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Abstract

Assuming Vojta’s conjecture, and building on recent work of the authors, we prove that,
for a fixed number field K and a positive integer g, there is an integer m0 such that
for any m > m0 there is no principally polarized abelian variety A/K of dimension g
with full level-m structure. To this end, we develop a version of Vojta’s conjecture for
Deligne–Mumford stacks, which we deduce from Vojta’s conjecture for schemes.
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Fix a number field K, a prime p and a positive integer g. Assuming Lang’s conjecture, we showed
in [AV16] that there exists an integer r such that no principally polarized abelian variety A/K
has full level-pr structure. Recall that, for a positive integer m, a full level-m structure on an
abelian variety A/K is an isomorphism of group schemes on the m-torsion subgroup

A[m]
∼−→ (Z/mZ)g × (µm)g. (0.1)

Our goal in this note is to show how to dispose of the dependency on a fixed prime p, at the cost
of assuming Vojta’s conjecture (see [Voj98, Conjecture 2.3] and Conjecture 3.1 below).

Theorem A. Let K be a number field and let g be a positive integer. Assume Vojta’s conjecture.
Then there is an integer m0 such that for any m > m0 no principally polarized abelian variety
A/K of dimension g has full level-m structure.
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Theorem A follows from combining [AV16, Theorem 1.1] and a new result in this note, as

follows.

Theorem B. Let K be a number field and let g be a positive integer. Assume Vojta’s conjecture.

Then there is an integer m0 such that for any prime p > m0 no principally polarized abelian

variety A/K of dimension g has full level-p structure.

1. Introduction

1.1 Vojta’s conjecture for varieties

Before Merel proved that torsion on elliptic curves over number fields is uniformly bounded

[Mer96], it was known that statements related to Masser–Oesterlé’s abc conjecture [Fre89,

Conjecture A-B-C] or Szpiro’s conjecture [Szp90, Conjecture 1] imply such bounds; see Frey

[Fre89, Corollary 2.2], Hindry–Silverman [HS88, Theorem 7.1] and Flexor–Oesterlé [FO90]. In

this paper, we use Vojta’s conjecture [Voj98, Conjecture 2.3] as a higher-dimensional analogue

of the abc conjecture to study level structures on abelian varieties of dimension > 1.

Vojta’s conjecture is a quantitative statement, comparing heights hKX(D)(x), with respect to

the log canonical divisor KX(D), of rational points x in general position on a smooth projective

variety X over a number field K, with the truncated counting function N
(1)
K (D,x) of such points

(see (2.4)) with respect to a normal crossings divisor D. The simplest statement, for K-rational

points, says that if KX(D) is big, then, for small δ,

N
(1)
K (D,x) > (1− δ)hKX(D)(x)−O(1)

for all rational points x ∈ X(K) outside a Zariski-closed proper subset.

The general notation is, unfortunately, involved, and explained in § 2. The conjecture

does have qualitative corollaries, which are easier to explain. The truncated counting function

N
(1)
K (D,x) measures how often the point x reduces to a point on D modulo primes of K. In

particular, when D is empty, then N
(1)
K (D,x) = 0, in which case the statement says that the

height hKX(D)(x) is bounded. Since the height of a big divisor is a counting function outside

a Zariski-closed subvariety, this implies that rational points are not Zariski dense. So, Vojta’s

conjecture implies Lang’s conjecture: the rational points on a positive-dimensional variety of

general type are not Zariski dense. More generally, N
(1)
K (D,x) = 0 whenever x extends to an

integral point on X rD. This recovers the statement of the Lang–Vojta conjecture: the integral

points on a positive-dimensional variety of logarithmic general type are not Zariski dense.

Campana studied varieties where divisors between KX and KX+D are big and, for algebraic

curves, stated qualitative conjectures interpolating between Faltings’ and Siegel’s theorems.

We will study these intermediate conjectures in higher dimensions in a follow-up note. These

statements are qualitative consequences of Vojta’s conjecture.

Our arguments below use Vojta’s conjecture for points of bounded degree, which requires an

additional discriminant term dK(K(x)): for small δ the inequality

N
(1)
K (D,x) + dK(K(x)) > hKX(D)(x)− δhH(x)−O[K(x):K](1)

is conjectured to hold, away from a Zariski-closed subset, where H is a big divisor. Note that

when x ∈ X(K), we have dK(K(x)) = 0.
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1.2 Vojta’s conjecture for stacks
Theorem B is decidedly about rational points on stacks, not varieties. Specifically, an abelian
variety A/K corresponds to a rational point on the moduli stack Ãg of principally polarized
abelian varieties. It should thus come as no surprise that, to prove Theorem B, we require a
version of Vojta’s conjecture for Deligne–Mumford stacks (Proposition 3.2), which we deduce
from Vojta’s original conjecture.

