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MODELING DEPENDENCE STRUCTURES FOR RESPONSE TIMES IN A BAYESIAN
FRAMEWORK

Konrad Klotzke and Jean-Paul Fox
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A multivariate generalization of the log-normal model for response times is proposed within an
innovative Bayesian modeling framework. A novel Bayesian Covariance Structure Model (BCSM) is
proposed, where the inclusion of random-effect variables is avoided, while their implied dependencies are
modeled directly through an additive covariance structure. This makes it possible to jointly model complex
dependencies due to for instance the test format (e.g., testlets, complex constructs), time limits, or features
of digitally based assessments. A class of conjugate priors is proposed for the random-effect variance
parameters in the BCSM framework. They give support to testing the presence of random effects, reduce
boundary effects by allowing non-positive (co)variance parameters, and support accurate estimation even
for very small true variance parameters. The conjugate priors under the BCSM lead to efficient posterior
computation. Bayes factors and the Bayesian Information Criterion are discussed for the purpose of model
selection in the new framework. In two simulation studies, a satisfying performance of theMCMCalgorithm
and of the Bayes factor is shown. In comparison with parameter expansion through a half-Cauchy prior,
estimates of variance parameters close to zero show no bias and undercoverage of credible intervals is
avoided. An empirical example showcases the utility of the BCSM for response times to test the influence
of item presentation formats on the test performance of students in a Latin square experimental design.

Key words: response time modeling, conditional independence, local dependence, testlets, Bayesian
marginal modeling, non-informative prior distribution.

1. Introduction

In various research settings, it is of interest to make inferences about the effect of a treatment
or experimental condition on a certain population. For example, two randomly sampled groups
from the same population of students may be presented the same literacy test in different forms:
The first group takes a traditional pencil-and-paper test, and the second group takes the computer-
based counterpart. In that context, a researcher may want to gain insight into the differential
functioning of items, or the test as a whole, across the two test forms. In other words, the focus
lies on making inferences about the difference in performance between the two testing condi-
tions, not on assessing the individuals’ proficiency in reading and writing. A marginal model is
appropriate when inferences about population-averages (e.g., comparing means or (co)variances
across groups) are the goal of research (Diggle, Heagerty, Liang, & Zeger 2013). Unlike in their
conditional counterpart, in a marginal framework the person effects are not modeled; they are
integrated out. The interdependency between a person’s observations is then not implied by a
random-effect structure but is explicitly modeled in a covariance matrix. As discussed below, if
inferences about population-averages are the focus of research, amarginal approach greatly favors
the parsimony of the model at hand and can offer several advantages in the context of parameter
estimation and model selection.
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A novel Bayesian Covariance Structure Model (BCSM) is proposed for clustered response
times that is partly built on properties of amarginalmodeling approach, but also explicitly accounts
for the clustered structure of the data by modeling a structured covariance matrix. In the BCSM,
the implied covariance structure of each random effect is separately modeled in the same additive
covariance matrix, whereby each layer in the additive structure corresponds to one random effect.
Therefore, the BCSM is a marginal modeling approach in which the dependence structure is
explicitly modeled and hence preserved.

The BCSM differs from existing marginal modeling approaches, since the complete joint
distribution of the observations is specified (and hence the complete likelihood of the model
parameters). Thus, the BCSM preserves likelihood-based methods, which makes it possible to
accommodate missing at random by default, the likelihoods usually give support to a unique
maximum and can be used as the building blocks for a Bayesian modeling approach. This is
not possible when using generalized estimating equations (GEE) to estimate a marginal model
(Diggle et al., 2013; Liang & Zeger, 1986). In GEE, the covariance structure is treated as nuisance
parameters and the focus lies solely on modeling the mean response. This avoids having to
specify the conditional structure and therefore a possible misspecification of the same. A major
downside of the GEE approach is that marginalization of different conditional structures can lead
to inferentially identical models (Lee & Neider, 2004). This is the direct consequence of treating
the covariance structures as nuisance parameters which do not have to be explicitly modeled to
obtain consistent estimates. In other words, with an arbitrary covariance structure certain model
assumptions cannot be checked for. Finally, contrary to the proposed framework, GEEs can be
seen purely as an estimation procedure and do not allow common likelihood-based methods to
assess the goodness-of-fit of a model, to compare models, to accommodate for missing at random,
and to make inferences about model parameters.

To differentiate the proposed approach from existing marginal modeling methods, models
constructed under the proposed framework are referred to as Bayesian Covariance Structure
Models (BCSMs). BCSMoffers three key advantages over a corresponding (conditional) random-
effects model:

1. Tests for random-effect variances in mixed-effects models (e.g. Goldhammer &
Kroehne, 2014) are complicated, as they require testing at the edge of the parameter
space (Wood, 2013). These so-called boundary effects can lead to an underestimation
of the statistical power of the corresponding tests and thus can bias the inferences made
about the random-effect variance parameters of interest (Baguley, 2012, pp. 737–740).
In a Bayesian framework, this problem is commonly tackled by choosing amore sophis-
ticated prior distribution (e.g. Gelman, 2006; Gustafson, Hossain, & MacNab, 2006).
The proposed BCSM, however, treats these parameters as covariances, which do not
underlie the restriction of a lower or upper limit, as long as the positive definiteness of
the covariance matrix is ensured. In line with that, boundary effects are reduced with
truncated shifted inverse-gamma priors that allow the parameter space to cover negative
values while enforcing sufficient rules for the positive definiteness of the covariance
matrix. These priors are not as sharply peaked near zero as the default inverse-gamma
priors and thus carry less information. Furthermore, in contrast to, for example, the
half-Cauchy prior proposed by Gelman (2006), conjugacy is preserved. As a result, the
hypothesis space is expanded to cover all likely parameter values and the availability
of expressions of known forms for the conditional posterior distributions allows effi-
cient Gibbs-sampling. In addition, given the proposed vague prior specification, more
accurate estimates of very small random-effect variance parameters, respectively the
corresponding covariances, can be obtained.
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2. Specifying the effective number of parameters is trivial in the proposed framework,
whereas in the random-effects model this forms an obstacle when applying model selec-
tion techniques such as the Bayesian Information Criterion (BIC) (Schwarz, 1978).

3. Estimation of random-effect variances is more likely to suffer from convergence issues
with small sample sizes when compared to corresponding marginal models (Bell, John,
& Jeffrey, 2008; Muth et al., 2016). This means that if the individual random effects
themselves are not of interest and instead variance and covariance parameters are to
be investigated, the proposed framework is of utility even when only limited data are
available.

