
Mathematical Structures in Computer Science (2024), 34, pp. 455–466
doi:10.1017/S0960129524000252

PAPER

The complexity of completions in partial combinatory
algebra
Sebastiaan Terwijn

Department of Mathematics, Radboud University Nijmegen, Nijmegen, GL, The Netherlands
Email: terwijn@math.ru.nl

(Received 11 September 2023; revised 15 May 2024; accepted 13 August 2024; first published online 23 September 2024)

Abstract
We discuss the complexity of completions of partial combinatory algebras, in particular, of Kleene’s first
model. Various completions of this model exist in the literature, but all of them have high complexity. We
show that although there are no computable completions, there exist completions of low Turing degree.
We use this construction to relate completions of Kleene’s first model to complete extensions of PA. We
also discuss the complexity of pcas defined from nonstandard models of PA.

Keywords: Partial combinatory algebra; Turing degrees; Peano arithmetic

1. Introduction
Partial combinatory algebra (pca) generalizes the setting of classical combinatory algebra (ca) to
structures with a partial application operator. The first entry in the literature is Feferman (1975),
which is surprisingly late, some fifty years after the invention of combinatory algebra and the
closely related lambda calculus, although the concept of a pca existed before that (see Section 5).
Apart from this connection with lambda calculus, pcas have played a notable part in constructive
mathematics. At the end of Section 2 below, we list a number of key examples of pcas, and say
something about their role in various settings.

Since the application operator in pcas is partial, they can often be naturally represented as c.e.
structures in the sense of Selivanov (2003) and Khoussainov (2018). The computable structure
theory of pcas as partial c.e. structures was recently studied by Fokina and Terwijn (2024). Since
pcas can be seen as abstract models of computation, it is only natural to consider their complexity
as algebraic structures from the viewpoint of computability theory. At least for countable pcas,
there is a straightforward definition of their complexity in terms of the complexity of a presenta-
tion, as in computable model theory. Below we formulate this using numberings (Definition 3.1).
Some of the complexity of pcas was studied earlier in Shafer and Terwijn (2021) and Golov and
Terwijn (2023). In the current paper, we focus on the complexity of completions, and in particu-
lar of completions of what is called Kleene’s first model K1, with application defined in terms of
partial computable functions on the natural numbers.

A completion of a pca is a total pca (i.e. a combinatory algebra in the classical sense, in which
applications are always defined) in which the pca can be embedded. Not every pca has a comple-
tion, as was first proved in Klop (1982). On the other hand, Kleene’s K1 does have a completion.
This follows from the sufficient condition for completability given in Bethke et al. (1996). This
yields a certain termmodel T(ω)/∼ as a completion ofK1. In Section 5 below, we will discuss how

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252
https://orcid.org/0000-0002-1464-6908
mailto:terwijn@math.ru.nl
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129524000252&domain=pdf
https://doi.org/10.1017/S0960129524000252

456 S. Terwijn

Scott’s graph model, which is another important example of a pca, can also be seen as a (weak)
completion of K1. We note, however, that these completions of K1 have high complexity, which
brings up the question of what the optimal complexity of such a completion could be. Although
no computable completions of K1 exist (cf. Theorem 5.2 and the remarks following it), we show
that there exist completions ofK1 of low Turing degree (Theorem 5.3). Such completions are close
to computable in the sense that the complexity of their halting problem is the same as the standard
halting problem.

All this suggests a connection with complete extensions of Peano arithmetic, for which a similar
story exists. Note, however, that we are talking here about pcas, that is, the models of a theory,
rather than the theory itself. Nevertheless, in Section 6, we show that indeed there is a connection.
Finally, in Section 7, we discuss the complexity of pcas resulting from nonstandard models of PA.

Our notation from computability theory is mostly standard. For unexplained notions, we refer
to Odifreddi (1989) or Soare (1987). In particular, ω denotes the natural numbers, and ϕe the
e-th partial computable (p.c.) function. For any set A, A′ denotes the Turing jump of A, and in
particular ∅′ denotes the halting problem.

2. Partial Combinatory Algebras
Tomake the paper self-contained, we briefly review the basic definitions from partial combinatory
algebra. Our presentation follows van Oosten (2008).

A partial applicative structure (pas) is a set A together with a partial map · from A×A to A.
We usually write ab instead of a · b, and think of this as “a applied to b.” If this is defined, we
denote this by ab↓. By convention, application associates to the left, so we write abc instead of
(ab)c. Terms overA are built from elements ofA, variables, and application. If t1 and t2 are terms,
then so is t1t2. If t(x1, . . . , xn) is a term with variables xi, and a1, . . . , an ∈A, then t(a1, . . . , an) is
the term obtained by substituting the ai for the xi. For closed terms (i.e. terms without variables)
t and s, we write t � s if either both are undefined, or both are defined and equal. Here application
is strict in the sense that for t1t2 to be defined, it is required that both t1 and t2 are defined.