Surprisingly, unlike the case of varieties, Vojta’s conjecture for stacks requires a discriminant
term even for a K-rational point: the image of such a point x in X is naturally a stack Tx that
is in general ramified over the ring of integers OK . The corresponding inequality

N
(1)
K (D,x) + dK(Tx) > hKX(D)(x)− δhH(x)−O(1) (1.1)

holds away from a Zariski-closed proper subset, conditional on Vojta’s conjecture for varieties.
Proposition 3.2 is proved by passing to a branched covering Y → X by a variety. Such

a covering was constructed by Kresch and Vistoli in [KV04, Theorem 1]; we adapt their
construction to stacks with normal crossings divisors in Proposition 2.3.

While the discriminant term comes naturally from Vojta’s statement for points of bounded
degree, one might contemplate doing away with it. It is, however, indispensable, at least if one
is to state a conjecture that is not patently false. Consider the root stack X = P2(

√
C), where

C is a curve of degree > 7, and let D = ∅. Then KX is ample, N
(1)
K (D,x) ≡ 0 and yet there is a

dense collection of rational points on the open subset P2 r C ⊂ X.

1.3 Abelian varieties, counting functions and discriminants

Fix an integer m0 and consider the set Ãg(K)p>m0 of points corresponding to abelian varieties
admitting full level-p structures for primes p >m0. Our task is to show that for large m0 this set

is empty. To this end, it is natural to focus on an irreducible component X ⊂ Ãg(K)p>m0 of the

Zariski closure. This leads to the following setup: consider a closed substack X ⊂ Ãg, a resolution

of singularities X ′ → X and a normal crossings compactification X
′

with boundary divisor D.
Following Zuo [Zuo00, Theorem 0.1(ii)], we showed in [AV16, Theorem 1.9] that K

X
′(D) is big.

With a version of Vojta’s conjecture for stacks in hand, the key to proving Theorem B is to
show that, for points x ∈ X ′(K) corresponding to abelian varieties with full level-p structure,

the terms N
(1)
K (D,x) and dK(Tx) on the left-hand side of (1.1) are small compared to the height

hK
X
′ (D)(x), as soon as p is large enough.
To this end, we show that each one of these terms is bounded by a small fraction of the height

hD(x); see Lemmas 4.4 and 4.5. First, to bound the truncated counting function N
(1)
K (D,x), we

use the fact that the compactified moduli space Ã
[p]

g of abelian varieties with full level-p structure

is highly ramified over the compactification Ãg along the boundary. This is well known away from
characteristic p; see [AV16, Proposition 4.1]. The remaining case of characteristic p is proven in
Proposition A.4 as part of the Appendix by Madapusi Pera, where the structure of the boundary
is described using Mumford’s construction.

Second, using standard discriminant bounds, we show that the discriminant term dk(Tx)
grows at most like log p. Meanwhile, the height hD(x) grows at least linearly in p. For this we
use a point-counting argument of Flexor–Oesterlé [FO90, Théorème 3] and Silverberg [Sil92,
Theorem 3.3] (see also Kamienny [Kam82, § 6(2a)]) to show that x reduces to D modulo a small

prime, whose contribution to hD(x) is at least proportional to p, since Ã
[p]

g → Ãg is highly
ramified.
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Together, these two bounds can be leveraged to show that the totality of points x ∈ X ′(K)
corresponding to abelian varieties over K with full level-p structure for p � 0 is contained in
a Zariski-closed proper subset of X ′. A Noetherian induction argument allows us to deduce
Theorem B from this result.

2. Preliminaries

In this section, we set up notation that will remain in force throughout. Let K be a number
field and let K be a fixed algebraic closure of K. We write OK for the ring of integers of K and
Disc(OK) for its discriminant. We denote by M0

K the set of non-zero primes of OK ; for p ∈M0
K ,

we write OK,p for the localization of OK at p and κ(p) for the residue field. We use S to denote
a finite set of places of K that includes the infinite places, and OK,S for the ring of S-integers
of K.

For a finite extension L/K, we write ΩOL/OK for the module of Kähler differentials.

2.1 Discriminants of fields
For a finite extension E/K, following Vojta, define the relative logarithmic discriminant as

dK(E) =
1

[E : K]
log |Disc(OE)| − log |Disc(OK)|.

Noting that (Disc(OK)) = NK/Q det ΩOK/Z as ideals, we have

dK(E) =
1

[E : K]
deg ΩOE/OK ;

see [Voj98, p. 1106]. The right-hand side can be decomposed into a sum of local contributions

deg ΩOE/OK =
∑

p∈M0
E

degp ΩOE/OK =
∑

p∈M0
E

length(ΩOEp/OKp ) log |κ(p)|.

For p ∈M0
K , we write

dK(E)p :=
1

[E : K]

∑
p|p

degp ΩOE/OK

for the contribution of the primes above p, so that dK(E) =
∑

p∈M0
K
dK(E)p.

