
THE COMPACTNESS OF GÖDEL LOGIC

J. P. AGUILERA

Abstract. If G is any infinite-valued Gödel logic with identity, then the com-

pactness cardinal of G is the least ω1-strongly compact cardinal.

1. Introduction

Let L be a logic. A cardinal κ is the compactness cardinal of L if κ is least for
which the following holds: suppose T is an L-theory (in any vocabulary) and every
T ′ ⊂ T of cardinality <κ has an L-model. Then, T has an L-model. Given a closed
set v ⊂ [0, 1] of truth values containing 0 and 1, let Gv be v-valued first-order Gödel
logic (see §2) with identity (where identities x = y have truth value 1 if and only if
x = y). We shall prove the following:

Theorem 1. Suppose v ⊂ [0, 1] is a closed set and let Gv be the Gödel logic given
by v. Then,

(1) Suppose v is finite. Then, the compactness cardinal of Gv is ℵ0.
(2) Suppose v is infinite. Then, Gv has a compactness cardinal if and only

if there is an ω1-strongly compact cardinal, in which case the compactness
cardinal of Gv is the least ω1-strongly compact cardinal.

Recall that a cardinal κ is ω1-strongly compact if any κ-complete (i.e., <κ-
complete) filter can be extended to a countably complete ultrafilter. ω1-strongly
compact cardinals are rather large: clearly, the least ω1-strongly compact cardinal
is at least as large as the least measurable cardinal. It is consistent that the first
measurable cardinal is the least ω1-strongly compact cardinal (e.g., in the model of
Magidor [15]), but the latter can also be larger. For more on ω1-strongly compact
cardinals, see Bagaria-Magidor [5, 6].

It follows from the theorem that it is not provable in ZFC that G[0,1] has a
compactness cardinal and indeed the existence of such a cardinal implies the con-
sistency of ZFC and disproves Gödel’s axiom V = L. In contrast, it follows from
Baaz-Preining-Zach [3, Theorem 5.1] that if T is a countable theory all of whose
finite subtheories have G[0,1]-models, then T has a G[0,1]-model, and this is prov-
able in ZFC. In other words, ℵ0 is a weak compactness cardinal for G[0,1]. Weak
compactness of Gödel logics at ℵ0 has also been investigated by Baaz and Zach [4],
Cintula [8], and by Pourmahdian and Tavana [16].

The core of the proof of Theorem 1 is: given a κ-complete filter F , use the
compactness of Gödel logic to extend F to a countably complete ultrafilter. This
is done by considering a theory T made up of axioms (3.1)–(3.14) in §3 below.
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Key words and phrases. Gödel logic, fuzzy logic, compactness number, strongly compact

cardinal.

1

This is a ``preproof'' accepted article for The Journal of Symbolic Logic.
This version may be subject to change during the production process.
DOI: 10.1017/jsl.2024.87

https://doi.org/10.1017/jsl.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.87


2 J. P. AGUILERA

Theorem 1 is part of a family of results asserting that the least ω1-strongly compact
cardinal is the compactness cardinal of various logics, including the following:

(1) Lω1,ω,
(2) Lω1,ω1

,
(3) ω-logic,
(4) β-logic,
(5) Lω,ω(Qω1

),
(6) Lω,ω(QR).

This fact for the first four logics is due to Magidor and/or Bagaria and Magidor.
Since no proof has appeared in print, it is perhaps worth saying more about the
results. Many of the ideas in our proof are likely the same used to prove the
corresponding result for these logics. The lower bound for Lω1,ω follows immediately
from Theorem 1 and the construction in [1, Section 4], which shows that every Gödel
logic can be interpreted in Lω1,ω. It can also be proved using the characterizations
of ω1-strong compactness in Bagaria-Magidor [6] (see e.g., Theorem 6.1). The upper
bound for Lω1,ω1

is easily provable by a direct argument using ultraproducts. The
result for ω-logic is implicit in our proof (essentially, take T to consist of axioms
(3.8)–(3.14)). The result for β-logic is immediate, since it is stronger than ω-logic
and weaker than Lω1,ω1 . The fact that the compactness cardinal of Lω,ω(Qω1) is
the least ω1-strongly compact cardinal (Qω1 is Keisler’s cardinality quantifier from
[14] for ℵ1) can be proved by reducing Lω1,ω to Lω,ω(Qω1

) via an omitting types
argument, following Baldwin and Shelah [7] (which in turn makes use of Shelah
[17] by essentially first reducing Lω1,ω to ω-logic). It can also be proved directly
by adapting part of our argument. The proof is similar to that of Lω,ω(QR). Here,
QR is the binary quantifier with semantics given by

QRxy φ(x, y)↔ ∃R ⊂ R
({

(x, y) : φ(x, y)
} ∼= (R,<R)

)
.