The BCSM for response times represents a multivariate generalization of the log-normal
latent variable model (Klein Entink, Kuhn, Hornke, & Fox, 2009; van der Linden, 2006). A
logarithmic transformation is applied to the naturally positively skewed distribution of response
times, whereby the transformed response times of a person can be modeled with a normal dis-
tribution. In the conditional random-effect response time model, the observed response times
are treated as realizations of a random variable and the corresponding probability distribution
is determined by the items’ time intensity and the person’s speed. In the proposed BCSM for
response times, the random effects themselves are not modeled. Instead, the implied interde-
pendence between a person’s response times is modeled in an additive covariance structure. On
the lowest level of the additive covariance structure, the interdependence between a person’s
response times as implied by the person speed variable is modeled in a heterogeneous com-
pound symmetric structure, where the measurement error variance parameters are free to vary
across items. Therefore, in BCSM the random-effect variances are parameterized as covariance
parameters. Latent variables such as time pressure, motivation, or the impact of testlet struc-
tures are not modeled but can cause local dependence within blocks of items. To take the addi-
tional sources of variation in a person’s response times into account, as illustrated by Fig. 1,
the contribution of each latent variable on the interdependence of response times is explic-
itly modeled in its own layer in the additive covariance structure. This allows the estimation
of the individual (co)variance parameters and makes it possible to evaluate hypotheses about
the parameters. Therefore, a statement can be made about whether or not a certain latent vari-
able or factor has an impact on the interdependence between a person’s response times (i.e., in
the form of a test for local dependence within a block of items). As argued above, tests about

Figure 1.
In an additive covariance structure, each explicitly modeled layer represents the influence of a random-effect variable on
the interdependence between a person’s response times.
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the random-effect variances offer a more exhaustive hypothesis space and are satisfied with a
smaller sample size when compared to a corresponding random-effects model. Finally, the ran-
dom effects themselves are not modeled, but their values can be recovered from the model’s
residuals.

The setup of the remaining text is as follows: a multivariate generalization of the log-normal
response timemodel is specified within the BCSM framework. Extensions to includemultidimen-
sionality and factor loadings are discussed. Conjugate truncated shifted inverse-gamma priors are
proposed that take into account the additive structure and positive definiteness of the covariance
matrix, and resulting posteriors are derived. A Gibbs-sampling algorithm is defined with which
samples from the full joint posterior can be obtained. A Bayes factor based on importance sam-
pling and the BIC are discussed for the purpose of model selection in BCSM. Simulation studies
are utilized to evaluate the proposed response time model’s performance in parameter recovery
and model selection. The proposed response time model is applied to an empirical example in
an educational measurement setting. Finally, the results, limitations, and future prospects of the
BCSM framework are discussed.

2. BCSM for Response Times

Before we define the response time model within the BCSM framework, we explain the
notation as follows. The subscript i refers to the i-th person, g to the g-th group, and k to the
k-th item. The number of persons in group g is denoted as ng , and N stands for the total number
of persons across all groups. Furthermore, the total number of groups and items is denoted as G
and p, respectively. A bar over a data structure indicates the arithmetic mean over one or more
dimensions that are specified by a dot in the subscript. For example, T̄.gk denotes the mean log-
response time over all persons in group g to item k. Finally, I p and J p are the identity matrix and
a matrix of ones, each of dimension p × p. The p × ng data matrix T g contains the logarithmic
transformation of the measured time that it took persons in group g to give a response to the
respective items.

In the log-normal model for response times, the response times of a person are explained
by a person parameter and an item parameter. The item parameter λgk is the population-average
log-response time for item k in group g. The person parameter ζig represents the constant speed
of person i in group g across all items and is assumed to follow a normal population distribution:
ζig ∼ N (μζg , δg). It thus expresses the deviation of the person’s speed from the population-
average. This leads to the following equation for the log-response time of person i in group g to
item k:

Tigk = λgk − ζig + εigk, εigk ∼ N (0, σ 2
gk). (1)

The person speed parameter ζig in Eq. (1) can be replaced with the sum of the average population
speed of group g (μζg ), and the error of the group’s population speed distribution εζig :

Tigk = λgk − (μζg + εζig ) + εigk

= λgk − μζg + (εζig + εigk)

= λgk − μζg + ε̃igk . (2)

The error εigk in the distribution of response times and the error of the population distribution of
speed εζig are conditionally independent. From that, it follows that the sum of the error terms ε̃igk
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is normally distributed with a mean of zero and a variance of δg + σ 2
gk . As illustrated by Eq. (3),

due to the marginalization, the response times of a person to different items are correlated with
the covariance parameter δg . Given the above-mentioned marginalization, the covariance between
the response times for two persons i and j of the same group g to items k and l is the following:

Cov(Tigk, Tjgl) = Cov(λgk − μζg + εζig + εigk, λgl − μζg + εζ jg + ε jgl)

= Cov(εζig + εigk, εζ jg + ε jgl)

= Cov(εζig , εζ jg ) + Cov(εigk, ε jgl)

=

⎧
⎪⎨

⎪⎩

δg + σ 2
gk if i = j, k = l

δg if i = j, k �= l

0 if i �= j

. (3)

Consequently, the response times of each person are multivariate log-normally distributed with a
p-dimensional mean vector

μTg
= [λg1 − μζg , . . . , λgp − μζg ] (4)

and the compound symmetry covariance matrix

�Tg = diag(σ 2
g) + δg J p

=

⎡

⎢
⎢
⎢
⎣

δg + σ 2
g1 δg . . . δg

δg δg + σ 2
g2 . . . δg

...
...

. . .
...

δg δg . . . δg + σ 2
gp

⎤

⎥
⎥
⎥
⎦

. (5)

Note that due to themarginalization, themean and covariance structure is the same for all members
of a group.

In the BCSM framework, the model specified in Eq. (5) describes the base layer of the
additive covariance structure. Additional layers aremodeledwithoutmodifying themean structure
specified in Eq. (4). As a result, multidimensionality in the interdependency of the response times
can be introduced without including additional latent variables. Note that in the proposed model,
each additional layer is explicitly modeled. This stands in contrast to an arbitrary covariance
structure of a marginal model that is ambiguous about the corresponding conditional model. In the
example illustrated by Fig. 2, persons are assumed to experience time pressure during the last part
of the test. In a random-effects model, the time pressure effect would be represented by the latent
variable γig . That means that the variance of the random effects, i.e., Var(γig) = �g , implies the
dependence structure of a person’s response times. In the BCSM approach, only the dependence
structure is modeled; γig itself is not modeled but would explain the specific dependence among
response times to the affected (testlet) items of person i in the mean component. Note that �g

is parametrized as a covariance parameter in the BCSM. Furthermore, let ug be a p-dimensional
design vector of 0’s and 1’s where a 1 indicates that the response times to an item are affected by
γig . Then, an additive covariance structure is obtained, which is a straightforward extension of
Eq. (5):

�∗
Tg

= �Tg + �guguT
g . (6)
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Figure 2.
Multidimensionality in the interdependencebetween response times is realized through the additional covarianceparameter
�g . In a setting where the individual latent effects γig are not of interest for hypothesis testing and model selection,
modeling the implied local dependence in the response time data is sufficient.

Note that this extension is realized by modifying the covariance structure of the model with the
addition of the covariance parameter�g . In other words, instead of modeling the individual effect
of a time pressure (γig) on a person’s response times, the implied covariance of a time pressure
effect (�g) on the errors is modeled. Furthermore, note that no additional identification rules are
required, as long as the design vectors are mutually distinct (i.e., no two ug’s are the same). This
holds for any pattern of an arbitrary number of additional layers.

