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Restricting unipotent characters in special orthogonal groups

Frank Himstedt and Felix Noeske

ABSTRACT

For all prime powers ¢ we restrict the unipotent characters of the special orthogonal groups
SOs5(q) and SO7(q) to a maximal parabolic subgroup. We determine all irreducible constituents
of these restrictions for SO5(g) and a large part of the irreducible constituents for SO7(q).

1. Introduction

Among the ordinary irreducible characters of a finite group G of Lie type the unipotent
characters possess some remarkable properties. For example, the Jordan decomposition of
characters gives a connection between the ordinary irreducible characters of G and the
unipotent characters of certain subgroups of the dual group. Furthermore, if ¢ is a prime
different from the defining characteristic and not too small, then the reductions modulo ¢ of
the unipotent irreducible characters form a so-called basic set for the unipotent ¢-blocks of G,
so that knowledge of the decomposition numbers of the unipotent irreducible characters can
be used to derive all decomposition numbers of the unipotent blocks.

The analysis of the restriction of representations to maximal parabolic subgroups is an
important tool in the representation theory of finite groups of Lie type. One reason for this
is that maximal parabolic subgroups are large subgroups and another one is that the Levi
decomposition in conjunction with Clifford theory often allows for a reduction of representation
theoretical questions to groups of smaller rank.

Let g be a prime power. In this paper we study the restriction of the unipotent irreducible
characters of the special orthogonal groups G = SOj5(q) and G = SO7(q) to the maximal
parabolic subgroup P, which is defined as the stabilizer in G of a one-dimensional subspace
of the natural module. The irreducible characters of the parabolic subgroup P are partitioned
into Types 1, 0, + and — via Clifford theory. For G = SOj5(q) we determine all irreducible
constituents of the restrictions of the unipotent irreducible characters of G to P. For G =
SO7(q) we obtain complete information on the irreducible constituents of Types 1 and 0 and
partial information on the constituents of Types £. Our motivation lies in the computation of
the decomposition numbers of SO7(g) in non-defining characteristic. The results we obtain in
this paper contribute to solving this task in [8]. For even ¢ the special orthogonal groups are
isomorphic to symplectic groups and in this case restrictions of representations in non-defining
characteristic to maximal subgroups were previously investigated in [7] and [12], for example.

Based on our motivation to compute and compare the decomposition numbers of Spg(q)
and SO7(g), this paper and the paper by An and Hiss [2] are kindred spirits. In fact,
large parts of our paper are guided by the work of An and Hiss. However, there are some
remarkable differences: for the orthogonal groups the unipotent radical of P is abelian, while
it is non-abelian for the parabolic subgroup considered in [2]. Furthermore, there are structural
differences between the inertia subgroups in the parabolic subgroup of the orthogonal and the
symplectic groups, respectively. And, finally, we also consider even prime powers q.
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The paper is structured as follows: we fix notation for the orthogonal groups in §2
and introduce the maximal parabolic subgroup P. In §3 we describe the construction and
parameterization of the irreducible characters of P via Clifford theory. Section 4 is the technical
heart of this paper. In Theorem 4.3 we obtain a description of the restriction of those characters
of G which are Harish-Chandra induced from the standard Levi subgroup of P. In most
cases this reduces the decomposition of the Harish-Chandra induced character to a similar
problem for smaller subgroups. In §5 we collect some general results on the restriction of the
Steinberg character. Section 6 deals with the values of the unipotent irreducible characters of
the special orthogonal groups on certain unipotent conjugacy classes. We show that these values
already determine the degrees of the components of Types 1, 0, + and — of the restrictions
of the unipotent characters to P. The main results of this paper are contained in §§7 and 8,
where we consider the restrictions of the unipotent irreducible characters of G = SO5(g) and
G = SO7(q) to the maximal parabolic subgroup P. Since SO7(q) does not have any cuspidal
unipotent character, the crucial tool is the description of the restriction of Harish-Chandra
induced modules in Theorem 4.3.

2. Special orthogonal groups

In this section we collect some information on the special orthogonal groups SO, (g) for odd
n and on a maximal parabolic subgroup P, of SO, (g). For more information on orthogonal
groups, we refer to [14, Chapter 11].

2.1. Special orthogonal groups

Let ¢ be a power of a prime p and F, a finite field with |Fy| = ¢. We fix a positive integer
m. Let I, € IE‘;”X” be the identity matrix and J,, € IFZ”’" the matrix with ones on the
anti-diagonal and zeros elsewhere. We write v € F?IWH, w € Fgm as

/ ; tr / ; 1tr
V:['Um,...,'Ul,’Uo,Ul,.../Um} s w:[wm,...,wl,wl,...,wm} .

Fix an element v € F, such that the polynomial X2 + X + v € F,[X] is irreducible. We define
quadratic forms Qapq1 on F2*1 and Qx, on F2™ by

m m
Qami1(V) == v3 + Zvjv;-, Q3. (W) == ijw;
j=1

j=1
and
m
Qo (W) 1= w3 + wiw) + vw? + Z wjw}.
=2
Let {em,...,e1,€0,€],...,€..} be the standard basis of the vector space Fgmﬂ and let

{fms--os f1, f1, ..., fl.} be the standard basis of F2™. We set

R
J§m+1 = ' 2 ' ’ J2+m = JZm’ J{m = .
I J
m—1

Throughout the paper we usually write dots for zeros as matrix entries, or omit them to
increase legibility. For all v,v' € F2™*! and w,w’ € F2™, we have

VI 1V = Qami1 (Vv + V') = Qami1 (V) — Qamir (v1),

WtrJQimW/ = Qg:m(w + W/) - Qg:m (W) - Qg:m (W/)
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Hence, J3,,,, is the Gram matrix of the polar form of Q2,41 With respect to the standard

basis of ]Fﬁm“‘l, and me is the Gram matrix of the polar form of Q;tm with respect to the
standard basis of F2"; see [14, Chapter 11]. We define

GO2m1(q) = {x € GLam1(9) | Q2m41(xV) = Qam41(v) ¥v € F" 1},
GOZ,(q) := {x € GLan(q) | QF, (xw) = Q% (w) Yw € F2™},
SO2m+1(q) := GOam1(q) N SLam11(q),  SO3,,(q) := GO, (q) N SLam(q),

and use the convention GOZF (¢) := SOF(¢) := {1}. The orders of these groups are
GO2pns1(q) = d - q’”2 (@™ = D@ =1)...(¢" = 1),
[SO2m11(9)] = ¢ (¢*" = 1)(¢*" > =1)... (¢ = 1),
GO, (a)] = qu(m D@ F D@ - D@ -1 (@ ),
8O3 (@)l = = - g™ ™ V(@™ F (@2 = (¢ = 1) (¢ ~ 1),

where d := ged(2,¢ — 1) and e := ged(2, ¢™ F 1). Note that for even ¢, we have GOqyy,11(q) =
SO2m+1(q) and GOQm( ) = SOZ, (g). This agrees with the definition in the ATLAS [4], but
it differs from the one in [14].

REMARK 1. For even ¢ there is a natural isomorphism

SOQm-‘rl(q) — SpZm(Q) = {X S GL2m<q) ‘ XtrJQmX = J2m}
mapping each matrix A to the matrix which is obtained from A by removing the middle row
and the middle column.
2.2.  The Weyl group

From now on we fix an odd integer n = 2m+1 (m > 1) and set G := G,, := SO, (¢). The Weyl
group W of G is of type B,, and we number the simple roots such that the Dynkin diagram is

1 2 3 m—1 m

.:@0 ° ° L4

So, the first simple root is short, the others are long. Let s; € W be the reflection at the

jth simple root, j = 1,2,...,m. An inverse image (which we also denote by s;) in the
normalizer N (T) of the maximally split torus
T = {diag(t,,, ..., ty, Lty oo t!) [t b €FY) (2.1)
of G is given by
Im—l
1
81 = | (2.2)
1
Im—l
and
Ion_j
Ja
S5 1= Igj_g fOI‘j S {2,3,...7771,}. (23)
J2
I
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For m > 2 we set s := s, and t := S, 81 .. 25182 - - - S;—18m- 1t follows from (2.1)-(2.3)
that we can choose the following inverse images of s and ¢ in Ng(T):

J2 Im_1 . .
s = 1,4 and t= . -1 . . (2.4)

2.3. A parabolic subgroup

Let P, denote the stabilizer in GG,, of the one-dimensional subspace generated by the vector

em = [1,0,0,...,0]* in the natural module for G,,. Then P, is a maximal parabolic subgroup of
order |P,| = q’”2 (g—1)(¢*™2-1)(¢*™*-1)...(¢*—1) with Levi decomposition P, = U, XL,
where

L, ={sn(x,0) | x € Gy 9,a €F;}, U, ={u,(v)|ve FZ*Q}

and
a 1V, —Qua(v)
Sn(x,a) = X , o up(v) = 1 v . (2.5)
a 1

The Levi subgroup L, is a direct product L, = L, x A2 S0,,_3(q) X F of
Ly, = {sn(x,1) | x € SO,_2(q)} and A:={s,(In_2,a)|acF;}.

The unipotent radical U,, of P, is an elementary abelian group of order ¢" 2. Often we consider
G, —2 as a subgroup of G,, and P,,_s as a subgroup of L!, via the identification x + s,(x,1).

3. The irreducible characters of P,

In this section we fix notation and classify the irreducible characters of the maximal parabolic
subgroup P, via Clifford theory. A similar classification was also obtained by Schmélzer in [13,
Chapter 2].

3.1. General character theoretic notation

Let K be a subgroup of a finite group H. We write Irr(H) for the set of complex irreducible
characters of H and 1y for the trivial character. Let (-, ) g be the usual scalar product on the
space of class functions of H. If y is a character of H, we write x| for the restriction of y
to K and, if ¢ is a character of K, we write 14 for the character of H which is induced by ¢.
If K < H and v is a character of the factor group H/K, then we denote its inflation to H
by Inﬂg /K ¥- For two characters x, v of H we say that ¢ is a subcharacter of x if x — ¢ is a
character.

