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Summary

Predicting functional gene annotations remains a significant challenge, even in well-annotated genomes such as
yeast and Drosophila. One promising, high-throughput method for gene annotation is to use correlated gene
expression patterns to annotate target genes based on the known function of focal genes. The Drosophila
melanogaster transcriptome varies genetically among wild-derived inbred lines, with strong genetic correlations
among the transcripts. Here, we leveraged the genetic correlations in gene expression among known seminal fluid
protein (SFP) genes and the rest of the genetically varying transcriptome to identify 176 novel candidate SFPs
(cSFPs). We independently validated the correlation in gene expression between seven of the cSFPs and a known
SFP gene, as well as expression in male reproductive tissues. We argue that this method can be extended to other
systems for which information on genetic variation in gene expression is available.

1. Introduction

The diminishing cost of high-throughput technologies
such as whole genome transcript profiling, high-
density genotyping and whole genome re-sequencing
has shifted the focus of genomic sciences from data
production to data interpretation. Foremost among
the challenges in interpretation is functional gene
annotation, through experimental validation or com-
putational prediction. Even for the best-annotated
genomes, a significant proportion of genes are yet
to be functionally characterized (Peña-Castillo &
Hughes, 2007; Costello et al., 2009) ; less than half in
Drosophila (Costello et al., 2009).

Most knowledge regarding gene function in
eukaryotes comes from mutagenesis, single-gene
knock-outs and RNA interference (RNAi) knock-
down experiments performed in yeasts, Drosophila,
Caenorhabditis elegans, mouse and Arabidopsis
(Winzeler et al., 1999; Alonso et al., 2003; Kamath &
Ahringer, 2003; Bellen et al., 2004; Dietzl et al., 2007;

Ni et al., 2009; Guan et al., 2010; Spirek et al., 2010).
These approaches have provided functions for a large
number of genes in many organisms and the basis
for making gene function predictions based on gene
sequence similarities. However, screening large mu-
tant collections for quantitative phenotypes is highly
laborious. Furthermore, unique mutations in the
same gene, or the same mutation in multiple genetic
backgrounds can give different phenotypes, further
complicating the interpretation of such screens (Flint
& Mackay, 2009; Mackay et al., 2009; Dowell et al.,
2010).

Computational methods for gene annotation com-
plement experimental approaches. Computational
methods rely on the detection of particular sequence
motifs (e.g. a binding domain) (Hrmova & Fincher,
2009) ; strong orthology with a gene of known
function in a closely related species; or ‘guilt-by-
association’ (Bréhélin et al., 2010). The last approach
is based on correlative evidence, such as the co-
regulation of gene expression or the existence of
known protein–protein interactions. In all cases, the
functional annotation of a known gene is transferred
to its interacting or correlated partner, providing a
hypothesis that can be verified experimentally.
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Traditionally, guilt-by-association annotation has
been used in the context of environmental perturba-
tions (Walker et al., 1999; Reverter et al., 2008;
Vandepoele et al., 2009; Klie et al., 2010). A com-
plementary approach is to utilize natural variation
in genetically correlated transcriptional networks to
identify co-regulated transcripts. Previously, we used
genome wide transcript profiles from 40 lines from the
Drosophila Genetic Reference Panel (DGRP; Ayroles
et al., 2009), a set of inbred lines recently derived from
the wild, as a source of genetic variation in gene
expression. The genetic variation among these inbred
lines greatly exceeds that which can be obtained by
mutagenesis screens or standard genetic crosses, while
sampling multiple genetically identical individuals
from each line reduces environmental variance. The
genetically variable transcripts are highly correlated
among the lines, forming 241 transcriptional co-
expression modules (Ayroles et al., 2009). These
co-expression modules were enriched for common
Gene Ontology (GO) categories, expression in the
same tissues, common transcriptional factor binding
sites and associations of gene expression with the
same quantitative traits. These observations suggest
that genetic correlation of gene expression with a co-
expression module may be due to co-regulation and
that transcripts genetically correlated with a target
gene of known function are plausibly involved in
the same biological process or molecular function as
the target gene (Luo et al., 2007; Ayroles et al.,
2009). Here, we test this hypothesis using seminal
fluid proteins (SFPs) as the focal genes.

