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Abstract

The southeastern Central Asian Orogenic Belt (CAOB) records the assembly process between
several micro-continental blocks and the North China Craton (NCC), with the consumption of
the Paleo-Asian Ocean (PAO), but whether the S-wards subduction of the PAO beneath the
northern NCC was ongoing during Carboniferous–Permian time is still being debated.
A key issue to resolve this controversy is whether the Carboniferousmagmatism in the northern
NCC was continental arc magmatism. The Alxa Block is the western segment of the northern
NCC and contiguous to the southeasternCAOB, and their Carboniferous–Permianmagmatism
could have occurred in similar tectonic settings. In this contribution, new zircon U–Pb ages,
elemental geochemistry and Sr–Nd isotopic analyses are presented for three early
Carboniferous granitic plutons in the southwestern Alxa Block. Two newly identified alumi-
nous A-type granites, an alkali-feldspar granite (331.6 ± 1.6 Ma) and a monzogranite
(331.8 ± 1.7 Ma), exhibit juvenile and radiogenic Sr–Nd isotopic features, respectively.
Although a granodiorite (326.2 ± 6.6 Ma) is characterized by high Sr/Y ratios (97.4–139.9),
which is generally treated as an adikitic feature, this sample has highly radiogenic Sr–Nd
isotopes and displays significantly higher K2O/Na2O ratios than typical adakites. These three
granites were probably derived from the partial melting of Precambrian continental crustal
sources heated by upwelling asthenosphere in lithospheric extensional setting. Regionally, both
the Alxa Block and the southeastern CAOB are characterized by the formation of early
Carboniferous extension-related magmatic rocks but lack coeval sedimentary deposits,
suggesting a uniform lithospheric extensional setting rather than a simple continental arc.

1. Introduction

The Phanerozoic Central Asian Orogenic Belt (CAOB), one of the largest long-lived accre-
tionary orogens worldwide, is situated to the north of the Tarim–North China cratons
(Fig. 1a) and formed by complex subduction, accretion and collision processes related to the
consumption of the Paleo-Asian Ocean (PAO), with significant crustal growth (Han et al.
1997, 2011; Jahn et al. 2000; Wu et al. 2003; Windley et al. 2007; Xiao et al. 2018). The
southeastern CAOB records the Palaeozoic amalgamation between the North China Craton
(NCC) in the south and Mongolia, Hunshandake and Songliao blocks within the CAOB in
the north (Xu et al. 2013; Zhao et al. 2018; Zhou et al. 2018). The Permian–Early Triassic
Solonker suture (Solonker–Xar Moron–Changchun suture) contains the youngest ophiolites
within the southeastern CAOB and is usually regarded as the terminal closure site of the
PAO (Eizenhöfer & Zhao, 2018; Wilde & Zhou, 2015; Xiao et al. 2003). However, when and
how the PAO finally closed in the southeastern CAOB is still controversial, and different
opinions can be grouped into three models.

In the first set of models, the subduction of the PAO was continuous from the early
Palaeozoic Era to Late Permian–Early Triassic time and led to the successive accretion of
micro-continental blocks and magmatic arcs to the northern NCC, with the northern margin
of the NCC as a continental arc during Carboniferous–Permian time and the Solonker suture as
the final closure site of the PAO (e.g. Xiao et al. 2003, 2009b, 2018; Zhang et al. 2014, 2016d). The
second set of models propose the Late Devonian–early Carboniferous closure of the PAO, with
the southeastern CAOB in a post-collisional setting since then (e.g. Xu et al. 2013; Tong et al.
2015; Zhang et al. 2015b). The third set of models infer that the large-scale PAO closed before
the Late Devonian Epoch, but a new orogenic cycle began with intra-continental rifting within
the southeastern CAOB during early Carboniferous time and resulted in the formation of a
Red-Sea-like limited ocean basin, with the Solonker suture marking its closure during the
Early Triassic Epoch (e.g. Zhang et al. 2015a; Luo et al. 2016; Pang et al. 2016; Zhao et al.
2017; Xu et al. 2018). In the third model, the lithospheric extension may be triggered by slab
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break-off (Kozlovsky et al. 2015; Zhang et al. 2012a) and enhanced
by slab avalanche-driven wet mantle upwelling rising from the
hydrous mantle transition zone (Wang et al. 2015a, 2016a).

To test the likelihood of one of these geodynamic models, a key
question is whether the Carboniferous–Permian tectono-
magmatic activity of the southeastern CAOB was dominated by

100°E

40°00′N

101°E

39°20′N

102°E

38°40′N

0 50 km

N

Mesozoic Late Palaeozoic

Precambrian

Late Palaeozoic plutons Early Palaeozoic plutons
Mafic rocks Ultramafic rocks
Thrust fault Sample location

Early Palaeozoic

Mesozoic plutons

(c)

Zhangye

Alxa Youqi

Gaotai

Shandan

Yongchang

Helishan

Longshoushan

Beidashan

Badain Jaran Desert

458–443 Ma (Liu et al. 2016b)
417–415 Ma (Liu et al. 2016b)

452 Ma (Liu et al. 2016b)

411 Ma, 397 Ma 

 409 Ma, 408 Ma
(Zhou et al. 2016)

444 Ma (Wei et al. 2013)

401–429 Ma (Tang, 2015)
426 Ma (Wang et al. 2020)

406 Ma,421 Ma

427 Ma (Zhang et al. 2018d)

424 Ma
 (Duan et al. 2015)

Wang et al. 2020)

Zhou et al. 2016)

