
Meteorological factors and El Niño Southern Oscillation are

independently associated with dengue infections

A. EARNEST 1,2*, S. B. TAN 1,3
AND A. WILDER-SMITH 4

1 Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore
2 Clinical Research Unit, Tan Tock Seng Hospital, Singapore
3 Singapore Clinical Research Institute, Singapore
4 Institute of Public Health, University of Heidelberg, Germany

(Accepted 22 August 2011; first published online 12 September 2011)

SUMMARY

Our objective was to determine the association between temperature, humidity, rainfall and

dengue activity in Singapore, after taking into account lag periods as well as long-term climate

variability such as the El Niño Southern Oscillation Index (SOI). We used a Poisson model which

allowed for autocorrelation and overdispersion in the data. We found weekly mean temperature

and mean relative humidity as well as SOI to be significantly and independently associated with

dengue notifications. There was an interaction effect by periods of dengue outbreaks, but periods

where El Niño was present did not moderate the relationship between humidity and temperature

with dengue notifications. Our results help to understand the temporal trends of dengue in

Singapore, and further reinforce the findings that meteorological factors are important in the

epidemiology of dengue.
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INTRODUCTION

Dengue is an arboviral infection transmitted by mos-

quitoes, in particular Aedes aegypti [1]. Dengue is the

most important emerging viral disease in the sub-

tropics and tropics and accounts for major morbidity,

mortality and economic cost in these areas [2]. The

geographical range of dengue transmission is in-

creasing, and global warming has been blamed for the

spread of dengue [3–5] Mosquitoes require standing

water to breed, as well as warm ambient temperature

for adult mosquito feeding behaviour and mortality

[6]. Favourable meteorological variables such as

temperature, humidity and rainfall may therefore lead

to increased vector proliferation [7–12]. The distinct

seasonal fluctuations of dengue in most tropical areas

may also be due to weather variables [13]. However,

the association between such variables appears to

differ from country to country: temperature and

relative humidity seem to be strongly correlated in

some countries [9, 14, 15], but another study found

rainfall but not temperature to be associated with

dengue [16]. Within the same country, there can also

be spatial variability in the effect of temperature and

rainfall [17]. Such spatial variability requires location-

specific identification of main weather and climatic

factors associated with dengue activity. In addition

to seasonal variability, there appear to be annual

oscillations associated with a cyclical pattern with

epidemic peaks every 3–7 years [7, 12, 13, 18, 19]. The
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El Niño Southern Oscillation (ENSO) is a systematic

pattern of global climate variability which affects the

climate with droughts and extended wet periods every

2–7 years [20]. The Southern Oscillation refers to a

major air pressure shift between the Asian and east

Pacific regions whose best-known extremes are El

Niño events. ENSO has been shown to be associated

with monthly dengue activity in several countries

[7, 11–13, 21, 22].

Singapore is a city-state in South East Asia, and is

endemic for dengue with clear seasonal and year to

year variations [23, 24]. We investigated the associ-

ation between weather and ENSO with dengue in

Singapore. Our objectives were to assess linkages be-

tween microclimate and longer-term ENSO-related

weather changes on the weekly notifications of dengue

cases in Singapore.

METHODS

Data

Data on weekly human dengue cases were collated

from the Weekly Infectious Disease Bulletin, which

is freely available on the website of the Singapore

Ministry of Health (MOH) [25]. All notified and

registered dengue cases were laboratory confirmed.

The laboratory assays were polymerase chain reaction

(PCR) and/or NS1 antigen (in the first 5 days of

illness) and/or a positive dengue IgM after day 5 of

illness. The case definition for dengue was based on

the 2009 World Health Organization’s criteria for

dengue, and can be found on the MOH’s website

[26]. The data were presented in 52 epidemiological

weekly intervals for each year between 2001 and 2008.

For the same time period, we obtained the following

weather variables from the Meteorological Services

Division of the National Environment Agency

(NEA), Singapore : mean/minimum/maximum daily

temperature, mean daily rainfall, mean/minimum/

maximum relative humidity, mean hours of sunshine

and mean hours of cloud in Singapore.

