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NILPOTENT PARTITION-INDUCING 
AUTOMORPHISM GROUPS 

MARTIN R. P E T T E T 

1. Introduction. If A is a group acting on a set X and x G X, we 
denote the stabilizer of x in A by CA (x) and let T (x) be the set of elements 
of X fixed by CA (x). We shall say the action of A is partitive if the distinct 
subsets T(x), x £ X, partition X. A special example of this phenomenon 
is the case of a semiregular action (when CA (x) = 1 for every x f I s o 
the induced partition is a trivial one). Our concern here is with the case 
that A is a group of automorphisms of a finite group G and X = G#, the 
set of non-identity elements of G. We shall prove that if A is nilpotent, 
then except in a very restricted situation, partitivity implies semi-
regularity. 

THEOREM. Suppose G is a finite group and A is a nilpotent group of 
automorphisms of G whose action on G# is partitive. Then Ov (A ) is cyclic 
and semiregular on G#. Moreover, if A is not semiregular on G* (and, in 
particular, if 02(A) is neither cyclic nor generalized quaternion), then for 
some Mer senne or Fermât prime p, G is an elementary abelian p-group on 
which 02(A) acts irreducibly and one of the following holds: 

(a) G is of type (p, p) and, if S is a Sylow 2-sub group of Aut (G) 
( = GL2(p)) containing 02(A), then A contains every involution of S. 

(b) G is of type (3, 3, 3, 3) and 02(A) is non-abelian of order 2n, 
5 g w ^ 9. 

As will be noted in the conclusion of this paper, statement (a) of the 
theorem represents a complete characterization of the partitive non-
semiregular nilpotent automorphism groups which arise when G is 
elementary of rank two. Presumably, somewhat more can be said in the 
rank four, exponent three case. 

It is easily seen that a half-transitive action is partitive so, in a purely 
group theoretic context, the theorem can be regarded as a direct extension 
of Theorem II of [2]. Our original motivation for studying partitive 
automorphism groups, however, was some work of C. J. Maxson and 
K. C. Smith on a certain class of near-rings. The object of their study 
was the near-ring C(A, G) of identity-preserving maps from a finite 
group G to itself which commute with the action of a group A of auto­
morphisms (addition in C(A, G) being defined pointwise using the group 
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operation in G and multiplication being defined by composition). In the 
case that G is a vector space, this is the non-linear analogue of the ring 
of yl-endomorphisms of G. The two results of Maxson and Smith which 
are relevant here are, first, that C(A, G) is simple if and only if all point 
stabilizers CA(x), x £ G*, are conjugate in A and, second, that C(A, G) 
is semisimple if and only if A acts partitively on G# [3]. In this context 
then, the significance of our theorem is that, when A is nilpotent, semi-
simplicity of the near-ring C(A, G) usually implies simplicity. More 
precisely, we have 

COROLLARY. Suppose G is a finite group and A is a nilpotent group of 
automorphisms of G such that neither of the two exceptional situations 
described in the theorem applies. If the near-ring C(A, G) is semisimple, 
then it is simple. 

This generalizes a fact previously noticed by Maxson and Smith in 
the case that A is abelian. 

The semiregularity conclusion of the theorem is stronger than the 
conjugacy condition required for the corollary, but only slightly so. In 
fact, using the theorem of Isaacs and Passman mentioned above, it can 
be easily verified that the Sylow 2-subgroups of GL2(p), p a Mersenne 
prime, are the only examples of nilpotent non-semiregular automorphism 
groups which contain a single conjugacy class of point stabilizers. 

Although there are a number of deep results available on partitioned 
groups, the argument we shall present here employs only fairly standard 
group theoretic machinery (most of which may be found in the earlier 
chapters of [1]). It should be acknowledged, however, that while we 
have included for the reader's convenience a detailed account in Section 3 
of the special case that G is an irreducible A -module, much of the analysis 
in this situation is adapted more or less directly from arguments used 
in [2]. 