421 Ma

(Qin, 2012)
448 Ma

332 Ma (17WAL-07)

326 Ma (17WAL-35)
332 Ma (17WAL-39)

336–324 Ma
(Gong et al. 2018a)

332–329 Ma (Xue et al. 2017)

281 Ma (Liu et al. 2017)
269 Ma (Liu et al. 2017)

268 Ma (Liu et al. 2017)

269 Ma (Liu et al. 2017)

293–267 Ma
(Gong et al. 2018b)

262 Ma (Huo, 2019)
304 Ma (Huo, 2019)

295 Ma (Chen et al. 2013)

235 Ma (Gu, 2012)

302–296 Ma (Song et al. 2019)

293–290 Ma (Song et al. 2019)

317–295 Ma (Song et al. 2019)

315–295 Ma (Song et al. 2019)

287 Ma (Song et al. 2019)

106°E

104°E102°E100°E98°E

40°N

42°N

Tepai Ophiolite

0 100 km

N

Mongolia

North China
CratonAlxa Block

Jiayuguan

Alxa Youqi Alxa Zuoqi

(b)

Fig. 1c

China

Badain Jaran Desert

Qilian
Orogen

Palaeozoic plutons    

Ophiolitic mélanges
Early Carboniferous ages

Main fault

Enger Us Ophiolite

Quagan Qulu 
Ophiolite

Longshoushan Fault Ba
ya

nw
ul

as
ha

n 
Fa

ul
t

Enger 
Us F

au
lt

Badain Jaran Fault

?

85°E 95°E 105°E

40°N

35°N

Qilian Orogen

0 500 km

Central Asian Orogenic Belt

Tarim Craton

North China
Craton

Tethys Tectonic
Domain

Altyn Tagh Fault
Alxa
Block

Fig. 1b

(a)

Fig. 1. (Colour online) (a) Tectonic location of the Alxa Block. (b) Schematic geological map showing the distribution of Palaeozoic intrusions and ophiolitic mélanges in the Alxa
Block (modified after Dan et al. 2014). (c) Simplified geological map of the southwestern Alxa Block (modified after Wang et al. 2020).
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the continued S-wards subduction of the PAO or by lithospheric
extension. Accordingly, the tectonic setting of the Carboniferous
magmatism in the northern margin of the NCC, either continental
arc or lithospheric extension, can provide insights into the terminal
evolutionary history of the southeastern CAOB.

The Alxa Block, also known as the Alxa Tectonic Belt (Song
et al. 2018), connects the NCC to the east and the Tarim Craton
to the west and lies between the CAOB to the north and the
North Qilian Orogen to the south (Fig. 1a). Although this block
is largely covered by deserts, numerous Phanerozoic plutons
intruding into Precambrian metamorphic basement rocks crop
out in its southwestern and northeastern parts (Fig. 1b). These
plutons are mostly Palaeozoic in age, spanning Middle
Ordovician–Early Devonian time (c. 458–394 Ma) and end Late
Devonian–end Permian time (c. 359–252 Ma; Fig. 2a). Notably,
this age pattern is quite similar to that of the southeastern
CAOB (including the northern NCC), which includes two
magmatic stages of middle Cambrian–Middle Devonian time
(c. 508–386 Ma) and end Late Devonian–end Permian time
(c. 362–252 Ma; Fig. 2b), indicating an operation of comparable

tectonic processes. Further, the early magmatic stage in the
southwestern Alxa Block could also be related to the North
Qilian Orogen (Duan et al. 2015; Zhang et al. 2017a; Wang
et al. 2020), but the Qilian orogenesis ended before the Late
Devonian Epoch (Xiao et al. 2009a; Song et al. 2013). The
Carboniferous magmatism within the Alxa Block was therefore
most likely related to the tectono-magmatic activity of
the southeastern CAOB.

In this study, new geochronological, elemental and isotopic
geochemical analyses of three early Carboniferous plutons in the
southwestern Alxa Block are presented. These results, combined
with regional correlations, suggest a lithospheric extensional
setting rather than a simple continental arc for the development
of early Carboniferous magmatism in both the Alxa Block and
the southeastern CAOB.

2. Geological background

The Alxa Block is separated from the CAOB by the Enger Us Fault
to the north, and from the North Qilian Orogen to the SW by the
Longshoushan Fault (Fig. 1b). It is traditionally considered as the
western part of the northern NCC (Fig. 1a), either the western part
of the Yinshan Block (e.g. Zhao et al. 2005, 2012; Wan et al. 2006;
Wang et al. 2016b, 2019a) or the western extension of the
Khondalite Belt (e.g. Geng et al. 2010; Zhang et al. 2013a;
Zhang & Gong, 2018). However, a close affinity of the Alxa
Block to the Tarim or South China cratons had also been proposed
(e.g. Tung et al. 2007; Yuan&Yang, 2015; Song et al. 2017), and the
amalgamation of this block with the NCC might have taken place
during early–middle Palaeozoic time (Dan et al. 2016; Zhang et al.
2016c), although no ophiolitic mélanges have been recognized
between them until now. Nevertheless, in any of the proposed
models, the Alxa Block has been considered as part of the northern
NCC, having been amalgamated at least since the Carboniferous
Period.

Three ophiolitic mélanges have been reported in Alxa
area (Fig. 1b). Two of them crop out in the NE, including
the c. 302 Ma Enger Us and the c. 275 Ma Quagan Qulu ophiolitic
mélanges, with their basaltic rocks exhibiting normal mid-
ocean-ridge basalt (N-MORB) and boninite-like geochemical
features (Zheng et al. 2014), respectively. The Tepai ophiolitic
mélange in the SW is also characterized by boninite-like basaltic
rocks, but its formation age is either c. 278 Ma (Zheng et al.
2018) or c. 437–448 Ma (Pan, 2019).