That is, QRxy φ(x, y) holds if the set of pairs (x, y) that satisfy φ is isomorphic to
a suborder of R. As far as we can tell, the quantifier QR has not been considered in
the literature, but we mention it since the proof that the compactness number of
Lω,ω(QR) is the least ω1-strongly compact cardinal is also implicit in our argument
(take T to contain axioms (3.6)–(3.14) and go from there; the upper bound is again
immediate by an ultrapower argument).

1.1. Acknowledgements. This work was partially supported by FWF grants
ESP-3N and P36837.

2. Preliminaries

Gödel logics are logics intermediate between intuitionistic logic and classical
logic derived from intuitionistic logic by assuming that the set of truth values is a
suborder of R. They typically do not validate the principle of excluded middle. We
consider here first-order Gödel logics Gv, which is defined with the same syntax of
classical or intuitionistic first-order logic. They were introduced by Gödel [11] as
part of his proof that intuitionistic logic is not finite-valued, and were axiomatized
by Dummett [9]. For more background, we refer the reader to Baaz-Preining-
Zach [3], Baaz-Preining [2], or Hájek [12]. A characterization of the recursively
axiomatizable Gödel logics can be found in [3].
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THE COMPACTNESS OF GÖDEL LOGIC 3

2.1. Models. A model for Gödel logic consists of

(1) a set M , the universe of the model;
(2) functions fM corresponding to each function symbol f which map tuples

of elements of M to elements of M ;
(3) predicates PM corresponding to each predicate symbol P which map tuples

of elements of M to values in the set [0, 1];
(4) an assignment of elements of M to variables and constants.

A model contains an assignment of truth values JP (~a)K to predicate symbols and
elements of M . Given a closed v ⊂ [0, 1] containing 0 and 1, the logic Gv is obtained
by restricting the possible values of atomic formulae to elements of v.

2.2. Syntax. First-order logic contains the binary connectives ∧,∨,→ and the
propositional constant ⊥ (false), as well as quantifiers ∀,∃. For arbitrary formulae
φ, the truth value is defined by induction according to Figure 1. The set v is
assumed to be closed as suprema and infima figure in the definition, and 0 and 1
are respectively interpreted as “false” and “true.”

J⊥K = 0

Jϕ ∧ ψK = min{JϕK, JψK}
Jϕ ∨ ψK = max{JϕK, JψK}

Jϕ→ ψK =

{
1, if JϕK ≤ JψK,
JψK, if JϕK > JψK,

J∃xϕ(x)K = sup{Jϕ(a)K : a ∈M}
J∀xϕ(x)K = inf{Jϕ(a)K : a ∈M}.

Figure 1. Definition of truth values for nonatomic formulas in
Gödel logic.

We introduce the following defined connectives, which will be used below in the
proof:

> := ⊥ → ⊥
¬ϕ := ϕ→ ⊥

ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

ϕ ≺ ψ := (ψ → ϕ)→ ψ.

Note that it need not be the case that Jϕ(a)K = J∃xϕ(x)K for any a ∈ M . We
write M |= ϕ if JϕKM = 1, in which case we say that M is a model of ϕ. Given a
set of formulae Γ, we write M |= Γ if M |= ϕ for each ϕ ∈ Γ.

2.3. Identity. We assume identity is part of the language of first-order logic. We
require that the following hold for all interpretations:

(1) Ja = bK = 1 if a = b, and
(2) Ja = bK 6= 1 if a 6= b.
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J¬ϕK =

{
1, if JϕK = 0,

0, if JϕK > 0,

J¬¬ϕK =

{
1, if JϕK > 0,

0, if JϕK = 0,

Jϕ↔ ψK =


JψK, if JϕK > JψK,
1, if JϕK = JψK,
JϕK, if JϕK < JψK,

Jϕ ≺ ψK =

{
1, if JϕK < JψK
JψK, if JϕK ≥ JψK

Figure 2. Evaluation of defined connectives in Gödel logic.

