
l=1

E[|W l
i (λ)− W l−1

i (λ)|α] + 2 E
n∑
l=0

|hnij (λ|l)|α
)
.

By suitable bounding of the continuous functions involved in Lemma 3(i), for all λ ∈ B(ϑ, δ)
with δ sufficiently small, we have

∞∑
l=1

E[|W l
i (λ)− W l−1

i (λ)|α] ≤ K1 < ∞

and, so, using this and part (ii), we have

σα(Wn
ij (λ)) ≤ 3αC(|uj (λ)vj (λ)|αK1 + 2c2φ

nα).

Now the boundedness of uj (λ)vj (λ) on B and the fact that φ ≥ 1 combine to prove part (iii).

Lemma 6. Suppose that α ∈ (1, 2] and ϑ ∈ (	α)−. Then there exists a B = B(ϑ, δ) ⊂ 	α
such that, for l = � 1

2n�,

(i) for all λ ∈ B, hnij (λ|l) → 0 as n → ∞, almost surely and in αth mean; and

(ii) sup{|hnij (λ|l)| : λ ∈ B} → 0 as n → ∞, almost surely and in mean.

Proof. Let B = B(ϑ, δ) be a neighbourhood of ϑ throughout which (14) holds. Take δ to
be smaller if necessary, so that φγ < 1 throughout B. Now application of Theorems 2 and 3
to W l

i (θ) together with simple bounding in (14) gives all the claimed results.
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Lemma 7. Suppose that α ∈ (1, 2] and ϑ ∈ (	α)−. Then there exists a neighbourhood of ϑ ,
say B = B(ϑ, r) ⊂ 	α , such that, for l = � 1

2n�,

(i) for all λ ∈ B, gnij (λ|l) → 0 as n → ∞, almost surely and in αth mean; and

(ii) sup{|gnij (λ|l)| : λ ∈ B} → 0 as n → ∞, almost surely and in mean.

Proof. First note that, using (11) and Lemma 2,

σα(Wn
ij (λ) | Fl ) ≤ Cv̄(λ)α|ρ(λ)|−lα

∑
k

∑
s

exp(−αθ�zlik;s)σ
α(Wn−l

kj (λ)). (15)

Let B = B(ϑ, δ) be inside the neighbourhood of ϑ introduced in Lemma 5. Then, for some
positive constant c and for all λ ∈ B, n = 1, 2, . . . , and all i and j , applying Lemma 5(iii) to
the bound (15) gives

σα(Wn
ij (λ) | Fl ) ≤ cν1W

l
i (αθ)φα(n−l)κl . (16)

Now, since E W l
i (αθ) = 1, we have

E[|gnij (λ|l)|α] = E σα(Wn
ij (λ) | Fl ) ≤ cν1φ

α(n−l)κl .

Choose δ to be smaller if necessary, so that φακ < 1 for all λ ∈ B. Then the right-hand side
of the above inequality converges to 0 geometrically quickly, as n → ∞, when l = � 1

2n�.
This implies that gnij (λ|l) → 0 in αth mean and almost surely.

Jensen’s inequality and (16) give

E |gnij (λ|l)| ≤ (E σα(Wn
ij (λ) | Fl ))

1/α ≤ c1/αν
1/α
1 φn−lκl/α.

For l = � 1
2n�, φn−lκl/α is asymptotically equivalent to (φκ1/α)l , and φκ1/α ≤ γ1 < 1 in B.

Hence, there exists a C′ < ∞ such that, for all λ ∈ B, n = 1, 2, . . . , l = � 1
2n�, and all i and j ,

we have E |gnij (λ|l)| ≤ C′γ l1. Let 2r < δ and apply Lemma 4 to the analytic functions gnij (λ|l)
to obtain

sup
λ∈B(ϑ,r)

|gnij (λ|l)| ≤ π−d
∫
I

|gnij (z(t)|l)| dt,

where z(t) ∈ D(ϑ, 2r). The expectation of the right-hand side here goes to 0 geometrically
quickly. Hence, gnij (λ|l) converges to 0 uniformly in λ ∈ B(ϑ, r), almost surely and in mean.

Proof of Theorems 4 and 5. In (13), let l = � 1
2n� and then let n → ∞. In a suitable

neighbourhood of ϑ ∈ (	α)−, the almost-sure and αth-mean convergence of Wn
i (λ)− Wi (λ),

gnij (λ|l), and hnij (λ|l) are contained in Theorem 2, Lemma 7(i), and Lemma 6(i), respectively.
Now take the union of these neighbourhoods to be 
1. This proves Theorem 4.