BCSM is not limited to modeling the dependence structure implied by the single factor
random intercepts model defined in Eq. (1). In fact, the described modeling approach generalizes
to any covariance structure that can be expressed in the form of Eq. (6). This includes modeling
the implied dependences of a random intercept and slope model [conditional: Eq. (7); BCSM:
Eq. (8)], and of a testlet structure [conditional: Eq. (30); BCSM: Eqs. (31) and (32)]. Finally,
dependences that are implied by correlated random effects are modeled directly in the additive
covariance structure by specifying additional design vectors. Consequently, correlations between
random effects are handled the same way as any other dependences in the data and do not require
a modification of the described modeling approach.

As an illustration of modeling the dependence structure implied by correlated random effects,
Table 1 contains the design vectors of a testlet RT BCSM for six items and three testlets. The
first design vector specifies the dependences in the data that follow from the latent person speed
variable. The next three rows specify the testlet structure, i.e., item 1 and 2, item 3 and 4, and
item 5 and 6 each form a testlet. RTs to items in the same testlet are locally dependent. This
dependence is explicitly modeled through the covariance parameter on the respective layer [i.e.,
�g in Eq. (6)].

Following the same reasoning, the final three rows of Table 1 specify dependences between
testlets. The corresponding covariance parameters can be interpreted as the covariances between
testlet random effects in a random effects model. It is, however, important to note that BCSM is
not limited to modeling dependences that are implied by random-effect structures. In particular,
modeling negative interdependences (e.g., negative within-cluster correlations) poses a challenge
in the random-effects modeling approach (e.g. El Leithy, Abdel Wahed, & Abdallah, 2016; Pry-
seley, Tchonlafi, Verbeke, & Molenberghs, 2011), but is straightforward and unambiguous in
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Table 1.
The dependences implied by correlated random effects are directly modeled in the additive covariance structure without
modeling the random effects themselves.

Covariance layer Design vector

Speed 1 1 1 1 1 1
Testlet 1 1 1 0 0 0 0
Testlet 2 0 0 1 1 0 0
Testlet 3 0 0 0 0 1 1
Cross testlets 1, 2 1 1 1 1 0 0
Cross testlets 1, 3 1 1 0 0 1 1
Cross testlets 2, 3 0 0 1 1 1 1

This is realized through the specification of cross-covariances between testlets through additional design
vectors. Each row corresponds to the design vector of one covariance layer.

(a) (b)

Figure 3.
a In a random-effects model, time-discrimination parameters can be interpreted as item-specific factor loadings for the
latent person speed variable. b In BCSM, the dependence structure implied by time-discrimination parameters is directly
modeled without the inclusion of random effects. Measurement error variances are not shown.

BCSMwhere dependences are modeled through covariance instead of variance parameters. Neg-
ative interdependences can furthermore naturally occur when jointly modeling different sorts of
data, e.g., responses and response times (e.g. Klein Entink, Fox, & van der Linden, 2008; van der
Linden, 2007).

Finally, factor loadings can be modeled in the proposed framework. An example is the time-
discrimination parameter, which represents the quality of an item to discriminate between distri-
butions of persons with a different level of speed (Klein Entink et al., 2008). The factor loading
is included in the conditional response time model as an item-specific slope parameter agk :

Tigk = λgk − agkζig + εigk . (7)

Again, from this follows an additive covariance structure in the BCSM framework:

�Tg = diag(σ 2
g) + δgagaT

g . (8)

The corresponding random-effects model and its BCSM counterpart are shown in Fig. 3. Note
that the resulting covariance matrix is not compound symmetric, but the properties necessary to
build an additive structure are preserved. In fact, Eq. (8) removes the restriction of ugk ∈ {0, 1}
in Eq. (6) and allows agk ∈ R.
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3. Priors for Additive Covariance Matrices

In the proposed BCSM framework, the random-effect variance parameters are represented
by covariance parameters. While covariance parameters do not underlie the restriction of being
greater or equal to zero, to keep the covariance matrix positive definite certain lower bounds may
not be crossed. The lower bounds are obtained through applying the Sherman–Morrison formula
to the given problem (Lange, 2010, pp. 260–261) and are enforced by truncating the prior at hand.

A sufficient condition for the positive definiteness is defined for any additive layer d of a
p × p-dimensional covariance matrix A of form

Ad+1 = Ad + ψvvT , (9)

where ψ is a scalar and v is a vector of length p. From the Sherman–Morrison formula, it follows
that

1 + ψvT A−1
d v > 0 (10)

is a sufficient condition for the positive definiteness of Ad+1, under the presumption that Ad is
also positive definite. The base layer A1 follows a heterogenous compound symmetry structure:

A1 = diag(σ 2) + δ1p1T
p . (11)

From the condition defined in Eq. (10), it follows that min(σ 2) > 0 and δ > −1/1T
pdiag(σ

2)−11p

together ensure that A1 is positive definite. If the base layer A1 is positive definite, then the
following condition is thus sufficient to ensure the positive definiteness of any additional layer:

ψ > −1/vT A−1
d v. (12)

Note that a closed-form expression for A−1
d can be derived from the Sherman–Morrison formula.

In line with the approach suggested by Fox, Mulder, and Sinharay (2017), shifted inverse-
gamma priors are defined for the variance and covariance parameters. To ensure the positive
definiteness of the covariance matrix, the condition defined in Eq. (12) is implemented through
the indicator function 1t . From this follows an extended inverse-gamma distribution with four
parameters, where υ is the shift parameter and τ is the truncation point:

I G(x, α, β, υ, τ ) =
[

βα

�(α)
(x + υ)−α−1 exp

(

− β

x + υ

)]

· 1t (x > τ). (13)

Note that τ = −υ equals an untruncated shifted inverse-gamma distribution and τ = υ = 0
equals a default inverse-gamma distribution.

Consequently, the priors for the covariance and variance parameters can be written as

π(δg|σ 2
g) = I G(δg, α0, β0, σ̄

2
g /p,−1/1T

pdiag(σ
2
g)

−11p) (14)

and

π(σ 2
g|δg) =

p∏

k=1

I G(σ 2
gk, α0, β0, δg, 0). (15)
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For covariance parameters in additional layers, the truncation point changes according to Eq.
(12). Note that the priors are defined in a conditional form, e.g., π(δg|σ 2

g) and π(σ 2
g|δg). This is

sufficient for the Markov chain Monte Carlo (MCMC) algorithm. For Bayes factor testing, the
joint prior, e.g., π(δg, σ

2
g), can be constructed as the product of the (estimated) marginal priors.

4. Posterior Distributions

Given Eq. (5), the covariance between two responses times of a person i in group g for the
k-th and/or l-th item is the following:

Cov(Tigk, Tigl) = δg + σ 2
gk · 1 (k = l) , (16)

where1 is the indicator function.Note that the total variance of a person’s response time consists of
a between-subject part (δg) and awithin-subject part (σ 2

gk). The terms between-subject andwithin-
subject follow from the assumption that all persons within a group share a common covariance
structure.

The between sum of squares

SSB =
ng∑

i=1

(
T̄ig. − T̄.g.