In order to ensure that the meteorological data was

analysed in the same scale as dengue notifications,

we aggregated the data into the 52 epidemiological

calendar weeks. In addition, we also obtained infor-

mation on the Southern Oscillation Index (SOI),

which is computed using monthly mean sea-level

pressure anomalies at Tahiti and Darwin [20]. The

SOI is a measure of long-term climate variability, with

sustained negative values of the SOI indicating El

Niño episodes, with corresponding sustained warm-

ing of the central and eastern tropical Pacific Ocean,

and positive values of the SOI associated with stronger

Pacific winds and warmer sea temperatures to the

north of Australia, also known as the La Niña

effect [27].

Statistical model

We used a Poisson model, which included extensions

to incorporate autocorrelation of the order of 2 in the

data as well as overdispersion [28], and which was

previously applied to air pollution time-series data

[29]. To accommodate annual seasonality in the data,

we included a sinusoidal function in the model. The

model is briefly described below.

The number of dengue cases at week t is assumed to

follow an overdispersed Poisson distribution with

mean and variance given as follows:

Yt � Poi(mt),

mt=exp(SBXtxc),

Var Ytð Þ=amt:

The sinusoidal function incorporated in the model

[29] was defined by:

a sin (2p t=52)+b cos (2p t=52) (t=1, . . . , 416):

The covariance of Yt is assumed to be of the form

aA½RA½, where A is a diagonal matrix with At=
E(Yt), a is a scalar to account for overdispersion, and

R is a symmetric autocorrelation matrix generated by

an autoregressive model. The model is run in Stata

software (StataCorp., USA) using a code that fits a

log-linear model using the iterative weighted least

squares method via the nonlinear command. Initial

estimates for the model were obtained from a pre-

vious standard Poisson regression.

The mean absolute percentage error (MAPE) was

used to compare between competing Poisson models,

with various autoregressive terms. Models with lower

MAPE values indicate a better fit. The calculation of

MAPE is given by:

MAPE=
1

n

Xn

t=1

YtxŶYt

Yt

����

����,

where n is the total number of weeks of data, Yt and

ŶYt are the observed and predicted number of dengue

cases respectively at week t. We found that an auto-

regressive term of the order of 2 provided the lowest

MAPE of 0.47.
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We performed univariate analyses to identify in-

dividual meteorological variables that were related to

dengue notifications, and we set out to quantify the

optimal lag period (in weeks). For each meteoro-

logical variable we ran 13 different univariate mod-

els, each encompassing a different lag period (from

lag 0 to lag 12 weeks), resulting in a total of 130

models. Starting from the most significant variable

identified in the univariate analysis, we sequentially

added the next most significant variable, and exam-

ined whether the variable remained significant. This

process was repeated until we were left with all sig-

nificant variables in the final multivariate model.

In terms of model fit, we looked at whether the re-

siduals had any autocorrelation, by examining the

autocorrelation plots. In addition, we looked for in-

teraction effects by outbreak year and periods where

El Niño was prevalent. An outbreak year was defined

as a year where the maximum weekly number of

cases of dengue exceeded twice the standard devi-

ation (i.e. 212) of the mean weekly cases for the en-

tire period (i.e. years 2003, 2004, 2005, 2007, 2008),

and El Niño year was an indicator variable created,

which took on a value of 1 for years between

2002–2003 and 2006–2007, and 0 otherwise. Data

analysis was performed in Stata v. 10.2 (StataCorp)

and all tests were evaluated at the 5% level of sig-

nificance.

RESULTS

Figure 1 shows surveillance data on dengue notifi-

cations exhibiting a clear cyclical trend in Singapore

from 2001 to 2008, with peak number of cases gener-

ally seen in June or September. Mean weekly cases

increased over the years from 2001 to 2005. Sub-

sequently, the number fell to 59 in 2006 and increased

again to 167 in 2007 and 130 in 2008. In addition to

the seasonal cyclical trends, we also observed that

there were five years where the maximum weekly cases

surged above the outbreak threshold. In particular,

years 2005 and 2007 were characterized by an un-

usually large number of maximum weekly dengue

cases. The total number of dengue cases for these two

years was also unusually high. Any statistical model

aimed at characterizing dengue trends needs to ac-

count for these specific features in the trends. Table 1

describes the SOI values across the years 2001–2008 in

Singapore. The SOI values exhibited clear temporal

trends, ranging from x1.8 in 2004 to 0.5 in 2008.