Similarly, the almost-sure and mean uniform convergence of Wn
i (λ)− Wi (λ), gnij (λ|l), and

hnij (λ|l) are contained in Theorem 3, Lemma 7(ii) and Lemma 6(ii), respectively. A union of
suitable neighbourhoods now provides 
2, proving Theorem 5.

4. Proof of Theorem 6

Lemma 8. If the branching random walk is strongly nonlattice then, for any compact set
K ⊂ {θ ∈ R

d : supi,j mij (θ) < ∞} and all a ∈ (0, 1), there exists an ε < 1 such that

ε−n sup
i,j

sup
θ∈K

sup
a≤|η|≤a−1

∣∣∣∣m
n
ij (θ + iη)

ρn(θ)

∣∣∣∣ → 0 as n → ∞. (17)
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Proof. Let (k, l) be such that (7) holds. As a function of η, mkl(θ + iη)/mkl(θ) is the
characteristic function of the probability measure mkl(θ)−1e−θ�xµkl(dx) and (7) implies that
this measure is strongly nonlattice. Then, using this and continuity, we have

ε̃ = sup
θ∈K

sup
a≤|η|≤a−1

∣∣∣∣mkl(θ + iη)

mkl(θ)

∣∣∣∣ < 1.

Let M†(θ) be the matrix with (k, l)th entry ε̃mkl(θ) and with other entries the same as those
in M(θ), and let (M†(θ)n)ij be the (i, j)th entry of its nth power. Let ρ†(θ) be the eigenvalue
of M†(θ) of maximum modulus, with right-eigenvector v†(θ). Then ρ†(θ) < ρ(θ) (see
Seneta (1973, Theorem 1.1)). Furthermore, since Theorem 1 applies to M†(θ), there exists an
ε < 1 such that ρ†(θ) < ερ(θ) for all θ ∈ K , and

sup
θ∈K

max
i,j

v
†
i (θ)

v
†
j (θ)

= c < ∞.

Now,
sup

a≤|η|≤a−1
|(M(θ + iη)n)ij | ≤ (M†(θ)n)ij ≤ c(ερ(θ))n,

proving (17).

Proof of Theorem 6. It is sufficient to prove (8) with the compact set K being some closed
ball in R

d centred on ϑ ∈ 	−, since a simple covering argument extends the result to general K .
We begin the proof by introducing various bounds leading to the appropriate ball to consider.
Recall that S(x, r) is a ball in R

d centred on x with radius r , and S(x, r) is its closure.
Choose ϑ ∈ 	−; then ϑ ∈ 	α for some α, which is now fixed. Now take δ1 such that

S(ϑ, 2δ1) ⊂ 	α and S1 = S(ϑ, δ1). Let ε1 be an ε such that (17) holds when K = {θ : θ ∈ S1}
and let a = 1

2ε (where ε is as defined in the statement of the theorem). Recall that

ρ(αθ)1/α

ρ(θ)
< 1, θ ∈ 	α.

Let

ε2 = max

{
ε1, sup

θ∈S1

ρ(αθ)1/α

ρ(θ)

}
.

Now let S2 = S(ϑ, 2δ2) with 2δ2 < δ1, and let

ρ = sup
θ∈S2

ρ(θ) and ρ = inf
θ∈S2

ρ(θ).

Take δ2 small enough that

ε3 := ε2
supθ∈S2

ρ(θ)

infθ∈S2 ρ(θ)
= ε2

ρ

ρ
< 1. (18)

Note that, for θ ∈ S2,
ρ(αθ)1/α ≤ ε2ρ(θ) ≤ ε2ρ. (19)

https://doi.org/10.1239/aap/1127483742 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483742


Convergence in a multitype branching random walk 695

These preliminaries provide a suitably small neighbourhood of ϑ , S2, in which various
inequalities hold. Now let S = S(ϑ, δ2) ⊂ S2 = S(ϑ, 2δ2) and define the two regions

R = {θ + iη : θ ∈ S, ε ≤ |η| ≤ ε−1} and R2 = {θ + iη : θ ∈ S2,
1
2ε ≤ |η| ≤ ( 1

2ε)
−1}.