)2
, (17)

is a sufficient statistic for the covariance parameter δg . In fact, multiplying the likelihood of the
person means

p(T̄1g. . . . T̄ng.|σ̄ 2
g , δg) = (2pπ)−

ng
2 (σ̄ 2

g /p + δg)
− ng

2 exp

(

− SSB/2

σ̄ 2
g /p + δg

)

, (18)

with the conjugate truncated shifted inverse-gamma prior specified in Eq. (14) leads to the con-
ditional posterior of δg:

p(δg|T̄1g. . . . T̄ng.σ̄
2
g )

=
[

(β0 + SSB/2)(α0+ng/2)

�(α0 + ng/2)
(δg + σ̄ 2

g /p)−(α0+ng/2)−1 exp

(

−β0 + SSB/2

δg + σ̄ 2
g /p

)]

· 1t (δg > −1/1T
pdiag(σ

2
g)

−11p). (19)

Similarly, the within sum of squares of component k, SSWk = ∑ng
i=1(Tigk − T̄.gk)

2, is a
sufficient statistic for the corresponding measurement error variance parameter. Given the prior
specified in Eq. (15), the posterior is a truncated shifted inverse-gamma distribution with shift
parameter δg and a truncation that ensures that σ 2

gk > 0:

σ 2
gk ∼ I G(α0 + ng/2, β0 + SSWk/2, δg, 0). (20)
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To ease the derivation of Bayes factors about the invariance of measurement error variance param-
eters within or across groups, it is useful to sample the mean variance σ̄ 2

g directly as an auxiliary
parameter. As proved in “Appendix B”, the posterior is also truncated shifted inverse-gamma:

σ̄ 2
g ∼ I G(α0 + ng/2, β0 + SSW/(2p), δg, 0), (21)

where SSW =∑ng
i=1

∑p
k=1

(
Tigk − T̄.gk

)2
.

Like the covariance parameter δg in the base layer, the posterior of a covariance parameter
�gd in any additional layer d is shifted inverse-gamma distributed with a truncation to ensure the
positive definiteness of the resulting covariance matrix. For example, if d = 2,

�g2 ∼ I G(α0 + ng/2, β0 + SSB�g2/2, σ̄
2
g2/p2 + δg, tPSD�g2

), (22)

where σ̄ 2
g2/p2 is the average measurement error variance across the items that are affected by the

additional covariance layer (i.e., items selected in the corresponding design vector u�g2 divided
by the number of affected items p2). Furthermore,

SSB�g2/2 =
ng∑

i=1

⎛

⎜
⎝

1

p2

p2∑

k∈u�g2

(Tigk) − 1

ng p2

ng∑

i=1

p2∑

k∈u�g2

(Tigk)

⎞

⎟
⎠

2

and tPSD�g2
is the truncation point following from Eq. (12). Note that Eq. (22) can be generalized

to any number of additive layers by recursively computing the shift parameter and truncation
point based on the layers below the current layer in the resulting covariance matrix.

5. Bayesian Inference

A Gibbs-sampling algorithm is specified with which samples from the full joint posterior
distribution of the BCSM for response times can be drawn. As outlined in Algorithm 1, after the
initialization phase, the item parameters, group parameters, measurement error variance parame-
ters, and covariance parameters are sampled iteratively from their respective conditional posterior
distribution. Finally, posterior mean estimates of the respective parameters are computed as the
arithmetic mean of the MCMC samples while taking a burn-in phase into account.

To identify the model, the mean of the item parameters is assumed to be equal across groups;
that is, λ̄g = λ̄h for groups g and h. Furthermore, the group speed mean is fixed to zero in the first
group (μζ1 = 0). This rescaling is done via the (posterior) MCMC samples. Thereby, a distinction
is made between the (untransformed) freely estimated parameters, for which a prior is specified,
and the constrained (rescaled) parameters that are used for further computations (e.g. Fox, Klein
Entink, & van der Linden, 2007; Luo & Jiao, 2018). For the fixed item and group effects, a locally
uniform prior is defined. Finally, data missing at random ωg is properly imputed by drawing
samples from the posterior predictive distribution of the data in each iteration. See “Appendix A”
for details on the sampling steps.

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 01:30:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


KONRAD KLOTZKE AND JEAN-PAUL FOX 659

/* Initialize */
Initialize chains with starting values
for 1:Chains do

for 2:Iterations do
for 1:Groups do

/* Gibbs-sampling */

Sample missing data ωg|T g,λ
m−1
g , μm−1

ζg
, δm−1

g , σ 2
g

m−1

Sample item parameters λg|T g,ωg, μ
m−1
ζg

, δm−1
g , σ 2

g
m−1

Sample group parameter μζg |T g,ωg,λg, δ
m−1
g , σ 2

g
m−1

Sample covariance parameter δg|T g,ωg,λg, σ
2
g

m−1

Sample measurement error variance parameters σ 2
g|T g,ωg,λg, δg

end
end

end
/* Summarize */
for 1:Groups do

Compute posterior mean estimates from MCMC samples
end

Algorithm 1: Sampling scheme of the BCSM for response times

6. Bayes Factor Testing

A Bayes factor quantifies the relative evidence of two competing models. More specifically,
it is the ratio of evidence for each model times the a priori assumptions about the evidence, that
is, the prior odds (Kass & Raftery, 1995):

BF01 = m (T ; M0)

m (T ; M1)
· π0

π1
. (23)

Being a priori by nature, the prior odds π0
π1

incorporate information such as former research results
or expert opinions and are not derived in the process of computing the Bayes factor. Thus, Eq. (23)
simplifies to a ratio of marginal likelihoods. The marginal likelihood of the data under a model
Mb is obtained by integrating the probability density function of the data with respect to the prior
density:

m (T |Mb) =
∫

· · ·
∫

p(T |φ1, . . . , φz, Mb)π(φ1, . . . , φz |Mb) dφ1 . . . dφz, (24)

where φ1, . . . , φz are the model parameters of interest for the given Bayes factor. An estimator
for the marginal likelihood is constructed based on the importance sampling technique proposed
by Perrakis, Ntzoufras, and Tsionas (2014). In importance sampling, instead of integrating with
respect to the prior density as in Eq. (24), the integration is applied with respect to an importance
sampling density g(φ1, . . . , φz |Mb). As illustrated by Perrakis et al. (2014), using the product
of the marginal posterior distributions of the parameters of interest as the importance sampling
density, that is, g(φ1, . . . , φz |T , Mb) =∏z

u=1 p(φu |T , Mb), leads to an estimator with desirable
properties: first, it is unbiased; second, it has a finite variance; and third, it handles any unknown
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constants in the prior distributions as long as the corresponding marginal posteriors are included
in the importance sampling density. The resulting integral

m (T |Mb) =
∫

· · ·
∫

p (T |φ1, . . . , φz, Mb) π (φ1, . . . , φz |Mb)
∏z

u=1 p (φu |T , Mb)

z∏

u=1

p (φu |T , Mb) dφu (25)

is estimated by

m̂ (T |Mb) = 1

J

J∑

j=1

p
(
T |φ( j)

1 , . . . , φ
( j)
z , Mb

)
π
(
φ

( j)
1 , . . . , φ

( j)
z |Mb

)

∏z
u=1 p

(
φ

( j)
u |T , Mb

) , (26)

where φ
( j)
1 , . . . , φ

( j)
z are draws from the respective marginal posterior distributions and J is the

number of MCMC samples utilized to estimate the marginal likelihood. Draws from the marginal
posterior distributions are obtained by permuting the samples from the full joint posterior distri-
bution (Perrakis et al., 2014, pp. 5–6): before randomly reordering each column (corresponding to
the posterior sample of onemodel parameter) of theMCMCchain, the drawswithin each row (cor-
responding to one MCMC iteration) are naturally correlated draws from the conditional posterior
distributions. After re-ordering, each row represents decorrelated draws from the marginal poste-
rior distributions. The marginal posterior probabilities in the denominator and the marginal prior
probabilities in the numerator of Eq. (26) are estimated through Rao-Blackwellization (Gelfand&
Smith, 1990). In the case of data missing at random, the missing data parameters ω do not provide
additional information about the model evidence. Therefore, the marginal likelihood estimation
is based solely on the observed data.