The author wishes to thank Professor K. Smith for his encouragement 
and for many helpful and motivating conversations on the near-ring 
theoretic aspects of the problem. 

2. Prel iminar ies . Henceforth, we shall assume G is a finite group and 
A is a group of automorphisms of G whose action on G# is partitive. For 
the moment, we do not need to assume A is nilpotent. 

First, we state a property of the point stabilizers which is actually 
equivalent to partitivity. The proof is easy and is omitted. 

LEMMA 2.1. If x and y £ G* such that CA(x) ^ CA(y), then CA(x) = 
CA(y)> In particular, if xn 9e 1, then CA(x) = CA(xn) and T(x) = T(xn). 

It is worth noting as an immediate consequence of Lemma 2.1 that, if 
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A 9e 1, then every point stabilizer CA(x), x Ç G#, is both proper and 
non-trivial. 

LEMMA 2.2. Suppose H and K are non-trivial subgroups of G with 
H C\K = 1. If x £ H* and y e K* such that 

CA(xy) g NA(H)r\NA(K), 

then CA(x) = CA(y). 

Proof. If a Ç CA(ry), then xay* = x;y so x~ax = y*^ 1 Ç i7 Pi K = 1. 
It follows that 

dOry) = CA(tf) n CA(y) 

so, by Lemma 2.1, 

CA{x) = CA(xy) = CA(y). 

3. The module case. We shall first deal with the case that G is an 
elementary abelian £>-group (i.e., a GF(p)-module) with 4̂ acting 
irreducibly. As previously indicated, this part of the argument closely 
parallels the analysis in [2] with some minor modifications necessitated 
by the less numerical nature of the partitivity hypothesis. 

LEMMA 3.1. The theorem is true if G is an irreducible module for A over 
the prime field GF(p). 

Proof. Suppose this is false and let the pair (A, G) be a counterexample 
with \A\ minimal. 

If Or {A) is non-cyclic, then by Theorem 5.4.10 of [1], it contains a 
non-cyclic abelian normal subgroup D. Since 

A = Or(A)CA(Or(A)), 

G is homogeneous as an Ov{A)-module so, if H is an irreducible O^iA)-
submodule of G, H is faithful. But if K is an irreducible D-submodule of 
H, K is not faithful (since D is non-cyclic). Hence, H is not homo­
geneous as a P-module, so the inertia group I of K does not contain 
Or (A). Let B be a maximal subgroup of A which contains 02^4)/ , so 
\A :B\ = q > 2 for some prime q. G is not homogeneous as a ^-module 
(else all A -conjugates of K appear as constituents of any irreducible 
jB-submodule of G, contradicting \B\I\ < |^4'./|) so 

G = Gi e G2 ® . . . e GQ, 

where the G/s are non-isomorphic homogeneous ^-submodules. If 
x £ Gi* and y £ G2

#, then (xy)A j* (xy)B (since (xy)B C Gi 0 G2 ^ G) 
so we must have CA(xy) ^ B. It follows from Lemma 2.2 that CA(x) = 
CA(y). Repeating this argument for all pairs Gu Gj, i ^ j , we find that 
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all non-identity elements of all the G/s have the same stabilizer in A, so 
A is semiregular on G#, a contradiction. 

Hence, Ov(A) is cyclic so Ov(A) ^ Z(A). Then CG(a) is A -invariant 
for every a £ Or {A) so, by the irreducibility of G, CG(a) = 1 for all 
OL £ Oy(Ay. It follows that Oy(A) is semiregular on G#. 

Now we have CA(x) S 02(A) for every x Ç G# so 02(^4) is partitive 
on G#. Also, CG(O204)) = 1 so £ ^ 2. Hence, by Maschke's theorem, G 
is completely reducible as an 02 (^4)-module. But if G = Gi © G2 where 
G\ and G2 are non-trivial 02 (-4)-submodules, then Lemma 2.2 yields that 
all elements of G# have the same stabilizer in 02(A). This implies 02(yl) 
(and hence A) is semiregular on G#. Therefore, G is irreducible as an 
02(A)-module. By the minimality of \A\, we may now assume A is a 
2-group. 