Definition 2.1. A pasA is called combinatory complete if for any term t(x1, . . . , xn, x), n� 0, with
free variables among x1, . . . , xn, x, there exists b ∈A such that for all a1, . . . , an, a ∈A,

(i) ba1 · · · an↓,
(ii) ba1 · · · ana� t(a1, . . . , an, a).

A pas A is a pca if it is combinatory complete. A ca is a pca for which the application operator is
total.

Combinatory completeness of pcas can be characterized by the existence of combinators k and
s, just as in classical ca and lambda calculus. In van Oosten (2008), it is stated that the following
theorem is “essentially due to Feferman (1975).”

Theorem 2.2. (Feferman) A pas A is a pca if and only if it has elements k and s with the following
properties for all a, b, c ∈A:

• ka↓ and kab= a,
• sab↓ and sabc� ac(bc).

In the following, we will always assume that our pcas are nontrivial, that is, have more than one
element. This automatically implies that they are infinite and have k 	= s.

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

Mathematical Structures in Computer Science 457

The prime example of a pca is Kleene’s first model K1 that was already mentioned in the
introduction. This is a model defined on the natural numbers, with application

n ·m= ϕn(m).
Thus K1 models the setting of classical computability theory. We can also relativize this to an
arbitrary oracle X, thus obtaining the relativized pca KX

1 .
Kleene’s second model K2, from the book Kleene and Vesley (1965), is a pca defined on Baire

space ωω. Application α · β in this model can be informally described as applying the continuous
functional with code α to the real β . The original coding of K2 is a bit cumbersome, but it is
essentially equivalent to

α · β =�
α⊕β
α(0) ,

where�e is the e-th Turing functional, and the application is understood to be defined if the RHS
is total. This coding, used in Shafer and Terwijn (2021), is easier to work with. See the appendix of
Golov and Terwijn (2023) for a proof (and precise statement) of the equivalence with the original
coding.

An interesting variant ofK2, called the van Oostenmodel, is obtained by extending the domain
to include partial functions, cf. van Oosten (1999). K2 is uncountable, but restricting attention to
computable sequences gives a countable pcaKeff

2 . Similarly, restricting toX-computable sequences
gives a pca KX

2 for every X. In Golov and Terwijn (2023), the relations between these and other
pcas are studied using embeddings.

Many other examples of pcas can be found in the literature. For example, pcas have been exten-
sively used in constructive mathematics, see Beeson (1985), Troelstra and van Dalen (1988). In
particular, they have been used as a basis for models of constructive set theory, as in McCarty
(1986), Rathjen (2006), and Frittaion and Rathjen (2021). Pcas are also pivotal in the categorical
treatment of realizability, cf. van Oosten (2008, Chapter 2) where they serve as a basis for realiz-
ability toposes. In particular, Hyland’s famous effective topos is the realizability topos of K1. For
a categorical characterization of pcas, see Cockett and Hofstra (2008) (extending early work of
Longo and Moggi 1984); for a discussion of pcas in the context of oracles see Kihara (2022).

A pca that has been particularly important in connection with ca and lambda calculus is Scott’s
graph model (Scott 1975). This pca is a model of the lambda calculus (see Barendregt 1984), and
it is also closely related to the enumeration degrees in computability theory, cf. Odifreddi (1999).
We will discuss this model in Section 5, where we also explain how the restriction of this model to
the c.e. sets can be seen as a completion of K1.

3. Effective Presentations of Pcas
Below, we will call a caA Y-computable ifA has a representation such that the application · inA
is Y-computable. We will also require that equality on A is Y-decidable. The following definition
(similar to notions used in Golov and Terwijn 2023) makes this precise, using numberings to
represent A. Recall that a numbering is a surjective function γ :ω→A. We think of n ∈ω as a
code for γ (n) ∈A.

Definition 3.1. Let A be a pca and Y ⊆ω. We call A partial Y-computable if there exist a num-
bering γ :ω→A and a partial Y-computable function ψ such that for all n and m, γ (n) · γ (m)↓
inA if and only if ψ(n,m)↓, and

γ (n) · γ (m)= γ (ψ(n,m)). (1)
We also require that equality on A is Y-decidable, meaning that the set {(n,m) | γ (n)= γ (m)} is
Y-computable. If A is total, i.e., a ca, then ψ is total, and we simply call A Y-computable. (This is
consistent with Definition 3.2 below.)

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

458 S. Terwijn

Notice that the numbering γ in Definition 3.1 is not required to be computable in any way.
Also, nontrivial combinatorial algebras are never computable, cf. Barendregt (1984, 5.1.15).

Definition 3.1 focuses on representing application in a pca as a p.c. function. For the record, we
also mention another way to define effective representations.

Definition 3.2. We call a pcaA Y-c.e. if there exist a numbering γ :ω→A such that the set{
(n,m, k) | γ (n) · γ (m)↓= γ (k)

}
(2)

is Y-c.e. Again we also require that equality on A is Y-decidable, meaning that the set {(n,m) |
γ (n)= γ (m)} is Y-computable. We call A Y-computable if the set (2) is Y-computable.1

As an example, note that K1 is p.c. in the sense that a · b is a p.c. function on ω, and that K1 is
c.e. in the sense that a · b↓= c is a c.e. relation.We note here that the two definitions are equivalent:

Proposition 3.3. A pca is partial Y-computable if and only if it is Y-c.e.