The southwestern Alxa Block between the Longshoushan Fault
and the Badain Jaran Desert involves the NW–SE-trending
Beidashan and Longshoushan–Helishan mountains (Fig. 1c).
The widespread Precambrian basement rocks in this area include
the Neoarchean Beidashan complex (Gong et al. 2012; Zhang et al.
2013a) and Palaeoproterozoic Longshoushan Group (Tung et al.
2007; Gong et al. 2011). They consist of amphibolite- to greens-
chist-facies metamorphosed igneous and sedimentary rocks and
are overlain unconformably by Neoproterozoic greenschist-facies
meta-sedimentary rocks (Zhang & Gong, 2018). Recently, syenite
of age c. 1.87 Ga and granitic gneiss of age c. 1.2 Ga were recognized
in the Helishan area (Song et al. 2017; Wang et al. 2019b).

Lower Palaeozoic sedimentary rocks in the southwestern Alxa
area crop out only to the south of the Longshoushan Fault (Fig. 1c).
They are known as the Dahuangshan Formation and are composed
of unmetamorphosed or greenschist-facies marine clastic and
carbonate rocks (Zhang et al. 2016a). In contrast, the upper
Carboniferous–middle Permian sedimentary rocks are widely
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Fig. 2. Statistical histograms of zircon U–Pb ages of Palaeozoic magmatic rocks in
the (a) Alxa Block (data from this study and Qin, 2012; Tang, 2015; Gong et al.
2018a; Zhang et al. 2018d; Liu et al. 2019; Pan, 2019; Song et al. 2019; Chen et al.
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distributed (Fig. 1c). The upper Carboniferous succession consists
of interbedded volcanic and clastic rocks in the lower part and
shallow-marine bioclastic limestones and sandstones in the upper
part, and is conformably overlain by lower–middle Permian strata,
which include, from bottom to top, conglomerates, pebbly coarse
sandstone, sandstone and siltstone, with volcanic interlayers.
Mesozoic terrigenous clastic rocks are extensively distributed in
this area (Fig. 1c).

Phanerozoic plutons are voluminous and widely exposed in the
southwestern Alxa Block (Fig. 1c), with two magmatic periods of
Middle Ordovician–Early Devonian and early Carboniferous–late
Permian. Plutons of the earlier period are generally felsic granitoids
(Qin, 2012;Wei et al. 2013; Tang, 2015; Liu et al. 2016b; Zhou et al.
2016; Zhang et al. 2018d;Wang et al. 2020), with only a few dolerite
dykes (c. 424 Ma) in eastern Longshoushan (Duan et al. 2015). In
contrast, plutons of the later period are widely distributed and
include peridotite, gabbro, diorite, tonalite, granodiorite, monzog-
ranite and granite (Chen et al. 2013; Jiao et al. 2017; Liu et al. 2017;
Xue et al. 2017; Gong et al. 2018a, b; Huo, 2019; Song et al. 2019).
In addition, several Triassic plutons crop out in the western
Beidashan (Fig. 1c; Gu, 2012).

3. Samples and petrography

In this study, three granitic plutons were investigated and sampled
in the southwestern Alxa Block; all are massive and salmon-pink to
off-white in colour (Fig. 3). A medium- to coarse-grained alkali-

feldspar granite in western Beidashan (17WAL-07; Fig. 1c) is
composed of quartz (c. 30%), plagioclase (c. 20%), alkali-feldspar
(c. 40%), biotite (c. 10%) and minor hornblende (Fig. 3b). The
other two plutons are located in Longshoushan to the north of
Shandan County (Fig. 1c). One is medium-grained granodiorite
(17WAL-35) and composed of quartz (c. 20%), plagioclase
(c. 40%), alkali-feldspar (c. 20%) and biotite (c. 20%; Fig. 3d).
The other sample is coarse-grained monzogranite (17WAL-39),
with similar mineral assemblage of quartz (c. 25%), plagioclase
(c. 25%), alkali-feldspar (c. 30%) and biotite (20%; Fig. 3f).
Accessory minerals of zircon, apatite and titanite are present in
all three plutons.

4. Analytical methods

4.a. Whole-rock major- and trace-element analyses

Fresh granitoid samples were first crushed and then ground to 200
mesh in a tungsten carbide cup and ball mill, and then analysed
geochemically at the National Research Center of Geoanalysis,
China Geological Survey. Whole-rock major-element oxides were
measured using a Malvern Panalytical Axios PW4400 x-ray fluo-
rescence spectrometer (XRF), and the analytical uncertainties are
generally between 1% and 5%. The concentrations of trace and rare
earth elements were determined by a PerkinElmer NexION 300Q
inductively coupled plasma mass spectrometer (ICP-MS), with
analytical precision generally better than 5%.