Now since A is not semiregular on G#, it is not cyclic or generalized 
quaternion. Thus, if A contains no non-cyclic abelian normal subgroup, 
it is dihedral or semihedral by Theorem 5.4.10 of [1]. The argument in 
this situation is drawn directly from Lemmas 6 and 7 of [2]. First, A 
contains in either case a cyclic maximal subgroup which, because of the 
irreducibility of G, is semiregular on G#. It follows that | CA (x) \ 5j 2 for all 
x 6 G# so, by the remark following Lemma 2.1, |CA(x)| = 2 for every 
x Ç G#. If a is the central involution in A, the irreducibility of G also 
forces CG(a) to be trivial, so xa = x - 1 for all x G G#. Thus, the com­
ponents T(x) of the partition induced by A are precisely the centralizers 
CG(a) of the non-central involutions in A. Now for any non-central 
involution a, 

G = CG(a) © CG(aa) 

since, relative to a, CG(aa) is the eigenspace for the eigenvalue — 1. If /? 
is any non-central involution such that | 3 ^ a ^ /3cr, it follows that either 

\CG(a)\ ^ |G|1/2 or \CG(aa)\ ^ |G|1/2 

and similarly, 

|C0(/3)| è |G|1/2 or \C0{fSa)\ ^ \GV'\ 

Since, as we have shown, any two of these four centralizers intersect 
trivially, we conclude that all centralizers in G of non-central involutions 
in A (and hence, all components of the partition) have order |G|1/2. Now 
the number of non-central involutions in a dihedral or semidihedral 
2-group is 2n for some n (where the corresponding group order is 2n+1 or 
2«+2 respectively), so if \G\ = p2m, we have 

2n(pm - 1) = p2m - 1. 

Therefore, 2n = pm + 1. Now m is odd (else 2n = pm + 1 = 2 (mod 4), 
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implying n = 1), so 

2» = (/> + 1) (pm~l - . . . + 1). 

But the second factor contains an odd number of terms and hence is odd. 
We conclude that m = 1 so p = 2n — 1, a Mersenne prime, and \G\ = p2. 
In this case, a Sylow 2-subgroup of GL2(p) is semidihedral of order 2n+2 

so statement (a) of the theorem holds, a contradiction. 
Therefore, we may assume A contains a non-cyclic abelian normal 

subgroup D. Arguing as before, we conclude that D is contained in some 
maximal subgroup B of A such that G decomposes non-trivially as a 
direct sum G\ © G2 of 23-submodules. Furthermore, any element of 
A\B interchanges G\ and G2. 

Let x £ Gi#. We claim G2 $ T(x). For if G2 S r (x ) , then choosing 
a G A 5 » w e h a v e Gi = G2« g T(x«). Since G = Gi © G2 and 
T(x) C\ T(xa) = 1 (else T(x) = T(x«) contains Gx © G2 = G and 4 is 
semiregular on G#), we then have x G T(x) = G2, a contradiction. 

Let x j ^ Gi# so by the preceding paragraph, 

Y(x) C\ G2 ^ G2 ^ r (y) H G 2 . 

Since no group can be the union of two of its proper subgroups, we may 
choose an elements in G2 which is not in T(x) VJ T(y). Then CA(xz) ^ B, 
for otherwise Lemma 2.2 implies that CA(x) = CA(z) so z Ç T(x), a 
contradiction. Hence, 4̂ = CA(xs)^ and similarly, 4̂ = CA(yz)B. Let 
a G -4\J3 so a/3 Ç GA(x2;) for some fi £ B. Then 

xs = (xs)a/3 = xaV^ 

so, since a/3 interchanges G\ and G2, x = sa/3. Similarly, we conclude that 
3/ = sa7 for some y £ B. But then f$~ly maps x to 3> so we have proven 
that B is transitive on Gi#. 