We chose SFPs as focal genes for two reasons.
First, many of the gene products of the secretory tis-
sues of the male reproductive tract that produce the
SFPs are well understood in Drosophila melanogaster
(Wolfner, 2009). This is especially true for the
male accessory glands (AGs), which produce proteins
collectively known as ACcessory gland Proteins
(ACPs). ACPs are transferred to females in the
seminal fluid and affect a number of post-mating
processes (Wolfner, 2009), including sperm storage
and maintenance (Neubaum & Wolfner, 1999; Tram
& Wolfner, 1999; Ravi Ram & Wolfner, 2007, 2009),
egg production and mating receptivity (Heifetz et al.,
2000; Chapman et al., 2003; Liu and Kubli, 2003),
female feeding behaviour (Carvalho et al., 2006) and
sleep patterns (Isaac et al., 2010). Proteomic (Findlay
et al., 2008, 2009) and gene expression (Swanson
et al., 2001) studies have identified 187 SFPs, most of
which are ACPs. Second, we observed strong genetic
correlations in expression among the known ACPs
(Ayroles et al., 2009), suggesting that new SFPs, and
potentially genes important for the production or
function of these proteins, could be found by analys-
ing the correlation structure between genetically
variable transcripts.

Using the DGRP expression data (Ayroles et al.,
2009), we identified transcripts whose expression pat-
terns correlated with known SFPs. These correlated
transcripts are candidates for both previously un-
known SFPs and genes that are required for regu-
lation of SFP production. Very little is known about
how SFP genes are regulated in the male ; this method
provides a means to identify candidate regulatory
genes for further study. As a proof of principle, the
only known transcription factor required for the ex-
pression of specific SFP genes (Xue & Noll, 2002) was
among the candidate genes we identified. Although
proteins encoded by regulatory genes would not
necessarily be transferred to females during mating,
and are therefore not SFPs per se, we refer to our set
of candidate SFPs as cSFPs.

We identified 176 cSFP genes. For validation, we
selected seven candidates with varying levels of cor-
relation to known SFP genes and used quantitative
real-time PCR (qRT-PCR) to validate the correlation
patterns. We also used RT-PCR to test the tissue
of expression for these seven genes. We propose that
this method can be widely applied to similar datasets,
beyond the example of the SFP functional annotation
we present.

2. Methods

(i) Gene expression data

The gene expression data are from Ayroles et al.
(2009). Whole genome expression was quantified using
Affymetrix Drosophila 2.0 arrays for two replicate
pools of 3–5-day-old mated males and females for
each of 40 DGRP lines. We median-centred the perfect
match (PM) data and removed probes that were
identified as likely single feature polymorphisms. We
used the median log2 signal intensity of the remaining
PM probes in each probe set as the measure of
expression. A total of 14 840 (78.9%) of the 18 767
transcripts on the array were expressed. Because we
focus here on highly male-biased transcripts, we only
used the male gene expression data to identify
genetically variable transcripts. We fitted the following
model to the expression data: Y=L+e, where Y is the
median log2 signal intensity, L is the line effect and e is
the residual. We identified 7151 transcripts as geneti-
cally variable at a False Discovery Rate (FDR)<0.01.

The raw microarray data are deposited in the Array-
Express database (http://www.ebi.ac.uk/arrayexpress)
under accession number E-MEXP-1594. The DGRP
stocks are available from the Bloomington Drosophila
Stock Center (Bloomington, Indiana).

(ii) cSFPs

Of the 187 known SFP genes, 107 had genetically
variable expression levels in the DGRP lines.
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We computed pairwise Pearson correlations between
the 107 genetically variable SFPs and all 7151 geneti-
cally variable transcripts, 1. We then calculated an
‘SFP score ’ for each of the 7151 transcripts by tally-
ing the number of significant correlations (P<0.01)
with known SFPs, divided by 107. For a given tran-
script, a score of 100 indicates that it is correlated with
all 107 known SFPs, and a score of 0.93 (1/107r100)
indicates the absence of significant correlation be-
tween the focal gene and any of the known SFP genes
(i.e. only showing correlation to itself). The thresholds
used to compute this score are arbitrary, but this
method is both simple and intuitive, and gives similar
results to more sophisticated statistics such as the
identification of eigengenes (Langfelder & Horvath,
2007) following the construction of co-expression
gene networks and using the Principal Component
Analysis (PCA) loadings to identify correlated
transcripts.