A straightforward example of the estimator specified in Eq. (26) is the evaluation of evidence
in favor of the hypothesis that the covariance parameter is unrestricted (H1 : δ �= 0) against
evidence supporting the complementary hypothesis (H2 : δ = 0):

BF12 =
1
J

∑J
j=1

p
(
T |δ( j),σ 2( j),ξ ( j),M1

)
π
(
δ( j),σ 2( j),ξ ( j)|M1

)

p(δ( j)|T ,M1)p(σ 2( j)|T ,M1)p
(
ξ ( j)|T ,M1

)

1
J

∑J
j=1

p
(
T |δ( j),σ 2( j),ξ ( j),M2

)
π
(
σ 2( j),ξ ( j)|M2

)

p(σ 2( j)|T ,M2)p
(
ξ ( j)|T ,M2

)

, (27)

where π(δ|M2) has a point mass at δ = 0, and ξ is a block of nuisance parameters (e.g., item and
group intercepts). If necessary, multiple blocks of nuisance parameters can be specified. Note that
possible unknown normalizing constants of the priors also appear in the corresponding marginal
posterior densities, thus canceling out. The estimator specified in Eq. (26) is furthermore suited
to obtain evidence under order-restricted hypotheses such as H3 : δ1 < δ2, in which case the
parameter space is constrained in some way (e.g. Gelfand, Smith, & Lee, 1992; Klugkist, Laudy,
& Hoijtink 2005; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).

In a setting where priors are deemed to be purely objective, an efficient approach to obtaining
an estimate of the marginal likelihood of the data is the Laplace approximation (Bruijn, 1970,
Chapter 4). Therefore, in this situation an appropriate method for comparing model evidence is
the BIC:

BICm = −2 log(L̂m) + dmlog(N̂∗), (28)
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where m refers to the m-th model, L̂m is the likelihood of the data given the posterior mean
estimates of the model parameters, dm is the number of free parameters under the model, and N̂∗
is the sample size. Note that in BCSM, random effects are not estimated. Therefore, compared to
linear mixed-effects models, shrinkage is greatly reduced in BCSMs and a better approximation of
the effective number of parameters is achieved. Under a vague prior specification (i.e., small shape
and large scale parameters), asymptotically, the effective number of parameters in the BCSM is
equal to the number of fixed effects plus the parameters in the covariance matrix (e.g. Overholser
& Xu, 2014). A safe choice for the effective sample size is the total number of observations
N̂∗ = pN (Faes, Molenberghs, Aerts, Verbeke, & Kenward, 2009). A Bayes factor for two
competing models 0 and 1 can be approximated given the respective BICs:

BF01 = m (T ; M0)

m (T ; M1)
≈ exp

(−�BIC01

2

)

, (29)

where �BIC01 = BIC0 − BIC1.

7. Simulation Studies

Two simulation studies are conducted. The first simulation study aims at evaluating the esti-
mation of testlet (co)variance parameters close to zero and the coverage rate of the relevant credible
intervals. In that context, a BCSM testlet model for response times is compared to a random-effect
testlet model. In the second simulation study, a Bayes factor for the local independence of response
times within testlets is evaluated under different sample sizes and population values of the testlet
(co)variance parameters. Both simulation studies are based on a test that consists of testlets: blocks
of items that relate to a common content area (Wainer & Kiely 1987).

A testlet structure implies that a person’s response times can be more alike within a testlet
than across testlets. In other words, the grouping of similar items introduces dependence between
a person’s response times within a testlet. This dependence is not accounted for bymerely control-
ling the persons’ constant working speed across the test. Consequently, random-effects models
commonly introduce a person–testlet interaction effect into themodel equation (e.g. Hecht, Siegle,
& Weirich, 2017; Wang & Wilson, 2005):

Tigk = λgk − (ζig + θig j (k)) + εigk, εigk ∼ N (0, σ 2
gk), (30)

where j (k) denotes an item k in testlet j and θig j (k) is the corresponding person–testlet interaction
effect. The random speed and person–testlet interaction effects are normally distributed, with
ζig ∼ N (μζg , δg) and θig j (k) ∼ N (μθg j ,�g j ). To identify the model, the variance of the random
speed effects is fixed. In theBCSMapproach, the person–testlet interaction effects are notmodeled
in the mean term; that is,

T ig = λg − (μζg + μθg(k)
) + εig, εig ∼ N (0p,�g). (31)

Instead, the additive covariance structure is extended with an additional layer and covariance
parameter for each testlet. For a test consisting of Nt testlets, this results in an additive covariance
structure with Nt + 1 layers: The first layer follows from the influence of the latent speed on
the response times, and the remaining layers represent the contribution of each testlet effect on
the dependence of a person’s response times. Therefore, like the person speed parameters, the
person–testlet interaction effects themselves are not modeled. Instead, the dependence between a

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 01:30:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


662 PSYCHOMETRIKA

person’s response timeswithin a testlet is explicitlymodeled in the covariance structure of the error
term. The part of the dependence between response times that is assumed to be explained by the
latent person speed is operationalized as the covariance parameter δg . The part of the dependence
between response times that is assumed to be explained by the testlet structure, while keeping the
latent speed constant, is operationalized as �g j . The additive layer structure is represented by the
following covariance matrix:

�g = diag(σ 2
g) + δg J p +

Nt∑

j=1

�g jug juT
gj , (32)

where ug j is a p-dimensional design vector specifying which items belong to testlet j in group
g.

7.1. Parameter Estimation and Credible Intervals

Tomeasure the precision and bias of testlet (co)variance parameter estimates and the coverage
rate of the corresponding credible intervals a simulation experiment is conducted. The number
of test-takers (N = 300), the length of the test (p = 30), and the number of testlets (Nt = 3)
are fixed across the 1000 replications. All test-takers are part of the same group. The population
values of the first three testlet (co)variance parameters are �g1 = 0, �g2 = .01 and �g3 = .05.
The remaining population parameters are δg = .2, μζg = μ jg = 0, λgk ∼ N (0, 1) and σ 2

gk = 1p.
Data are generated under the restrictions of the respective models: (a) the a priori assumption
about whether or not the testlet (co)variance parameters may be negative is taken into account
when simulating response times; and (b) to identify the random-effects model, the variance of
the random speed effects is fixed, that is, ζig ∼ N (0, .2). Consequently, the variance is also
fixed when generating data for the random-effects models. Note that all parameters in the BCSM
covariance structure are free, i.e., δg is not fixed for the BCSM.