If x 6 Gi# and |J5:Cs(x)| = 2W, the transitivity of B implies that 

2» - ^ - 1 = (p - 1) (p--1 + . . . + 1), 

where |Gi| = pm. If m is odd, the second factor is odd so m = 1 and p is 
Fermât. If m = 2& is even, then 

2» - (pk - 1) (£* + 1) 

so pk — 1 and £fc + 1 are both powers of 2. This can obviously occur 
only if pk - 1 = 2, so p = 3 and m = 2. Now CA(x) ^ J3, else ,4 = 
CA{x)B so xA = xB C Gi, contradicting the irreducibility of G. Thus, 
in the case that p = 3 and ra = 2, we have | 5 :C s (x ) | = 8 so |^4| ^ 32 
= 25 since CB(x) = CA(x) ^ 1. Since G is then elementary abelian of 
rank 4 and since a Sylow 2-subgroup of GL4(3) has order 29, statement 
(b) of the theorem holds. Hence, we may assume that p is Fermât, 
m = 1 and \G\ = £2. 
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Suppose S is a Sylow 2-subgroup of Aut (G) containing A, and let a 
be any involution in S. If a fixes no element of G#, then x0" = x~l for every 
x in G#. The irreducibility of G then forces a- to be the unique central 
involution of A. Suppose now that a £ Cs(x) for some x 6 G#. Since 
p — 1 = 2n, the Sylow 2-subgroups of the stabilizer in GL2(p) of any 
non-zero vector are isomorphic to the group of matrices 

{diag(l ,c) : ce GF(p)x\ 

and hence, are cyclic. Therefore, Cs(x) is cyclic so, since CA(x) ^ 1, a 
must be in A. Thus, statement (a) of the theorem holds, a contradiction. 
This completes the proof of Lemma 3.1. 

4. Proof of the theorem. We assume from now on that the pair 
(Ay G) is a counterexample to the theorem with \A\ + \G\ minimal. In 
particular, for any A -invariant subgroup H of G, either A/CA(H) acts 
semiregularly on H* (so CA(x) = CA(H) 53 A for all x £ H*) or one of 
the exceptional situations described in statements (a) and (b) of the 
theorem holds. In the latter case, we shall need only the fact that A acts 
irreducibly on H. 

This part of the argument does not parallel that of [2]. Part of the 
difficulty here seems to be that, while it is a trivial observation that each 
Sylow subgroup of a half-transitive nilpotent automorphism group is 
necessarily half-transitive (so there is no loss in assuming, as Isaacs and 
Passman did, that A is a p-group), the analogous result for a partitive 
action seems less transparent. Indeed, a simple demonstration of this 
fact would enable the present proof to be shortened considerably. 

Let 7T = ic(G) be the set of prime divisors of \G\. We proceed in stages. 

(4.1) G contains a non-trivial proper A-invariant subgroup. 

Proof. Suppose this is false. If p £ ir is a divisor of \A |, let P be a Sylow 
^-subgroup of A j so P ^ A. If R is a Sylow ^-subgroup of the semidirect 
product G A containing P, then P normalizes the Sylow subgroup R C\ G 
of G, so CG(P) is a non-trivial proper A -invariant subgroup of G. Hence, 
(\A\, \G\) = 1. In this case, G has A -invariant Sylow subgroups (by 
Theorem 6.2.2 of [1]) so G must be a ^-group for some prime p. The 
Frattini subgroup of G is proper, hence trivial, so G is elementary abelian. 
Therefore, G is an irreducible module for A over GF(p), contradicting 
Lemma 3.1. 

(4.2) G contains a unique maximal A-invariant subgroup U 9^ I. More­
over, if A does not act irreducibly on it, then U = T(x) for every x Ç U*. 

Proof. By (4.1), G certainly contains a non-trivial maximal A -invariant 
subgroup U and, if A does not act irreducibly on U, then the inductive 
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hypothesis implies that CA(x) = CA(U) for ail x Ç W. But then 

U£ CG(CA(U)) = CG(CA(x)) = T(x) 

for every x in W, so the maximality of U and the fact that point stabi­
lizers in A are all non-trivial force U = T(x) for each x in f/#. 