Similarly, the meteorological variables exhibited

seasonal patterns from 2001 to 2008 (Table 1). When

we specifically compared the coefficient of variation

(CV) across the variables, we observed that rainfall

had the largest value, indicating that the weekly

variability was much higher for rainfall than for the

other variables.
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Fig. 1. Weekly dengue notifications, along with humidity, temperature and Southern Oscillation Index (SOI) from 2001 to

2008.
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In the univariate analysis (data not shown), we

observed a number of variables associated with

weekly dengue notifications. For SOI, we found that

the effect was strongest at week 5, with a coefficient of

x0.03 (P<0.001). There was a significant negative

association with mean relative humidity at week 2

(coefficient x0.02, P<0.001). Conversely, for mean

temperature, our results indicated a significant

positive association with dengue cases at week 2

(coefficient 0.13, P<0.001). Regarding mean hours

of cloud, sunshine and amount of rainfall, the re-

lationship was weaker, occurring at weeks 4, 10 and

1, respectively. However, there was a significant

correlation between mean temperature and hours

Table 1. Temporal variation in meteorological variables from 2001 to 2008

Year Parameter
Mean
humidity

Mean
temperature

Mean
hours
cloud

Mean
hours
sunshine

Mean
rain SOI

2001 Mean 84.29 27.62 7.01 5.22 7.65 0.00
Median 82.38 27.21 6.94 4.26 2.75 x0.10
P25 84.20 27.64 7.01 5.29 5.02 x1.00

P75 86.18 28.19 7.10 6.16 10.61 0.80
CV 0.03 0.03 0.03 0.33 1.05 411.74

2002 Mean 82.46 28.09 6.89 6.33 4.76 x1.03
Median 79.96 27.62 6.75 4.76 0.45 x1.10
P25 82.12 28.07 6.96 6.40 1.90 x1.55

P75 84.63 28.65 7.04 7.56 7.33 x0.86
CV 0.04 0.03 0.03 0.29 1.32 x1.03

2003 Mean 84.34 27.77 6.98 5.37 6.62 x0.64
Median 82.14 27.06 6.89 4.06 2.40 x0.70

P25 84.90 27.70 6.99 5.44 5.84 x1.15
P75 86.72 28.41 7.11 6.51 9.11 x0.32
CV 0.04 0.04 0.03 0.34 0.94 x1.45

2004 Mean 83.56 27.84 6.95 5.88 6.17 x0.89

Median 80.11 27.20 6.83 4.48 0.35 x1.20
P25 83.88 27.70 6.97 6.28 3.09 x1.80
P75 86.54 28.51 7.06 7.35 7.66 x0.50

CV 0.05 0.04 0.03 0.33 1.57 x1.45

2005 Mean 83.18 28.01 6.89 6.06 5.03 x0.75
Median 81.43 27.55 6.84 4.64 0.80 x0.40
P25 83.56 28.06 7.00 5.88 3.41 x1.45

P75 85.25 28.56 7.11 7.28 7.40 0.15
CV 0.04 0.03 0.05 0.33 1.08 x2.52

2006 Mean 84.56 27.75 7.04 5.62 7.54 x0.38
Median 81.79 27.34 6.97 4.23 1.76 x1.05
P25 85.39 27.84 7.01 5.53 4.40 x1.30

P75 87.13 28.41 7.06 6.82 9.16 1.15
CV 0.05 0.03 0.02 0.34 1.29 x4.51

2007 Mean 84.54 27.54 7.01 5.30 7.93 0.05
Median 81.85 26.95 6.94 4.00 2.69 x0.32

P25 84.13 27.54 7.01 5.28 6.35 x0.63
P75 87.17 28.31 7.09 6.81 9.36 0.56
CV 0.04 0.03 0.02 0.36 1.08 23.04

2008 Mean 83.47 27.48 7.01 5.23 6.37 1.77

Median 81.16 26.84 6.93 3.90 1.44 2.05
P25 83.46 27.54 7.01 5.04 4.83 0.55
P75 85.62 27.96 7.09 6.24 9.41 2.45

CV 0.04 0.03 0.02 0.33 1.04 0.73

SOI, Southern Oscillation Index; P25, 25th percentile ; P75, 75th percentile,CV, coefficient of variation.
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of cloud (r=x0.41, P<0.001), hours of sunshine

(r=0.62, P<0.001) and amount of rainfall

(r=x0.53, P<0.001), indicating presence of con-

founding.