Both the BCSMand the random-effects model are fitted in a Bayesian framework. TheGibbs-
sampling algorithm of the BCSM framework is implemented in R (R Core Team, 2017), and the
random-effects model is fitted with the R package R2jags (Su, 2015). Estimates refer to the mean
of the respective posterior distributions and the credible intervals are equally-tailed. The coverage
rate of the credible intervals and the distribution of the posterior mean estimates is based on 1000
replications. Each replication consists of 10,000 MCMC iterations, and a burn-in phase of 10% is
applied. For the BCSM, a truncated shifted inverse-gamma prior with shape = 10−8 and scale =
108 is defined for the testlet (co)variance parameters. For the random-effects model, a default non-
informative inverse-gamma prior on the variance parameters is likely to cause the MCMC sample
chains of very small variance parameters to often get stuck at zero (Browne, Steele, Golalizadeh,
& Green, 2009; Lesaffre & Lawson, 2012). In practice, the resulting autocorrelation renders
obtaining information about the posteriors given a reasonable number of MCMC iterations futile.
As a remedy, parameter expansion is implemented through a half-Cauchy prior with mode = 0
and scale = 25 on the testlet standard deviation parameters as proposed by Gelman (2006).

A visual inspection of the model parameters’ trace plots showed no evidence against conver-
gence of the MCMC algorithms. The results of the parameter estimation and the coverage rates
are shown in Table 2. Due to the skewness of the respective distributions, the posterior mean esti-
mates of the two smallest testlet variance parameters are positively biased for the random-effects
model. Under the BCSM, no bias is observed. The standard deviation of the posterior mean esti-
mates is smaller for the random-effects model. However, as described above, fewer restrictions
were applied when generating data for the BCSM. Under the BCSM, the empirical coverage rates
correspond to the theoretical coverage of the credible intervals. Under the random-effects model,
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Table 2.
Upper part: mean and standard deviation of posterior mean estimates of testlet (co)variance parameters. Lower part:
empirical coverage of corresponding 95%-credible intervals.

Trunc. shifted IG Half-Cauchy

� Empirical mean (SD) of posterior mean estimates

0 .000 (.034) .021 (.015)
.01 .011 (.033) .026 (.019)
.05 .051 (.037) .054 (.030)

� Empirical coverage of 95%-credible intervals

0 94.3 0
.01 95.1 84.5
.05 95.5 75.4

Results based on 1000 simulated replications with N = 300 persons, p = 30 items and Nt = 3 testlets.

a true value of zero is not included in any of the computed 95%-credible intervals. For true values
close to zero, a significant undercoverage is observed.

7.2. Model Selection

Given a testlet structure, the assumption of local independence states that a person’s response
times within and between testlets are independent when controlling for the person’s speed. In the
random-effects model specified in Eq. (30) and the proposed BCSM specified in Eq. (32), the
assumption of local independence is violated if the testlet (co)variance is not equal to zero. In
this simulation, the plausibility of two versions of the model described in Eq. (32) is evaluated
with a Bayes factor. In the null model M0, the covariance parameter �1 is restricted to zero. In
the alternative model Ma , all covariance parameters are unrestricted. In other words, according to
the null model local independence holds for the items within the first testlet, and the alternative
hypothesis indicates local dependence. The model evidence is compared between M0 and Ma

for a set of 7 population values of �1, namely {− .2, 0, .2, .4, .6, .8, 1}. For each value of �1, 50
samples are drawn from the respective population and for each sample the log-Bayes factor is
computed. This is done twice, first for three groups of test-takers of size N1 = N2 = N3 = 100
and second for a group size of N1 = N2 = N3 = 150. In both cases, data for p = 18 items
are simulated and 3000 MCMC iterations are run. A truncated shifted inverse-gamma prior with
shape = 10−3 and scale = 103 is defined for the testlet covariance parameters. The means of
each replication are summarized in Fig. 4.

The Bayes factor behaves as expected: a larger discrepancy between the population value of
�1 and zero makes the alternative model more plausible. Figure 5 shows the empirical density of
the log-Bayes factor at �1 = .4 for group sizes of N = 100 and N = 150. Both figures illustrate
that more data lead to a greater statistical power.

8. Empirical Example

Realistic Mathematics Education (RME) is an approach to teaching and learning theory that
is based on the idea of providing students with problems that are perceived as useful and relevant.
This aims at making mathematical education accessible to a wider range of students and therefore
giving numeracy a stronger focus in society. Based on an empirical dataset by Buschers (2016),
we investigated whether or not presenting contextual numeracy items in different formats has an
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Figure 4.
Average log-Bayes factor across 50 replications quantifying the evidence for Ha : �1 �= 0 against the evidence for
H0 : �1 = 0. A positive value indicates that Ha is more plausible. The comparison is made for three groups of size
N1 = N2 = N3 = 100, respectively N1 = N2 = N3 = 150.
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Figure 5.
Empirical density of the log-Bayes factor across 50 replications quantifying the evidence for Ha : �1 �= 0 against the
evidence for H0 : �1 = 0. A positive value indicates that Ha is more plausible. Samples are drawn from a population with
�1 = .4. The comparison is made for three groups of size N1 = N2 = N3 = 100, respectively N1 = N2 = N3 = 150.

effect on students’ response processes. To gain insight into the latent response processes, response
times are utilized (Molenaar, Tuerlinckx, & Maas, 2014). Three different presentation formats
were considered: text only, image only and text and image (see Table 3 for an example). In
general, a numeracy problem in a test should not overload or distract the student with redundant
information and should furthermore ensure that the available information is easily accessible to
the student. For the given empirical example, the focus is on the translation of the contextual
problem to a mathematical problem. In this context, two cognitive theories are considered. First
of all, the cognitive load theory states that the cognitive capacity of a student, and in particular
his or her short term memory, is limited and can thus be overloaded. Hence, in the majority of
cases it seems better to not repeat the information included in an image in the accompanying text.
Second, according to the dual channel principle students have separate channels to process verbal
and pictorial information. Therefore, it is not only the amount of information that plays a role,
but also how the information is presented and thus processed. For example, it can be argued that
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Table 3.
Note. Reprinted from Words, pictures or both?: the influence of the presentation of contextual numeracy problems on
student performance in (pre) vocational education, by Buschers (2016), unpublished Master’s thesis, p. 7.

Text variant Image variant Text + Image Variant
Two market stalls are
offering strawberries. The
first stall sells 500 grams of
strawberries for EUR 1.95. The
second stall sells 150 grams
of strawberries for EUR 0.75.
What is the difference in
price between stall 1 and
stall 2 for a kilo of
strawberries?

Two market stalls are offering
strawberries.

What is the difference in price
between stall 1 and stall 2 for
a kilo of strawberries?

Two market stalls are offering
strawberries. The first stall
sells 500 grams of strawberries
for EUR 1.95. The second stall
sells 150 grams of strawberries
for EUR 0.75.

What is the difference in price
between stall 1 and stall 2 for a
kilo of strawberries?

presenting information in text and image allows the student to focus on the format of presentation,
or combination thereof, that works best for him or her.