Proof. We always have c.e. implies p.c.: Given n,m, search for k such that (n,m, k) is in the set
(2), and define ψ(n,m) to be the least k found. (Note that γ need not be injective, so there may be
multiple such k.) Then Equation (1) holds for ψ(n,m).

The converse direction uses the condition that equality on A is decidable. Given A p.c. and ψ
satisfying (1), enumerate (n,m, k) if ψ(n,m)↓ and γ (k)= γ (ψ(n,m)). This gives an enumeration
of Equation (2). �

Note that the above definitions are in the spirit of the c.e. structures in Selivanov (2003), where
they are called positive structures. These are defined as structures in which the predicates are c.e.,
and the functions are computable. The latter makes sense for total functions, but in the case of
pcas, we are dealing with a partial application operator, in which case it is natural to have this as a
c.e. function.

For pcas on ω (i.e. with γ :ω→A the identity), we have that equality on A is decidable, so
the two notions of pca are equivalent. This is the type of pca that was used in Fokina and Terwijn
(2024). Without the condition that equality on A is decidable (or c.e.), it is not clear that the two
definitions are equivalent in general, though we do not know of an example of a pca that is p.c.
but not c.e.

Finally, in the case of a Y-computable pca or ca A (which is what we will mostly use below),
the requirement that equality on A is Y-decidable actually follows from the fact that Equation (2)
is Y-computable, namely let n be such that γ (n) is the identity (which exists in any pca).

4. Embeddings and Isomorphisms
There are at least three notions of embedding for pcas, depending on what structure is required
to be preserved. For example, the choice of the combinators k and s from Theorem 2.2 can be
regarded as part of the structure or not. For instance, Zoethout (2022, p. 33) does not consider k
and s to be part of the structure of a pca. We have the following notions of embedding of pcas:

• Only preserve applications. This notion was studied in Bethke (1988), Asperti and Ciabattoni
(1997), Shafer and Terwijn (2021), and Golov and Terwijn (2023).

• Besides applications, also preserve k and s, for a particular choice of these combinators. This
stronger notion was studied in Bethke et al. (1996, 1999).

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

Mathematical Structures in Computer Science 459

• There is an even weaker notion of embedding, using the notion of applicative morphism, that
was introduced in Longley (1994), see also Longley and Normann (2015). Applicative mor-
phisms do not have to preserve applications; instead, there have to be terms in the codomain
that simulate applications in the domain. This notion is useful in realizability theory, see van
Oosten (2008).

Our primary interest here is the notion of embedding where k and s are not considered part of
the signature, but we will also be using the stronger notion of embedding, especially when we talk
about completions. To distinguish the two, we will refer to them as weak and strong embeddings.
(In Golov and Terwijn 2023, weak embeddings were simply called embeddings.) To distinguish
applications in different pcas, we also writeA |= a · b↓ if this application is defined inA.

Definition 4.1. For given pcas A and B, an injection f :A→ B is a weak embedding if for all
a, b ∈A,

A |= ab↓ =⇒ B |= f (a)f (b)↓ = f (ab). (3)

If A embeds into B, in this way we write A ↪→ B. If in addition to (3), for a specific choice of
combinators k and s of A, f (k) and f (s) serve as combinators for B, we call f a strong embedding.

A (total) ca B is called a weak completion of A if there exists a weak embedding A ↪→ B. If the
embedding is strong, we call B a strong completion.

Two pcas A and B are isomorphic, denoted by A∼= B, if there exists a bijection f :A→ B such
that for all a, b ∈A, ab↓ if and only if f (a)f (b)↓, and in this case

f (a) · f (b)= f (ab).

Besides the term completion, in the literature also the term extension is used. Bethke et al.
(1999, Definition 1.5) call a pca B an extension of a pca A if A⊆ B, the application ·A in A
is the restriction of application ·B in B to the domain of ·A, and B and A both have the same
combinators k and s as in Theorem 2.2.

Now suppose that f :A ↪→ B is a strong embedding. Then f (A)⊆ B is an extension in the
above sense, where both f (A) and B have combinators f (k) and f (s). Note that A∼= f (A) if we
define application in f (A) by f (A) |= f (a) · f (b)↓= f (c) if and only ifA |= a · b↓= c. So we see that
total extensions and completions amount to the same thing, provided that in both cases we have
to specify whether to also fix s and k or not.

In Terwijn (2023), it is shown that weak and strong embeddability and completions are
different: There exists a pca that is weakly completable, but not strongly completable.2

5. Complexity of Completions ofK1
It was an important open question in the 1970s whether every pca has a strong completion. The
question was raised by Barendregt, Mitschke, and Scott, and discussed at a meeting in Swansea
in 1974, cf. Bethke et al. (1999). (Note that this predates Feferman’s paper Feferman 1975.) A
negative answer was obtained by Klop (1982), see also Bethke et al. (1999). Other examples of
incompletable pcas can be found in Bethke (1987) and Bethke and Klop (1996).