3.2. Inertia subgroups of P,

Let n > 5. The conjugation action of L, on U, is given by $»*%u,(v) = u,(axv). As
before, we write v € FZ"Q as v = [Upm_1,...,01,00,V},...,0,,_1]" and fix a non-trivial

irreducible complex character £ of (IFy, +). The corresponding action of L,, on Irr(U,,) has four
orbits. We choose as representatives 1y (the trivial character) and non-trivial A%, A* and A~.
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For ¢ € {0,4,—} we denote the inertia subgroup of A* in P, by I°. We define A’ by

A\ (u,(v)) :== &), ) and get I° = U, P,_5 with P,_y := U,_5L,_o, where

[l

n9 1= x x €50, _4(¢q),a € F (3.1)

and

Un—o = u,—2(Vv) v E ]FZ_4 . (3.2)
1
Here, we consider U,_s < G,_o as a subgroup of G, as described at the end of §2.3.
Furthermore, |P,_s| = ¢™ 1" (¢ — 1)(¢®™* — 1)(¢2™¢ — 1)...(¢> — 1). We define AT by
AT (u,(v)) :=&(vo) and so It = U, L}, where

a
4 A B A B
L} = .oa . {C D] € GO _;(q),a = det {C’ D] (3.3)
cC . D
a
Note that @ = a~! = 1. In particular, L} = GO} _;(¢) and
Loy | =2 D2 (g = D)@ = D0 - 1) (7 - 1), (3.4)

The construction of A~ is more complicated and less explicit. We define a quadratic form @,
on F? by
q

m
/ 2 2 / 2 l
Q,,(v) == v + v] +vv] +voi 4 E v;V;.
j=2

It follows from [14, p. 139, II] that there are v’ € F and

Vl]m—l
b, = b} € GL,(q)
Im—l

such that Q;,(b,v) = v/ - Q,(v) for all v € F}. Note that the matrix by € GL3(¢q) depends
on g but not on n. For odd ¢ we can choose v’ to be 1 or a non-square in [y for even g we
can always choose v’ = 1. We define A~ (u,(v)) := &£((bp—2V)o). A straightforward calculation
shows that s,(y,a) € I~ if and only if

A . B
y € b;EQ .a .| by_o
cC . D

A B _ A B
{C D} € GO,,_3(q),a = det [C D}
Again, a = a=! = £+1. Thus, I~ = U, L,,, where L, = GO,,_5(g). Furthermore,
Lo | =2¢" 002 (@ 4 (@ = (70 - 1) (6 - 1), (3.5)

Since the characters A%, A and A~ are non-trivial, the orders of their inertia subgroups are
pairwise distinct and the sizes of the four orbits add up to ¢"~2, the set {1y, \°, AT, A"} is a
set of representatives for the orbits of L,, on Irr(U,).

When n = 3 the orbits of A°, A\~ do not exist and we have L] := GO (¢) = {1} by definition.
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3.3. Irreducible characters of P,

We still assume that ¢ is an arbitrary prime power and that n = 2m 4 1 > 3. For simplicity
we set P := P,, L := L, and U := U,,. We obtain four types of irreducible characters of P
according to which character of 1y, A’ and A* they cover:

Type 1:  the characters with U in their kernel,
Type 0:  the characters covering A°,
Type +: the characters covering AT,
Type —:  the characters covering A™.

Note that for n = 3 there are no characters of Type 0 or Type —. For all odd n > 3 the
characters of Type 1 are parameterized by the irreducible characters of L via inflation and we
write 14, := Infl & for o € Trr(L). We have 4, (1) = o(1).

Since A%, AT are linear and I® = U x Pn_g, I*=Ux L,f the characters A° and A* can be

extended trivially to characters A° € Irr(1°) and 2> e Irr(I%), respectively. We have a bijection
between Irr(P,_5) and Irr(P,_5) sending p1 € Trr(P,_2) to the character fi := (11X 1A)¢§::2XA

The irreducible characters of P of Type 0 are parameterized by Irr(P,,_2) and the character of P
corresponding to p € Irr(P,_2) is 1, := (5\0~Inﬂ1;)n72 )1 . We have %9, (1) = (¢*™2—1)u(1).
The irreducible characters of P of Type 4+ are parameterized by Irr(GOf_?,(q)) and the
character of P corresponding to 9 € Irr(GOE_4(q)) is epg = (/A\ilnﬂf;z ¥)1F.. For the degrees

of these characters, we have T1py(1) = $¢™ (g™ £1)(q — 1)9(1).
Let e € {1,0,+,—}. In the same way as [2, §2], we use additive extension to expand the
notation 7, to non-irreducible characters o. For example, if o = ) mjo; with o; € Irr(L),

we set 1, =Y m;li,, .

4. Preliminary results on induced characters

In this section we provide some information on certain characters of P which are induced
from various subgroups. These results will be used in subsequent sections when we study the
restriction of Harish-Chandra induced characters via Mackey’s theorem.

4.1. Group theoretical lemmas

We use the setting and notation from §§ 2 and 3. In particular, we fix an odd integer n = 2m-+1,

where m > 1. We choose simple reflections s1, so, .. ., s;,, generating the Weyl group W of G,
and define elements s,t € W as in §2.2. The following results are similar to [2, Lemmas 3.1
and 3.2].

LEMMA 4.1. Assume m > 2. Let J := {s1, S2,...,8m—1} and s,t € G,, as in §2.2. We write
W for the subgroup of W generated by J and D ; for the set of distinguished representatives
for Wy \W/W as in [3, §2.7] and define K :=*J N J. Then:

(a) Dy =A{1,s,t};

(b) tPNP=1L;

(¢) K = {s1,--.y8m—2} and *PNP = (*(UNU)CLNU)(U N L)Lg. Moreover, Qg :=
(*UN L)L is the standard parabolic subgroup of L = L corresponding to K C J with Levi
decomposition Qk = (°U N L) x Ly, where

1
SUNL = u, o(Vv) veF! ™) =Uns (4.1)
1
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and
a
b
Lk = X a,b € Fy,x € 80,-4(q) - (4.2)
b—l
a1
Thus,
a
b * x
Qr = X a,be F;,X €8S50,-4(¢) p = A X P,_o. (4.3)
b71
a1
Setting
1
b
Ap_o:i=°A= I,_4 be F; = ]F;< (44)
b71
1
and
L, _,:= x x € SO0,,-4(q) p =2 S0,—_4(q), (4.5)
I

we have Ly = AX Ap_o X L _o;
(d) weset R:=(*UNU)(*LNU). We have:
(i) *LNU ={un(v) | v € F} 72 vy = v}, = 0};
SLOL = Lg;

v) R={u,(v)|veF; 2, , =0}and[U:R]=g;

[Pk : RQk] = q, where Px = UQfg is the parabolic subgroup of G = G,
corresponding to K C {s1,...,8m};

(vil) Qg = A X P,_s.

Proof. (a) Follows from [2, Lemma 3.1(a)] since the Weyl groups of type B, and Cy, are
canonically isomorphic.

(b) Follows from a straightforward calculation.

(¢c) Tt follows from (2.2) and (2.3) that s commutes with s1,. .., $;,—2 and that ss,,_1s & J.
Thus, K = {s1,...,8m—2}. Now [3, Theorem 2.8.7(a) and Proposition 2.8.9] imply the
remaining statements in (c).

(d) follows from elementary matrix calculations. O

To keep the notation simple we identify G,,_o; with diag(l;, Gn—2;,1;) < Gy, so that we
can consider G,,_o; and its subgroups U,,_2;, L;%Qj and so on as subgroups of G,,. For m > 3
we set P,_4:=U,_4L,_4, where

ClI3
Ly_y = x x € SO, _¢(q),a € IFqX
aillg

https://doi.org/10.1112/5146115701500011X Published online by Cambridge University Press


https://doi.org/10.1112/S146115701500011X

RESTRICTING UNIPOTENT CHARACTERS 463

and
I>
Up_g = u,—4(Vv) v € FZ‘G
I
Furthermore, we set r := s,,_1,
GIQ
An}n72 = I,_4 a € F; s
a*1]2
I
a
An74 = TAn72 = I_¢ a € ]F;
a1
I
and additionally
(1, I3
L, 5= X x€80,-4(q) p, L,_,= x x € SO,,—¢(q) ¢,
L Ig I3
Q/K = A X Unf2ﬁnf4
o -
b *
b x *
= x * x €850,-6(q),a,b € Fy b < Q.
b1 *
bfl
- a_l_

LEMMA 4.2. Let m > 3. With the above notation, we have
"(RQK)NUP,_2 = ("R)Y,
where
Y =("Up-2NUn2)("Lyy—2NUp—2)("Up—2N Ly_2)(Ap -2 X Ap_a x Lj,_,).
Furthermore, A XY = A X ("P,—_2 N P,_5).

Proof. We have P,,_s = Apn—2Un_oL!, 5 and Q) = AU,,_5P,_4. Furthermore,
1
STAn,n72 = 16 ac€ }F;

a71[2
1

and thus AP, 4, = A(*"Ay n—2)Un—4 L}, _,. Since A centralizes U,,_3, we have
QIK = Un—QA(STAn,n—2)Un—4L;l_4 - AUn—2(STA7L,7L—2)U7L—4L;_4-

Using that A centralizes U,,_o, that s normalizes RU,,_», that A,,_o = ®A, that s centralizes
Un—aL),_, and that A,_, and "A,, ,_o centralize each other and normalize U,_, we get
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TS(RQ/K) = TS(RAUn—Q(STAn,n—Q)Un—4L;L—4)
="(RUp—2) ("A) Ann—2 " (Un-aL;,_4)
="(RUn-2) ("An-2) T(TAn,n72) T(Un74L;z—4)
=("R) Ann—2 "(Ap_2Up_2U,_4L_,).