If L/E is a further finite extension, the formula for discriminants in the tower L/E/K gives

dK(L) =
1

[E : K]
dE(L) + dK(E) =

1

[L : K]
deg ΩOL/OE + dK(E), (2.1)

dK(L)p =
1

[E : K]
dE(L)p + dK(E)p =

1

[L : K]
deg ΩOL,p/OE,p + dK(E)p. (2.2)

In particular, if L/E is unramified above p ∈M0
K , then dK(L)p = dK(E)p.

2.2 Discriminants of stacks

We shall need analogous definitions where SpecOE is replaced by a normal separated Deligne–
Mumford stack T with coarse moduli scheme SpecOE :

dK(T ) =
1

deg(T /OK)
deg(ΩT )− log |Disc(OK)| = 1

deg(T /OK)
deg(ΩT / SpecOK ),

dK(T )p =
1

deg(T /OK)
deg(ΩTp)− log |Disc(OK)| = 1

deg(T /OK)
deg(ΩTp/ SpecOK,p).
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The quantity deg(T /OK) is in general rational, as the fiber over SpecK might be a gerbe over
SpecE.1 However, we still have dK(T ) =

∑
p∈M0

K
dK(T )p.

Choose a morphism SpecOF → T unramified above p, so that (ΩT / SpecOK )SpecOF,p =
ΩOF,p/OK,p . Since [F : K] = deg(T /OK) · deg(SpecOF /T ), we can compute dK(T )p entirely
with schemes.

Lemma 2.1. For SpecOF → T unramified above p, we have dK(T )p = dK(F )p.

We deduce analogues of (2.1) and (2.2).

Lemma 2.2. Let L/E be a finite extension field and π : SpecOL → T a morphism. Then

dK(L)p =
1

[L : K]
deg(ΩSpec(OL,p)/Tp) + dK(T )p

and

dK(L) =
1

[L : K]
deg(ΩSpec(OL)/T ) + dK(T ).

Proof. To prove the local statement, choose ψ : SpecOF → T unramified above p, and let U =
Spec(OF ) ×T Spec(OL) with projection φ : U → Spec(OL). These objects fit together in the
commutative diagram

U φ //

��

SpecOL
π

��
SpecOF

ψ // T τ // SpecOK
We have

ΩUp/Spec(OF,p) = ΩUp/Tp = φ∗ΩSpec(OL,p)/Tp ,

ΩUp/Spec(OK,p) = φ∗ΩOL,p/OK,p

and
ΩOF,p/OK,p = ψ∗ΩTp/Spec(OK,p).

The projection formula gives

deg(ΩUp/Tp) = deg(ψ) deg(ΩSpec(OL,p)/Tp),

deg(ΩOF,p/OK,p) = deg(ψ) deg(ΩTp/ Spec(OK,p))

and finally

dK(L)p =
1

[L : K]
deg(ΩOL,p/OK,p) =

1

[L : K] degψ
deg(ΩUp/ Spec(OK,p))

=
1

[L : K] degψ
(deg(ΩUp/ Spec(OF,p)) + (deg π) deg(ΩOF,p/OK,p))

=
1

[L : K] degψ
deg(ΩUp/Tp) +

1

deg(T / SpecOK)
deg(ΩTp/Spec(OK,p))

=
1

[L : K]
deg(ΩSpec(OL,p)/Tp) + dK(T )p,

as required. The global formula follows by summing over p ∈M0
K . 2

1 We can redefine Tx to be the normalization in the field E, so that deg(T /OK) = [E : K], an integer.
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2.3 Heights on stacks
For a divisor H on a smooth projective scheme Y , we denote by hH(x) the Weil height of x with
respect to H, which is well defined up to a bounded function on Y (K). To define a notion of
height on a Deligne–Mumford stack, we pull back to a cover by a scheme and work there instead.
Let X/K be a smooth proper Deligne–Mumford stack with projective coarse moduli scheme and
let H ⊂ X be a divisor. Let f : Y → X be the finite flat surjective morphism from a smooth
projective scheme Y guaranteed by [KV04, Theorem 1] or Proposition 2.3 below. For a point
x ∈ X(K), let y ∈ Y (K) be a point over x and define

hH(x) := hf∗(H)(y).

This definition has the advantage of having functoriality properties of heights built into it. It is
also compatible with passing to the coarse moduli space, at the price of working with Q-Cartier
divisors on slightly singular schemes: any divisor H on X is the pullback of a Q-Cartier divisor
H on the coarse moduli space X and, if x ∈ X is the image of x, then

hH(x) = hH(x).

Our definition has the disadvantage that there can be infinitely many rational points (with
the same image in X) with the same height. In a forthcoming paper, Ellenberg et al. construct
an alternative notion of height on a stack, with the property that there are only finitely many
non-isomorphic points with bounded height.

2.4 Normal crossings models
Let (X ,D) be a pair with X → SpecOK,S a smooth proper morphism from a scheme or a
Deligne–Mumford stack, and D a fiber-wise normal crossings divisor on X . Let (X,D) be the
generic fiber of the pair (X ,D); we say that (X ,D) is a normal crossings model of the pair
(X,D). Write D =

∑
i Di and let Di be the generic fiber of Di.