In contrast to these examples,K1 does have strong completions. This follows from the criterion
given in Bethke et al. (1996) about the existence of unique head-normal forms, which is satisfied in
K1. The completion ofK1 resulting from this is a certain termmodel T(ω)/∼. On the face of it, the
equivalence relation ∼ is not computable, since it is essentially equivalence of terms in K1. That
indeed it cannot be computable follows from Theorem 5.2, and also from the fact that computable
combinatorial algebras do not exist.

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

460 S. Terwijn

We now discuss how another famous pca can be seen as a completion of K1. Scott’s graph
model G is a pca defined on the power set P(ω), with application defined by

X · Y = {
x | ∃u(〈x, u〉 ∈ X ∧Du ⊆ Y)

}
.

Here Du as always denotes the finite set with canonical code u, and 〈·, ·〉 denotes an effective
pairing function. E is defined as the restriction of G to the c.e. sets. That G and E are (total) cas
is implicit in Scott (1975). Note the close connection with enumeration reducibility (cf. Odifreddi
1999, XIV): For all sets Y and Z, Z�e Y is equivalent with X · Y = Z for some c.e. set X.

In Golov and Terwijn (2023, Corollary 7.5, it was shown that K1 ↪→ E , so that we can see E as
a weak completion of K1. Note that equality on E is equality of c.e. sets, which is
0

2-complete
when we represent c.e. sets by their indices.3 So this is more complicated than equality in the term
model T(ω)/∼.

We can see E as a combination of K1 and K2. Indeed we have
K1 ↪→ E ↪→K2

(the latter by Golov and Terwijn 2023, Corollary 6.2, so that we can view E as a kind of middle
ground between Kleene’s models. This combination famously gives a model of the λ-calculus, as
shown in Scott (1975), see Odifreddi (1999, XIV.4).

Below, we use that for an embedding f :K1 ↪→A of K1 into a pca A, it suffices to know the
value of f on finitely many elements. This observation was also used in Golov and Terwijn (2023,
Theorem 4.1), and it can be used to bypass the fact that embeddings such as f do not have to be
computable. Below we give a somewhat simpler version of this trick, using the following lemma.

Lemma 5.1. There exist elements tn ∈K1, n� 1, such that for all n and m,

tn ·m=
{
n ifm= 0
tn+1 ifm> 0.

Proof. By the recursion theorem, let d ∈ω be a code such that

ϕd(n,m)=
{
n ifm= 0
S11(d, n+ 1) ifm> 0.

Here S11 is the primitive recursive function from the S-m-n-theorem. Define tn = S11(d, n). W.l.o.g.
we may assume tn > 0 for all n. Then ϕtn(m)= ϕS11(d,n)

(m)= ϕd(n,m)= tn+1 form> 0 and equal
to n otherwise. �

In Golov and Terwijn (2023, Corollary 4.2, it was proved that ifKX
1 ↪→A is a weak embedding

ofKX
1 into a pcaA with Y-c.e. inequality, then X �T Y . We obtain a stronger conclusion when we

assume thatA is total and Y-computable.

Theorem 5.2. SupposeA is a Y-computable combinatorial algebra, and that f :KX
1 ↪→A is a weak

embedding. Then X<T Y .

Proof. The successor function S in K1 satisfies Sn(0)= n, but we need an element t such that
the n-fold application t · . . . · t · 0 equals n, with the convention that application associates to the
left, not to the right. Let t = t1 be as in Lemma 5.1. Then for the n-fold application, we have
t · . . . · t · 0= tn · 0= n for every n> 0. Since f is an embedding, we obtain from this

f (n)= f (t · . . . · t · 0)= f (t) · . . . · f (t) · f (0), (4)

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

Mathematical Structures in Computer Science 461

with the applications repeated n times. So we see that the image of f is completely determined by
f (t) and f (0).

To show that Y 	�T X, let A, B be a X-computably inseparable pair of X-c.e. sets, and let e be a
code such that for all x,

ϕXe (x)=

⎧⎪⎨
⎪⎩
0 if x ∈A
1 if x ∈ B
↑ otherwise.

Then we have in particular that
KX
1 |= e · x↓= 0=⇒A |= f (e) · f (x)= f (0),

KX
1 |= e · x↓= 1=⇒A |= f (e) · f (x)= f (1).

Since A is total, for every x the application f (e) · f (x) is always defined in A, and by Equation (4),
it is equal to a term containing only f (t), f (0), and application. BecauseA is Y-computable, we can
compute a code of f (e) · f (x) effectively from x. (All we need is e, and codes of f (t) and f (0), all of
which are fixed.) Furthermore, since the definition of Y-computable pca entails that equality on
A is Y-decidable, we can decide with Y whether f (e) · f (x) is equal to f (0) or f (1) or not. It follows
that the set C = {x |A |= f (e) · f (x)= f (0)} is Y-computable and separates A and B, and since A
and B have no X-computable separation Y is not X-computable.