An elementary matrix calculation shows that

TRv An,n—Q - Upn—2 and T(An—ZUn—2U7L—4LIn_4) - L;L

Hence,

"(RQY)NUP, 5 = ("R) Ap ol (An_2Un oU, 4L, )N L, NUP, 5]
= ("R) Apn_o[ (An_oU, 2U, 4L, )N (L, NUP, )]
= (TR) An,n72[T(An72Un72Unf4L;¢74) N Un72L;172]
= ("R)Y,

we have

TPn—Q N Pn—2 = (rUn—Z N Un—Z)(TLn—Z N Un—Q)(TUn—Q N Ln—2)(An—2 X An—4 X L:L_4)7

where
o -
1 * *
(TUn72 N Un72)(TLn72 N Un72) = In—4
*
1
. 1_
and
(TUn—Q N Ln—?)(An—2 X An—4 X L;L_4)
o "~
a
b * *
= X % x €50, 6(q),a,b e Fy
b—l
a1
- 1_
We set
YI = (TUn72 N Un72)(TLn72 N Un72)(rUn72 N Ln72)(An74 X L;AL_4)
"l i
1 . *
b x *
= X % x €80,-6(q),b€F; 5,
bfl
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so that "P,_o N P,_o = A, _oY’. We can see from (4.6) that Y’ C U, _oL],_,. An elementary

matrix calculation shows that "L,_o N U,_o = "U,_4. Using that r centralizes L] _,, that

U, _4 normalizes U,,_o and that A,,_o normalizes the subgroup U,,_s and centralizes U,,_4, we
get

Y/ C rUn—QTUn—4TUn—2rAn—2rL{,L_4 = T(Un—ZUn—4Un—2An—2L{a_4)
= 7’(A?’L—2[]11—2Uvn—4L{nf4)

and thus
Y' < U, oL, 5N "(Ap_2U,_oUn_4L, _,). (4.7

Because P! _o :=Up_oL, 5 CUp_oL,_2 = P, 5, we get

Un—ZL/n_Q N T(An—QUn—QUn—4L/7L_4) < PT/L_Q N rPn—Q
= (P _5NP,o)N"P,_o
=P _oN("Py_aNP,_2)

=P N4, Y =Y.

Hence, Y/ = U,_2L],_o N"(Ap_2Up_2Up_4L),_,) and Y = A, ,_2Y’. Now the claim follows.
O

4.2. Restriction of Harish-Chandra induced characters

Let m > 1 and let o be an irreducible character of L with A < ker(c). In this section we
study RS (o) := (Inflf 0)1%, the character of G which is obtained from o by Harish-Chandra
induction. We proceed along the lines of [2, § 3]. Suppressing notation for inflation, Mackey’s
theorem and Lemma 4.1 give us

s t
RE(o)NG = 0+ 0lepnptpnp + 'olipnptpnp
=0+ °0lho Thoe + ol 1T (4.8)

Since RQx = °P N P is s-invariant, we have SUi;%K = SO'\I,LI;QK = S(UJ,;QK). And,
furthermore, JngK = Inﬂﬁ?fé (aiILg;_2). Hence, SU\L;{Z)KTgQK is a sum of characters of the
form (SV)TEQK7 where v € Irr(P,,—2) is considered as a character of RQx = R(A X P,_3) via
inflation. Thus, we have to determine (Su)TgQK for v € Irr(P,—2) of Type 1,0,£. In parts (d)
and (e) of the following theorem we need subgroups Pn{3 of LY, which are defined as follows:

we set
" _
b x . x *
A . B
A B A B
+ + _ X
Pl .= C a D : {C D} € GO, _5(q),a = det [C D} b eF
b—l
L a_

for m > 2 and
Py = {diag(1,b,1,b"",1) | be F;} = F
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for m = 2. For m > 2 we define P,_, to be the subgroup of L; consisting of all matrices
sn(y,a) with

b * *
A . B
yeib!, .oa . b, _» {é’ g]GGOn5(q),adet {g g],bG]FqX ,
C D %

b—l

where the matrix b,,_s is defined in §3.2. The following theorem and parts of its proof are
analogous to [2, Theorem 3.3].

THEOREM 4.3. Assume m > 2. Let 0 € Irr(L) with A < ker(o). Then the following
statements hold.

(a) taLtLP = tg. In particular, toizngTmeP = (tontf.

(b) Let v € Irr(P,—2) be of Type 1. We view v as an irreducible character of the groups
Ly =AXLy, 9=AX A, oxL,_, and RQ via inflation. Then

Cv) hox ="t + s,

where ¥ := R _(°v).
(¢) Suppose m > 3. Let r := s;,—1 and let v € Irr(P,,_2) be of Type 0, that is, there is
vo € Irr(P,_4) such that v = %, . By inflation, we consider vy as an irreducible character of

1

"P,_oNP, 5= X x * x € SO,_¢(q),a,b € IFqX

Since "P,,_o N P,,_o is r-invariant, we have "vy € Irr("P,,_> N P,,_2). Then
)

(SV)TgQK = 07/}27

where 3 i= (o) 5% o -
(d) Let v € Trr(P,_2) be of Type +, say v = tipg, for some 99 € Irr(L} ,), and let

Ly 5 ALt 5 + . . . .
U:=R/t (Vo) =001} , wheredy € Irr(P;_,) is the inflation of ¥y given by

n—2 n—3

o _
b * * a
A B A B
Jo a . =y a
C D % C D
b1 a
L a/_

https://doi.org/10.1112/5146115701500011X Published online by Cambridge University Press


https://doi.org/10.1112/S146115701500011X

RESTRICTING UNIPOTENT CHARACTERS 467

(e) Let v € Irr(P,—2) be of Type —, say v = 1y, for some ¥y € Irr(L,_,), and let
9= RL372(190) = 190TP:;73, where 9 € Irr(P,_,) is the inflation of ¢ given by

n

b x *
A B
Jo | sy, b;12 .ooa . . | bp_a,
C D %
bfl
A B
:190 Sn—2 b; 4 a . bn 4,0Q
C D

Then (SI/)TEQK = "1y.

Proof. (a) A straightforward computation shows that ¢ normalizes L’ and L. It follows that
tol P =g, proving (a).

(b) Note that s normalizes Ly, so that v € Irr(Lg). We first consider the special case
that A,,_o < ker(v). Then *v = v since s centralizes L], _,. Let U be the irreducible character
of Pn o corresponding to v as in §3.3. We also write v for the inflation of 7 to UPn 2. By
Mackey’s theorem, we have

(A ﬁ)TUQK e vgr = (\°

U
- VTRQK\L Qk >U15n,2

UPn_2

UPn

(A

~ R UPW
> (A D2 1)
< RPn - D’ZN/>RT:’7L72
=

0,0 pp L =1,

since R < ker(A\°) and /A\%[{P”‘2 =1p . It follows that %, = (A0 s _, is an irreducible
constituent of VTRQ = (Sv )TRQK
U .
Furthermore, v is a constituent of v15 QK. Hence, s = (v)ho,. = VTho, I8 a
subcharacter of VTRQK &% )TRQK. Hence, ( ) EQK = 04p, +Ypss+(...). Comparing degrees,

we get ()15, = b, + .

Now we deal with the general case. Write v = 14 X ( X v/, where { € Irr(A4,_2) and
v' € Irr(L],_5). Then *v = *¢( K 14, , Kv/'. Considering °C as a linear character of P, via
inflation we obtain (*v)t5q . = *C- (*¢u + 'Ys), where ¥ := R (V). Hence, we get

(SV)TgQK =°C- " +°C- Mg ="y + s

(c) By assumption, v € Irr(P,_3) is of Type 0. Let A\) _, be the irreducible character of

Un » analogous to A° € Irr(U) and let XY _, be the extension of A2 , to U,,_5P,_4 such that
2¢ Un—2Pns _ 15 . By definition,

—4

v = (A, Tl 2Pt o)z (4.9)

n—4 n—2Pn_4

As before, we set Q) = A X Un_oP,_4 < Q. We inflate the characters in (4.9) over the
normal subgroup RA to RQ’ and RQp, respectively. Suppressing the symbols for inflation,
we obtain

< N
v = ()‘2,—2 : VO)TRSi'
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Since r € P and RQ g is s-invariant, we have
o). =" ((
((
QIR
((

0
Moz - o)t (RQK))
0

_9° O)Trq(RQ/ )

We set 3 :=
By Lemma 4.2, we have

(La B D)5 72 50 that Qs = (A° - Inﬂ[{P”
2 n,

n 2

UP,_5N"(RQ%) = ("R)Y
with Y < P,_g and A xY = A x ("P,_5 N P,_3). Now

1 « . *x x % . x%

tr
— / / —4
Let v = [vm,g,...,vl,vo,vl,...,vmﬂ] € F;7*. Then

Tsun72(v) — un([*,o U;n Q}tr)

and thus X0, ("™u,_o(v)) = A2 ,(un_2(v)) = £(v),_5)

characters ”5\272 and A° coincide on "*U, _,. As above, we consider 5\%72 .
9- "0y € Irr (" (RQ’ ) By restriction
< UY. An elementary matrix

irreducible characters of RQ’; via inflation. Thus, ”5\%_

via (4.11), we can view X0 _, .5 as a character of ("R)Y

calculation shows that *R C RU,,_o C ker(i). It follows that

1 % . % % % ok %

"R= I, ¢

EOE G R S

(N 70 TR ) Thay)

(RQ%) TRQK )

Ehs

N
-

(4.10)

(4.11)

A0("5u,,_o(v)). Hence, the

< ker(" ).

o and g as

Since Y normalizes "R and U, the character
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shows that ~ I
1 . * *
1 .
1 *
I, S < ker(X0 )
1 .
1 .
L 1_

and it follows that ™A% , coincides with A\° and A° on "R. Similarly, we see that Y7 <
ker(A% ,); hence, Y < ker("*A?_,) ker(A\%). Thus, X0 _, coincides with A° on Y, too.