We will prove (8) for θ ∈ S, that is, for λ ∈ R. Clearly,

sup
λ∈R

|Mn
ij (λ)| ≤ sup

λ∈R
|Mn

ij (λ)−mnij (λ)| + sup
λ∈R

|mnij (λ)|. (20)

Furthermore,

sup
λ∈R

|mnij (λ)| ≤ sup
λ∈R2

|mnij (λ)| = sup
λ∈R2

∣∣∣∣m
n
ij (λ)

ρ(θ)n
ρ(θ)n

∣∣∣∣ ≤ (ε1ρ)
n ≤ (ε2ρ)

n. (21)

Using Lemma 2, we have

E[|Mn
ij (λ)−mnij (λ)|α] ≤ C

n−1∑
l=0

E[| E[Mn
ij (λ) | Fl+1] − E[Mn

ij (λ) | Fl]|α], (22)

and splitting at the lth generation shows that

E[Mn
ij (λ) | Fl] =

∑
k

(∑
s

exp(−λ�zlik;s)
)
mn−lkj (λ)

=
∑
k

(∫
Rd

exp(−λ�z)Zlik(dz)

)
mn−lkj (λ). (23)

Following (9), let

Mn−l
kj (λ|l, s) =

∫
Rd

e−λ�xZnkj (dx|l, s);
then ∫

Rd
exp(−λ�z)Zl+1

ik (dz) =
∑
h

∑
s

exp(−λ�zlih;s)M
1
hk(λ|l, s). (24)

Let �l = E[Mn
ij (λ) | Fl+1] − E[Mn

ij (λ) | Fl]. Then, using (23) and (24), we have

�l =
∑
k

(∑
h

∑
s

exp(−λ�zlih;s)(M
1
hk(λ|l, s)−mhk(λ))

)
mn−l−1
kj (λ)

and, given Fl , {M1
hk(λ|l, s)−mhk(λ) : s} are independent variables with zero mean. We need

a bound on the moments of these variables. Let

c1 = 4

(
max
i,j

sup
θ∈S2

E[|M1
ij (θ)|α]

)1/α

,

which is finite because S2 ⊂ 	α . Then, simple bounding gives

sup{E[|M1
ij (λ)−mij (λ)|α] : λ = θ + iη, θ ∈ S2, i, j} ≤ (c1)

α.
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Let

c2 = max
i,j

sup
θ∈S2

vj (αθ)

vi(αθ)
,

which is finite, by Theorem 1(ii), because S2 ⊂ 	α . Then, using the fact that

mnij (αθ)vj (αθ) ≤ ρ(αθ)nvi(αθ)

and (19), for θ ∈ S2 we have
mnij (αθ) ≤ c2(ε2ρ)

nα.

Now, applying Lemma 2 again, (21), and the two bounds just given, for any λ ∈ R2 we have

E[|�l−1|α] ≤ C
∑
k

(∑
h

ml−1
ih (αθ)E[|M1

hk(λ)−mhk(λ)|α]
)

|mn−lkj (λ)|α

≤ Cp2c2(ε2ρ)
(l−1)α(c1)

α(ε2ρ)
(n−l)α

≤ c3(ε2ρ)
nα,

where c3 is independent of θ ∈ S2 and l. Hence, (22) gives

E[|Mn
ij (λ)−mnij (λ)|α] ≤ nc3(ε2ρ)

nα

for any λ ∈ R2.
The region R can be covered with a finite number of open balls such that, when their radii

are doubled, they still lie inside R2. Hence, using (22), the bound just obtained, and Lemma 4,
for a suitable constant c4 we have

E sup
λ∈R

|Mn
ij (λ)−mnij (λ)| ≤ c4(ε2ρ)

nn1/α.

Combining this with (20) and (21) gives

E sup
λ∈R

|Mn
ij (λ)| ≤ (c4n

1/α + c1)(ε2ρ)
n

and, so, using (18), we have

E sup
λ∈R

∣∣∣∣M
n
ij (λ)

ρ(θ)n

∣∣∣∣ ≤ 1

ρn
E sup

λ∈R
|Mn

ij (λ)| ≤ (c4n
1/α + c1)ε

n
3 .

Hence, (8) holds for any ε ∈ (ε3, 1).