2.5 Intersection multiplicities on schemes and stacks
For R an integral extension of OK,S , and q ⊂ R a non-zero prime ideal, let Rq be the localization
of R at q, with maximal ideal mq and residue field κ(q).

We first define multiplicities for integral points. Let x ∈X (Rq), and define nq(Di, x) as the
intersection multiplicity of x and Di. In other words, letting IDi denote the ideal of Di, we have
an equality of ideals in Rq:

IDi
∣∣
x

= m
nq(Di,x)
q .

Note that if R′ is an integral extension of R, with maximal ideal q | q, and if y ∈ X (R′q) is the
composite of SpecR′q → SpecRq → X , then we have nq(Di, y) = e(q | q)nq(Di, x), where e(q | q)
is the ramification index of q over q.

This observation prompts the following extension of the definition of nq(Di, x) to a rational
point x of X . Denoting by K(R) and K(R′) the respective fraction fields of R and R′, if
x ∈X (K(R)) and if y ∈X (R′) is an integral point over x, then the quantity

nq(Di, x) :=
1

e(q | q)nq(Di, y) (2.3)

is well defined.
Finally, define nq(

∑
aiDi, x) :=

∑
i ainq(Di, x).
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2.6 Counting functions
Following Vojta [Voj98, p. 1106], for x ∈ X (K), with residue field K(x), define the truncated
counting function

N
(1)
K (D,x) =

1

[K(x) : K]

∑
q∈SpecOK(x),S

nq(D ,x)>0

log |κ(q)|. (2.4)

The quantity on the right-hand side of (2.4) depends on the model (X ,D) and the finite set S
only up to a bounded function on X(K). However, we are interested in this quantity only up to

such functions. Hence, the notation N
(1)
K (D,x) does not reflect the model (X ,D) or the finite

set S.
By [Voj98, p. 1113] or [HS00, Theorem B.8.1(e)], we have the bound

N
(1)
K (D,x) 6

1

[K(x) : K]

∑
q

nq(D,x) log |κ(q)| 6 hD(x) +O(1), (2.5)

which can be further improved whenever we bound the multiplicities nq(D,x) from below.

2.7 Coverings of stacks
We require the following version of [KV04, Theorem 1], due to Kresch and Vistoli, adapted to
the case of a stack with a normal crossings divisor.

Proposition 2.3. Suppose that X/K is a smooth proper Deligne–Mumford stack with
projective moduli scheme, with a normal crossings divisor D ⊂ X. Then there exists a
finite surjective morphism π : Y → X such that Y is a smooth projective irreducible scheme,
DY := π∗D ⊂ Y is a normal crossings divisor and the ramification divisor R of Y → X meets
every stratum of DY properly.

The proof of this proposition requires the following slicing lemma.

Lemma 2.4 (See [KV04, Lemma 1]). Let f : U → V be a morphism of quasi-projective varieties
over an infinite field, with constant fiber dimension r > 0; let D ⊂ V be a divisor. Assume
that U is smooth and DU = f−1D is a simple normal crossings divisor. Let U ⊂ PN be a
projective embedding. Denote by DI

U the closed strata of (U,DU ), and assume further that
DI
U →DI := f(DI

U ) is generically smooth for each I. Then, for sufficiently high d, the intersection
DI
U ∩H(d) of each stratum DI

U with a general hypersurface H(d) ⊂ PN of degree d is a smooth
Cartier divisor in DI

U , generically smooth and of constant fiber dimension r − 1 over DI .

Proof of the lemma. For each I, [KV04, Lemma 1] applied to U → V replaced by DI
U → DI

provides an integer dI and, for each d > dI , an open subset of Γ(PN ,O(d)), where DI
U ∩H(d) is

a smooth Cartier divisor in DI
U of constant fiber dimension r− 1 over DI . By Bertini’s theorem,

after possibly enlarging dI we may replace it by a smaller open subset, where DI
U ∩H(d)

→ DI

is also generically smooth. Take d > maxI dI . 2

Proof of Proposition 2.3. First, we note that X is a quotient stack: to see this, one
combines [KV04, Theorem 2] together with a result of Gabber implying that the Azumaya–
Brauer group of a quasi-projective scheme over a field coincides with the cohomological Brauer
group [dJon]. Next, proceeding as in the proof of [KV04, Theorem 1], one can construct a smooth
projective morphism of stacks π : P → X with a representable open substack Q ⊂ P , whose fiber
dimension is greater than dim(P rQ). The induced morphism on coarse moduli spaces U → X
is surjective, and U is quasi-projective by [KV04, Lemma 2].
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Beginning with the map U → X and the image of D via X → X, repeated applications of
Lemma 2.4 yield a closed subscheme Y ⊂ U such that the map Y → X is finite and surjective,
and such that DY is a normal crossings divisor whose strata meet the ramification divisor of
Y → X properly. We can assume that Y is disjoint from the image of P rQ in U , by dimension
reasons. We can thus lift Y to a representable substack of Q, because Q is representable, and
get the desired morphism Y → X. 2

2.8 Rational and integral points on stacks
We will make use of the following standard observations.

Lemma 2.5. Let R be a Dedekind domain with fraction field K.