T}}erefore, A0 considered as an irreducible character of UY via restriction is an extension of
A0, to UY and A° - 57 is an extension of "\ _, - "7y from ("R)Y to UY. Thus, A\? - "1y
is a subcharacter of ("A0_, . 757 0)T{-k)y and therefore (A0 s) 15472 is a subcharacter of
(TSAQ . Tsﬁo)ﬂigﬁ, The isomorphism

a 1

Pn—2 — Pn—27 T * =

maps Y onto the group "P,_2 N P,_» and hence induces bijections Irr(P,_3) —
Irr(P,_5) and Trr("P,_o N P,_3) — Irr(Y), which we both denote by ¢. We extend ¢
additively to non-irreducible characters of these groups. An elementary matrix calculation
shows that ¥ = ¢(X) and "y = ¢("1vp). The functoriality of induction implies that ¢
commutes with induction; hence,

'S r Py r P TS~ P
E=0(Z) =o(("vo)1 B, ap, ) = 0(vo) 1y = (TRo) Ty
Again suppressing the notation for inflation, we get that
)\O Z )\0 (rs~ ) 557172 _ (5\0 . TSDO) 557172
is a subcharacter of
rs30 rs~ \aUPn_2 _ (rs30 rs~ v T (RQK) UP,_»
( An_z - VO)T(TR)Y = (" A2 VO)\I/rs(RQII;:)QUP7L72T7‘S(RQ/I<)QUP"72
It follows from Mackey’s theorem and (4.10) that A%. 3 is a subcharacter of
rs ~ P P s P P
(" Noa "M (rep b0 e,y = (VTR p,
Write A0 - 3 = >, miX: with x; € Irr(Uﬁn_g); hence,
CRawds, Zmle

and thus (x; 5}5%27 C)tho P = (i (SV)TQQAIJP”,JUPW >~ m;. Note that the characters
XiTg 5, are irreducible by Clifford theory. Hence, %45 = (A° - E)Tl’; 5, is a subcharacter of
(Su)TgQK. We have
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s _ip. _ Ul
@D 180 @) s,
_ g —ql)(q1 il DS

and
Ops(1) = (¢"° = 1)-2(1) = (¢" % = 1) - [Pa—a : "Pu_a N Pys] - (1)

|Pn—2‘
- 1p(1
5 (g— 1) B W
2m—2 1 2m—4 1
(g q)_(ql ) o(1);

=" -1)

thus, (*v)1ho, = "¢, proving (c).
(d) We denote the inﬂation of the character Jg - AT, € Irr(Up_sL}_,) to the group R(A x
U, — gLn 5) also by Jg - A_,. Hence,

9 - Sx:_Q € Iir(*R(An_o x *(Un_oLT ,))).

An elementary matrix calculation shows that RP ; < *R(A,_2 x *(U,_2L ,)).
The proof now proceeds in several steps.

s s% *R(Ap_2x°(Un_2L}_,)
Step 1. We have ("0 - *Al_g)dp " ’ = (Jo - A+)¢RPJ .

Proof of Step 1. Let un([vm_l, RPN 1 T AP 0] ) € R. Then

(519 ,SX'F )( ([Um_l,...,’Uo,...,’l};n_Q,O}tr))
= (00 - A3 o) (Wl [om, 00, 0 5,0]7))
= 99(1)&(vg) = Do(1) - 5\+(un([vm,1, e U0y ,vﬁn,Q,O]tr)).

It follows that (St - A} )iRi(fn P Un-alia)) (A+¢RP1 ’
3 3

of some character of PJr 3 to RP_ ;. Note that ¢ is umquely determined by its restriction to
the subgroup Prjlg,. We have

), where ¢ is the inflation

a a
b «x * b * *
A B A . B
@ e . = (%9 - *At ) .oa .
C D x C D
b1 b1
L a_ L a_
) s
b * . %
A . B
:(190'5\I_2) . a .
C D
bfl
L a_
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b . x * x ]
a )
A . B *
== (190 . 5\2_2) . a .
c D . *
a .
b—l
o i
a b * *
A B A B
= 190 a = 190 . a 3
C D C D %
a p—!
L a_
+ - +
thus, @igf"j = ﬂoiﬁfn’j and then
. s s SN + . +
(0 M) b ) < BT = (g A

Step 2. The character ¢ - AT is a subcharacter of VTRQK¢UL+

Proof of Step 2. It follows from Step 1 that Iy - AT is an irreducible constituent of (390
o SR(Ap—ox®(Un_aL}_,)) UP}
SAZ—Q)‘l’RI:H; ’ ’ : TRP+ ? Th us,

n—3

(Do A+)¢UP+ —mwﬁ At =9 AT

n—3 n—3

SR(Ap_2x*(Un—2L} ), ULT

is a subcharacter of (*9 - “)\ )J,RP + TRP;{S. By construction, the character
v € Irr(RQg) is given by v = (Yg - AI?Q)Tg?AKwazLLz) and hence

= (00N ey = (o0 NI e (412)
It follows from (4.12) that *9g - *AT_, is a constituent of V¢RQ(;" e (Un JLE L)) Hence,
(5o - S/A\x_Q)i;I;(iZ_MS(U" 2L 2))T(1;1L33_ is a subcharacter of ViRgﬁ:_ TRPZ*_3 and from the

RQx

RP}_ TRP+ An

beginning of the proof of Step 2 we see that o - At is a subcharacter of Svl

elementary matrix calculation shows that
RQxNUL} = RP

s \LRQK

Thus, Mackey’s theorem implies that the character RPF

TRP+ is a subcharacter of
SVTngigﬁ and we can conclude that o - AT is a subcharacter of VTRQKJ,EL+.
Step 3. We have (SV)TEQKA: Tahg.

Proof of Step 3. Write 0 - AT = 3", m;x; with x; € Irr(UL;}). By Step 2, we have

VTRQK vLt = Zszz

https://doi.org/10.1112/5146115701500011X Published online by Cambridge University Press


https://doi.org/10.1112/S146115701500011X

472 F. HIMSTEDT AND F. NOESKE

and thus <X’TUL+’ (°v) IEQK>P = (xi, (°v) II;QKigLQUL* > m;. Note that the characters

xﬁf;ﬁ are irreducible by Clifford theory. Hence, ¢y = (1 - )\+)T is a subcharacter of

UL}
(SV)TEQK. Computing the degrees, we get

“o(1) = 54" g™ +1)(g — )9
1 m—1/ m—1 ‘ +|
=54" @ D=1 P “Jo(1)
m—1 __ o m—2
e L R R0
and
s P _ ‘P‘ -
|U| - |Ln| 1

- |R| . (q —1)- |Pn72| ’ §Qm72(qm72 +1)(g—1)-99(1)

L1, m—1 ("' =1)-(¢"*+1)
=—qm m Hg-1)-
54" (" A (- 1) 1
Hence, T1hy(1) = (SV)TEQK(I) and then (Sy)TgQK = Tahy.
(e) Since P3 does not have any characters of Type —, we can assume m > 3. We denote the
inflation of ¢ - A,,_5 € Irr(Up—2L,,_,) to the group R(A x Uy, _oL7_,) also by 99- A, _,. Hence,

(1)

Vo “Ay_p € IT(*R(Ap_2 x *(Un—2L,_,))).

An elementary matrix calculation shows that RP,_, < *R(A,,_2 X *(Up—2L,, _5)).
The proof now proceeds in several steps.

Step 1. We have (3190 . 85\7;72”/153(:472 2X*(Un—2L, _,)) (19 A )\l/g?z 3
Proof of Step 1. Let v = [Vm—1,..., V0, -, U2, 0] € F/'~2. Then
(o *Ay o) (Un(v)) = (Vo - A, ) (n(v)*)
= 9o(1)&((by, [Um 2,...,1},...,1)7’71 2]
= Vo(1)€((bn—2v)o) = Vo(1) - A~ (un(v)).

SR(Ap_2x°(Up_sL . . . .
RP(_ R - (A~ iRP”_ 3)7 where ¢ is the inflation
of some character of P,_5 to RP,L 3. Note that ¢ is umquely determlned by its restriction to

the subgroup P,_;. We have

It follows that (50 - *A;_,))

b * *
A B
o | sn b,:iz .oa . . | bp_o,
C D x
b—l
b x * *
A B %
=(*Yo-°N,_5) | sn | b, a . b,_2,
C D x
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b * * s
) A . B «
=Wo- A, o) | sn | bty . a . . |byaa
C D %
b71
_a
R A . B 1 * *
=Wo- A, o) | sn | bty .a . b,_2,b In_o *
C D 1
L a
A . B
= 190 Sn—2 b;izl . a . bn_4, a
C D
b x *
} A . B
=y | s. | bty .a . . |bpoall;
C D %
b—l
thus, goiﬁl_ji_s' = 1§O¢1;I_Di_3 and then
s st SR(An—2X*(Un—2L;_,)) = c_,UP._, = c_,,UP_,
(*Jo - /\n_z)iRPn—_s ’ =1y - (A iRPn—_:) = (oA )iRPR—_Z-

Step 2. The character ¢ - A~ is a subcha
Proof of Step 2. 1t follows from Step 1

e} — *R(An—2X°(Up—2L,_,)) UP,_

Av-o)bpp ’ 22 TRP,;? Thus
3 {—\sUL_~
(190 A >TUP373

is a subcharacter of (* - 35\;72)¢RP,
n—3

v e Irr(RQk) is given by v = (9o - A, _,)T

S1%("4n72 XS(UW72L;72))

P
UL, "

that Jg - A~ is an irreducible constituent of (*¥ -

racter of SVTEQK¢

)

= ﬁOTZJLD:{S AT =9\

UL,
TRP7

n—3

. By construction, the character

RQk

nd hen
R(AXUn 51 ) & d hence

s, __ (s sy — RQKk __ (s sy — RQKk
V= ( 190 )\n72>TSR(SA><S(Uw,—QL;,Q)) - ( 00 Ani?)TSR(An—2XS(Un,—zL;,z)). (413)
S . SA_ 3 3 S RQK
It follows from (4.13) that *¥¢ - *A,_, is a constituent of V¢SR(AH72XS(U’L%L;%)). Hence,
(590 - S;\;_Q)i Fi(dn—aX (UW_QL"’Z))TUL; is a subcharacter of S| f9x TUL; and from the

RP,_, RP,_,

RP,_, RP,_,

beginning of the proof of Step 2 we see that 9 - A~ is a subcharacter of SZ/J,RQK TUL; . An

elementary matrix calculation shows that

RP, 5 RP__4

RQx NUL; = RP, .

Thus, Mackey’s theorem implies that the character

s VTgQK Lg L= and we can conclude that 9
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Step 3. We have (SV)TEQK = "by.
Proof of Step 3. Write 9 - A\~ = > mix; with x; € Irr(UL;, ). By Step 2, we have

VTRQK UL, ZszZ_F(
7

and thus <XiT5L;’ Cv)Rok)P = (X (SV)TEQK¢5L5>UL; > mi. Note that the characters
xﬁgr are irreducible by Clifford theory. Hence, ¢y = (9 - )\*)Tg - is a subcharacter of

(5v) II;QK. Computing the degrees, we get

T (1) = %qul(qul —1)(g—1)9(1)
= 5" = D= ) P, = =)
= S0 (- TS )
and
(SV)TgQK(l) = |RgK 'l/(l)
= |R| . (|qU_'1|)L.n|Pn_2| . %qm—Q(qm—2 _ 1)((] . 1) ) 190(1)
— %qm—l(qm—l . 1)(q B 1) ' (qm—l + 1q)_(1qm_2 o 1) . 190(1)
Hence, ~1y(1) = (SV)TEQK(I) and then (S”)TEQK = ~9y. -

5. Restriction of the Steinberg character

We use the setting and notation from the previous sections. In particular, we fix an odd integer
n=2m+ 1 and let G = G,, = SO2,,,11(q). The restriction of the Steinberg character Stg to
the parabolic subgroup P = P, was already investigated by Schmdlzer in [13]. See also [1, § 3]
for a comparison to the symplectic case.