5. Approximation of measures

This section contains the preparatory work on saddlepoint approximations necessary for the
proof of Theorem 7. The idea is to develop explicit estimates that apply to a particular measure
through only a few of its attributes. Most treatments of these matters, made with a view
to application to variables that are, or look like, sums of independent, identically distributed
random variables, bring n into the picture sooner than we do. The treatment draws on ideas
from Stone (1967), von Bahr (1967), Bhattacharya (1972), (1977), Chaganty and Sethuraman
(1993), and Jensen (1995).
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Recall that S(x, ε) = {y ∈ R
d : |x − y| < ε}. Let 
 be a probability measure on R

d , with
γ := 
(S(0, 1)) > 1

2 , whose characteristic function vanishes outside {t : |t | ≥ ζ } for some
finite ζ . Let 
ε be the measure given by 
ε(A) = 
({x : εx ∈ A}), so that its characteristic
function vanishes outside {t : |t | ≥ ε−1ζ }. Let ν and µ be probability measures on R

d , let bε
be the supremum of the modulus of the density of (ν − µ) ∗ 
ε , and let q be the supremum of
the density of µ. For any f , let

ωf (x, ε) = sup{|f (y)− f (z)| : y, z ∈ S(x, ε)}
and

f
ε
(x) = sup{|f (y)| : y ∈ S(x, ε)}.

The next result is contained in, and easily derived from, Lemma 2.2 of Bhattacharya (1972)
and the remark following it.

Lemma 9. For any real-valued, bounded, Borel-measurable function f , we have

sup
u∈Rd

∣∣∣∣
∫
f (x)(ν − µ)(dx + u)

∣∣∣∣ ≤ 1

2γ − 1

[
bε

∫
f
ε
(x) dx + q

∫
ωf (x, 2ε) dx

]
.

The idea now is to make this bound simpler by imposing suitable smoothness conditions
on f . The set G′(G) is made up of those f ∈ D for which there is a bounded decreasing
function g with

∫ ∞
0 g(r)(r + 1)d−1 dr = G and

sup{|f (x)|, |∇f (x)| : |x| ≥ (r − 1)} ≤ g(r).

Note that G(G), introduced to state Theorem 7, is defined in the same way, but with∫ ∞

0
g(r)(r + 1)d+1 dr = G;

therefore, G(G) ⊂ G′(G). Also, let C denote the convex sets in R
d .

Lemma 10. For a constant �, depending only on the dimension, and ε < 1, we have

sup

{∣∣∣∣
∫
C

f (x)(ν − µ)(dx + u)

∣∣∣∣ : u ∈ R
d , C ∈ C, f ∈ G′(G)

}
≤ G�(bε + εq).

Proof. For a set A ⊂ R
d , let Aε = {y : |y − a| < ε, a ∈ A}, and let ∂A be the boundary

of A. Let S be the surface area of the unit ball. Then, for C ∈ C, from von Bahr (1967,
Equation (15)), we have ∫

1∂Cε (x)g(|x|) dx ≤ 2SGε.

Take ε < 1 and let h(x) = f (x)1C(x), with f ∈ G′(G). If x ∈ ∂Cε then

ωh(x, ε) ≤ 2 sup{|f (y)| : y ∈ S(x, ε)} ≤ 2g(|x|).
If x ∈ S(x, ε) ⊂ C then, using Taylor’s theorem, ωh(x, ε) = ωf (x, ε) ≤ 2εg(|x|). Hence,

ωh(x, ε) ≤ 2g(|x|)(1∂Cε (x)+ ε1C(x))
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and, so, ∫
ωh(x, ε) dx ≤ 2

∫
(1∂Cε (x)+ ε1C(x))g(|x|) dx ≤ 6εSG.

Also, ∫
h
ε
(x) dx ≤

∫
f
ε
(x) dx ≤

∫
g(|x|) dx = SG.

Substituting these into the bound in Lemma (9) gives the result.

Recall that, forA ⊂ C
d , A− is its intersection with R

d . Let K be compact in R
d , let τ < 1,

and let
Kτ = {θ + λ ∈ C

d : θ ∈ K, |λ| ≤ τ }.
Now let B be an open set containing Kτ , with B− convex. For Z a measure on R

d , let

Ẑ(λ) =
∫

e−λ�xZ(dx).

Suppose that log Ẑ is analytic on B and strictly convex on B−. Let −m(θ) be the vector of its
first derivatives and �(θ) the matrix of its second derivatives on B−. Then �(θ) is positive
definite, because log Ẑ is strictly convex. Let u be a (finite) bound on the modulus of all
derivatives of log Ẑ over Kτ , up to and including order three. Let c be a lower bound on the
smallest eigenvalue of �(θ) as θ varies through K , and let r = u/c. Since log Ẑ is strictly
convex and analytic on B−, we can take c > 0. Also, let

ε(a) = a−d sup

{∣∣∣∣ Ẑ(θ + it)

Ẑ(θ)

∣∣∣∣ : θ ∈ K, a ≤ |t | < 1

a

}
.