3. Proof of the theorem

Let us first focus on the logic G[0,1] for definiteness and, in particular, on showing
that if κ is a compactness cardinal for G[0,1] then κ is ω1-strongly compact; the other
direction has an easier proof and will be treated towards the end. We do remark
that the only fact about [0, 1] we will use in the construction is the fact that it
contains an infinite subset order-isomorphic to N.

We shall consider a specific theory T in first-order logic consisting of sentences
(3.1)–(3.14) below and use a G[0,1]-model M of it to extend a given κ-complete
filter to a countably complete ultrafilter. We describe the theory in what follows.
Its vocabulary will be the set of symbols occurring in (3.1)–(3.14) and will also be
described in what follows.

The vocabulary of the theory T contains a binary relation symbol ∈. We add
excluded middle for membership:

∀x∀y
(
x ∈ y ∨ ¬(x ∈ y)

)
(3.1)

Thus, ∈ is crisp and behaves classically. We will use x 6∈ y as shorthand for ¬(x ∈ y).
T also contains axioms for

ZFC∗(3.2)

for the relation symbol ∈. Here, ZFC∗ is some large enough finite fragment of ZFC,
such as ZFC with Replacement restricted to Σ2025 formulas. Since ZFC proves the
consistency of all its finite subtheories and we are working in ZFC, ZFC∗ has many
(classical) models, and in fact some of the form Vη, for η a cardinal. If necessary to
avoid confusion, we will use ∈M to refer to the interpretation of ∈ in the (eventual)
model M |= T . In continuing the description of T , we shall speak of objects such
as NM or the interval [0, 1]M as shorthand for the unique element satisfying the
usual definition of N or [0, 1], using the prediate ∈M . We may also simply write
N or [0, 1], but will use superscripts if necessary to avoid confusion with NV and
[0, 1]V . Later, we will also identify natural numbers n ∈ NV with numerals that
denote them. Note that, according to T , N and [0, 1] must exist, by ZFC∗, and NM
is a model of PA.
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The theory T also makes use of a unary relation symbol R. It also contains the
following axiom:

∀x ∀y
[(
¬¬R(x) ∧ ¬¬R(y)

)
→
((
R(x)↔ R(y)

)
→ x = y

)]
.(3.3)

The predicate R will be the only relation symbol for which excluded middle does
not hold in T , other than identity. The axiom asserts that if R attains the same
non-zero value at two arguments x, y, then they must be equal. We also have

∀x
(
x ∈ N↔ ¬¬R(x)

)
,(3.4)

which asserts that the elements of NM are precisely the objects at which the pred-
icate R attains non-zero values. We also add:

∀x ∀y
[(
¬¬R(x) ∧ ¬¬R(y)

)
→
(
x <N y → R(x) ≺ R(y)

)]
.(3.5)

Observe that R(x) ≺ R(y) attains value 1 if and only if R(x) has strictly smaller
truth value than R(y) or else if both R(x) and R(y) have truth value 1 (see Figure
2). We have:

Claim 2. Suppose that

M =
(
M,∈M ,NM

)
is a model of (3.1)–(3.5). Then, NM embeds into the unit interval (0, 1).

Proof. The embedding is given by mapping x 7→ JR(x)K. The domain of this
mapping is NM by (3.4). The mapping is injective by (3.3).

Note that for no y ∈ NM do we have JR(y)K = 1, for otherwise we would have
r
¬¬R(y) ∧ ¬¬R(y + 1)

z
= 1 and

r
y <N y + 1

z
= 1,

but by (3.3) we cannot have JR(y)K = JR(y + 1)K and hence we would have

JR(y + 1)K < JR(y)K = 1,

which would force (3.5) to have truth value < 1. Thus, the range of the mapping
is contained in (0, 1).

According to (3.5), for all x, y ∈ NM , x <MN y implies that JR(x)K < JR(y)K,
since JR(y)K = 1 is impossible. Hence, the mapping is strictly order-preserving,
and thus an embedding, as desired. �

We add to the vocabulary continuum-many unary function symbols {fx}x∈(2N)V .
We add an axiom

fx : NM → NM(3.6)

for each x ∈ (2N)V . (This axiom is expressed using membership ∈.)
Moreover, whenever x, y ∈ 2N and n ∈ N are such that x � n 6= y � n, we add the

axiom:

∀k ∈ NM
(
n <N k → fx(k) 6= fy(k)

)
.(3.7)

Here, (3.7) is expressed using the numeral n, which in turn is expressed using
membership ∈. Similarly, the inequality n <N k is expressed using membership.
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Claim 3. Suppose that

M =
(
M,∈M ,NM , {fMx : x ∈ 2N}

)
is a model of (3.1)–(3.7). Then, M is an ω-model.