ProPOSITION 5.1 [13, Corollary 2.3.8]. Let n > 5 and L' := L! = SO,,_5(q). For each
o € Irr(L') we denote its trivial extension to L also by o. Then

ot ="o+ D> {olh L me

pElrr(Py_2)

+ Z O-\LL+7 L++¢19 + Z <U\Li;719>[/;_1/}19-

9elrr(L) 9€lrr(Ly,)

Proof. This is analogous to [1, Proposition 3.2]. O

We are interested in the decomposition of Stgl% into irreducible characters. The following
corollary reduces this problem to calculations with characters of subgroups of L. In §§7 and 8,
this reduction will be used to get a complete description of the restriction of the Steinberg
character for n = 5 and to get a partial description for n = 7.
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COROLLARY 5.2 [13, Corollary 2.3.9]. Suppose n > 5. Then

Stalf =Ty, + Y. (Stlb . m e, Y

pEIrr(Pp_2)

+ Y (St ) Tee+ D (Strdio, ) -

9€lrr(LY) 9€lrr(Ly, )

Proof. This follows from [3, Proposition 6.3.3] and Proposition 5.1. O

6. Character values on U

As before, we fix an odd integer n = 2m + 1 and let G = G,, = SO,,(q). We determine the
values of the irreducible characters of the parabolic subgroup P = P, on those conjugacy
classes of P which are contained in U = U,,. In this section we always assume n > 5.

Let {€m—1,...,€1,€0,€],... €, _1} be the standard basis of IFZL_Z as in § 2.1. The conjugation
action of L on the normal abelian subgroup U is given by s»*®u,(v) = u,(axv). Since
x € SO, —2(q), the values Q,_2(v) and Q,_2(axv) differ only by a non-zero factor which is a
square in F.

We define vg, vy, vo € IFZ;_Q by Vo := em_1, V1 := €9, Vo i= €1 + Vel _;, where v € Fx
is a non-square if ¢ is odd and v =1 if ¢ is even. We write z; := u,(v;) (j = 0,1,2) for the
corresponding elements of U. We know from Brauer’s permutation lemma [10, Corollary 6.33]
and the results in § 3.2 that the number of conjugacy classes of P which are contained in U is
four.

The set {1,zg,21,2z2} is a full set of representatives for the conjugacy classes of P which
are contained in U. For odd ¢ this already follows from @,_2(vo) = 0, Qn—2(v1) = 1 and
Qn—2(va) = V'. For even ¢ the definition of SO,,_2(g) and @, —> implies that ey is a common
eigenvector of all x € SO, _2(q), so that z; is not conjugate to z in P. Now, also in this
case, the values @,_2(vp) = 0, Qn_2(v1) = 1 and Q,—_2(v2) = v" imply that {1,2z0,21,22}
is a full set of representatives for the conjugacy classes of P which are contained in U. By a
straightforward calculation, similar to those in §3.2, one can compute the centralizers Cp(z),
Cp(z1) and their orders explicitly. From these orders one gets the size of the P-conjugacy class
containing zo and then |Cp(z2)|. The orders of the centralizers are

Cp(z0)| = ¢ (g — (@™ = 1)@ 0 —1)...(¢" - 1),

2qm2—m+1<qm—1 —1)(®*-1)...(¢*—1) for odd g,
Cpla) =", . ) (6.1)
q (P2 =)™ =1) ... (¢ —1) for even ¢,
qu27m+1(qm71 4 1)(q2m74 _ 1) . (q2 _ 1) for odd q,

g (P = 1) (P — 1)L (2 = 1) for even q.

|Cp(z2)] = {

For j = 0,1,2, let ¢; be the P-conjugacy class containing z; and C; the G-conjugacy class

containing z;. To express the dependency on n, we also write o

2 ) and Cj("), respectively.

REMARK 2. For n > 5 the G-conjugacy classes Cy, C1, Co are pairwise distinct.
Proof. Tt follows from Lemma 4.1 (a) that a full set of P—P-double coset representatives
in G is given by {1,s,t}, where s and ¢ are the elements defined in (2.4). Furthermore,

Lemma 4.1(d)(iii) implies that ¢; NU =0 for j = 1,2 and S¢o NU C ¢y and ‘c; NU = ( for
all 7, so the claim follows. O
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LEMMA 6.1. Let n > 5. Let u be a character of P,_5 and ¥ a character of L+ or L. The
values the irreducible characters of P take on the unipotent elements zg, z1 and Zo are given
in Tables 1 and 2.

Proof. We use the notation from §§3.2 and 3.3, except for the fact that in this proof we
denote irreducible characters of P,_5 also by ¢ (and not by p) to treat all characters in a
uniform way. Let ¢ € {0, +, —} and j € {0,1,2} and let ¥ € Irr(P,_5) if e = 0 and ¥ € Trr(L})
if e = . Since U < P, we get from the definition of induced characters and the construction
of €1py that

e Cp(z e
"9 (2;) \IE| Zﬂ N (w227t = | |JIE Z e ( (6.2)

zeP zZEc;

Since |Cp(z;)| and |I¢| are known, we only need to determine the sum of character values on
the right-hand side of (6.2).

The subgroup A < L defined in §2.3 acts regularly on the A-suborbits of each of the
conjugacy classes ¢; by $»(n-29u, (w) = s, (1,2, a)u,(W)s,(I,—2,a)"* = u,(aw). For any

vector w = [wm_l, e, WY, Wo, WY, .. ,w;n_l]tr € FZ‘_Q, we have
-1 ifw, _,;=0
- Nlunlaw) = 37 glow;, ) = {‘-’ L e
acF} acFy B it wp,y #0,
and

B - q—l ifw0=07
> A (up(aw)) = > E(awg) = {_1 if wo # 0.

a€Fy a€Fy
We set °N; := [{u,(w) € ¢; | w),,_; = 0}| and TN; := [{u,(w) € ¢; | wo = 0}|. By
partitioning c¢; into regular A-suborbits, we have
-1 lej| —EN; 1
N(z) =L N, 4 9T Ly = (=N, — |e)). 6.3
TN = o N T (D= e ) (63)

TABLE 1. Character values on U for odd q.

Zo Z1 Z3
“Yu (1) (@™ = Du(1)  —(¢™ "+ Dp(1)
o 3¢ TN g - 101 —¢™ (1) 0
Yo —5¢" g —-1)9(1) 0 g to(1)
TABLE 2. Character values on U for even gq.
Zo Z1 Z2
0 2m—2
Y —p(1) (q = Dpu(1) —p(1)
o 3¢ TN DO() =3¢ N HDI() —5¢™ (1)

Ty —igmTHg—19(1)  —Lg™ @™t —1)9(1)  t¢™ (1)
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Suppose € = 0. For j = 0, we have

°No = [{w € Fg7?\ {0} | Qu—2(w) = 0 and w], , = 0}
:q|C(()’I’L72)|+q_1:q.(q2m—4_1)+q_1:q2m—3_1’

so that (6.3) evaluates to —1. Next, let j = 1. If ¢ is odd, we have

N, = |{w € ]F;“2 | Qn_2(w) is a square in F* and w,, ; = 0}|

. —1
=gl ),

RN
q-lc 9

giving %qm_l(q — 1) as the right-hand side of (6.3). If ¢ is even, then °N; = ¢ — 1, and the
right-hand side of (6.3) evaluates to ¢ — 1. This gives the values of %y on zo and z;. The
values of %4y on zy follow from row orthogonality relations for the characters of U.

Suppose € = +. By [11, Lemma 6.10], for odd ¢ and even ¢, we have TNy = ¢™2(¢™ ! +
q—1)—1, giving ¢! — 1 for (6.3). Similarly, we obtain TNy = ((¢ —1)/2)¢g™ 2(¢™ ! — 1)
for odd ¢ and hence the right-hand side of (6.3) evaluates to —¢™~! in this case. However, for
even ¢ we obtain TNy = 0, as the only vector w which is a scalar multiple of ey with wg = 0 is
the zero vector. Therefore, (6.3) evaluates to —1. The values of Tty on zy can be determined
again with the help of row orthogonality relations.

Suppose € = —. By the column orthogonality relations for Irr(U), the sum of all coefficients
of (1) and ¥(1) in each column of Tables 1 and 2 has to be —1. This gives the values of ~ty
and completes the proof. O

REMARK 3. Let n > 5. Each character x of P = P, can be written uniquely as x =
v+ %+ T x+ ~x, where €y is the sum of the constituents of y of Type € and € € {0,1,+, —}.
So, each “y is of the form vy for some not necessarily irreducible character ©¥¢. We call €y the
Type e component of x. Lemma 6.1 allows us to reconstruct the degrees ¢y (1) or equivalently
the degrees 9¥°(1) from the values of x on the conjugacy classes of P which are contained in U
as follows: for odd g we set

m—1

m—1
L@ =1 ("' +1)g-1) (g™ =1(g—1)
m—1 m—1
M= |1 -1 —(q—-1) —45—(¢—1)
1 qm—l -1 _qm—l 0
L 0 o

and for even ¢ we define

m—1 m—1
L ¢?m2 =1 (" '+ 1)(g—1) T5—(¢" ' -1)(¢-1)
m—1 m—1
M = 1 -1 q2 (¢—1) _qz (¢—1)
: m—1 m—1
1 qu—Z —1 _9q 5 (qm—l + 1) _ 9 5 (qm—l _ 1)
1 1 _ant gt

2

Because det(M) = ¢*™2 # 0 for odd ¢ and det(M) = $¢°™3 # 0 for even ¢, we get from
Lemma 6.1 for all odd ¢ and all even g:

(1) )
rm| =M Y| (64)
9-(1) \(z2)
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7. Restrictions of unipotent characters of SO5(q)

When we speak of a unipotent character we always mean an irreducible character. Recall
(see [3, §13.8]) that for n = 2m + 1 the unipotent characters of the group G = SO, (q) are

parameterized by symbols
A <)\1>\2)\3 /\,«>
P1p2 - s )

for which 0 < A\ < ... < A and 0 < pg < ... < pg are strictly increasing sequences of non-
negative integers and the second sequence may be empty. Furthermore, the difference r — s is
odd and Y- A\ 4+ > p; — [((r +s—1)/2)%] = m. We call r — s the defect of A and m its rank.
There is a bijection (see [3, § 11.4]) between the set of symbols of rank m and defect d = 2d'+1
and the set of bipartitions («,8) such that |a| + |8] = m — (d’* + d’). Via this bijection we
identify each symbol A with the triple [a, 8, d] consisting of its corresponding bipartition and
its defect. We write x, for the unipotent character of G corresponding to the symbol A.