(1) Let f : Y → X be a proper representable morphism of algebraic stacks over R. Let
y ∈ Y (K) and x = f(y). Then y extends to a point η ∈ Y (R) if and only if x extends to a point
ξ ∈ X(R).

(2) Let X/R be an algebraic stack, Y/R a proper scheme and Y → X a morphism. If
x ∈ X(K) is the image of y ∈ Y (K), then it extends to ξ ∈ X(R).

(3) Let X/R be a proper algebraic stack, Y/R a proper scheme and Y → X a flat surjective
morphism of degree M . Let x ∈ X(K). There are a finite extension L/K, with [L : K] 6M and
RL ⊂ L the integral closure of R, and a point ξ ∈ X(RL) lifting x.

Proof. (1) Given η ∈ Y (R), we have f(η) = ξ ∈ X(R). If ξ ∈ X(R), consider the fibered product
Z = SpecR×X Y defined by ξ, which is representable and proper over R. Then y gives a point
of Z(K), which extends to R by the valuative criterion of properness.

(2) By the valuative criterion for properness, y extends to η ∈ Y (R), whose composition with
Y → X gives ξ ∈ X(R).

(3) The K-scheme Z = SpecK×X Y is finite of degree M and hence admits a rational point
y ∈ Z(L) with [L : K] 6 M . The composition SpecL → Z → Y extends to η ∈ Y (RL) by the
valuative criterion for properness, and its composition with f is a point ξ ∈ X(RL) lifting x. 2

3. Vojta’s conjecture for varieties and stacks

We write KX for the canonical divisor class of a smooth variety or smooth Deligne–Mumford
stack X.

Conjecture 3.1 (Vojta [Voj98, Conjecture 2.3]). Let X be a smooth projective variety over a
number field K, D a normal crossings divisor on X and H a big line bundle on X. Let r be a
positive integer and fix δ > 0. Then there is a proper Zariski-closed subset Z ⊂ X containing D
such that

N
(1)
K (D,x) + dK(K(x)) > hKX(D)(x)− δhH(x)−O(1)

for all x ∈ X(K) r Z(K) with [K(x) : K] 6 r.

We note that variants of the conjecture above have been stated, involving the counting
function NK(D,x) = (1/[K(x) : K])

∑
q nq(D,x) log |κ(q)| and a different coefficient in front of

the discriminant term dK(K(x)). It may be possible to deduce results similar to Theorem B from
these variants; we do not do so here.

We shall need a version of Vojta’s conjecture for Deligne–Mumford stacks. For a smooth
proper Deligne–Mumford stack X → SpecOK,S , we write X = XK for the generic fiber, which
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we assume is irreducible, and X for the coarse moduli space of X. Similarly, for a normal crossings
divisor D of X , we write D for its generic fiber.

Given a point x ∈ X (K), we take the Zariski closure and normalization of its image, and
extend it uniquely to a morphism, denoted Tx → X , where Tx is a normal stack with coarse
moduli scheme SpecOK(x),S . We thus have the relative discriminant dK(Tx) defined in § 2.2.

Proposition 3.2 (Vojta for stacks). Assume that Vojta’s conjecture 3.1 holds. Let X →

SpecOK,S , X, X and D be as above. Suppose that X is projective and let H be a big line
bundle on it. Let r be a positive integer and fix δ > 0. Then there is a proper Zariski-closed
subset Z ⊂ X containing D such that

N
(1)
K (D,x) + dK(Tx) > hKX(D)(x)− δhH(x)−O(1)

for all x ∈ X(K) r Z(K) with [K(x) : K] 6 r.

Proof. Let Y →X be the finite cover ofX guaranteed by Proposition 2.3. Possibly after enlarging
S, we may assume that Y → X extends to π : Y → X for some model Y of Y , so a point
y ∈ Y (K(y)) extends to SpecOK(y),S → Y , and composes to SpecOK(y),S → X . We denote
π(y) = x, and its extension as a stack by T := Tx → X .

By Riemann–Hurwitz, we have

KY +DY = (π∗KX +R) + π∗D = π∗(KX +D) +R.

Thus, for y ∈ Y (K) with π(y) = x outside a proper Zariski-closed subset of Y , we have

hKY (DY )(y) = hKX(D)(x) + hR(y) +O(1).

Let π : Y → X be the composition of π with the natural map X → X. Let B = π∗(H); then B
is big and, by functoriality of heights, we have

hB(y) = hH(x) +O(1)

for all y ∈ Y (K). Let DY = π∗D .

Lemma 3.3. We have N
(1)
K (DY , y) 6 N

(1)
K (D,x).