In addition to the correlation structure, we used
several criteria to identify transcripts as putative SFPs
(proteins that are predominately or exclusively ex-
pressed in the male reproductive tract and likely to
be transferred to females), or as potential regulatory
genes (those that produce proteins unlikely to be
transferred to females) but whose expression is also
predominately limited to male reproductive tissues.
We used FlyAtlas (Chintapalli et al., 2007), a data-
base of tissue-specific expression for D. melanogaster,
to examine the tissues of expression for each gene with
an SFP score of greater than 8. In addition, because
SFPs are secreted proteins, we used SignalP software
(http://www.cbs.dtu.dk/services/SignalP/) to identify
the presence of predicted signal sequences. The pro-
gram calculates the probability that the input amino
acid sequence contains an N-terminal secretion signal.
Here, we used the signal peptide probability score
given from the SignalP-HMM prediction method.
Signal peptides are usually 15–30 amino acids
long and contain a stereotypical pattern of charged,
hydrophobic and uncharged residues, although
the amino acid sequence itself is not conserved
(Emanuelsson et al., 2007). However, not all secreted
proteins contain predicted signal sequences (Findlay
et al., 2008), and not all proteins with secretion signals
are secreted (Emanuelsson et al., 2007). Therefore,
we do not exclude genes as being SFPs or ACP
candidates based solely on a low SignalP score.

(iii) Experimental validation of cSFPs

We chose seven genes identified as cSFPs for vali-
dation of the guilt-by-association results as well as
further characterization. These genes have a range of
SFP scores and a few have predicted biochemical
functions, though none were predicted to be in-
volved with SFP function. In addition to the seven

candidates, we also included a known ACP gene
(CG9997 ; Swanson et al., 2001; Ravi Ram &
Wolfner, 2007), and a known ejaculatory duct (ED)
protein gene (Dup99B ; Saudan et al., 2002), both of
whose products are transferred to females, as positive
controls. We expect cSFP genes, including those
expressed in the ED or bulb, to correlate in expression
with the known SFP, CG9997. We included CG34422
as a negative control, given its low SFP score and
wide expression pattern across tissues, including the
male AGs, brain, eye and hindgut. This gene should
not show a significant correlation to CG9997 in the
qRT-PCR experiment, in contrast to the seven cSFPs.

We independently validated the tissue-biased
expression results from FlyAtlas (Chintapalli et al.,
2007) for these 10 genes. We reared Canton-S males
on standard yeast-glucose medium under uncrowded
conditions at y24 xC. We dissected 50–60 testes (T),
AGs, EDs, ejaculatory bulbs (EB) and male carcasses
(C; no reproductive tract). Dissected tissues were
placed directly into TRIzol Reagent (Invitrogen) on
ice. We collected two biological replicates for each
RNA extraction.

We used qRT-PCR to validate the correlation
structure between the genes that had been inferred
from the microarray experiment. We randomly
selected 20 of the 40 DGRP lines used in the micro-
array study (Ayroles et al., 2009), and isolated total
RNA from two biological replicates, each with 8–12
males of each line (3–7 days post-eclosion). We then
estimated the correlation of gene expression with the
known SFP, CG9997.

(iv) RNA extractions and cDNA synthesis

We extracted total RNA by grinding dissected tissues
in 150 ml of TRIzol Reagent (Invitrogen), following
the manufacturer’s recommendations for RNA iso-
lation, except that 0.5 ml of chloroform was used for
every 1 ml of TRIzol. Total RNA was treated with
DNase1 (Invitrogen) and converted to cDNA with
Superscript II Reverse Transcriptase (Invitrogen) and
oligo-dT primers as recommended by the manufac-
turer. We used 500 ng of total RNA per 20 ml reverse
transcription reaction. Negative controls without
reverse transcriptase were tested once for all genes
and all cDNA samples to exclude potential genomic
DNA contamination.