It remains to show that U is unique. But if V is any other maximal 
A -invariant subgroup of G, the preceding argument applies equally to V 
so either A acts irreducibly on F or V = T(y) for every y £ V*. In 
either case, UC\ V = 1. Lemma 2.2 then implies that CA(x) = CA(y) 
if x 6 £/# and 3/ £ F#, whence follows the contradiction U = T(x) = 
T(y) = V. Hence, U is unique as claimed. 

(4.3) Ifl^BgA, then CG(B) = 1 or U. 

Proof. Since B ^ 1, the uniqueness of U implies that CG(B) ^ U. In 
the case that A acts irreducibly on [/, the conclusion is now immediate, 
so by (4.2), we may assume U = r (x) for all x in £/#. Now if CG(B) ^ 1, 
let x 6 CG(£)#. Then 5 ^ CA(x) so 

£ / = T(x) = CG(CA(x)) ^ CG(B). 

Hence, CG(B) = U. 

(4.4) 0 , (4 ) S CA(U). 

Proof. H p (z ir and P is a Sylow ^-subgroup of A, then as we showed 
in the proof of (4.1), CG(P) is non-trivial and A -invariant. Therefore, 
(4.3) implies U S CG(P) and (4.4) follows. 

(4.5) G is a p-group for some prime p. 

Proof. Since A is non-trivial and partitive on G#, CG(A) is trivial, so 
(4.4) implies 0*'{A) 9^ 1. From (4.3) and (4.4), we conclude that 
CG(0„>(A)) = 1. Hence, if p G TT, Theorem 6.2.2 of [1] yields that G 
contains a unique 0V>{A)-invariant Sylow ^-subgroup R. But if a G -4, 
then .Ra is also 0T>{A)-invariant so Ra = R. It follows that G has 
^4-invariant Sylow subgroups for each of its prime divisors. The unique­
ness of U then implies that G is a ^-group. 

(4.6) CA{x) ^ 0P>(A) for every x G G\U. 

Proof. Since G is a£-group, [G, 0P(A)] 9^ G so, by the uniqueness of U, 
[G, 0P(A)]£ U. Then (4.4) implies 

[G,Op(A),Op(A)] = 1 

so Theorem 2.2.3 of [1] yields that 0P(A) is abelian. Then 0 , ( 4 ) ^ Z ( 4 ) 
so CG (a) is A -invariant for all a £ 0P(A). Since by (4.4), £/ ^ CG(0P(4)) , 
the maximality of U implies CG(a) = U for every a: Ç 0P(^4)#. Thus, 
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0V(A) C\ CA(x) = 1 for every x G G\U and (4.6) follows. 

(4.7) U rg Z(G). 

Proof. Since, by (4.5), G is a £-group, Theorem 2.3.4 of [1] implies 
that U 53 G, hence U (~\ Z{G) 9e 1, so the result is obvious if A acts 
irreducibly on U. Therefore, by the inductive hypothesis, we may 
assume A/CA(U) is semiregular on U*. Now suppose U $ Z(G) so, by 
the uniqueness of U, CG(U) ^ U. Using the fact that U 53 G, we then 
have 

[G, U,CA(U)] = 1 = [U,CA(U),Gl 

so Theorem 2.2.3 of [1] yields 

[G,CA(U)] ^ CG(U) ^ U. 

By Corollary 5.3.3 of [1], CA(U) is a £-group so, by (4.4), CA(U) = 
0P(A). We conclude that 0V>(A) ^ A/CA(U) acts semiregularly on U*. 
It follows from Theorem 3.3.3 of [1] that 0V>{A) contains no non-cyclic 
abelian subgroups, so all elements of prime order in 0V>{A) lie in Z(A). 
Then, if a £ Ov>{AY has prime order, CG(a) is A -invariant so, since 
CA(U) = Op (A), (4.3) implies CG(a) = 1. Therefore, we must have 
CG(a) = 1 for every a in 0P>{A)* so, by (4.6), CAix) = 1 for every 
x 6 G\U. This contradicts the fact that A is partitive but not semi-
regular on G#, so (4.7) is proven. 