In the multivariate analysis, we found only SOI,

mean daily relative humidity, and temperature

values to be significantly and independently as-

sociated with dengue notifications (Table 2). The coef-

ficients were x0.02 (95% CI x0.03 to x0.001), 0.02

(95% CI 0.01–0.03) and 0.18 (95% CI 0.13–0.22)

for SOI, relative humidity and temperature, respect-

ively. Figure 1 highlights the temporal trends in these

three variables. Tests for interaction revealed that

the effects of SOI, relative humidity and temperature

on dengue infections did not vary according to

periods where El Niño was prevalent. However,

for periods associated with an outbreak, we did find

a significant interaction effect (P<0.001 for SOI,

P=0.019 for relative humidity, P<0.001 for tem-

perature). In Table 2, we report the results for the

multivariate analysis, stratified by outbreak year.

Generally, we observed that the effects of weather

variables were greater during periods of outbreak,

as evident from the larger magnitude of the coef-

ficients. Figure 2 shows the fit between the observed

and predicted values from our final multivariate

model. In general, the model fit the data well, as

shown by a high adjusted r2 value of 0.91. However,

the model tends to over-predict dengue cases during

periods of outbreak, and hence the usefulness of our

model to predict dengue outbreaks needs further

evaluation.

DISCUSSION

In this study, we used a Poisson model with auto-

correlation terms to explore the relationship between

notifications of dengue in Singapore and seasonal

meteorological variables and long-term climate

variability (SOI). We found that both short-term

meteorological alterations (in particular relative hu-

midity and temperature) and long-term climate

variability (as measured by the SOI index) worked in

tandem to affect the weekly distribution of dengue

infections in Singapore. The effect of meteorological

variables was more pronounced during periods of

dengue outbreaks, and this suggests to us that the

relationship between weather and dengue is moder-

ated by periods of known dengue outbreaks. Relative

humidity and temperature operated at a lag of

2 weeks, whereas SOI worked at the longer period

of 5 weeks. Mean hours of cloud cover, sunshine

and rainfall were significantly associated with dengue

notifications in the univariate analysis, but not in

the multivariate analysis. Only temperature and rela-

tive humidity remained significant predictors in the

multivariate analysis ; the other variables were no

longer significant after we accounted for relative

humidity and temperature, indicating presence of

confounding.

Table 2. Multivariate relationship between dengue fever and the Southern

Oscillation Index (SOI) and mean relative humidity and mean temperature

Covariate Coefficient 95% CI P value

All periods

Constant x1.59 x3.45 to 0.28 0.095
Mean humidity lag 2 weeks 0.02 0.01 to 0.03 <0.001
Mean temperature lag 2 weeks 0.18 0.13 to 0.22 <0.001

SOI lag 5 weeks x0.02 x0.03 to x0.001 0.040

Non-outbreak year
Constant x0.46 x4.22 to 3.30 0.809
Mean humidity lag 2 weeks 0.01 x0.01 to 0.03 0.177

Mean temperature lag 2 weeks 0.12 0.03 to 0.21 0.008
SOI lag 5 weeks x0.09 x0.13 to x0.05 <0.001

Outbreak year
Constant x2.38 x4.61 to x0.15 0.037

Mean humidity lag 2 weeks 0.02 0.01 to 0.03 <0.001
Mean temperature lag 2 weeks 0.20 0.15 to 0.25 <0.001
SOI lag 5 weeks x0.02 x0.03 to 0.00 0.112

CI, Confidence interval.