(v) qRT-PCR

We quantified mRNA levels by qRT-PCR in 25 ml
reactions with the SYBR green detection method
(iQ SYBR Green Supermix, Bio-Rad) according
to the protocol from MyiQ Single-Color Real-Time
PCR Detection System (Bio-Rad). Each reaction
was performed with 2 pg of total cDNA, using a
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BioRadMyiQ Single-Color Real-Time PCR Detection
system. We used the actin5C gene as an internal
standard. We used Primer3 (http://frodo.wi.mit.edu/
primer3/) to design transcript-specific primers to
amplify 85–148 bp regions of the genes of interest.
CG34422 primers were designed to encompass the
common regions of alternative transcripts. The start-
ing template concentration of each transcript was
calculated from the standard curve of that primer
pair according to the method described by Qiagen
(http://www1.qiagen.com/literature/brochures/pcr/qt/
1037490_ag_pcr_0206_int_lr.pdf). We used the linear
regression model Y=mX+b to quantify transcript
abundance, where Y is the critical threshold (Ct)
values from the qRT-PCR experiment, m is the slope,
b is the intercept of the standard curve and X is the
transcript abundance. We standardized this estimate
by dividing by the transcript abundance of actin5C in
the same sample.

(vi) GO analysis

We used the GO analysis to assign functional cat-
egories to the cSFP genes tested. We computed the
genetic correlations between each of the seven new
focal genes with the remainder of the genetically
variable transcriptome. We then performed a GO
enrichment analysis for the genes most strongly cor-
related to the focal gene (P<0.001 and |r|>0.5). The
conclusions regarding enrichment were the same if the
threshold was increased to P<0.0001. We performed
this analysis using DAVID 6.7 (Huang et al., 2009).

3. Results and Discussion

Of the 187 known SFPs, 107 had genetically variable
transcripts among the 40 DGRP lines (Ayroles et al.,
2009). The 107 known SFPs were highly genetically
correlated (Fig. 1), reinforcing the idea that gene co-
expression may be a reflection of shared function. We
attempted to cluster this correlation matrix further
into modules using various clustering algorithms, in-
cluding Modulated Modularity Clustering (MMC)
(Stone & Ayroles, 2009), but did not find strong
community structure in the graph resulting from this
correlation matrix. In addition, we did not find evi-
dence supporting the idea that genes sharing a similar
GO term were more strongly correlated with each
other than they were to the rest of the genes.

We then analysed the correlation matrix between
the 107 known SFPs and 7151 transcripts that were
genetically variable in males. We assigned an SFP
score to each of the genetically variable transcripts
based on the number of significant correlations with
known SFPs (Supplementary Table 1 available at
http://cambridge.journals.org/GRH). We next asked
whether this approach would allow us to recover the

known SFPs. We ranked the vector of SFP scores
from the highest to the lowest and applied the filter
that cSFPs should be expressed in male reproductive
tissues based on FlyAtlas (Chintapalli et al., 2007)
data. We found that 78% of the known SFPs are in
the top 500 transcripts.

We identified 176 cSFP genes that have correlated
expression patterns to at least 7 of the 107 genetically
variable known seminal protein genes and are ex-
pressed in male reproductive tissues (Supplementary
Table 1). A total of 37 of the 176 candidates have no
known or predicted functions or GO terms. An ad-
ditional 13 transcripts correspond to probe sets on the
Affymetrix array but not annotated genes, and could
correspond to new genes. Independent confirmation
of cSFP identification comes from a proteomic
screen aimed at identifying male proteins transferred
during mating (Findlay et al., 2008, 2009). Two can-
didate transcripts were confirmed as bona fide SFPs:
CG34002 (with an SFP score of 15) and Sfp26Ad
(with an SFP score of 41). Sfp26Ad was not annotated
as a gene at the time we performed this experiment
and corresponded to probe set 637742 at on the
Affymetrix array.