(4.8) G has exponent p. 

Proof. Suppose G contains a non-identity element x of order not p. If 
u is any element of order p in Z7, then by (4.7), (xu)p — xv ^ 1, so from 
Lemma 2.1, Y{xu) = T(x). Then x, xu £ r ( x ) s o w G T(x). This shows 
that T(x) contains all elements of order p in U and hence, again by 
Lemma 2.1, T(x) contains U. T(x) must then be A -invariant so by the 
maximality of U, T(x) — U and in particular, x £ U. Now let y £ G\U. 
The preceding argument implies yv = 1 so since x G [/ ^ Z(G), 
(xy)p — xv ?£• 1. As before, this yields y 6 T(x), which is a contradiction 
since T(x) = £7 and 3/ £ G\£/. 

(4.9) iVo counterexample to the theorem exists. 

Proof. If p 7e 2, we first use a "trick" apparently due to Baer. Define 
a new binary operation "*" on the underlying set of G by 

x*y = :ry[3>, x]1/2 

(where [y, x]1/2 denotes the unique element of G whose square is 
[y, x] = y~lx~lyx). Now since G is a£-group, G' ^ G and the uniqueness 
of U forces G' ^ U, so (4.7) implies that G has nilpotence class at most 
two. Using this fact, it is routine to check that * is an abelian group 

https://doi.org/10.4153/CJM-1981-036-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-036-2


420 MARTIN R. PETTET 

operation. Furthermore, if we denote this new group by G*, then G* also 
has exponent p (by (4.8)) and admits A as a group of automorphisms. 
The action of A on (G*)# remains, of course, partitive. 

If p = 2, then (4.8) implies G is itself abelian, so we may let G* = G. 
In either case, we are reduced to a situation in which A acts partitively 
on the non-identity elements of a module G* over GF(p). By Maschke's 
theorem, there exists an Ov> (A)-submodule V of G* such that G* = 
J7 0 V. Since, by (4.6), CA(x) g ( V ( 4 ) for every x £ G\U, Lemma 2.2 
implies that if x £ F# and 3> (E t/#, then CA(x) = CA(;y). We conclude 
that all non-identity elements of G* have the same stabilizer in A, so A is 
semiregular on (G*)# = G#, a contradiction. Thus, the theorem is proved. 

5. Concluding remarks. Suppose p is a Mersenne or Fermât prime 
and S is a Sylowr 2-subgroup of GLi{p). Let 7" = fii(5), the subgroup 
generated by all involutions in S. In the Mersenne case, 5 is semi-
dihedral and in the Fermât case, it is the wreath product of a cyclic group 
with the group of order 2. In either situation, it may be checked that 
T acts half-transitively but not semiregularly on the non-identity 
elements of the natural two-dimensional GF(p)-module G. Therefore, if 
T ^ A ^ GL2(p), then for any x 6 G#, 

(x) ^ C0(CA(x)) g CG(CT(x)) ^G 

so, in fact, CG(CA(x)) = (x). It follows that A acts partitively on G#. 
Hence, statement (a) of the theorem just proved is, in some sense, a 
complete characterization of this particular exceptional case. A concise 
and complete description of the possible exceptions when G is four-
dimensional over GF(3) seems less obvious. We only observe here that 
there do exist examples which are not included in Isaacs' and Passman's 
list (i.e., which are partitive but not half-transitive). In fact, the full 
Sylow 2-subgroup of GL4(3) (which is a wreath product of the semi-
dihedral group of order 16 with the group of order 2) is such an example. 

Finally, note that the automorphism group of the symmetric group 5 3 

acts partitively on 53#, so it is not immediately apparent what the 
partitive analogue of Theorem I of [2] should be. 
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