Fix ϑ ∈ K . Let ν be the probability measure given by

ν(A) =
∫

1A(x)e−ϑ�xZ(dx)∫
e−ϑ�yZ(dy)

,

with mean m (= m(ϑ)) and covariance matrix � (= �(ϑ)). Let ν̂(λ) be the Laplace transform
of ν, i.e. ν̂(λ) = Ẑ(ϑ +λ)/Ẑ(ϑ). Let N be the normal distribution with mean m and covariance
matrix �. The idea is to use N to approximate ν and, hence, Z, through Lemma 10, in a way
that is suitably uniform. Note that ν and N both depend on ϑ ; we use ‘νϑ ’ and ‘Nϑ ’ in the next
definition to emphasise this. Let

A(Z) = sup

{∣∣∣∣
∫
C

f (x)(νϑ − Nϑ )(dx + u)

∣∣∣∣ : u ∈ R
d , f ∈ G′(G), C ∈ C, ϑ ∈ K

}
.

Obviously, by boundingA(Z)we allow f to be shifted arbitrarily, f to vary within G′(G), and
integration over an arbitrary convex set.

Theorem 9. For δ ≤ min{τ, e−d/4r}, ε ≤ min{1, ζ/δ, ζ δ}, and a constant�′ depending only
on the dimension, we have

A(Z) ≤ G�′
[

r

c(d+1)/2
+ ε(ε/ζ )+ (e−δ2c/4 + ε)

cd/2

]
.

https://doi.org/10.1239/aap/1127483742 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483742


Convergence in a multitype branching random walk 699

Proof. Let q be a bound on the density of N and let bε be a bound on the modulus of the
density of (ν − N) ∗ 
ε . Note that q ≤ (2πc)−d/2, which is independent of ϑ .

For |λ| ≤ τ , let

ψ(λ) = log ν̂(λ)− m�λ + 1
2λ��λ

= log Ẑ(ϑ + λ)− log Ẑ(ϑ)− m�λ + 1
2λ��λ.

Then, by arrangement, ψ is analytic on |λ| ≤ τ , with ψ(0) = 0 and all its first and second
derivatives vanishing at 0.

Using Taylor’s theorem and the analyticity of log Ẑ on B, for |λ| ≤ τ we have

|ψ(λ)| ≤ d3

3! u|λ|3 ≤ edu|λ|3

and, so, for |λ| ≤ δ,

|ψ(λ)| ≤ edu|λ|3 ≤
(

4ed
u

c
δ

)
c

4
|λ|2 ≤ c

4
|λ|2.

Using these two inequalities gives

|exp(ψ(λ))− 1| ≤ edu|λ|3 exp

(
c

4
|λ|2

)
for |λ| ≤ δ.

The key point is that the right-hand side here does not depend on ϑ . Using this bound, we have∫
|t |<δ

|̂ν(it)− eim�te−t��t/2| dt ≤
∫

|t |<δ
e−t��t/2|eψ(it) − 1| dt

≤ edu
∫

|t |<δ
|t |3ec|t |2/4e−t��t/2 dt

≤ edu
∫

|t |<δ
|t |3e−|t |2c/4 dt

≤ edu
1

c(d+3)/2

∫ ∞

0
|z|3e−|z|2/4 dz

≤ �1r

c(d+1)/2
,

where �1 depends only on the dimension d . Thus,

(2π)dbε ≤
∫

|t |<ζ/ε
|̂ν(it)− eim�te−t��t/2| dt

≤
∫

|t |<δ
|̂ν(it)− eim�te−t��t/2| dt +

∫
δ≤|t |<ζ/ε

|̂ν(it)| dt +
∫
δ≤|t |

e−t��t/2 dt

≤ �1r

c(d+1)/2
+ ε

(
ε

ζ

)
S

d
+ e−δ2c/4 (4π)

d/2

cd/2
.

Substituting these estimates for bε and q into Lemma 10 gives the result.
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For the main result, we also need to approximate the normal distribution N. To formulate
the theorem, let

B(v) = sup

{∣∣∣∣
∫
C

f (x)N(dx + m − v)−
∫
C
f (x) dx√

(2π)d det[�]

∣∣∣∣ : f ∈ G(G), C ∈ C, ϑ ∈ K

}
.