Fig. 3. (Colour online) Field photographs and mineral assemb-
lages under microscope (cross-polarized light) of the studied late
early Carboniferous plutons in the southwestern Alxa Block.
(a, b) 17WAL-17, alkali-feldspar granite; (c, d) 17WAL-35, grano-
diorite; (e, f) 17WAL-39, monzogranite. Afs – alkali-feldspar;
Bt – biotite; Hbl – hornblende; Pl – plagioclase; Qtz – quartz.
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4.b. Zircon U–Pb dating

Zircon grains were firstly separated by conventional heavy liquid and
magnetic techniques, and then hand-picked under a binocular
microscope.The selected zircon crystalsweremounted in epoxy resin
and polished to half thickness. Potential analytical spots were deter-
mined based on morphological features and internal structures of
zircons on optical and cathodoluminescence (CL) images. Zircon
U–Pb analyses on mineral separates from the three samples were
conducted in Tianjin Institute of Geology and Mineral Resources,
China Geological Survey, China. A Thermo Fisher Scientific
multi-collector inductively coupled plasma mass spectrometer
(MC-ICP-MS; Neptune) was coupled to a New Wave 193 nm
ArF excimer laser ablation system. Detailed procedures are reported
by Cui et al. (2012). Zircon standard GJ-1 was employed as an
external standard (Jackson et al. 2004), and measurements of zircon
standard Plešovice, which was used as an unknown, yielded a
weighted mean 206Pb/238U age of 335.5 ± 2.6 Ma (n= 12; 2σ).
This result is in good agreement with the recommended value within
error (337.13 ± 0.37 Ma; Sláma et al. 2008). The corrections of
common lead were carried out using the method of Andersen
(2002). Concordia diagrams and ages were obtained using
ISOPLOT 4.15 (Ludwig, 2012). Uncertainties of individual measure-
ments were at the 1σ level, but the weightedmean ages and concordia
diagrams were given at the 2σ level (95% confidence level).

4.c. Sr–Nd isotopic analyses

The whole-rock Sr and Nd isotopic compositions were determined
using a Finnigan MAT-262 mass spectrometer and a Nu Plasma
high-resolution MC-ICP-MS, respectively, at the Institute of
Geology, Chinese Academy of Geological Sciences, China. The
measured 87Sr/86Sr ratio of the SrCO3 standard SRM 987 was
0.710243 ± 0.000012 (2σ), in good agreement with the recom-
mended value within error (0.710251 ± 0.000018; Coombs et al.
2004). Two standards of JMC Nd2O3 (reference value = 0.511137
± 0.000008; Jahn et al. 1980) and GSB 04-3258-2015 (certified
value = 0.512438; Tang et al. 2017) were employed during
Nd isotopic analyses, with measured 143Nd/144Nd ratios of

0.511123± 0.000010 and 0.512441± 0.000012 at the 2σ level, respec-
tively. Detailed analytical procedures for both Sr and Nd isotopic
compositions are described by Tang et al. (2021). All measured
ratios were corrected for mass fractionation by normalizing to
88Sr/86Sr= 8.37521 and 146Nd/144Nd= 0.7219, respectively.

5. Results

Whole-rock major- and trace-element concentrations,
LA-ICP-MS zircon U–Pb data and Sr–Nd isotopic compositions
are given in online Supplementary Tables S1–S3 (available at
http://journals.cambridge.org/geo), respectively.

5.a. Whole-rock major and trace elements

All three plutons have high SiO2 (68.49–77.01 wt%) and K2O þ
Na2O (8.07–8.25 wt%; Fig. 4a) and low MgO (0.17–0.82 wt%)
and MnO (0.03–0.06 wt%), show peraluminous features
(A/CNK= 1.04–1.13), and belong to the high-K calc-alkaline
series (Fig. 4b). Alkali-feldspar granite 17WAL-07 and monzog-
ranite 17WAL-39 display lower CaO (0.59–0.61 wt%), higher
K2O (K2O/Na2O= 1.35–1.55), higher total rare earth element
(REE) concentrations (257.58–275.96 ppm) and distinct negative
Eu anomalies (δEu= 0.17–0.37; Fig. 5a), with enrichments in
large-ion-lithophile elements (LILEs; e.g. Cs, Rb, Th and Pb)
and depletions in Nb, Ta, Ba and Sr (Fig. 5b). In comparison,
granodiorite 17WAL-35 displays relatively higher CaO
(1.52–2.51 wt%) and lower total REE concentrations (114.30–
206.16 ppm), with significantly enriched light rare earth elements
(LREEs; (La/Yb)N= 35.75–56.24) and positive Eu anomalies
(δEu= 1.12–1.14; Fig. 5c). Moreover, it is characterized by
enriched LILEs (Cs, Rb, Ba, Th, Pb and Sr) and depleted high-
field-strength elements (HFSEs; Y, Yb and Lu), with negative
Nb–Ta and positive Zr–Hf anomalies, respectively (Fig. 5d).

5.b. Zircon U–Pb ages

Zircon grains from the studied samples are transparent, euhedral
and short columnar or prismatic in shape. They exhibit well
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preserved concentric magmatic oscillatory zoning, with a few
inherited zircon cores appearing occasionally in samples
17WAL-35 and 39 (Fig. 6). For alkali-feldspar granite 17WAL-
07, all 24 spots are concordant and cluster together (Fig. 7a).
Their Th/U ratios are 0.33–0.51 and they yield a concordia
age of 331.6 ± 1.6 Ma (mean square weighted deviation
(MSWD) = 4.2; 2σ, decay-constant errors included), which is
consistent with the weighted mean 206Pb/238U age (331.7 ±
1.5 Ma; MSWD = 1.01; 2σ). With the exception of four discordant
spots (16, 17, 18 and 22), concordant analyses of the other 21 gran-
odiorite 17WAL-35 spots have Th/U ratios of 0.36–0.83 but form
two age clusters (Fig. 7b). The older population includes 17 spots
with a weighted mean 206Pb/238U age of 344.1 ± 2.2 Ma
(MSWD = 1.40; 2σ; Fig. 7b1) and the younger population includes
4 spots with a weighted mean 206Pb/238U age of 326.2 ± 6.6 Ma
(MSWD = 1.50; 2σ; Fig. 7b2). Furthermore, monzogranite
17WAL-39 has six discordant spots (1, 8, 11, 16, 17 and 21)
and one concordant age cluster (Fig. 7c), which yields a consistent
concordia age of 331.8 ± 1.7 Ma (MSWD= 4.8; 2σ, decay-constant
errors included) and weighted mean 206Pb/238U age of

331.9 ± 1.7 Ma (MSWD= 0.88; n= 17; 2σ), with Th/U ratios of
0.43–1.03.