Proof. Suppose otherwise and let k ∈ NM be non-standard. Let x, y ∈ (2N)V be
different. Then, there is some standard n ∈ N such that x � n 6= y � n and so by
(3.7), we have fx(k) 6= fy(k). By (3.6), it follows that

|NM | ≥ 2ℵ0 .

In particular, NM is uncountable. By Claim 2, NM embeds into (0, 1). However,
it is a theorem of Smoryński [18] that no uncountable model of PA embeds into
R. (To see this, suppose otherwise and let e : NM → RV be an order-preserving
embedding. For each m ∈ NM , let

Im =
(
e(m), e(m+ 1)

)
.

Then, {Im : m ∈ NM} is an uncountable family of pairwise disjoint nontrivial
intervals of real numbers, which is absurd). Since clearly NM |= PA, this is a
contradiction, so the claim is proved. �

Now, let F be a κ-complete filter on some set. Without loss of generality, let us
assume that F is a filter on some cardinal λ with κ ≤ λ. We add to T a family of
2λ-many unary predicates Ȧ, one for each A ⊂ λ. We also add a constant c. We
add axioms:

Ȧ(c) ∨ ¬Ȧ(c), whenever A ⊂ λ(3.8)

Ȧ(c), whenever A ∈ F(3.9)

Ȧ(c)↔ ¬Ḃ(c), whenever A = λ \B(3.10)

Ȧ(c) ∧ Ḃ(c)↔ Ċ(c), whenever C = A ∩B ⊂ λ(3.11)

Ȧ(c)→ Ḃ(c), whenever A ⊂ B ⊂ λ.(3.12)

In addition, for each ω-sequence s : N → P(λ) of subsets of λ, we add a binary

relation symbol Ȧs and axioms:

Ȧs(i, c)↔ Ȧ(c), whenever A = s(i)(3.13)

∀x
(
x ∈ NM → Ȧs(x, c)

)
↔ Ȧ(c), whenever A =

⋂
i∈N

s(i).(3.14)

As before, (3.13) is expressed using the numeral i.

Claim 4. Suppose that

M =
(
M,∈M ,NM ,

{
fMx : x ∈ 2N

}
,
{
ȦM : A ⊂ λ

}
,
{

(Ȧs)M : s ∈ P(λ)N
}
, cM

)
is a model of (3.1)–(3.14). Let

U =
{
A ⊂ λ : M |= Ȧ(c)

}
.

Then, U is an ω1-complete ultrafilter extending F .
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Proof. U extends F by (3.9). It is a filter by (3.11) and (3.12). Moreover, it is
an ultrafilter by (3.8) and (3.10). It remains to verify that it is ω1-complete. Let
s = {Ai : i ∈ N} be an ω-sequence of subsets of λ in U . By (3.13), we have

M |= Ȧs(i, c)

for all i ∈ N. By Claim 3, M is an ω-model, so we have

M |= ∀x
(
x ∈ N→ Ȧs(x, c)

)
.

By (3.14), we then have

M |= Ȧ(c),

where A =
⋂
i∈NAi, so A ∈ U . This proves the claim. �

In order to complete the proof of the theorem, it remains to show:

Claim 5. Suppose T ′ ⊂ T has cardinality γ < κ. Then, T ′ has a G[0,1]-model.

Proof. We will in fact find a model M of all sentences (3.1)–(3.8) and (3.10)–(3.14),
together with any collection of size γ < κ of sentences of the form (3.9). We begin
the description of the model by setting (M,∈M ) = (Vη,∈), where η is large enough
so that λ < η and Vη |= ZFC∗. For each n ∈ N, we let

(3.15) JR(n)K = 1− 1

2 + n
.

For elements x ∈ Vη \ N, we put JR(x)K = 0. Identity is defined as usual for all x
which are not natural numbers. For n,m ∈ N, we put Jn = mK = 1 if n = m and
otherwise we put

Jn = mK = min

{
1− 1

2 + n
, 1− 1

2 +m

}
.