Recall that N, m, and � each depends on ϑ .

Theorem 10. For a constant �′′, depending only on the dimension, we have

B(v) ≤ �′′ 1 + |v|2
c(d+2)/2

G.

Proof. Temporarily, let h(x) = f (x)1C(x) and, for a fixed ϑ ∈ K , let

B∗ =
∣∣∣∣√(2π)d det[�]

∫
h(x)N(dx + m − v)−

∫
h(x) dx

∣∣∣∣.
Then

B∗ =
∣∣∣∣
∫
h(x + v)(exp(− 1

2x��−1x)− 1) dx

∣∣∣∣
≤ 1

2

∫
|f (x + v)|(x��−1x) dx

≤ 1

2c

∫
|f (x)‖x − v|2 dx

≤ 1

2c

∫
g(|x|)|x|2 dx + |v|2

2c

∫
g(|x|) dx

≤ 1 + |v|2
2c

SG

and, so,
B∗√

(2π)d det[�] ≤ B∗√
(2π)dcd

≤ S

2
√
(2π)d

1 + |v|2
c(d+2)/2

G,

as required.

It is worth, very briefly, relating these results to those in Chaganty and Sethuraman (1993).
Temporarily following the notation used there, let Tn be a univariate random variable with
moment-generating function exp(nψn(z)). Suppose that ψn is analytic, bounded in n and z
on �, and there has a second derivative bounded below by α. Let {τn} be a positive, bounded
sequence inside �− and suppose that, for any a > 0,

εn(a) = a sup

{∣∣∣∣exp(nψn(τn + it))

exp(nψn(τn))

∣∣∣∣ : a ≤ |t | < 1

a

}
= o(n−1/2).

These are the conditions in Chaganty and Sethuraman (1993, Theorem 3.3). Under these
conditions we can take c = nα and u = nU , and r is bounded.

Take f to be a function of x ∈ R with a bounded derivative and with f (x) = 0 for
x ∈ (−∞,−1] and f (x) = e−τx for x ∈ [0,∞). For τ ∈ (0, B], it is routine calculus to
show that there exists a constant C such that f is in both G′(C/τ) and G(C/τ 3). By applying
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Theorems 9 and 10 with this f , the convex set C being (0,∞) and K being the point set {τn}
when estimating the nth distribution, we obtain

P((Tn − nψ ′
n(τn)) ∈ (0,∞))

exp(nψn(τn)− nτnψ ′(τn))
− 1

τn
√

2πnψ ′′
n (τn)

= o

(
1

τn
√
n

)
,

which contains the conclusion of Chaganty and Sethuraman (1993, Theorem 3.3). Clearly, a
multivariate version of this result would also follow directly from the discussion here, as would
a result uniform in τ in compact subsets of (0,∞) ∩ �−. Also, when sums of independent,
identically distributed variables are considered, when ψn(z) does not depend on n, the result
of Stone (1967, Theorem 3) is easily derived (for the nonlattice case).

6. Proof of Theorem 7 and Corollary 2

Proof of Theorem 7. Note first that P(Wi (θ) = 0) is a fixed point of the multivariate
generating function of the underlying Galton–Watson process. Hence, when the martingale
converges in mean, so that E Wi (θ) = 1, these probabilities must be less than 1 and, so, must
equal the extinction probabilities from that starting type. Thus, Wi (θ) > 0 agrees with the
survival set almost surely for θ ∈ 	−. The continuity of Wi (θ) now means that the null set
can be chosen independently of θ . For the rest of the calculation, we deal with sample paths in
S. Then there exists an N such that Wn

ij (θ) > 0 for all n ≥ N .
We take n ≥ N . Let K be a compact subset of	− and fix j . Let the functionwn be defined

by

wn(λ) = log

(
Wn
ij (λ)vi(λ)

vj (λ)

)
.

Using Theorems 1(ii), 3, and 5, there exists an open B (with	− ⊂ B ⊂ 	) such that, for each
n, wn is analytic in λ ∈ B, {wn} converges as n → ∞ to an analytic function on B, and, for
some τ ,

Kτ = {θ + λ ∈ C
d : θ ∈ K, |λ| ≤ τ } ⊂ B.