5.c. Whole-rock Sr–Nd isotopes

The 87Rb/86Sr and 147Sm/144Nd ratios of three granitic samples
were calculated using the measured whole-rock Rb, Sr, Sm and
Nd concentrations. The alkali-feldspar granite (17WAL-07;
t= 332 Ma) has the lowest initial 87Sr/86Sr (0.700128) and highest
initial 143Nd/144Nd (0.512219) ratios among the three plutons, with
positive ϵNd(t) value (0.16) and Mesoproterozoic Nd model age
(TDM= 1207 Ma; Fig. 8). The initial 87Sr/86Sr ratio of the grano-
diorite (17WAL-35; t= 326 Ma) is low (0.705102), and its initial
143Nd/144Nd ratio and ϵNd(t) value are 0.511358 and−16.80, respec-
tively (Fig. 8). As its ƒSm/Nd (−0.59) significantly deviates from that
of the average crust (−0.40; DePaolo et al. 1991), both TDM
(1847 Ma) and TDM2 (2446 Ma) were calculated. For the monzog-
ranite (17WAL-39; t= 332Ma), its initial 87Sr/86Sr and 143Nd/144Nd
ratios are 0.717670 and 0.511706, respectively, with negative ϵNd(t)
value (−9.85) and Palaeoproterozoic TDM2 (1889 Ma; Fig. 8).
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6. Discussion

The well preserved concentric magmatic oscillatory zoning (Fig. 6)
and high Th/U ratios (0.33–1.03) of dated zircon grains indicate
their magmatic origin (Corfu et al. 2003); the concordia and
weighted mean 206Pb/238U ages are therefore interpreted as crystal-
lization ages (Fig. 7). Because several spots from the older age
cluster of granodiorite (17WAL-35) are located within the inher-
ited zircon cores (e.g. spot 24 in Fig. 6b), the younger age cluster is
employed. The three granitic plutons in the southwestern Alxa
Block were therefore formed during late early Carboniferous time
(c. 332–326 Ma).

6.a. Petrogenesis of the studied late early Carboniferous
granitic plutons

The alkali-feldspar granite (17WAL-07) and monzogranite
(17WAL-39) have similar geochemical features, such as high
K2O þ Na2O (8.10–8.25 wt%), FeOT (1.49–1.51 wt%)
and FeOT/MgO (4.38–8.87), low CaO (0.59–0.61 wt%), MgO
(0.17–0.43 wt%) and P2O5 (< 0.06 wt%), high total REE concen-
trations (257.58–275.96 ppm) with V-type REE patterns (Fig. 5a),
and strongly depleted Ba and Sr (Fig. 5b). These characteristics
indicate A-type granite nature, which can be clearly identified
on the discrimination diagrams (e.g. Fig. 9b, c; Whalen et al.
1987; King et al. 1997). A-type granites may originate from the
fractionation of mantle-derived basaltic magmas (Eby, 1990,
1992; Bonin, 2007), the mixing of mantle- and crust-derived
magmas (Yang et al. 2006), or the partial melting of crust at high
temperatures (Whalen et al. 1987; King et al. 1997;Wu et al. 2002).
If rhyolitic magmas were derived from fractional crystallization of
coeval basaltic magmas, the two components would commonly be
spatially and temporally associated (Whitaker et al. 2008). If the
plutons had their origin by magma mixing, then they would have

intermediate compositions with the presence of profuse mafic
microgranular enclaves (MMEs; Yang et al. 2006, 2007; Zhang
et al. 2016b), although the MMEs may be also cogenetic with their
host granitoids (Zhang & Zhao, 2017). The two A-type granites in
the southwestern Alxa Block are rhyolitic in composition (Fig. 4a),
but no MMEs were observed (Fig. 3a, e) and their coeval mafic
intrusions crop out far away in the northeastern Alxa Block
(Wang et al. 2015b; Liu et al. 2016a). They are also characterized
by high SiO2 (73.89–77.01 wt%) and K2O/Na2O (1.35–1.55) and
are peraluminous (A/CNK = 1.04–1.13), similar to aluminous
A-type granites with continental crustal sources (King et al.
1997). Moreover, the alkali-feldspar granite has low positive
ϵNd(t) value (0.16) and Mesoproterozoic Nd model age
(1207 Ma; Fig. 8b), which is close to the protolith crystallization
age of a granitic gneiss in the Helishan (c. 1200 Ma; Song et al.
2017). Its unusually low initial 87Sr/86Sr value (0.700128; Fig. 8a)
may be caused by the strong depletion of Sr (Fig. 5b), as the initial
87Sr/86Sr value was calculated based on themeasured whole-rock Sr
concentration. The monzogranite has radiogenic Sr–Nd isotopes
(Fig. 8a) and a Palaeoproterozoic Nd model age (1889 Ma;
Fig. 8b). The Palaeoproterozoic basement rocks are commonly
observed in Longshoushan (Tung et al. 2007; Gong et al. 2011),
in addition to a c. 1872 Ma syenite in Helishan (Wang et al.
2019b). The two aluminous A-type granites were therefore most
probably the high-temperature partial melts of Palaeo- and
Mesoproterozoic crustal materials.