That X �T Y can be shown using a very similar argument. Instead of ϕXe above, use the
characteristic function ϕXd (x) which is 0 if x ∈ X and 1 if x /∈ X. Then the rest of the argument
above, replacing e with d, shows that X is Y-computable. So we have Y 	�T X and X�T Y , hence
X<T Y . �

From Theorem 5.2, we see that, in particular,K1 does not have a computable weak completion,
which also follows from the fact that combinatorial algebras are never computable, see Barendregt
(1984, 5.1.15). We now show that this is optimal, namely that there exist completions of low
Turing degree. (Recall that Y is low if Y ′ �T ∅′).

Theorem 5.3. There exists a strong completion A of K1 of low Turing degree, that is, A is Y-
computable such that Y is low.

Proof. The outline of the proof is as follows. We first define a first-order base theory Cmpl such
that each model of Cmpl gives rise to a strong completion of K1. The theory Cmpl will be con-
sistent because we already know that K1 has strong completions. We then use standard recursion
theory to obtain a complete and consistent extension of Cmpl of low degree. This does not imme-
diately give a completion of K1 of low degree, but we use a model-theoretic argument to obtain a
completion of the desired complexity.

The language of Cmpl is two-sorted,4 with a predicate N(x) intended to range over natu-
ral numbers, and a predicate A(x) intended to range over a pca A that is a completion of K1.
Furthermore, the language has a function symbol f with the intended meaning that f :K1 →A is
a strong embedding. The language for the sortN is the same as the language of arithmetic, and for
this sort, we take the axioms of PA. The language of the sort A is that of pcas, with one function
symbol · for application in A. Since · will be required to be total we add it as a function symbol,
rather than as a relation symbol, which would have been more appropriate for a partial operation.
By arithmetization, wemay assume that expressions of the form ϕa(b)↓= c are directly expressible
for the sortN for all standard numbers a, b, c ∈ω, where we represent a number n ∈ω by the term
Sn(0).

So as axioms of Cmpl, we have the following:

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

462 S. Terwijn

• The axioms of PA for the sort N (i.e. all axioms relative to N).
• Axioms expressing that f is an embedding from K1 toA:

− ∀a ∈N(f (a) ∈A).
− ∀a, b ∈N(f (a)= f (b)→ a= b).
− For all a, b, c ∈ω, we have an axiom

K1 |= a · b↓= c =⇒ A |= f (a) · f (b)= f (c). (5)

Note that the LHS can be expressed for the sort N using the language of arithmetic, using
terms Sn(0) to express the natural number n, and the RHS can be expressed for the sort A.

• To ensure that f is a strong embedding, we fix standard combinators s and k in K1 satisfying
the axioms of Theorem 2.2. Note that these can be expressed for the sort N. Also, note that s
and k are just standard numbers, so we do not need to add them to the signature. Next, we add
axioms expressing that f (s) and f (k) also satisfy the axioms of Theorem 2.2, but now for the
sort A. The existence of these combinators f (s) and f (k) automatically ensures thatA forms a
pca. The fact thatA should be total is handled by the fact that application is a function symbol
in the language, so no explicit axiom is needed for this.

Taken together, the axioms of Cmpl express that f is a strong embedding from K1 to A. Every
model M of Cmpl gives a strong completion of K1 as follows. Denote by M �N and M �A the
part of M restricted to the sorts N and A. Then M �N is a model of PA and A=M �A is a pca.
Furthermore, the restriction of f M to the standard numbers n ∈ω is an injection of ω into A,
which, by Equation (5), is an embedding of K1, which is strong because f (s) and f (k) satisfy
the axioms of Theorem 2.2. The values of f M on possible nonstandard elements of M �N are
irrelevant.

Since Cmpl is a computable axiomatization, by a result of Shoenfield (cf. Cenzer 1999, Theorem
6.1), the set of complete and consistent extensions of it can be represented as a
0

1-class, that is,
there is a computable tree T ⊆ 2<ω such that the set of infinite paths [T] consists of all complete
and consistent extensions of Cmpl. (We encode sentences by natural numbers, so that paths in
2ω correspond to sets of sentences.) Note that the theory Cmpl is consistent because we know by
Bethke et al. (1996) that there exists a strong completion ofK1. In particular, the tree T is infinite,
and [T] is nonempty. By the Low Basis Theorem (Jockusch and Soare 1972), T has a path of low
Turing degree, which gives us a complete and consistent extension X of Cmpl of low degree.