Proof. Note that nq(DY , y) > 0 if and only if nq(D , x) > 0. Then

N
(1)
K (DY , y) =

1

[K(y) : K]

∑
q∈SpecOK(y),S

nq(DY ,y)>0

log |κ(q)|

=
1

[K(y) : K]

∑
q:nq(D ,x)>0

∑
q|q

log |κ(q)|

6
1

[K(y) : K]

∑
q:nq(D ,x)>0

∑
q|q

e(q | q) log |κ(q)|

=
1

[K(y) : K]

∑
q:nq(D ,x)>0

[K(y) : K(x)] log |κ(q)|

=
1

[K(x) : K]

∑
q:nq(D ,x)>0

log |κ(q)| = N
(1)
K (D,x).

2

Lemma 3.4. We have
1

[K(y) : K]
degy ΩOK(y)/OT 6 hR(y) +O(1).
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Proof. Write YT = Y ×X T . The morphism T → X is representable, since it is the normalization
of a substack. It follows that YT is a scheme. Also, SpecOK(y) → YT is the normalization of the

image subscheme Im(y).
Therefore,

degy ΩOK(y)/T 6 degy ΩIm(y)/T 6 degy ΩYT /T 6 degy ΩY /X

(since deg Ω drops when passing to normalization, subscheme or pullback)

= degy det ΩY /X = [K(y) : K] · hR(y) +O(1),

as needed. 2

Continuing with the proof of Proposition 3.2, Conjecture 3.1 for Y gives

N
(1)
K (DY , y) + dK(K(y)) > hKY +DY (y)− δhB(y) +O[K(y):K(x)](1) (3.1)

for y away from a proper closed subset. By Lemma 2.2, we have

dK(K(y)) =
1

[K(y) : K]
degy ΩOK(y)/OT + dK(T ).

By Lemmas 3.3 and 3.4, the left-hand side of (3.1) is majorized by

N
(1)
K (D,π(y)) + hR(y) + dK(T ) +O[K(y):K(x)](1).

On the other hand, for the right-hand side of (3.1), we have

hKY (DY )(y)− δhB(y) = hKX(D)(x) + hR(y)− δhH(x) +O(1).

All together, we obtain

N
(1)
K (D,x) + hR(y) + dK(T ) > hKX(D)(x) + hR(y)− δhH(x) +O[K(y):K(x)](1),

which, after canceling hR(y), gives

N
(1)
K (D,x) + dK(T ) > hKX(D)(x)− δhH(x) +O[K(y):K(x)](1).

A point x with [K(x) : K] 6 r is the image of a point y with [K(y) : K] 6 r · deg π. Thus, the
proposition for X , D , H, r and δ follows from Conjecture 3.1 applied to Y , π∗D , B, r · deg π
and δ. 2

4. Proof of the main result

4.1 Moduli spaces and toroidal compactifications
We follow the notation of [AV16]. However, we work over SpecZ:

Ãg ⊂ Ãg a toroidal compactification of the moduli stack of
principally polarized abelian varieties of dimension g,

Ag ⊂ Ag the resulting compactification of the moduli space of
principally polarized abelian varieties of dimension g,

Ã[m]
g ⊂ Ã

[m]

g a compatible toroidal compactification of the moduli stack of
principally polarized abelian varieties of dimension g
with full level-m structure,

A[m]
g ⊂ A[m]

g the resulting compactification of the moduli space of
principally polarized abelian varieties of dimension g
with full level-m structure.
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The construction of Ã
[m]

g by Faltings and Chai [FC90, p. 128] yields a stack smooth over

SpecZ[ζm, 1/m], where ζm is a primitive mth root of unity. Its boundary is a normal crossings

divisor. However, their definition of full level-m structure requires a symplectic isomorphism

A[m]
∼−→ (Z/mZ)2g. In [FC90, IV, Remark 6.12], they relaxed the requirement that the

isomorphism be symplectic, giving a stack smooth over SpecZ[1/m]; in [FC90, I, Definition 1.8],

they also considered full level structures in our sense (albeit still requiring the isomorphism (0.1)

to be symplectic). Combining these remarks, we obtain a stack we denote (Ã
[m]

g )Z[1/m], smooth

over Z[1/m]. If m > 3, this stack is a scheme [FC90, IV.6.9].

We extend the construction to SpecZ by defining Ã
[m]

g to be the normalization of Ãg in

(Ã
[m]

g )Z[1/m]. The resulting stack is not smooth over primes dividing m, and even the interior

of the stack over such primes does not have a modular interpretation. However, the boundary

structure of this stack at primes dividing m is described in the Appendix.

The natural morphism A[m]
g → Ag that ‘forgets the level structure’ is finite and, since we

chose compatible compactifications, it extends to a finite morphism πm : Ã
[m]

g → Ãg; see [FC90,

Theorem IV.6.7(1)].

4.2 Rational points and covers of bounded degree

The stack Ãg is proper, but a rational point x ∈ Ãg might not extend to an integral point: it

might correspond to an abelian variety with potentially semistable, but not semistable, reduction.

In this section, we explain how one can use an integral extension of bounded degree to lift x to

a finite cover of Ãg that is a scheme, where the lift of x can be extended to an integral point.