The granodiorite (17WAL-35) is also high-K calc-alkaline
(Fig. 4b) and weakly peraluminous (A/CNK= 1.07–1.08) and
has depleted HREEs and HFSEs (Fig. 5c, d). It is chemically char-
acterized by high Sr (522.0–918.0 ppm) and low Y (5.36–6.56 ppm)
and Yb (0.62–0.75 ppm) concentrations, with high Sr/Y ratios
(97.4–139.9). Although high Sr/Y ratio (> 40) usually occurs in
adakitic rocks, the high K2O contents (3.59–4.12 wt%) and
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318 Ma100 µm

100 µm

100 µm

(16) 332 Ma

(07) 325 Ma

(09) 333 Ma

(10) 341 Ma

(15) 337 Ma

(21) 333 Ma

(b)

(c)

(24) 349 Ma

(19) 331 Ma Fig. 6. Cathodoluminescence (CL) images of representative
zircon grains from the studied late early Carboniferous plutons
in the southwestern Alxa Block.
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K2O/Na2O ratios (0.80–1.03) of this granodiorite are more
‘continental’ than typical adakites (Defant & Drummond, 1990;
Martin et al. 2005; Moyen, 2009). The coexistence of negative
Nb–Ta and positive Zr–Hf anomalies (Fig. 5d) and highly radio-
genic Sr–Nd isotopes (Fig. 8a) also suggest a continental crustal
source (Rudnick & Gao, 2003). The enrichments of Eu, Ba and
Sr are attributed to the large proportion of plagioclase (c. 40%),
whereas the low Y concentration may suggest the presence of
garnet in the residue, so that the high Sr/Y ratios indicate a deeper
crustal level of magma source (Ducea et al. 2015). In addition,
c. 2.5 Ga basement rocks and magmatic activity are commonly
observed in the southwestern Alxa Block (Zhang et al. 2013a;
Zhang & Gong, 2018; Wang et al. 2019b), which is coeval with
the two-stage Nd model age of this granodiorite (c. 2446 Ma;
Fig. 8b). This granodiorite of high Sr/Y ratio may therefore have
its origin in the partial melting of upper Neoarchean lower crust.

6.b. Tectonic setting of the early Carboniferous magmatism
in the Alxa Block

Two different tectonic processes accounting for the early
Carboniferous magmatism within the Alxa Block were proposed
previously: continental arc magmatism induced by the S-wards
subduction of the PAO (Liu et al. 2016a; Xue et al. 2017; Gong
et al. 2018a), or the collision and amalgamation between the
Alxa Block and the NCC (Zhang et al. 2013b; Dan et al. 2016).
Noticeably, whether a Palaeozoic suture between the Alxa Block
and the NCC existed or not is still in debate, especially with no
associated ophiolitic mélanges observed (e.g. Dan et al. 2016;
Zhang & Gong, 2018; Wang et al. 2019b), and the early
Carboniferous magmatic rocks are widely distributed, rather than
along a linear trend in the eastern margin of the Alxa Block
(Fig. 1b), so they are less likely attributed to such an amalgamation
process. Furthermore, the argument of continental arc magmatism
is mainly based on their arc-like geochemical signatures, such as
calc–alkaline characteristics (Fig. 4b), negative Nb–Ta anomalies
and high Sr/Y ratios (e.g. Liu et al. 2016a; Xue et al. 2017).
However, these signatures can also be inherited from magma
sources (Wang et al. 2016a), and most granites of high Sr/Y ratio

in this area exhibit high K2O/Na2O ratios (0.92–3.70), positive
Zr–Hf anomalies and radiogenic Nd–Hf isotopes, indicating deri-
vation by the partial melting of lower continental crust (Fig. 8a;
Dan et al. 2016; Xue et al. 2017); this can occur not only in
continental arc belts but also in lithospheric extensional
environments.

It is noteworthy that the early Carboniferous plutons within the
Alxa Block are mostly basic or acidic in silica content (Fig. 4),
resembling bimodal associations. The felsic plutons plot not only
in volcanic arc but also in within-plate and post-collision granite
fields (Fig. 9a), with most of them exhibiting radiogenic Sr–Nd
isotopes (Fig. 8a). They are characterized by the coexistence of
A-type granites, peraluminous granites and calc-alkaline I-type
granitoids (Dan et al. 2016; Liu et al. 2016a; Xue et al. 2017;
Zheng et al. 2019), which mostly occur in extensional settings
(Maniar & Piccoli, 1989). A-type granites usually indicate high-
temperature anatectic conditions related to asthenospheric
upwelling in a lithospheric extensional setting (Whalen et al.
1987; Eby, 1992). The mafic plutons plot mostly in the MORB
and within-plate basalt fields, similar to the rift-related Basin-
and-Range basalts (Fig. 10), and display juvenile or weakly
radiogenic Sr–Nd isotopes (Fig. 8a). It is noteworthy that several
of the mafic plutons in the northeastern Alxa Block have horn-
blende as the dominant mafic mineral and resemble appinitic
intrusions in geochemistry (Wang et al. 2015b). Generally, mafic
appinitic melts were most likely produced by the partial melting
of subduction-modified sub-continental lithospheric mantle
(Fig. 10c) and the melting may be triggered by asthenospheric
upwelling following slab break-off or delamination after a subduc-
tion event (Murphy, 2013). The generation of both the mafic and
felsic early Carboniferous plutons within the Alxa Block therefore
most likely resulted from the asthenospheric upwelling at that
time. Although an upwelling asthenosphere may also occur in a
continental arc setting, continental arc magmatism is typically
characterized by linear tracks within a specific tectonic unit and
dominated by andesitic rocks, with continued major elemental
compositions from basalts to rhyolites but without compositional
gaps (Ducea et al. 2015). Evidently, this is not the case for the early
Carboniferous plutons within the Alxa Block (Figs 1b, 4a),
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meaning that their formation in a continental arc is less likely, but
rather more likely in a lithospheric extensional setting.