In this section we determine the decomposition into irreducible characters of the restrictions
of the unipotent characters of G5 = SO5(¢) to the maximal parabolic subgroup Ps. In the
whole section we assume that m = 2 and n = 2m + 1 = 5. We set G := SO5(q), P := Ps,
L := L5 and L* = L? for brevity. The degrees of the unipotent characters of SO5(q) and
their labels are given in Table 3.

As in §6, we denote the P-conjugacy class of the unipotent element z; by c; for 7 = 0,1,2.
For odd prime powers ¢ the conjugacy classes and the values of the unipotent characters of
G = SO5(q) were computed by Frank Liibeck (private communication, 2013). The group G has
exactly five unipotent conjugacy classes and the orders of the centralizer in G of representatives
for these classes are |G|, ¢*(¢? — 1), 2¢°(¢ — 1), 2¢®(¢ + 1) and ¢?, respectively. Remark 2 and
the centralizer orders (6.1) determine the fusion of the classes ¢g, ¢; and ¢z into the unipotent
classes of G uniquely so that we can read off the values of the unipotent characters of G on
the elements zg, z; and zs in Table 4 for odd ¢ from Liibeck’s data. In the table zeros are
replaced by dots.

TABLE 3. Labels and degrees of the unipotent characters of SOs(q).

Bipartition =~ Symbol Degree Bipartition = Symbol Degree

2,—,1] (3) 1 [1,1,1] (012> lq(g+1)?
[-,—3] (OiQ) 39(¢—1)°  [-,2,1] (021) La(® +1)

- ()t e (OF)

TABLE 4. Values xa(z;) of unipotent characters of SOs5(q).

q odd q even
A Z0 Z1  Zo Zo Z Z2
[ =3 —3ae-1) . ¢ —39(¢—1) —3q(¢g—1) 3
1%, -1 —3q(¢-1) q —1q(g—1) lalg+1) g
1,1, gqg+1) ¢ sa(g+1)  3q(g+1) 3
[-2,1]  Zalg+1) ¢ 3qla+1)  —3ag—1) 3
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To determine the values of the unipotent characters of G' on z; for even ¢, we identify
G = SO5(q) with Sp,(q) via the isomorphism described in Remark 1. The conjugacy classes
and the irreducible characters of Sp,(g) for even ¢ were determined by Enomoto [5]. Using
the notation for the unipotent conjugacy classes and the representatives in [5], we see that
zg € As1, 21 € As and zy € A3y, Now the character table of Sp,(¢) in [5] or CHEVIE [6] gives
the values in Table 4 for even gq.

Additionally, we have the values x[2,—1(z;) = 1 for all j for the trivial character and
X[-,12,1](zj) = 0 for all j for the Steinberg character. To describe the restriction of the
irreducible characters of G = SO5(q) to the parabolic subgroup P, we collect some information
on the conjugacy classes and irreducible characters of some subgroups of G.

REMARK 4. (a) The parabolic subgroup P5 = ¢ : (¢ — 1) of L’ := Lf = SO3(q) is a Borel
subgroup and has ¢ — 1 linear characters and a unique non-linear irreducible character, which
we denote by u. Its degree is pu(1) = ¢ — 1.

(b) By [14, Theorem 11.4], the group L* = GOF(q) is dihedral of order 2(q F 1). More
specifically: L* has a cyclic normal subgroup K* of index 2, and an outer involution acts on
K* by inverting each element. For odd g we have K* = L*¥NL’. In other words: K* = SO3 (¢)
when we identify LE with GO (¢) and ¢ is odd.

For odd ¢ the group L* has four linear characters 1, Vli, 1/2i, ygt and (¢F1)/2 -1
irreducible characters X;-t of degree 2 and we choose the numbering so that K+ < ker(l/li) and
K* & ker(vi),ker(v). We will see in Theorem 7.1 that exactly one of the characters v,
vy is a constituent of Stz |, and we choose the notation so that vy is this constituent. The
group L* has exactly two conjugacy classes which are not contained in K*. Both of them
consist of involutions and have size (¢ F1)/2.

For even ¢ the group L* has two linear characters 1+, vi¥ and (¢ —1F 1)/2 irreducible
characters in of degree 2 and we have K+ < ker(uf). The group L* has only one conjugacy
class which is not contained in K*. This conjugacy class is the unique conjugacy class of
involutions and has size ¢ F 1.

For odd ¢ and for even ¢ we write =+ for the sum of all irreducible characters X;-—L of L* of
degree 2.

THEOREM 7.1. For odd g and even q the unipotent characters of SOs(q) restricted to Ps
decompose as given in Table 5.

REMARK 5. The first column of Table 5 contains the symbols parameterizing the unipotent
characters xa of G = SO5(q). The second column lists symbols parameterizing characters o of
L such that 4, is the Type 1 component of XAi}Gm The entries in columns 3—-5 are characters
¥ such that 1y is the Type ¢ component of xAl%.

TABLE 5. Unipotent characters of SOs(q) restricted to Ps.

XA 1%

A Type 1 Type 0 Type + Type —
[27_71] [17_71]
[_7_73} Vl
[1%,—,1]  [1,-,1] 1p, 1z-
[1,1,1] 1,-,1]+[-,1,1] 1p, 1,4
-,2,1 [-1,1] vy
[-,1%,1] [ 1,1] lpy +p pe +vi (+0) +E7 (v H)=7
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The characters p, Z/ji and ZF are defined in Remark 4. The characters in brackets in the
last row of Table 5 only exist for odd gq. More precisely: for odd prime powers ¢ the Type +
component of X[_,lzJ]Lg is To, v v fE and the Type — component is *1/)”;+:,. For

L = =
even prime powers ¢ the Type + component of X[_712,1]¢1C§ is

+¢1L++V1++E+ and the Type —

component is ~Y=-.

Proof of Theorem 7.1. Let xa be a unipotent character of G. As in Remark 3, we write the
restriction of x5 to P as XAig =y + %% +Fx+ ", where y = %1y- is the Type £ component
of xal$. The degrees ¥¢(1) can be computed from Table 4 via (6.4). The result is given in
Table 6; it turns out that it does not depend on whether ¢ is odd or even.

The first row of Table 5 is trivial. Also, the first column of Table 5 can be determined from
Table 6 and the combinatorics of bipartitions which encode Harish-Chandra induction and
restriction; see [9, §§3 and 5]. In particular, we obtain

RE(11) = Rg(X[lﬁ,l]) = X[2,—,1] + X[12,—,1] + X[1,1,1]-

By Proposition 5.1, we have 1,17 = 14y, + 01/)1P3 + +¢1L+ + 711, . Theorem 4.3(b) and the
paragraph preceding it now yield for 0 = 1, and ¥ = 1, + Sty the equation

Rg(lL) IGD =3- 1¢1L + 1¢StL +2- Owlpg + +7/’1L+ + 7¢1L— :

Rows 3 and 4 of Table 5 now follow from Table 6. Next, we determine the restriction of the
Steinberg character St¢ = x[— 12,1) to P. To apply Corollary 5.2, we have to describe the
decomposition of St LrilLD; and of St Lifi into irreducibles.

Since Sty vanishes on the non-trivial unipotent elements, the non-linear character u €
Irr(Ps) of degree ¢ — 1 is a constituent of StL/ilL,;. Since IPSTILD; = 17 + Stz,, Frobenius
reciprocity implies that )

Strlp, = Llp, + 4 (7.1)
Next, we consider the restriction of Stz to L* and K+, where K¥ is the cyclic normal subgroup
of L* of index 2 which is defined in Remark 4(b). Suppose that ¢ is odd. By [3, Theorem 6.5.9],
we have Stz (1) = ¢ and Stz (x) = 1 for all x € K\ {1}. Thus, St;|%, is the sum of the trivial
character 1+ and the regular character of K. It follows that exactly one of the characters
vy, vi is a constituent of St L¢£+ and that this constituent occurs with multiplicity one. By
definition, this constituent is 1/§r , so that we get

StL¢§+ =17+ +1/fr+z/;'+5+ or StL¢£+ =2-1p+ +V§' =t or
Strdfy =2 v +vf + =T

TABLE 6. Component degrees of the restrictions of the unipotent irreducible characters of SOs5(q)
to Ps for odd q and even q.

A 1) 9°(1) 9T() 9T (1)
2,—,1] 1
[—,—,3] 1
[1%,-,1 1 1 1
1,1,1]  ¢+1 1 1
[-2,1] ¢ 1
[_»127 1] gq q q q
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Let x, x’ be representatives for the two conjugacy classes of LT which are not contained in K.
Hence, x and x’ are involutions and, by [3, Theorem 6.5.9], we have Sty (x), Sty (x") € {£1}.
Thus,

((g = 1)/2)(StL(x) + StL(x'))
2(¢—1)

It follows that (1p+,Str, $f+)L+ = 1 and therefore StLiﬁJr = 1+ +v{ +v5 + =, Next,
we consider the restriction Stz 2 for odd ¢. By [3, Theorem 6.5.9], we have Stz (1) = ¢ and
Str(x) = —1 for all x € K~ \ {1}. Thus, StzJ%_ is the regular character of K~ with the
trivial character 1 - removed. It follows that exactly one of v, , v5 is a constituent of St Lif,
and that this constituent occurs with multiplicity one. By definition, this constituent is v5
and thus Sty |5 =vy +E7.