Axioms (3.1)–(3.5) are thus satisfied. In particular, note that (M,∈) satisfies ex-
tensionality: if two sets x, y ∈ M have the same elements (this is an antecedent
with value in {0, 1}), then we really have x = y and thus Jx = yK = 1. Perhaps
the only axiom that needs further arguing is (3.3) for elements n,m ∈ N, in which
case the antecedent of the implication attains truth value 1. If n = m, then the
conclusion trivially attains truth value 1, so the implication is true. Otherwise, by
(3.15) we have

JR(n)K 6= JR(m)K,
so according to Figure 2, we have

s
R(n)↔ R(m)

{
= min

{s
R(n)

{
,

s
R(m)

{}
= min

{
1− 1

2 + n
, 1− 1

2 +m

}
= Jn = mK,

so the implication is true.
For the functions fx, notice that for each k ∈ N there are only 2k different

sequences of the form x � k, for x ∈ 2N. Thus, we define all fx by induction on k so
that fx(k) depends only on x � k and for each distinct sequence x � k, fx(k) takes
a different value in

{2k, 2k + 1, . . . , 2k+1 − 1}.
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Thus axioms (3.6)–(3.7) are satisfied.

For each A ⊂ λ, we interpret Ȧ as A. Fix any collection A = {Aι : ι < γ} of
sets in F , where γ < κ. Since F is κ-complete, there is some ordinal δ < λ with

δ ∈
⋂
ι<γ

Aι.

We interpret the constant c as δ. The model then satisfies axiom (3.8) and axioms
(3.10)–(3.12), as well as all axioms of the form (3.9) given by the γ-many sets Aι
from the family A.

Finally, for each ω-sequence s : N → P(λ), we interpret Ȧs as the graph of
s. Then, all axioms (3.13)–(3.14) are satisfied. This completes the proof of the
claim. �

With Claim 4 and Claim 5, one direction of the proof of the theorem is complete.
For the other direction, we simply observe that by the argument in [1, Section 4],
every Gödel logic Gv can be interpreted in Lω1,ω. Since the compactness number
of Lω1,ω is the least ω1-strongly compact cardinal (see the proof of [10, Theorem
5.4]), this is an upper bound for that of Gv, for any set of truth values v ⊂ [0, 1].
(This only needs the easy direction: that if κ is ω1-strongly compact, then Lω1,ω

is κ-compact, and this can be proved directly using the usual ultrapower argument.)

Let us now indicate how to modify the proof given above for other sets of truth
values v ⊂ [0, 1]. Note that the fact that v = [0, 1] was not used at any point in the
proof other than in Claim 5. It is used in Claim 5 in order to ensure that the model
constructed satisfies axiom (3.5), since NV needs to embed into the set of truth
values, for which it suffices that v contain a subset order-isomorphic to N (which
in our case was the set of all numbers of the form

1− 1

2 + n
,

and these served as the truth values of formulas R(n) for n ∈ NM and for identities
n = m between natural numbers). If v is infinite, it must contain a subset order-
isomorphic to one of N or Z≤0. In the second case, we modify axiom (3.5) to the
following “dual” form:

∀x ∀y
[(
¬¬R(x) ∧ ¬¬R(y)

)
→
(
y <N x→ R(x) ≺ R(y)

)]
.

With this modification, everything works.

Finally, if v ⊂ [0, 1] is a finite set of truth values, say |v| = n, then given a
first-order theory T , let T ′ be the theory containing the following axioms:

(1) ZFC∗,

(2) Ṁ is an n-valued model in the Gödel logic Gv,

(3) Ṁ |= φ, for each φ ∈ T .

If T is finitely satisfiable, then so is T ′. If so, by the compactness theorem for
classical logic, T ′ has a model, and the interpretation of Ṁ in this model will be a
model of T .

Remark 6. The usual arguments (see e.g., Jech [13]) show that if Gv,κ is any Gödel
logic augmented with infinitary connectives of length η < κ for some κ, then κ is
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THE COMPACTNESS OF GÖDEL LOGIC 9

the compactness cardinal of Gv,κ if and only if κ is strongly compact. Similarly,
κ is a weak compactness cardinal for Gv,κ if and only if κ is weakly compact. In
Gv,κ, the truth values of infinite conjunctions and disjunctions are given by infima
and suprema, respectively.
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