Furthermore, A-type granites are a good indicator of litho-
spheric extension, but the specific extensional setting could be
varied (Sain et al. 2017), including not only rift-related (intraplate)
extension (Whalen et al. 1987; Eby, 1992) but also back-arc exten-
sion (Karsli et al. 2012; Bickford et al. 2015). The two early
Carboniferous aluminous A-type granites in the southwestern
Alxa Block are A2 type (Fig. 9d) and therefore represent magmas
derived from continental crust that has been through an orogenic
cycle of arcmagmatism and collision (Eby, 1992). The geochemical
similarities between early Carboniferous mafic plutons in the Alxa
Block and Basin-and-Range basalts (Fig. 10), which were generated
in back-arc extensional setting to the Sierra Nevada arc (Cousens
et al. 2019), also suggest a subduction-related tectonic setting. In
back-arc extensional setting, the asthenospheric upwelling could

be induced by the foundering of arc root during the roll-back
process of subducting slab (DeCelles et al. 2009; DeCelles &
Graham, 2015). Another possibility is the intra-continental exten-
sional setting, because the sub-continental lithospheric mantle and
lower continental crust of the Alxa Block had been modified by
subduction during Middle Ordovician–Early Devonian time
(Liu et al. 2016b; Zhou et al. 2016), and the subduction-related
geochemical signatures of later magmas may be inherited from
the subduction-modified magma sources (Wang et al. 2016a).
Moreover, the extension-related rock associations of calc-alkaline
I-type granites, aluminous A2-type granites and peralkaline gran-
ites were present in the southwestern Alxa Block from late
Silurian–Early Devonian time, following earlier arc magmatism
and implying post-collisional setting (Wang et al. 2020). In addi-
tion, the cyclical magmatic flare-ups and lulls within each
Palaeozoic magmatic stage of the Alxa Block (Fig. 2a) are quite
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similar to those of Cordilleran arcs in terms of time span and
frequency (DeCelles et al. 2009), but the magmatic hiatus between
the two magmatic stages is relatively too long for one single
subduction event. The two magmatic stages of the Alxa Block
may therefore represent two orogenic cycles and the early
Carboniferous extension, as the initiation of the second
orogenic cycle, may suggest intra-continental extensional setting.
Although more geological evidence is urgently needed to discrimi-
nate between the two kinds of extensional settings, a simple
continental arc model is less likely for the early Carboniferous
magmatism within the Alxa Block.

Additionally, continental arc magmatism is usually accompa-
nied by syn-arc sedimentation in fore-arc or back-arc basins
(Ducea et al. 2015), but lower Carboniferous strata are absent from
the Alxa Block based on available geological reports. Although a
few outcrops in the northern Alxa Block were previously identified
as lower Carboniferous deposits, they were recently reassigned
as lower–middle Permian strata (Zhang et al. 2018c). By contrast,
the upper Carboniferous–middle Permian strata are widely

distributed. The sedimentary facies show a distinct change from
terrestrial alluvial fan and delta in the lower stratigraphic sections
to platform, littoral and shallow-marine in the upper stratigraphic
sections, with abundant fossils (e.g. plants, fusulinids, brachiopods,
corals) and volcanic interlayers (Bu et al. 2012; Han et al. 2012;
Yin et al. 2016; Song et al. 2018). Such a transgression sequence
is consistent with the further development of the lithospheric
extension.

6.c. Tectonic implications for the development
of southeastern CAOB

Even if the Alxa Block was separated from the NCC during the
Precambrian Eon, sedimentologic, magmatic and structural
evidences (Li et al. 2012a; Dan et al. 2016; Zhang et al. 2013b,
2016c) all suggest that their amalgamation occurred before early
Carboniferous time. Palaeomagnetic studies also suggest that the
Precambrian micro-continental blocks within the southeastern
CAOB (e.g. Mongolia, Songliao and Hunshandake blocks) may
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have already accreted to the northern NCC by early Carboniferous
time (Pruner, 1992; Li et al. 2012b; Zhao et al. 2013; Zhang et al.
2018a). Furthermore, the Palaeozoic magmatic episodes of the
Alxa Block and the southeastern CAOB (including the northern
margin of the NCC) are very similar (Fig. 2), indicating compa-
rable tectonic processes. Consequently, the whole region had been
experiencing a uniform tectonic regime since early Carboniferous
time and, if there was on-going S-wards subduction of the large-
scale PAO at that time, the arc-trench system was most likely
located to the north of these micro-continental blocks.