Poisson model with adjustment for autocorrelation and seasonality.
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Our finding that relative humidity was positively

associated with dengue notifications is consistent with

previous findings [9, 30, 31]. Vapour pressure (relative

humidity) was shown to be a predictor of dengue risk,

with an odds ratio of 1.3 for each unit increase

(P<0.001) [6]. We found a lag period of 2 weeks be-

tween relative humidity and dengue infections, which

was similar to one study [9], although other studies

have reported different lag periods of 0–4 weeks [31],

7 weeks [10], 8 weeks [30] and 5–20 weeks [32]. Our

2-week lag period for temperature was also different

to those lag periods reported in the literature which

ranged from 1 week [9], to 12 and 16 weeks [10], and

0 months [30] to 2 months [31]. It is plausible that

geographical variations could explain these differ-

ences, as well as differences in the analytical methods.

However, the association between SOI index and

dengue that we found in our study is consistent with

other studies including sea surface temperature with

an 18-week lag [9], and 2- to 3-year periodic modes of

the El Niño effect [21].

It is possible to use other statistical models to study

time trends in dengue. However, these models have

their deficiencies. The use of conventional statistical

methods, such as the ordinary least squares linear re-

gression model to study relationships between

meteorological factors and health fail to account

for the discontinuity or even non-stationarity

(i.e. non-constant association) in the relationship be-

tween outcome and risk factors [33]. Linear regression

models ignore temporal autocorrelation. Auto-

regressive integrated moving average (ARIMA)

models are a useful tool for analysing non-stationary

time-series data containing autocorrelation and

seasonal trends [13, 34]. However, the use of in-

tegrated variables in an ARIMA model may bias

predicted values. Last, a Poisson regression model

with cubic splines on the predictor variables has also

been used to model weekly dengue cases from

Singapore [32]. The limitations of this model include

the inability to incorporate seasonality and the SOI.

We used the Poisson regression model, which incor-

porated seasonality and autocorrelation in the data,

as well as including both weather and SOI data

in response to deficiencies highlighted in the other

studies above.

However, our study also has some limitations.

Unmeasured confounders could have affected the re-

sults ; such confounders include change in serotype,

variation in population density of Aedes mosquitoes,

and importation of new serotypes. Our relatively

short data series did not allow us to undertake any

form of adjustment for multiple analysis that we per-

formed in the univariate analysis. Therefore, we

focused on the results from the multivariate model.

In general, the predicted values from our model
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agreed well with the actual cases of dengue. However,

the model tended to over-predict the number of

cases whenever a dengue outbreak occurred, indi-

cating that caution is required when interpreting re-

sults whenever there is an outbreak. Comparisons

with other time-series models [12, 13, 32, 34, 35] can

be made.

Our Poisson time-series model did not account for

geographical variation in exposure (weather) as well

as outcome (dengue). We did not have access to geo-

graphical data (e.g. residential or place of exposure

address) to undertake such analysis. The extension

of time-series models to incorporate geographical

variation will be an important advancement. Linking

climate, health, and ecological data by employing

new, integrated approaches such as geographical in-

formation systems, has been identified as an import-

ant research agenda for climate change and infectious

disease [36]. Changes in population density, travel

and importation of new dengue virus strains are

other factors that contribute to the occurrence of new

dengue epidemics and need to be taken into account

in future models [3].

Our model also needs to be prospectively validated

to assess out-of-sample predictive ability. We retro-

spectively looked at the epidemic years of 2005–2006

when the largest dengue outbreak in Singapore oc-

curred. However, there was no special variation in the

meteorological variables during or preceding the per-

iod of outbreak. A change in the predominant type of

dengue infection fromDEN-2 to DEN-1 was the most

likely cause for this outbreak [37].

The epidemiology of dengue is complex and influ-

enced by many factors in addition to weather and

climate variables. However, the temporal association

that we found in our study underlines the fact that

weather and climate variables can strengthen fore-

casting models. At this stage, it remains unclear how

they can be used operationally for initiation and

prioritization of control strategies. Future research

will need to evaluate the predictive capability of in-

tegrated surveillance systems.

In summary, we found relative humidity and

temperature with a 2-week lag and SOI index with

a 5-week lag, to be significantly associated with

dengue notifications in Singapore. We also found

that the effects did not differ markedly according to

periods where El Niño was prevalent, but the effect

of the weather variables was more pronounced

during periods where there was a dengue outbreak.

These findings can be incorporated to improve our

understanding of temporal variation of dengue in

Singapore.
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