Now suppose that ¢ is even. As above, we see that StLLIL(+ is the sum of 1x+ and the
regular character of K+ and that <1L+,StL¢II:+>L+ = 1. Hence, in this case we obtain that
Strdk, =17+ + v + . As above, we see that Stz % _ is the regular character of K~ with
the trivial character removed and get Sty |?_ =Z=".

Applying Corollary 5.2, we get

1
(p+,Strdfe) e =1+ =1+ 4 (Str(x) + Stz (x)).

StGig = X[*;12,1]‘LIGD = 1¢StL + 0¢1P3+M + +¢1L+ +utduf 2+ + _%;Jra— (7.2)
for odd ¢ and
StG\LJGD = )([7,12,1]%%v = Wsn + 0¢1p3+/t + +¢1L+ +uf+EF + Y= (7.3)
for even ¢, which proves the entries in row 6 of Table 5. Next, we determine row 5. We have
RY (Str) = Rg(X[—,l,l]) = X[1,1,1] + X[-12,1] + X[-,2.1] (7.4)
and we want to determine RY (Stz)|%. Hence, we have to compute the summands on the right-

hand side of (4.8), where o = Str,. Since conjugation with ¢ permutes the unipotent characters
of L, we have o = 'St;, = St. Hence, Theorem 4.3(a) and [3, Proposition 6.3.3] imply that

ol P1E = St 1] = Stal . (7.5)
Suppressing symbols for inflation as in §4.2, we get from (7.1) that
sUi;%KTgQK = 1P3T§,QK + NT}I;QK = 11/J1L3T113,QK + +¢1L§r TZQK- (7.6)
Note that L = {1}. From Theorem 4.3(b) and (d), we obtain
"1, Thoe = "W1p, 1¢R£g<lL3> =%, + U1, + Mty (7.7)
+7/11L; Thox = +¢Ri§(1L;) =1, + TP,
Thus, we get from (4.8) and (7.4)—(7.7) that

RE (StL)VE = "ty + “ipy + 1, + sty + T, + 0 + Stelf
= X[1,1,1]$(1§ + X[—,2,1]$(1§ + Stci%

Since we already know X[1,1,1]¢1G37 we get X[_,271]~LIGD = g, + +wu1+’ completing row 5 of
Table 5.
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Finally, we consider x| _ 3 iIGD We know from Table 6 that x| _ 3 ﬁ = Ty for a linear
character ¥ € Irr(L™). Therefore from the definition of )y, it follows that

X[f,f,s]if— = "Yolt =k | E_.

Suppose that ¢ is odd. It follows from Remark 4(b) that L~ has exactly three conjugacy classes
of involutions and we choose representatives 71, 7o and 73 for these classes such that 7,7 & K~
and 73 € Z(L™). Let c]L be the L-conjugacy class of 7; for j = 1,2,3. We have already seen
that Sty 2. = V?: —i—:’ Since =~ vanishes on L™\ K, we have Str(11) = v3 (11) # v5 (T2) =
Stz (2); hence, c& # ck. Also, from Remark 4(b), we get that ¢& C L' < L and ¢, ¢l ¢ L.
Thus, ¢t &, cé are pairwise distinct. Since the conjugacy classes of L = A x L/ = Fy x S03(q)
are known, we see that |CL(m1)|,|CL(72)| € {2(¢*> — 1),2(¢ — 1)?}. Hence,

2 2
X[——3(m5) = 91— (15) € {q 5 119(73')7 g 21) ﬂ(Tj)}

for j = 1,2. From the character values of x[_ _ 3, we get ¥(11) = ¥(r2) = —1 and hence
9=

Suppose that g is even. There is just one conjugacy class of involutions in L™; let T be a
representative for this class. The group L = FX xS03(q) = F* x SLz(g) has only one conjugacy
class of involutions and we see that |[CpL(7)| = ¢(q — 1). Hence, we compute x[— _ 3(7) =
M _(r) = 2q(q — 1)¥(7). From the character table of SO5(q) = Sp,(¢) in CHEVIE, we get
X[—,—3(7) = —§q(q —1); thus, ¥ = v; . This completes the proof of Theorem 7.1.

8. Restrictions of unipotent characters of SO7(q)

In this section we obtain some information on the decomposition into irreducible characters of
the restrictions of the unipotent characters of Gy = SO7(q) to the parabolic subgroup Pr. In
the whole section we assume that m =3 and n =2m + 1 =7. We set G := SO%(q), P := Pr,
L:=L;and LT := L7i for brevity. The degrees of the unipotent characters of SO7(q) and their
labels are given in Table 7. We use the abbreviations ¢ := ¢ — 1, ¢o := q+1, ¢3 := ¢> +q+ 1,
ds:=q¢>+1and ¢g:=q¢*> —q+1.

As in §6, we denote the P-conjugacy class of the unipotent element z; by c; for 7 = 0,1,2.
The conjugacy classes and the values of the unipotent characters of G = SO7(q) were computed

TABLE 7. Labels and degrees of the unipotent characters of SO7(q).

Bipartition = Symbol  Degree Bipartition Symbol Degree

sl (B N Y
el (V) dees nea (08 detee
-.3,1] (031) ladsds  [-21,1] (01132> L4630
el () dede ph-u (100) 0t
1,3 (O 3) Lagtds  [-1,3) (0123) Lq*6hos
panl (%) ees ot (OFF) @
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by Frank Liibeck (private communication, 2010). For odd ¢ the group G has 10 unipotent
conjugacy classes and for even ¢ the group G has 12 unipotent classes. Remark 2 and the
centralizer orders (6.1) determine the fusion of the classes ¢, ¢1, ¢o into the unipotent classes
of G uniquely so that we can read off the values of the unipotent characters of G on the
elements zg, z1, zo in Table 8 from Liibeck’s data. In the table, zeros are replaced by dots.

Additionally, we have the values xs _1(z;) = 1 for all j for the trivial character and
X[-,13,1](zj) = 0 for all j for the Steinberg character.

THEOREM 8.1. For odd q and even q the Type 1 and Type 0 components of the restrictions
of the unipotent characters of SO7(q) to P; are given in Table 9.

TABLE 8. Values xa(2z;) of unipotent characters of SO7(q).

q odd q even

A Zo Z1 Zo Zo Z1 Z2
2,1,1]  2q(2¢*+q+1) Lq¢3 2qds 3q(2¢° +q+1) Lapags  Lqos
[-,3,1]  39(2¢° —q+1) 1q¢7 3qds 3020 —q+1) —Lqdids  3ads
[21,—,1] 3q¢2 105 Lqds Lqoe Lapods  Laos
(1,—,3]  —3qb1 190t Lqps —3qé1 —1qb1ds  Lqge
[1,2,1]  ¢°¢a ¢ ¢ ¢ 7 7
12,11 ¢ 2¢° . 7 N 7
[L1%,1]  3q%¢e ¢ . 3q"¢2 1q*¢a 1g
[—,21,1] 3q%¢2 - @ 3q'¢2 -2 3¢t
[1°,—,1] —i¢'® ¢ . —3d* Lg*¢a iqd*
[ 1,3 —i¢'¢m . ¢ —id'¢ —1q'ig iqt

TABLE 9. Type 1 and Type 0 components of the restrictions of the unipotent characters of SO7(q) to
the parabolic subgroup P;.

xa 1P
Type 0
A Type 1 1 0 + _
(3, —,1] 2, —, 1]
[2,1,1] [2,—,1] +[1,1,1] [1,—,1]
[—,3,1] [—,2,1]
21,—,1 [2,—1]+[1% -1 [1,-,1]
[17_73] [_7_73}
[1,2,1] 1,1,1] + [-,2,1] [—,1,1]
[1%,1,1 [1%,—-,1+[1,1,1] [1,-,1]+[-,1,1] 1p,
[1,1%,1]  [-, 131+ [1,1,1] [1,—-,1]+[-,1,1] 1p 1+
[—.21,1] [-,1%1]+[-,2,1] [-,1,1] vy
13, -1 [1%-,1] [1,—,1] 1p, 1,-
[_7173] [_7_73} V;
(=151 =151 (- 1,1] Ipgtp A+ (42) +E5 (i H)E7
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REMARK 6. The first column of Table 9 contains the symbols parameterizing the unipotent
characters xp of G = SO7(q). The second column lists symbols parameterizing characters o
of L such that 1), is the Type 1 component of XAi% The entries in columns 3-6 are characters
pt, Y, pT, p~, respectively, such that 0¢(1wp1) + Ow("@bpo) + 01/1(+¢p+) + 0¢(—¢p_) is the Type 0
component of x2l%.

The characters p, z/ji and ZT are defined in Remark 4. The characters in brackets in the
last row of Table 9 only exist for odd ¢q. More precisely: the Type 0 component of X[—,13,1]¢1§
is %yr, where I':= 1oy )+ %1, + %%+ F1 e + T+ T + T+ T

for odd ¢ and T := ",/ + %1, + 0y + +¢1L+ + +1/JV1+ + Tip=+ + “1pz- for even q.

Proof of Theorem 8.1. Let xa be a unipotent character of G. As in Remark 3, we write the
restriction of xa to P as XAig =1y + % +Fx+ ", where °y = “1y- is the Type ¢ component
of xal$%. The degrees ¥5(1) can be computed from Table 8 via (6.4). The result is given in
Table 10; it turns out that it does not depend on whether ¢ is odd or even.

The first row of Table 9 is trivial and rows 3 and 5 follow from Table 10. Also, the first
column of Table 9 can be determined from Table 10 and the combinatorics of bipartitions
which encode Harish-Chandra induction and restriction. In particular, we obtain

RY(1r) = Rg(X[z,—,l]) = X[3,—,1] t X[2,1,1] + X[21,—,1]-
By Proposition 5.1, we have 1,17 = 141, + 01, 4 Fab1,, + 41, _ . Theorem 4.3(b) and the
paragraph preceding it now yield for o = 11, 3 = x[2,— 1) + X[12,—,1] + X[1,1,1) the equation
RE(1L)IE =1p + 1rQx Thox + 1017
=1p+ "1, + s+ "1, + %1, + T, 4+ T,

Now the entries in rows 2 and 4 follow from Table 10. We set 1 := x[— _ 3 € Irr(L). We have

RE(n) = RE(X[—,—,?,]) = X[1,—,3] t X[=,1,3]- (8.1)

Since conjugation with ¢ permutes the unipotent characters of L and since 7 is the unique non-
trivial unipotent character of L of degree 2g(q—1)2, we have ‘n = n. Hence, we get from (4.8)

TABLE 10. Component degrees of the restrictions of the unipotent irreducible characters of SO7(q)
to P; for both odd q and even q.