Regionally, the early Carboniferous is the initial period of the
second magmatic stage (Fig. 2), and magmatic rocks during this
period are characterized by the mafic–ultramafic complexes in
northern Inner Mongolia (Jian et al. 2012; Zhang et al. 2015c; Li
et al. 2018), the appinitic intrusions in the northern NCC (Zhou
et al. 2009; Zhang et al. 2012a; Wang et al. 2015b), the calc-alkaline
I-type and peraluminous granites with crustal origins throughout
the southeastern CAOB (Bao et al. 2007; Zhang et al. 2007, 2011;
Liu et al. 2009, 2016a; Blight et al. 2010; Dan et al. 2012; Xue et al.
2017), and the A-type granites newly identified in the southwestern
Alxa Block (this study). Such rock associations are commonly asso-
ciated with asthenospheric upwelling in lithospheric extensional
setting. Although some of the basaltic rocks from the mafic–ultra-
mafic complexes exhibit subduction-related geochemical features
(Jian et al. 2012; Zhang et al. 2015c; Li et al. 2018), these features
can also be imprinted by crustal contamination (Xia, 2014) or
inherited from magma sources that have been modified by earlier
subduction fluids or melts (Wang et al. 2016a). Further, the coeval
intrusions are widely distributed (Xu et al. 2014) rather than along
one or two specific ribbons as would be expected for a magmatic
arc, supporting their formation in an extensional tectonic setting.
Moreover, if this lithospheric extension occurred in back-arc, then
the remnants of the large-scale PAO may be represented by the
early Carboniferous Erenhot–Hegenshan ophiolitic mélanges to

the north of the micro-continental blocks (Zhang et al. 2015c;
Li et al. 2018). Otherwise, the early Carboniferous extension of
the southeastern CAOB was probably developed in an intra-conti-
nent environment and may represent the initiation of the second
orogenic cycle (Xu et al. 2018).

In addition to the intrusions, the early Carboniferous sedimen-
tary rocks are mostly absent from the southeastern CAOB, indi-
cating regional uplift related to asthenospheric upwelling during
the initial stage of the lithospheric extension. The Carboniferous
metamorphic rocks are high-temperature–low-pressure and show
a clockwise P–T path, involving pre-peak heating with slight
decompression, peak and post-peak cooling stages, also suggesting
an extension process (Zhang et al. 2018b).

Subsequently, the late Carboniferous–Permian magmatism in
the southeastern CAOB became intense (Fig. 2) with the formation
of the widespread bimodal volcanic rocks, continental basaltic
intrusions, calc-alkaline I-type granites, peraluminous S-type
granites, A-type granites and several peralkaline magmatic belts
(e.g. Jahn et al. 2009; Zhang et al. 2012b, 2015b, 2016d, 2017b;
Pang et al. 2016, 2017; Zhao et al. 2016a; Ji et al. 2018; Wang
et al. 2021b), implying further development of the early
Carboniferous extension. This is also consistent with the occur-
rence of many late Carboniferous–Permian mafic dykes (Fig. 3a)
with MORB or within-plate basalt geochemical signatures in this
region (Lin et al. 2014). Accordingly, the late Carboniferous–
Permian Solonker, Enger Us and Quagan Qulu ophiolitic
mélanges (Jian et al. 2010; Zheng et al. 2014), which contain
MORB-type intrusions, continental basalts and terrigenous sedi-
ments (Luo et al. 2016; Shi et al. 2016), may represent the newly
opened limited ocean basins and mark the strongest extension
(Xu et al. 2014, 2018). The late Carboniferous–Permian sedimen-
tary sequences are also widely exposed throughout the
southeastern CAOB. They vary from plant fossil-bearing terrig-
enous clastic rocks to shallow-marine clastic and carbonate

Pre-Carboniferous(a)

(b)

Alxa block (northern NCC) Micro-continental
block

Early Palaeozoic arc Accretionary complex

Subduction-modified lithospheric mantle

Asthenospheric mantle

Island arc basaltic lower crust

Early Carboniferous

NS

NS
Alxa block
(northern NCC)

Micro-continental
block

Early Palaeozoic arc Accretionary complex

Asthenospheric upwelling
(induced by roll-back or break-off of the subducted PAO slab)

mafic
melt

felsic
melt

Fig. 11. Extensional tectonics of the Alxa Block and the southeastern CAOB during early Carboniferous time. (a) Micro-continental blocks within the southeastern CAOB had
already been accreted to the northern NCC (Alxa Block) before early Carboniferous time. (b) During early Carboniferous time, the asthenospheric upwelling induced by either the
roll-back or the break-off of the subducted PAO slab heated both the subduction-modified lithospheric mantle and the overlying crust, leading to the generation of the mafic and
felsic plutons, respectively.
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depositions, with basal conglomerates, and are transgression
sequences related to regional extension (Zhao et al. 2016b;
Ji et al. 2020; Wang et al. 2021a).

To summarize, we propose a lithospheric extensional process
rather than a simple continental arc for the tectono-magmatic
development of the southeastern CAOB during early
Carboniferous time (Fig. 11). The early Carboniferous exten-
sion-related magmatism and the absence of coeval sedimentary
successions may reflect the onset of asthenospheric upwelling
and regional uplift, and therefore mark the initiation of the litho-
spheric extension. Nevertheless, the asthenospheric upwelling
could be induced by either slab roll-back or slab break-off of the
subducted PAO; more geological, geochemical, geophysical and
palaeontological evidence is therefore needed to further constrain
the specific tectonic setting of this extension, either back-arc or
intra-continental.

7. Conclusions

The early Carboniferous (c. 332–326 Ma) granodiorite with high
Sr/Y ratio, A-type monzogranite and A-type alkali-feldspar granite
in the southwestern Alxa Block were most likely formed by partial
melting of Neoarchean, Palaeoproterozoic and Mesoproterozoic
crustal sources heated by upwelling asthenosphere in an litho-
spheric extensional setting. According to regional geological corre-
lations, a uniform lithospheric extensional setting, either back-arc
or intra-continental, but not a simple continental arc, is suggested
for both the Alxa Block and the southeastern CAOB during early
Carboniferous time, with the development of extension-related
magmatism and the absence of coeval sedimentary rocks.
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