We chose seven cSFP genes (CG9720, CG11828,
CG31413, CG31493, CG31496, CG32985 and
CG34002), as well as two positive control genes (the
ACP gene CG9997 and the ED protein gene Dup99B)
and one negative control gene (CG34422, with an SFP
score of 0.93) for validation of the microarray corre-
lation results using qRT-PCR in 20 of the DGRP
lines. The candidate genes have SFP scores ranging
from moderately low (8) to very high (42, the highest
SFP score found) (Table 1). The RT-PCR results
confirmed the correlation between all seven cSFPs
and the known ACP gene CG9997 across the 20 lines
(Fig. 2). As predicted, expression of the negative
control CG34422 was not genetically correlated with
that of CG9997. However, expression of the ED pro-
tein gene Dup99B, whose gene product is transferred
with the seminal fluid to females, was genetically
correlated with CG9997, demonstrating that non-
ACP SFPs canals to be identified with this method.

Table 1 gives SFP scores, secretion signal peptide
probability and tissue of expression for these seven
genes and for the positive and negative controls.
Three genes with high SFP scores were not predicted
to have secretion signals. These genes’ products may
be secreted nevertheless, as has been seen in other
cases (Findlay et al., 2008), or they may be non-SFP
genes that are important for the regulation of other
SFPs.

Among the seven genes, all that were predicted to
be expressed in AGs (Chintapalli et al., 2007) were
confirmed as expressed in that tissue (Table 1, Fig. 3).
To gain insight into the possible biological processes
and molecular functions of the candidate genes
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chosen for validation, we used a GO enrichment
analysis implemented in DAVID (6.7) (Huang et al.,
2009). For each candidate gene, we analysed the
function of its most correlated transcripts (P<0.001
and r>0.5). Four of the seven candidate genes
(CG11828, CG31413, CG31493 and CG34002) were

significantly associated with serine-type endopep-
tidase inhibitor activity, a predicted function shared
by several other SFPs (Wolfner, 2009). However, it
is important to note that CG11828, CG31413 and
CG31493 do not contain conserved protease domains
but do contain other types of predicted conserved

Fig. 1. Graphical representation of the correlation among known SFPs. Each node represents a gene and each edge the
correlation between two genes. The thickness of each edge is scaled proportional to the strength of the correlation between
two genes. The absolute value of all correlations depicted is greater than 0.5 (P<0.001).

Table 1. Genes selected for experimental validation. The SFP score is the fraction of known SFPs with which
the gene had correlated expression. Sprob is the predicted probability of a secretion signal sequence as given by
SignalP. Tissue of expression is given from the FlyAtlas compilation and our RT-PCR data from the male
reproductive tract and carcass. ED and bulb are not represented in FlyAtlas. Bold font denotes tissues of
predominant expression. AG, accessory glands; ED, ejaculatory duct; EB, ejaculatory bulb; T, testis ;
LSG, larval salivary glands; HT, heart; HD, head. ED and EB are not represented in FlyAtlas.

Category Gene Affymetrix ID
SFP
score Sprob

Tissue
(FlyAtlas)

Tissue
(RT-PCR)

Candidate SFA CG9720 1624902_at 35 0.997 AG AG, ED, EB
Candidate SFA CG11828 1633604_at 41 0 AG AG, ED
Candidate SFA CG31413 1635084_at 42 0.987 AG AG, ED
Candidate SFA CG31493 1640609_at 36 0 AG AG
Candidate SFA CG31496 1628103_at 8 0.721 AG, LSG AG, ED, EB
Candidate SFA CG32985 1632491_at 38 0 AG AG, ED, EB
Candidate SFA CG34002 1625512_s_at 15 0.991 AG AG
ACP positive control CG9997 1634224_at 39 0.999 AG AG
ED positive control Dup99B 1639365_at 29 0.98 AG AG, ED, EB
ACP negative control CG34422 1641329_at 1 0 All but T, HT, HD All
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domains. No significant GO-class enrichment was
observed for CG9720, CG31496 or CG32985.

It is possible that some of the cSFP genes are im-
portant for SFP expression and function but may not
encode proteins that are transferred to females as part
of the seminal fluid. As proof of principle that such
genes can be identified by this method, our analysis
detected paired (SFP score=16), which encodes a
transcription factor important in AG development
and ACP expression (Supplementary Table 2 available

online at http://cambridge.journals.org/GRH). This
Pax gene has a dual function inDrosophila : it acts first
as a pair-rule gene in early embryo development
(Nüsslein-Volhard & Weischaus, 1980; Kilchherr
et al., 1986) and later is required for viability and male
fertility (Bertuccioli et al., 1996; Xue & Noll, 1996,
2000). AG formation and expression of at least two
SFPs expressed in the AG (ACP26Aa and SP) both
require the function of paired (Xue & Noll, 2000,
2002).