We apply Lemma 2.5(3), which requires a covering Y → Ãg by a scheme. This can be

achieved using [KV04, Theorem 1], but a more explicit construction in our situation is given in

the following well-known lemma.

Lemma 4.1. Let m = m1m2 be a product of two coprime integers each > 3. Then the stack Ã
[m]

g

is a scheme.

Proof. First, recall that if d > 3 is an integer, the stack (Ã
[d]

g )Z[1/d] is a scheme. It suffices to

show that (Ã
[m]

g )Z[1/m1] and (Ã
[m]

g )Z[1/m2] are schemes. This in turn follows because for i = 1

and 2, the stack (Ã
[m]

g )Z[1/mi] is the normalization of the scheme (Ã
[mi]

g )Z[1/mi] in the scheme

(Ã
[m]

g )Z[1/m]. 2

Since 12 = 3 · 4 is the product of two relatively prime integers each > 3, it follows that Ã
[12]

g

is a scheme. Let M = deg π12 : Ã
[12]

g → Ãg. We obtain the following result.

Proposition 4.2. Let R be a Dedekind domain with field of fractions K. Fix a point y ∈
Ã

[m]

g (K). There are a finite extension L/K, with [L : K] 6 M and RL ⊂ L the integral closure

of R, and a point η ∈ Ã
[m]

g (RL) lifting y.
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Proof. Applying Lemma 2.5(3) to the point πm(y) ∈ Ãg, we have a point ξ ∈ Ãg(RL) lifting

πm(y). Applying Lemma 2.5(1) to the representable morphism πm, the point lifts to η ∈ Ã
[m]

g (RL).
2

4.3 Substacks

Let X ⊆ (Ãg)K be a closed substack, let X ′ → X be a resolution of singularities and X ′ ⊂ X ′ a

smooth compactification with D = X
′rX ′ a normal crossings divisor. Assume that the rational

map f : X
′
→ Ãg is a morphism. Let X ′m = X ′ ×Ãg Ã

[m]
g , and let X

′
m → X

′ ×
Ãg
A[m]
g be a

resolution of singularities with projections πXm : X
′
m → X

′
and fm : X

′
m → Ã

[m]

g .
We now spread these objects over OK,S for a suitable finite set of places S containing the

archimedean places. Let (X ,D) be a normal crossings model of (X
′
, D) over SpecOK,S . As

above, write D =
∑

i Di. Such a model exists, even for Deligne–Mumford stacks, by [Ols06,
Proposition 2.2].

Let X(K)[m] be the set of K-rational points of X corresponding to abelian varieties A/K
admitting full level-m structure. Define

X(K)p>m0 :=
⋃
p>m0
p prime

X(K)[p].

4.4 Intersection multiplicities for integral and rational points

Write E for the boundary divisors of (Ãg)K , and E for its closure in Ãg, which is a Cartier

divisor. We have an equality of divisors on X
′
:

f∗E =
∑

aiDi,

where each ai > 0; see [AV16, (4.3)]. This equality extends over SpecOK,S to

f∗E =
∑

aiDi.

By [AV16, Proposition 4.1 or Equation (4.1)], we have that π∗mE = mEm for some Cartier

divisor Em ⊂ (Ã
[m]

g )K . Spreading out Em to Em in Ã
[m]

g , we obtain π∗mE = mEm; moreover, by
Proposition A.4 in the Appendix, Em is a Cartier divisor.

Let q ⊂ OK,S be a non-zero prime ideal. Assume that there are maps ξ : SpecOK,q → X and
ξm : SpecOK,q → Xm such that ξ = πXm ◦ ξm, and write x ∈ X (OK,q) and xm ∈ Xm(OK,q) for
the respective integral points corresponding to ξ and ξm. These objects and arrows fit together
in the commutative diagram

Xm
fm //

πXm

��

Ã
−
g [m]

πm
��

SpecOK,q

ξm

;;

ξ
//X

f // Ãg.

We have an equality of divisors on SpecOK,q:

ξ∗f∗E = ξ∗mf
∗
mπ
∗
mE = m · ξ∗mf∗mEm,
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which translates to ∑
aiξ
∗Di = m · ξ∗mf∗mEm.

The divisor on the left has multiplicity
∑
ainq(Di, x). If x ∈ X (OK,q), then the intersection

multiplicities nq(Di, x) are integers, and we deduce that

m
∣∣∣∑ ainq(Di, x).

If the quantity
∑
ainq(Di, x) is non-zero, then m 6

∑
ainq(Di, x), and thus

m 6 max{ai}
∑

nq(Di, x) = max{ai}nq(D , x);

in other words,

nq(D , x) >
m

max{ai}
.

Given a rational point x ∈ X (K), we apply Proposition 4.2 and obtain an extension field

L/K with [L : K] 6M and an integral extension OL,q with a point ξ ∈X (OL,q) lifting x. Since
for any q | q we have e(q | q) 6M , (2.3) gives

nq(D , x) >
m

M max{ai}
.