Since X is consistent, it has a modelM by the completeness theorem, and by the remarks above
M defines a strong completion of K1, namely M �A. However, there is no guarantee that this
completion is X-computable. But we do not need all of M �A; it suffices to consider the smaller
pca A consisting of all terms built from f (n) for standard numbers n ∈ω (represented as terms
Sn(0)), and application. Note that A is a pca because of the presence of f (s) and f (k), and A is
total since for u and v of the given form, u · v is again of this form. Not every element of A is of
the form f (n), for example, it has terms f (a) · f (b) such that ϕa(b)↑. The pca A is a sub-pca of
M �A in the sense of Shafer and Terwijn (2021). To finish the proof of the theorem, we note that
A is X-computable. Namely, given to terms u and v of the form above, we can simply compute
their application as the term u · v. Equality of terms in A is X-decidable because the theory X is
complete and thus contains all equalities u= v and u 	= v of such terms. So the sub-pcaA ofM �A
is total and X-computable, and hence of low degree since X is low. �

6. Complete Extensions of PA
Followingmodern terminology, we call a Turing degree a PA degree if it is the degree of a complete
extension of Peano arithmetic (cf. Downey and Hirschfeldt 2010, p. 84). We will simply call a set
PA-complete if it has PA degree.

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

Mathematical Structures in Computer Science 463

In this section, we show that every (strong or weak) completion of K1 computes a PA degree,
and vice versa. Since there exist PA-complete sets of low degree (Downey and Hirschfeldt 2010,
p. 87), Theorem 5.3 follows from the statement of this equivalence; however, this does not make
the proof of Theorem 5.3 superfluous, since the tree T from its proof is used in the proof of the
equivalence.

Proposition 6.1. Every PA-complete set computes a strong completion of K1.

Proof. By results of Scott and Solovay (cf. Odifreddi 1989, V.5.36), a set Y is PA-complete if and
only if it can compute an element of every nonempty
0

1-class. In particular, Y can compute an
element of [T] for the computable tree T from the proof of Theorem 5.3. By the rest of the proof
of Theorem 5.3, this implies that Y computes a strong completion of K1, namely the term model
defined at the end of the proof. �

The following result strengthens Theorem 5.2.

Theorem 6.2. SupposeA is a Y-computable combinatorial algebra, and that f :K1 ↪→A is a weak
embedding. Then Y is PA-complete.

Proof. According to Jockusch and Soare (1972), a set is PA-complete if and only if it can compute
a separation of an effectively inseparable pair of c.e. sets. (See also Downey and Hirschfeldt 2010,
p. 86.) Now let A, B be a pair of effectively inseparable c.e. sets, for example, we can take the
provable and refutable sentences of PA (Odifreddi 1989, p. 513). Then the proof of Theorem 5.2
shows that Y computes a separation of A and B, and hence Y is PA-complete. �

Putting Proposition 6.1 and Theorem 6.2 together, we obtain the following characterization:

Corollary 6.3. The following are equivalent for any set A:

(i) A computes a weak completion of K1,
(ii) A computes a strong completion of K1,
(iii) A is PA-complete.

In the case of PA degrees, more is known, namely that they are closed upwards. We do not
know whether the degrees of (weak or strong) completions of K1 are also upwards closed.

7. Nonstandard Models of PA
As mentioned in Beeson (1985, VI.2.5) and van Oosten (2008), every model M of Peano
Arithmetic PA defines a pca onM, with application defined by

a · b↓= c ifM |= ϕa(b)↓= c (6)

for all a, b, c ∈M. By restricting Equation (6) to standard numbers a, b, c ∈ω, we obtain a pca on
ω, which we will callK1(M). Note thatK1(M) is just Kleene’s first modelK1 “insideM.” It is a pca
because we can pick combinators k, s ∈K1 as in Theorem 2.2 such that PA proves that they have
the required properties.

Note that for a, b, c ∈ω we have that a · b↓= c in K1 if and only if ∃y(T(a, b, y)∧U(y)= c),
where T and U are the primitive recursive predicate and function from Kleene’s normal form
theorem (cf. Odifreddi 1989). In a nonstandard modelM, this y can be nonstandard, so thatmore

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

464 S. Terwijn

computations converge than in reality. In particular, in general, we have
K1 |= a · b↓= c =⇒ K1(M) |= a · b↓= c, (7)

but not conversely. For example, consider amodelM of PA+ ¬con(PA), where con(PA) expresses
the consistency of PA. Such models exist by Gödel’s second incompleteness theorem. If we con-
sider the p.c. function ϕa that on input b searches for a proof of an inconsistency in PA, then the
computation a · b will converge in K1(M), but not in K1 (assuming PA is consistent).

Note that by Equation (7), we have an embeddingK1 ↪→K1(M) for every modelM of PA. This
is in fact a strong embedding, as the same combinators s and k can be used in K1(M).

Since PA proves that certain p.c. functions are nontotal, any model of PA has nontotal p.c.
functions. This remains true if we restrict to standard numbers, that is, there are standard numbers
e, n ∈ω such that PA proves that ϕe(n) never halts. In particular, we see thatK1(M) is never a total
pca (i.e. a ca). Therefore, we have:

Proposition 7.1. K1(M) is never a weak completion of K1.