In total, data from 301 respondents were recorded in various Dutch schools. The randomly
assigned groups are of size N1 = 99, N2 = 96 and N3 = 94 when including respondents for
whom data for at least five items were available. The respondents are students of the three levels of
prevocational education and the third level of vocational education. A partially counterbalanced
Latin square design with three blocks is employed. Each block corresponds to one of the three
presentation formats. Thus, within the three randomly assigned groups, each student is presented
all p = 35 items, but with different formats. The order of the presentation format varies per group
in accordance with the Latin square design. Within each group, item order effects are possible.
These effects are accounted for when the three counterbalanced groups are merged for the purpose
of statistical inference (i.e., parameter estimation and hypothesis testing).

The goal of this research is to investigate whether or not the students’ performance differs
between the three item presentation formats. This is operationalized as differences in response
times between the three variants. More specifically, it is of interest whether or not the response
times within one variant are more alike than the response times across all variants. Furthermore,
if it is plausible that the response times within two variants are more alike than the response
times across all variants, then comparing the covariance within the two variants is of interest. The
plausibility of the hypotheses is evaluatedwith the approximatedBayes factor specified inEq. (29).

8.1. The Statistical Model

Each item presentation format variant corresponds to a separate testlet j in a testlet structure.
The item–testlet combination (i.e., which item belongs to which testlet) varies across the three
groups of students. An appropriate mixed-effects model is the following:

Tigk = λgk − (ζig + θig j (k)) + εigk, εigk ∼ N (0, σ 2
gk), (33)

where the random speed and testlet effects are normally distributed with ζig ∼ N (μζg , δg) and
θig j (k) ∼ N (μθg j ,�g j ). The goal of the present research is to make inferences about the effect of
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the testlet structure (i.e., the different item presentation formats) on the interdependence between
a person’s response times. More specifically, it is of interest to evaluate whether or not response
times are more alike within a testlet than across testlets. This translates into a statement about
the local dependence of a person’s response times within each testlet. For the given application,
the focus thus lies on the population-average of the (co)variance parameters �g j and not on the
individual random effects, i.e., θig j (k).

In the BCSM framework, the mixed-effects model in Eq. (33) is marginalized and the inter-
dependency between a person’s response times is modeled in an additive covariance matrix with
four layers:

�Tg =
[
diag(σ 2

g) + δg J p

]
+
[
�g1ug1uT

g1

]
+
[
�g2ug2uT

g2

]
+
[
�g3ug3uT

g3

]
, (34)

where δg describes the covariance across all items and �g1, �g2 and �g3 describe the additional
covariance within the variants “Text”, “Image” and “Text and Image”. The fact that the testlet
effect θig j (k) has three categories is represented in the BCSM by the design vectors ug1, ug2 and
ug3, which thus specify the order of the presentation formats in group g. Two rules are defined to
identify the model. First, the group speedmean is set to zero in all groups (μζ1 = μζ2 = μζ3 = 0).
As a result, the time intensity parameters are on the same scale across groups, which allows the
extraction of the presentation variant effects. Second, the measurement error variance parameter
of the last item (σ 2

p) is set to be equal in all groups. This ensures that the covariance parameters
are on the same scale across groups (e.g.,�11 = �21 = �31). A truncated shifted inverse-gamma
prior with shape = 10−3 and scale = 103 is defined for the variance and covariance parameters.
For the fixed item effects (λgk) a locally uniform prior is approximated with N (0, 1010). Finally,
data are assumed to be missing at random (MAR).

8.2. Results

The model parameters are estimated with one MCMC chain of 50,000 iterations. A burn-
in phase of 10% is applied. A visual inspection of the model parameters’ trace plots showed
no evidence against convergence of the MCMC algorithm. The posterior mean estimate of the
covariance parameter across all variants is .417 (SD .135). The additional covariances in the
“Text”, “Image” and “Text and Image” variants are estimated as .100 (SD .130), .036 (SD .071)
and .043 (SD .082), respectively. The plausibility of the hypothesis stating that response times
are more alike within a variant than across variants is evaluated with an approximated Bayes
factor by comparing the evidence for said hypothesis to the evidence in favor of the respective
complementary null hypotheses: H01 : �1 = 0, H02 : �2 = 0 and H03 : �3 = 0.

The results of the hypothesis testing are summarized in Table 4. Following the guidelines
of Kass and Raftery (1995) to interpret the results, very strong evidence is found against the
three alternative hypotheses. This means that, given the data at hand, it is highly implausible

Table 4.
Approximated log-Bayes factor quantifying the plausibility of the alternative hypothesis, i.e., response times within
a presentation format variant are more alike than response times across variants, against the null hypothesis; i.e., the
response times are not more alike.

Ha1 : �1 �= 0 Ha2 : �2 �= 0 Ha3 : �3 �= 0

Log-BFa0 −19 −66 −23

A positive value indicates evidence in favor of the alternative hypothesis.
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that response times are more alike if they are collected under the same item presentation format.
In other words, variation in presentation format does not cause local dependence within the
corresponding blocks of items. This result is in line with the very small average effects of the
presentation variants on the response times. The effects are extracted from the residuals of the
model and indicate that the log-response times are, on average, the lowest in the “Text” variant
(“Text” − “Image” = − .025; “Text” − “Text and Image” = − .070) and the highest in the “Text
and Image” variant (“Text and Image” − “Image” = .045).

9. Discussion

In a novel Bayesian modeling framework, a multivariate generalization of the log-normal
response time model has been proposed. The BCSM framework allows the specification of mod-
els based on, but not limited to, an integrated likelihood approach. Under the integrated likelihood
approach, the random effects are integrated out, and their implied dependencies between observa-
tions are directlymodeled in a covariance structure inwhich the random-effect variance parameters
serve as covariance parameters. The complexity of the BCSMs is easily controlled, since each
random-effect structure is modeled in a separate layer of an additive covariance structure. This
is much more difficult in a conditional modeling approach, where each random effect introduces
many model parameters and the exact number of parameters depends stronger on the fit of the
model.

In the conditional random-effects models, inferences about variance parameters are also
problematic. For instance, a random-effect variance of zero can be of specific interest, but the
value zero is the lower bound of the corresponding parameter space. The prior specification
of a positive variance component can lead to biased parameter estimates and can complicate
testing the support for a random effect. In the BCSM, these so-called boundary effects can be
avoided, or at least weakened, by extending the parameter space to include negative values.
Therefore, shifted inverse-gamma priors are proposed for the variance components, which include
a restriction on the parameter space to ensure that the covariance matrix is positive definite but
allow negative parameter values, thereby accounting for boundary effects and creating a more
exhaustive hypothesis space. Contrary to other priors for variance components such as the half-t
or half-Cauchy priors, conjugacy is preserved with the proposed truncated shifted inverse-gamma
priors. This greatly increases the efficiency of the MCMC sampling algorithm. The proposed
priors furthermore lead to less skewness in the posterior distribution if a covariance is close
to zero, when compared to priors for variance components. As a result, bias of posterior mean
estimates and undercoverage of credible intervals is avoided in a situation where the true value
of the (co)variance parameter is located near zero.