Analyticity ofwn and its limit on B mean that all its derivatives are uniformly bounded on Kτ .
To make the connection with the previous section, for fixed j and n let the measure Z be

Znij and, for fixed θ , let

ν(dx) = e−θ�xZ(dx)∫
e−θ�yZ(dy)

.

Note that, with f (x) = eθ�xh(x) and υ1 ≡ υ1(θ),

enξ(θ)
∫
C

h(x)Znij (dx + nυ1(θ)) = e−nθ�υ1(θ)

ρ(θ)n

∫
C

f (x)e−θ�xZnij (dx + nυ1(θ))

=
∫

e−θ�xZnij (dx)

ρ(θ)n

∫
C

f (x)ν(dx + nυ1)

= vi(θ)W
n
ij (θ)

vj (θ)

∫
C

f (x)ν(dx + nυ1).

Now, by Theorem 5, vi(θ)Wn
ij (θ)/vj (θ) converges to vi(θ)uj (θ)Wi (θ) uniformly in θ ∈ K .

By assumption, f ∈ G(G), and, so, the results of the previous section can be applied to
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consider the convergence of
∫
C
f (x)ν(dx+nυ1), once we show thatZ satisfies the appropriate

conditions.
For λ ∈ B, substitution shows that

log(Ẑ(λ))− n log(ρ(λ)) = wn(λ).

It follows from the uniform boundedness of the derivatives of wn that {m − nυ1 : n} and
{� − nυ2 : n} are bounded uniformly in θ ∈ K . Furthermore, there are constants l > 0 and
L < ∞ such that, for all sufficiently large n, we have c/n ≥ l and u/n ≤ L and, thus, r ≤ L/l.

For any ε > 0,

ε(ε) = ε−d sup

{∣∣∣∣ Ẑ(θ + iη)

Ẑ(θ)

∣∣∣∣ : θ ∈ K, ε ≤ |η| < 1

ε

}

= ε−d sup

{
vj (θ)

vi(θ)W
n
ij (θ)

∣∣∣∣M
n
ij (θ + iη)

ρ(θ)n

∣∣∣∣ : θ ∈ K, ε ≤ |η| < 1

ε

}
→ 0

geometrically quickly as n → ∞, using Theorems 5 and 6. Hence, using Theorem 9,
nd/2A(Znij ) → 0. Furthermore, since {m − nυ1 : n} is uniformly bounded, Theorem 10 gives
n(d+2)/2B(m − nυ1) → 0. Hence,

nd/2
∣∣∣∣
∫
C

f (x)ν(dx + nυ1)− 1√
(2π)d det[υ2]

∫
C

f (x) dx

∣∣∣∣ → 0

uniformly in θ ∈ K and C ∈ C.

Proof of Corollary 2. In Theorem 7, take f ∈ D to be 1 on |x| ≤ b and 0 on |x| > b + 1,
with bounded derivatives. The corollary then follows.

7. Extended Perron–Frobenius

A matrix M = {mij }p×p, has nth power Mn with entries denoted by mnij . The eigenvalues
of M are the zeros of the characteristic polynomial q(z) = det[zI − M], which is of degree p.
Denote the roots of q(z) by ρ1, . . . , ρp, with the roots listed in order so that

|ρ1| ≥ |ρ2| ≥ · · · ≥ |ρp|.
The eigenvalue ρ1 of M is the maximum-modulus eigenvalue if |ρ1| > |ρ2|, and is then denoted
by ρ. Let the entriesmij (λ) of the matrix M(λ) = {mij (λ)}p×p be functions of λ ∈ L. Clearly,
the eigenvalues and their multiplicities all depend on λ.

Proof of Theorem 1. Parts (i) and (ii) of Theorem 1 arise from routine applications of the
implicit function theorem; details can be found in Biggins and Rahimzadeh Sani (2004). Similar
results have been obtained before, particularly for matrices of Laplace transforms; see, for
example, Miller (1961, Theorem 1(a)), Lancaster and Tismenetsky (1985, Theorem 11.5.1),
Ney and Numelin (1987, Theorem 4.1), and Kontoyiannis and Meyn (2003, Proposition 4.8(iii)).
Now, by part (i), there is an open set containing L̃ on which ρ(λ) = |ρ1(λ)| > |ρ2(λ)|, where
ρ = ρ1 (the eigenvalues here depend on λ but this is left implicit in the notation). For the rest
of the proof, λ will be confined to this open set.
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The resolvent of M(λ) is defined by

R(z) = {rij (z)}p×p = (I − zM(λ))−1,

which, for all i and j , has the expansion rij (z) = ∑∞
n=0 z

nmnij (λ)when z < ‖M(λ)‖−1, where
‖ · ‖ is a matrix norm (see Lancaster and Tismenetsky (1985, Theorem 11.1.1)). For a fixed
λ̃ ∈ L̃, let B = B(λ̃, δ̃) and M1 be such that, for all λ ∈ B, ‖M(λ)‖ < M1. Now we take
|z| < 1/M1 and λ ∈ B, and suppress λ in the notation.