(a) (b) (c)

(d ) (e) (f )

(g) (h) (i )

Fig. 2. Correlation of qRT-PCR estimates of gene expression between cSFP genes and positive and negative SFP control
genes (y-axis) to a known ACP gene (CG9997, x-axis) among males of 20 inbred lines. All estimates of gene expression are
normalized to that of actin5C. The linear regression line is shown, along with the t-test P-value and the estimate of the
correlation coefficient, r. (a) CG11828, r=0.68, P=0.001. (b) CG31413, r=0.81, P=0.000014. (c) CG31493, r=0.77,
P=0.000063. (d) CG31496, r=0.51, P=0.022. (e) CG32985, r=0.53, P=0.015. ( f ) CG34002, r=0.66, P=0.0017.
(g) CG9720, r=0.66, P=0.0016. (h) Dup99B (positive control), r=0.55, P=0.012. (i) CG34422 (negative control),
r=0.12, P=0.61.
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Guilt-by-association methods most frequently
rely on clustering algorithms to identify the func-
tional membership of a candidate gene or transcript
(Aravind, 2000; Miozzi et al., 2008; Reverter et al.,
2008; Klie et al., 2010). In its most common use, guilt-
by-association is used to assign functions to any or all
unannotated genes that respond to a given treatment
or are differentially regulated under disease condi-
tions. Here, we have demonstrated the use of guilt-by-
association methods in another context : to identify
genes in a specific functional class using correlated
genetic variation in gene expression among wild-
derived inbred lines. This method removes the re-
quirement for relying on arbitrary clustering or
reliance on GO terms to assign candidate functions to
new genes. Instead, a group of genes that has been
annotated and functionally clustered experimentally
is used to find correlated transcripts that can then be
included in the group. In this case, we used SFPs,
a group defined by a biological phenomenon rather
than a biochemical function. As in potentially many
other cases, for example, identifying genes involved in
specific behaviours, GO terms do not define our
selected group of genes as belonging to a biologically
significant group. The group of genes we identified
(cSFPs) have diverse GO functions (ranging from
proteases to pro-hormones). A given cSFP gene
could not be predicted as an SFP on the basis of GO
membership.

SFP genes are well suited for this study since their
expression is specific to, or highly biased in, the male
reproductive tract, facilitating their confirmation
as SFPs; and expression of the known SFPs is

genetically variable in the population of lines sur-
veyed. An increasing number of studies are taking
advantage of natural genetic variation to better
understand the genetic basis of phenotypic variation
(Mackay et al., 2009). In the future, the availability of
sequence information for the D. melanogaster popu-
lation used in this study will allow us to associate
co-expression with expression quantitative trait
locus (eQTL) analysis (Mackay et al., 2009). This
additional layer of information will further our
understanding of what genetic factors are driving
co-expression between SFP genes, and may lead us to
rethink what information should be considered when
annotating a segment of sequence.

To complement this study, and generalize the
simple analysis presented in this manuscript, we have
created a web tool (http://dgrp.statgen.ncsu.edu) that
allows the user to input the Affymetrix Drosophila 2.0
ID of any focal gene of interest and retrieve a vector
of genes, their ranked correlation with the focal gene,
as well as the GO of the correlated transcripts.
This tool integrates FlyAtlas information (Chintapalli
et al., 2007), allowing users to restrict the compu-
tation of correlations to genes expressed in specific
tissue or to genes with strong tissue-biased expression.

Many studies using natural genetic variation to
study phenotypic variation also investigate variation
in gene expression and gene co-expression (Mackay
et al., 2009). However, very rarely is this information
translated in the form of hypothetical functional
annotation for any unannotated genes involved. We
advocate that such datasets be used more routinely as
patterns should emerge across studies and this infor-
mation will greatly improve our understanding of
genes, their function and regulation. In particular,
directed analyses such as the one presented here, in
which genes involved in an experimentally defined
group are sought, may help to uncover pleiotropy
among previously annotated genes and increase our
understanding of how various biological systems
function together.
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