The sample size requirements for the BCSM for response times to obtain stable estimates
are minimal: for each random-effect structure only two items are needed; this means that the
latent speed effect or multidimensional effects (e.g., testlet structure) can be measured with two
or more items. In general terms, it is sufficient to have observations from two items to measure
an additional dependency, which is modeled as a separate layer in the additive covariance matrix.
Furthermore, explicitly modeling each layer of the covariance structure allows testing model
assumptions within and across layers. For example, Lee and Neider (2004) point out that in
common marginal models it is impossible to test for treatment–random-effect interaction as the
marginal models are inferentially identical regardless of whether or not the interaction is present
in the corresponding conditional model. In the proposed BCSM framework, these interactions are
explicitly modeled and can be tested for, as demonstrated with the testlet structure in the second
simulation study and in the context of the empirical example.
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The estimates of the BCSM for response times may not be directly comparable to those of a
conditional model. This can be caused by different constraints on the parameters space; that is,
covariance parameters may take on negative values in the BCSM, while variance parameters in
the conditional model have a lower bound at zero. For the above-mentioned reasons, we argue that
the (co)variance estimates of the proposed BCSM are more accurate representations of their true
values. A related point of caution is the recovery of random effects in the BCSM. As demonstrated
in the context of the empirical example, it is possible to recover the random-effect information
from the model’s residuals post hoc. Due to the different constraints on the parameter space, the
random-effect estimates that are made by the BCSM for response times can be seen as originating
from a qualitatively different model, when compared to estimates from a conditional model.

An interesting future prospect of the BCSM for response times is a to combine it with the
marginal IRT model by Fox et al. (2017) into a joint-model where the interdependence between
response accuracy and speed is explicitly modeled as item-specific cross-covariance parameters.
This may lend insight into the effect of, for example different item forms, testlet structures, or
time pressure conditions on the speed-accuracy trade-off within a group of persons. Existing
approaches to joint-models either assume a constant correlation between response accuracy and
speed across persons and items (Glas & van der Linden, 2010; Klein Entink et al., 2008; Loeys,
Legrand, Schettino, & Pourtois, 2014; Ranger & Kuhn, 2013; Thissen, 1983; van der Linden &
Fox, 2016); do not allow the explicit modeling of the item-specific cross-covariance parameters
(Goldhammer&Kroehne, 2014; Goldhammer et al., 2014;Molenaar, Tuerlinckx, &Maas, 2015);
or strictly limit the number of states in the speed-accuracy relationship that can be modeled given
a reasonable sample size in educational measurement research (Molenaar, Oberski, Vermunt, &
Boeck, 2016; Wang & Xu, 2015).

The proposed framework can furthermore be extended with link functions, which translate a
latent multivariate normally distributed variable (e.g., response accuracy) into observations that
follow a different distribution (e.g., dichotomous item responses). Finally, it is possible to sample
directly from the posterior predictive distribution of the data. In the empirical example, this is
utilized for proper imputation. However, it also makes the creation of posterior predictive checks
(PPC) straightforward. PPCs have been shown to be useful in checking assumptions of IRTmodels
such as multidimensionality or conditional independence (Levy, Mislevy, & Sinharay, 2009) and
have been extended to joint-models that incorporate speed and accuracy (Bolsinova & Tijmstra,
2016).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix A

The sampling steps described below correspond to the sampling scheme as outlined in Algo-
rithm 1. T∗ = {T ,ω} is the imputed dataset.

9.1. Drawing Samples from the Full Joint Posterior

The missing data, item, group, covariance and measurement error variance parameters are
iteratively sampled from their respective conditional posterior distribution.
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9.1.1. Sample Missing Data Parameters The missing data parameters ω are sampled from the
distribution of the replicated data (i.e., the posterior predictive distribution of the data):

p(ω|T , R) =
∫

p(ω|T , R, θ)p(θ |T ,ω, R)dθ ,

where R are the missing data indicators, θ is the vector of model parameters, and p(θ |T ,ω, R)

is the posterior distribution of θ .

9.1.2. Sample Item Parameters The conditional posterior distribution of the item time intensity
parameters is univariate normal with mean E

(
λgk |·

)
and variance Var

(
λgk |·

)
:

E
(
λgk |T∗

gk, μζg , σ
2
gk, δg, μλ0, σ

2
λ0

)
= Var

(
λgk |·

)
(

ng(T̄ ∗
.gk + μζg )

σ 2
gk + δg

+ μλ0

σ 2
λ0

)

,

Var
(
λgk |σ 2

gk, δg, σ
2
λ0

)
=
(

ng

σ 2
gk + δg

+ 1

σ 2
λ0

)−1

.

9.1.3. Sample Group Parameters The conditional posterior distribution of each speed group
mean parameter is univariate normal with mean E

(
μζg |·

)
and variance Var

(
μζg |·

)
:

E
(
μζg |T∗

g,λg, σ
2
g, δg, μζ0, σ

2
ζ0

)
= Var

(
μζg |·

)

⎛

⎝
ng(λ̄g − T̄ ∗

.g.)
(∑p

k=1(σ
2
gk/p + δg)

)
/p

+ μζ0

σ 2
ζ0

⎞

⎠ ,

Var
(
μζg |T∗

g, σ
2
g, δg, σ

2
ζ0

)
=
⎛

⎝
ng

(∑p
k=1(σ

2
gk/p + δg)

)
/p

+ 1

σ 2
ζ0

⎞

⎠

−1

.

9.1.4. Sample Covariance Parameters The covariance parameter δg is sampled from its con-
ditional inverse-gamma posterior distribution as defined in Eq. (19). Covariance parameters from
additional layers are sampled directly from their conditional posterior that follows from Eq. (22).

9.1.5. Sample Measurement Error Variance Parameters The measurement error variance
parameters of the response times σ 2

g are sampled from their respective conditional inverse-gamma
posterior distribution as defined in Eq. (20). The shift parameter and the truncation point are
adjusted if layers are added to the covariance matrix.

Appendix B

Let U have a mean vector equal to 0p (e.g., when U are realizations of the multivariate
normally distributed error variances of the model, and thus the residuals). The trace of the diago-
nalizable covariance matrix, tr (�U ), is equal to the sum of its eigenvalues (Axler, 2014, p. 302).
In other words, if the basis of the corresponding vector space changes as a result of decorrelating
the data (i.e., by multiplying the data matrix with the inverse of the eigenvectors), then the sum
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of the within sum of squares across all items remains unchanged. To apply this theorem to the
problem at hand, first the trace of the CS covariance structure defined in Eq. (16) is derived:

tr (�U ) = (σ 2
g1 + δg) + · · · + (σ 2

gp + δg) = p(σ̄ 2
g + δg).

Subsequently, let X be the decorrelated data. Furthermore, let the vector Zng contain the person
means across all items of the transformed data: Zng = X1 + · · · + X p. From this follows

Z ∼ N (0, p(σ̄ 2
g + δg)),

whereby the variance thus equals the trace of the covariance matrix as shown in Eq. (5). A
truncated inverse-gamma prior that ensures that σ̄ 2

g > 0 then leads to a posterior truncated shifted
inverse-gamma distribution with location parameter δg:

σ̄ 2
g ∼ I G(α0 + ng/2, β0 + SSW/(2p), δg, 0),

where SSW =∑ng
i=1

∑p
k=1

(
Uigk − Ū.gk

)2
.
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