Let

h(z) = det[I − zM] = (1 − zρ)

p∏
k=2

(1 − zρk).

Inverting I − zM and rewriting using partial fractions, we obtain

rij (z) = dij (z)

(1 − zρ)
∏p
k=2(1 − zρk)

= aij

1 − zρ
+

∑p−2
k=0 bk,ij z

k∏p
k=2(1 − zρk)

, (25)

where dij (z) are polynomials in z of degree at most (p − 1), given by the appropriate entry in
the adjoint matrix of I − zM , and aij and bk,ij are defined in such a way that (25) holds. For
fixed λ, |bk,ij /ρk| are bounded over i, j , and k (with k ≤ p − 2) by C, say. Then, expansion
of (25) gives

rij (z) =
∞∑
n=0

(
aijρ

n +
p−2∑
h=0

bh,ij
∑

k2+···+kp=n−h
ρ
k2
2 · · · ρkpp

)
zn (26)

and, so,

mnij − aijρ
n =

p−2∑
h=0

bh,ij
∑

k2+···+kp=n−h
ρ
k2
2 · · · ρkpp .

Hence, for α ∈ [|ρ2|/|ρ|, 1), we have

|ρ−nmnij − aij | ≤ C(p − 1)(n+ 1)p−1αn−p. (27)

Let A be the matrix with entries {aij }. Then ρ−nMn → A and, so, MA = AM = ρA.
Parts (i) and (ii) of the theorem now give A = cvu� for some scalar c; however,

v = ρ−nMnv → Av = cv,

using u�v = 1, and, so, c = 1.
To translate (26) with aij = viuj into an asymptotic estimate of M(λ)n, the boundedness

of bk,ij as λ varies is now needed. Let c1(B) denote the continuously differentiable functions
on B. The function h(z) is a polynomial in z with coefficients in c1(B) and 1/ρ is a simple
root of this polynomial. Hence, h1(z) = h(z)/(1 − ρz) is a polynomial in z with coefficients
in c1(B); the same is true of dij (z). From (25) and A = vu�, we have

dij (z) = viujh1(z)+
p−2∑
k=0

bk,ij z
k(1 − zρ).
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Equating powers of z here shows that the bk,ij are in c1(B). Hence, the supremum of
|bk,ij (λ)/ρ(λ)k| over i, j , k, and λ (with k ≤ p − 2) in the closed ball of radius 1

2 δ̃ centred at
λ̃ will be finite; denote this finite supremum by C.

Let 3ε be less than |ρ(λ̃)| − |ρ2(λ̃)| and small enough that balls of radius 3ε centred on
the distinct eigenvalues of M(λ̃) are disjoint. Then any point within a distance ε of one
of ρ2(λ̃), . . . , ρp(λ̃) is smaller in magnitude than every point in the ε-ball centred on ρ(λ̃).
Let δ < 1

2 δ̃ be small enough to ensure that the maximum distance between the eigenvalues at
λ̃ and those at λ ∈ B(λ̃, δ), after a suitable pairing, is less than ε. Then, for λ ∈ B(λ̃, δ) and
j = 2, 3, . . . , p, ∣∣∣∣ρj (λ)ρ(λ)

∣∣∣∣ ≤ |ρ2(λ̃)| + ε

ρ(λ̃)− ε
≤ ρ(λ̃)− 2ε

ρ(λ̃)− ε
= α < 1.

With these definitions, the estimate (27) holds uniformly on B(λ̃, δ), and this implies (2).

Although we do not need it here, it is worth noting the following result, which applies to
suitable matrices of Fourier transforms. Its proof requires only obvious modifications of the
discussion already given.

Theorem 11. Theorem 1 remains true when ‘analytic’ is replaced by ‘q-times differentiable
(q ≥ 1)’ and ‘ C

d’ is replaced by ‘ R
d’.
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