A 9(1) 9°(1) 9t (1) 97(1)
3,—,1 1 . .
[2,1,1] 1q+2)(®+1) 1 1
[—,3,1] 1q(® +1) . 1 )
21,-,1 1(q+1(*—q+2) 1 : 1
[1,-,3]  3q(g—1) : : 1
[1,2,1]  q(¢®+q+1) q 2q
1%1,1]  q(@®+q+1) alg+1) ¢ 7
[1,1%,1]  3¢2¢+1)(¢*+1)  3qlg+1)°* 3e(¢+1)? 3q(¢° +1)
[—21,1]  3q(¢® +2¢° +1) $q(®+1)  qlg+1)?  39(®+1)
1%, -1 3e(@+1) sa(@+1)  3a@—1)° el +1)
(- 1,3 3q(g—1)? sa(a— 1) 3ale—1?* 3e(+1)
131 ¢ q' q* 7
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that
REMIE = "0 + "0l ro, Thaw + 117
By Proposition 5.1 and Theorem 7.1, the character 01/1(_¢ _) is a constituent of . From (8.1),

vy

we get Rf(n)ig = X[L,’g]\l,g + X[,’Lg]ig and, since X[L,,gwg does not have any Type 0

component, we see that 07/’(—11; _) is a constituent of X[_71,3]\Lg. From the degree *1/)”1_(1) =

%q(q— 1)? and Table 10, we can conclude that Ol/J(—w _y is the Type 0 component of X[—,1,3]¢1€a
Y1

proving the entries in row 11 of Table 9. We have

R(L;(X[—,z,l]) = X[-,3,1] + X[1,2,1] + X[-,21,1]- (8.2)

Conjugation with ¢ permutes the unipotent characters of L. The characters x|_ 2 1) and x[12,_ 1]
are the only unipotent characters of L of degree %q(q2 + 1). Since the conjugacy class of L
containing z is fixed by conjugation with ¢ and since the values of x[_ 2 1) and x[12,_ 1) on this
class differ, we have x(_ 21] = X[ 2,1) and "xp2,— 1] = X[12,— 1]- Hence, we get from (4.8) that

RE(X[—,QJ])MGD = 17/’><[7,2,1] + SX[—,271]\1/;%KT§QK + X[—,271]TLP'

By Theorem 7.1 and Theorem 4.3(b), the character %¢: Uxioay is a constituent of the character

SX[,QJN}%KTEQK. Furthermore, it follows from Theorem 7.1 and Proposition 5.1 that

Owlwx[_)lyu +Ow(+wur) is a subcharacter of X[,’Q,lﬁf. Thus, (8.2) implies that 2- Oz/nd,X[_’M] +

0¢(+wﬁ+) is a subcharacter of X[_73,1}\LIGD + X[1,2,1]¢1G3 + X[_)Ql)l]\l,g. Since X[_,371]¢IGD does not

have any Type 0 component, we see that 2 - OwleF

1,1]

+ 01/J(+¢ ,) is a subcharacter of the
Y1

restriction X[l,g’l]ig +X[7,21,1]¢g- Because 1wx[7_’1’1] (1) = q and +wuf(1) = %q(q2 —1), we get

+0w(+¢,,1+)

is the Type 0 component of X[—,21,1]¢g- This proves the entries in rows 6 and 9 of Table 9.
From Corollary 5.2 and Theorem 7.1, we get that the Type 0 component of the restriction

X[-12, 48 = Stal is
0 0 0 0 0 0
YOy ) T 00 T 0Ou) T 0 ) e o (F Y, )

5

3
0 0 0
v (F ¥, ) V),

from Table 10 that 01/)1%([_ - is the Type 0 component of X1 2 1]4% and Owlwx[_

»1,1]

where the summands in brackets only occur for odd ¢. This proves the entries in row 12 of
Table 9. We have

Rg(X[—,l%l]) = X[1,12,1] T X[=,21,1] + X[-,13,1]- (8.3)
Since conjugation with ¢t permutes the unipotent characters of L, we have tX[_Jz’l] =St =
X[-,12,1]- Hence, we get from (4.8) and [3, Proposition 6.3.3] that

RY (X(— 12 )% = 1¢x[,,12,1] + °X(— 12 b ok Thax + Xi— 1201

= 1%([,,12,1] + SX[7,12,1]¢;%KT§QK + X[ 12,145
Together with (8.3), this implies that the Type 0 component of X[l,lz,l}ig + X[_72171]\Lg is the
Type 0 component of SX[_71271]¢;%KT§QK. We obtain from Theorems 7.1 and 4.3(b) and (c)
that O@b(l%[ﬁlyu) + 9%y, is a subcharacter of SX[_71271]\L;%KT§QK7 where ¥ := 1rp5mp5Tf)f,mP5.

The permutation character ¥ can be computed via Theorem 4.3(b) and we get ¥ = 01/211:3 +
1w1L5 + 1¢StL5, so that

TN B LCTAS s /TR s L CUV

[=1,1]
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is a subcharacter of the Type 0 component of x1,12 1]¢P + X[=,21, 1]¢P Because we already
know the Type 0 component of x[_ 21 1]¢P, we see that

0 0 0
VOgap) T V0, T V0L

is a subcharacter of the Type 0 component of X[1,12,1]¢1Cj- Next, we consider the Type 0
component of Rf(X[l,l’l])ig. We have

RE (X(1,1,1) = Xi2,1,1] + X[1,2,1] + X2,1,1) + X[1,12,1]- (8.4)

As before, we see from the degrees that conjugation with ¢ fixes x1,1,1]. Hence, we get from (4.8)

that RY (x(1,10)4% = "xpg + X1 iRQKTRQK + X[1,1,1)1% - Via Theorems 7.1 and 4.3(b),
(¢) and (d), we can compute the Type 0 component of X[171,1]¢RQKTRQK and get

Ow(le[l,fJ]) + Ow(l"pX[,,Ll]) + sz =2. Ow(1wx[1‘7‘l]) +2- Ow(le[f,Lq) —+ 0¢(°¢1p3)'

The Type 0 component of X[1,1,1]TILD can be determined with the help of Theorem 7.1 and
Proposition 5.1 and we get

0 0 0 0
LGNS T G e S CEAP e S )

—,1] ,1,1]

Together with (8.4), it follows that the Type 0 component of
X[Q,l,l]ig + )([1,2,1]“1g + X[12,1,1]¢1GD + X[1,12,1]¢1G>

is S'Ow(libx[l,—,l] ) +3'0w(1¢x[

component ofX[27171]¢g+X[1,271]¢1§7 we see that the Type 0 component OfX[12,1,1]¢1€+X[1,12,1}¢1€
is

) +2.0¢(0¢1P3 ) +0¢(+wlL+ )- Since we already know the Type 0
5

—,1,1]

0 0 0 0
2. w(lwx[l,—,l]) +2. w(lwxhl,l]) +2. 1p(ow1P3) + ¢(+¢1L5+ ) (8.5)
Next, we consider the Type 0 component of R (x[12,— 1)) %. We have

Rg(X[P,—,l]) = X[21,—,1] T X[12,1,1] + X[13,—,1]- (8.6)

We have already seen above that conjugation with ¢ fixes x12 _ 1. Hence, we get from (4.8)
that R%(X[127_71])\L 1/})([12 o + X 12— 1]‘LRQKTRQK + X[12 _ 1]T€ Via Theorems 7.1 and
4.3(b), (c) and (e), we can compute the Type 0 component of X[12,—,1]¢;PQKTEQK and get

oy e =000+ e, T P, )+ 0w,

-1 [7,1,1])'

The Type 0 component of x[2 _ 1]TLP can be determined via Theorem 7.1 and Proposition 5.1.
One gets 0¢(1¢x[ )+ w(owlp + %%~ i, ) Together with (8.6), it follows that the Type 0

component of X[21,— 1]\1,13 + X[12,171]‘1’P + X[13 _ 1]\1,1%: is
0 0 0 0
3y, - T V0 ) T2 0, ) Tt w(-wlLS_ )
Since we already know the Type 0 component of x[a1, 1]¢ B, we see that the Type 0 component
of x[12,1 1]$p + X[3,-,1] 1§ is

22000, ) 0w T2 e, ) T 00 ) (8.7)
5

[—1,1]
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Equation (8.7) implies that Ow(ﬂpl ) is no constituent of X[12,1,1]¢(1§ and hence it follows
Lg

from (8.5) that 01/}(+1Z}1 ) is a constituent of X[1,12,1]¢1€~ Hence,
L

0 0
V) T V0w, V0w

,1,1]

)+ Ow(wlq) (8.8)

is a subcharacter of the Type 0 component of X[1,12,1]$1G3- Comparing degrees with Table 10, we
see that (8.8) is the Type 0 component of X[1,12,1]¢1C3;~ Now the Type 0 components of X[12,171]¢1§
and xp2,— 1] follow from (8.5) and (8.7). This gives the entries in rows 7, 8 and 10 of Table 9
and completes the proof of the theorem.

REMARK 7. The proof of Theorem 8.1 gives partial information on the Type + and Type —
components of the restrictions of the unipotent characters of G = SO7(¢q) to the maximal
parabolic subgroup P = P;. In particular, we see that the restrictions of [3,—,1], [21,—,1]
and [1, —, 3] to P do not have any constituents of Type + and that the Type + component of
2,1,1]4 is +w1L+. Furthermore, the restrictions of [3, —, 1], [2,1,1], [-,3,1] and [1,2,1] to P
do not have any constituents of Type — and the Type — component of [21, —, 1]¢g Is "9y, .

The constituents of Type +/— are parameterized by irreducible characters of the groups
GOff(q). At present, there is only limited information on the irreducible characters of these
groups. The character tables of these groups and the remaining Type +/— components will
be treated in a forthcoming project.
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