By Tennenbaum’s theorem (cf. Boolos and Jeffrey 1974), there are no computable nonstandard
models of PA. More precisely, there are no nonstandard models in which + is computable. (This
is an extension of Tennenbaum’s theorem due to Kreisel.) It follows that there are also no non-
standard models that are c.e., because + is a total operation, and in a c.e. model, it would actually
be computable, contradicting Kreisel’s result. So it would seem that the pcas K1(M) for nonstan-
dard modelsM cannot be used for the problems about c.e. pcas discussed in computable structure
theory (see Fokina and Terwijn 2024). However, for modelsM0 andM1 of PA, we do not have in
general that

M0 	∼=M1 =⇒K1(M0) 	∼=K1(M1).
To see this, let M0 =ω be the standard model, and let M1 be a nonstandard model that has the
same first-order theory as ω (which exists by the compactness theorem). Then M0 	∼=M1, but
K1(M0)=K1(M1)=K1.

In particular, we see that it is possible that K1(M) is c.e. (in the sense of Definition 3.2) for a
nonstandard modelM of PA. This prompts the following question:

Question 7.2. What are the possible c.e. degrees for suchK1(M)aaaa canK1(M) be c.e. but not equal
to K1aaaa �

In the following, we note that though K1(M) is always noncomputable, it can have low degree
(if we do not require that it is also c.e.).

Proposition 7.3. K1(M) is always noncomputable.

Proof. Consider the computably inseparable pair of sets
A= {x ∈ω | ϕx(x)↓= 0}
B= {x ∈ω | ϕx(x)↓= 1}.

Now consider the set C = {x ∈ω |K1(M) |= x · x↓= 0}. C is computable from K1(M), and it fol-
lows from Equation (7) that it separates A and B, from which it follows immediately that K1(M)
cannot be computable. �

Proposition 7.4. K1(M) can have low Turing degree.

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

Mathematical Structures in Computer Science 465

Proof. We have to show that there exists a model M and a low set Y such that K1(M) is
Y-computable (in the sense of Definition 3.2), that is, such that the set

Z = {(a, b, c) |K1(M) |= a · b↓= c}
is Y-computable. According to Jockusch and Soare, there exists a complete and consistent exten-
sion X of PA of low Turing degree. Let M be a model with theory X. We can identify the set Z
with the set of sentences a · b↓= c that hold in M. Since Z is then just a subset of X consisting
of sentences of a specific form, there is a computable set R such that Z = R∩ X, and we have
(R∩ X)′ �T X′ �T ∅′ so that Z is low. �

Competing interests. The author declares none.

Notes
1 Note that this definition of computable pca is different from the definition of decidable pca in van Oosten (2008, Definition
1.3.7), which refers to the decidability of equality inside the pca, using an element of the pca.
2 The argument runs as follows: First,K2 has strong completions. Second, the counterexample from Bethke et al. (1999) of a
pca without strong completions can be weakly embedded intoK2. Hence this weak embedding cannot be made strong.
3 In the discussion of E as a model of the λ-calculus, Odifreddi (1999, p. 858) also defines an application on ω by e · x=
index of We ·Wx . Odifreddi says that this choice of application is “equivalent” to E . However, this application on ω does
not give a pca, as equality on ω is decidable, so this would contradict that K1 does not have a computable weak completion
(cf. Theorem 5.2). So to obtain a pca, we have to divide out by equivalence of c.e.-indices, which gives precisely E . Also note
that the model of the λ-calculus really uses c.e. sets, not indices.
4 For more about multi-sorted languages andmodels, see Monk (1976, p. 483 ff). It is well-known that languages with finitely
many sorts, as in our case, reduce to ordinary first-order logic by using predicates for the various sorts, as we do here directly.
There is no need to keep the sorts N and A disjoint, so we have what is called a lax setting. When writing axioms for a sort,
instead of writing ∀a(N(a)→ ϕ), we also simply write ∀a ∈N. ϕ.

References
Asperti, A. and Ciabattoni, A. (1997). A sufficient condition for completability of partial combinatory algebras. Journal of

Symbolic Logic 64 (4) 1209–1214.
Barendregt, H. P. (1984). The Lambda Calculus, Studies in Logic and the Foundations of Mathematics, vol. 103, 2nd edn.,

Amsterdam, North-Holland.
Beeson, M. J. (1985). Foundations of Constructive Mathematics. Springer: Berlin, Heidelberg.
Bethke, I. (1987). On the existence of extensional partial combinatory algebras. Journal of Symbolic Logic 52 (3) 819–833.
Bethke, I. (1988). Notes on Partial Combinatory Algebras. Phd thesis, Universiteit van Amsterdam.
Bethke, I. and Klop, J. W. (1996). Collapsing partial combinatory algebras. In: Dowek, G., Heering, J., Meinke, K. and Möller,

B.(eds.), vol. 1074, 57–73, Springer Lecture Notes in Computer Science
Bethke, I., Klop, J. W. and de Vrijer, R. (1996). Completing partial combinatory algebras with unique head-normal forms. In:

Proceedings of 11th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 448–454.
Bethke, I., Klop, J. W. and de Vrijer, R. (1999). Extending partial combinatory algebras.Mathematical Structures in Computer

Science 9 483–505.
Boolos, G. S. and Jeffrey, R. C. (1974). Computability and Logic, New York, Cambridge University Press.
Cenzer, D. (1999).
0

1-classes in computability theory. In:Handbook of Computability Theory, Griffor, E. R. (ed.), Amsterdam,
North-Holland, 37–85.

Cockett, J. R. B. andHofstra, P. J.W. (2008). Introduction to Turing categories.Annals of Pure and Applied Logic 156 183–209.
Downey, R. G. and Hirschfeldt, D. R. (2010). Algorithmic Randomness and Complexity. Springer: New York.
Feferman, S. (1975). A language and axioms for explicit mathematics. In: Algebra and Logic, Crossley, J. N. (ed.), Springer,

87–139.
Fokina, E. and Terwijn, S. A. (2024). Computable Structure Theory of Partial Combinatory Algebras. In: Computability in

Europe (CiE 2024), Lecture Notes in Computer Science 14773, Springer: Cham, 265–276.
Frittaion, E. and Rathjen, M. (2021). Extensional realizability for intuitionistic set theory. Journal of Logic and Computation

31 (2) 630–653.
Golov, A. and Terwijn, S. A. (2023). Embeddings between partial combinatory algebras. Notre Dame Journal of Formal Logic

64 (1) 129–158.

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252

466 S. Terwijn

Jockusch, C. G., Jr. and Soare, R. I. (1972).
0
1-classes and degrees of theories. Transactions of the American Mathematical

Society 173 35–56.
Khoussainov, B. (2018). A journey to computably enumerable structures, tutorial lectures. In: Computability in Europe 2018,

Manea, F. et al. (ed.), LNCS vol. 10936, Springer, 1–19.
Kihara, T. (2022). Rethinking the notion of oracle, preprint, arXiv.
Kleene, S. C. and Vesley, R. E. (1965). The Foundations of Intuitionistic Mathematics, North-Holland: Amsterdam.
Klop, J. W. (1982). Extending partial combinatory algebras. Bulletin of the European Association for Theoretical Computer

Science 16 472–482.
Longley, J. (1994). Realizability Toposes and Language Semantics, PhD thesis, University of Edinburgh.
Longley, J. and Normann, D. (2015). Higher-Order Computability, Springer: Berlin, Heidelberg.
Longo, G. and Moggi, E. (1984). Gödel numberings, principal morphisms, combinatory algebras. In: Mathematical

Foundations of Computer Science, Chytil, C. and Koubek, K. (ed.), LNCS, vol. 176, Springer Verlag.
McCarty, D. C. (1986). Realizability and recursive set theory. Annals of Pure and Applied Logic 32 (2) 153–183.
Monk, J. D. (1976).Mathematical Logic, Springer: New York.
Odifreddi, P. G. (1989). Classical recursion theory. Studies in Logic and the Foundations of Mathematics, vol. 125, North–

Holland.
Odifreddi, P. G. (1999). Classical Recursion Theory, Studies in Logic and the Foundations of Mathematics, vol. 143,

Amsterdam, North-Holland.
Rathjen, M. (2006). Realizability for constructive Zermelo-Fraenkel set theory. In: Logic Colloquium’03, 282–314.
Scott, D. (1975). Lambda calculus and recursion theory (preliminary version). In: Kanger, S.(ed.) Proceedings of the Third

Scandinavian Logic Symposium, Studies in Logic and the Foundations of Mathematics, vol. 82, 154–193.
Selivanov, V. (2003). Positive structures. In: Computability and Models, Cooper, S. B. and Goncharov, S. S. (ed.), Kluwer,

321–350.
Shafer, P. and Terwijn, S. A. (2021). Ordinal analysis of partial combinatory algebras. Journal of Symbolic Logic 86 (3)

1154–1188.
Soare, R. I. (1987). Recursively Enumerable Sets and Degrees, Springer: Berlin, Heidelberg.
Terwijn, S. A. (2023). Completions of Kleene’s second model, arXiv.
Troelstra, A. S. and van Dalen, D. (1988). Constructivism in Mathematics, Studies in Logic and the Foundations of

Mathematics, vol. 123, North-Holland.
van Oosten, J. (1999). A combinatory algebra for sequential functionals of finite type. In:Models and Computability, Cooper,

S. B. and Truss, J. K. (ed.), Cambridge University Press, 389–406.
van Oosten, J. (2008). Realizability: An Introduction to Its Categorical Side, Studies in Logic and the Foundations of

Mathematics, vol. 152, Elsevier.
Zoethout, J. (2022). Computability Models and Realizability Toposes. Phd thesis, Utrecht University.

Cite this article: Terwijn S (2024). The complexity of completions in partial combinatory algebra.Mathematical Structures in
Computer Science 34, 455–466. https://doi.org/10.1017/S0960129524000252

https://doi.org/10.1017/S0960129524000252 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000252
https://doi.org/10.1017/S0960129524000252

	
	Introduction
	Partial Combinatory Algebras
	Effective Presentations of Pcas
	Embeddings and Isomorphisms
	Complexity of Completions of "026E30F mathcalK_1
	Complete Extensions of "026E30F mathrmPA
	Nonstandard Models of "026E30F mathrmPA