We summarize this discussion in the following proposition.

Proposition 4.3. With notation as in § 4.3, write α(X) := (M ·max{ai})−1 > 0, which depends
X, but not on x. Let xm ∈ X ′m(K) be a rational point in X ′m with image x ∈ X ′(K). Suppose

that nq(D , x) > 0. Then

nq(D , x) > mα(X). (4.1)

4.5 Proof of Theorem B

Lemma 4.4. Fix ε′ > 0. Then there is an integer m0 := m0(ε
′,K,X) such that for all primes

p > m0 and x ∈ X(K)[p] we have

dK(Tx) 6 hε′D(x) +O(1).

Proof. Let A/K be the abelian variety of dimension g associated with x ∈ X(K)[p]. Since A has

full level-p structure, we know that #A[p](K) > pg. Thus, if q is a prime ideal of K that does

not divide p, then #A[p](κ(q)) > pg (see [HS00, C.1.4]). We choose m0 > 8, so p 6= 2, freeing us

to pick q | 2. This implies that κ(q) = 2f(q|q) 6 2[K:Q].

We follow Flexor–Oesterlé [FO90, Théorème 3] and Silverberg [Sil92, Theorem 3.3]; see also

Kamienny [Kam82, § 6(2a)]. Suppose now that A has good reduction at q, so that, by the

Lang–Weil estimates, we have

#A(κ(q)) 6 (1 + κ(q)1/2)2g 6 (1 + 2[K:Q]/2)2g.

Thus, if A has good reduction at q | 2, we have

p 6 (1 + 2[K:Q]/2)2 := γ.

385

https://doi.org/10.1112/S0010437X16008253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008253


D. Abramovich and A. Várilly-Alvarado

In other words, if p > γ, then A must have bad reduction at primes q | 2, so nq(D , x) > 0. By
Proposition 4.3, the stronger inequality (4.1) holds with m = p. We use this to see that if p > γ,
then as in the estimate (2.5) we have

hε′D(x) +O(1) > ε′
∑
q

nq(D,x) log |κ(q)| > ε′
∑
q|2

pα(X) log |κ(q)| > ε′(α(X) log 2) · p,

so hε′D(x) grows at least linearly in p.
Now we crudely bound dK(Tx) from above. Note that x is an integral point away from p.

As in § 4.4, passing to a cover of finite bounded degree 6 M = M(g), we may replace x with
an integral point y in such a way that [K(y) : K] 6 M . The discriminant ideal of Tx divides
the discriminant ideal of the extension K(y)/K; we compare their factors at p. Let dK(K(y))p
denote the contribution at p of dK(K(y)); ignoring negative terms coming from the discriminant
of OK , we have the estimate

dK(Tx) 6 dK(K(y))p 6
vp(|Disc(OK(y))|)

[K(y) : K]
· log p,

where vp denotes the usual p-adic valuation. By [Neu99, Proof of III.2.13], we have

vp(|Disc(OK(y))|) 6 [K(y) : K](1 + [K(y) : K]).

Hence,

dK(Tx) 6 (1 + [K(y) : K]) · log p := β · log p

grows at most linearly in log p, and the result follows. 2

Lemma 4.5. Fix ε′ > 0. Then there is an integer m0 := m0(ε
′,K,X) such that for all primes

p > m0, if x ∈ X(K)[p], then

N
(1)
K (D,x) 6 hε′D(x) +O(1).

Proof. If x ∈ X(K)[p], then whenever nq(D , x) > 0, Proposition 4.3 implies that the stronger
inequality (4.1) holds. Hence,

pα(X)N
(1)
K (D,x) =

∑
nq(D ,x)>0

pα(X) log |κ(q)|

6
∑

nq(D ,x)>0

nq(D , x) log |κ(q)|

6 hD(x) +O(1),

where in the last inequality we use the estimate (2.5). Taking m0 > 1/(ε′α(X)), we have pα(X) >

1/ε′ and hence N
(1)
K (D,x) 6 hε′D(x) +O(1). 2

Proof of Theorem B. We proceed by Noetherian induction. For each integer i > 1, let

Wi = Ãg(K)p>i.

Note that Wi is a closed subset of Ag, and that Wi ⊇ Wi+1 for every i. The chain of Wi must
stabilize by the Noetherian property of the Zariski topology of Ag. Say Wn = Wn+1 = · · · .

386

https://doi.org/10.1112/S0010437X16008253 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008253


Level structures and Vojta’s conjecture

We claim that Wn has dimension 6 0. Suppose not, and let X ⊆ Wn be an irreducible

component of positive dimension. Fix ε > 0 so that KX + (1 − ε)D is big: such an ε exists

by [AV16, Corollary 1.10]. Next, choose a Q-ample divisor H such that KX + (1 − ε)D −H is

effective, and apply Proposition 3.2, with r = 1, to conclude that there is a Zariski-closed proper

subset Z ⊂ X such that if x ∈ X(K) r Z(K), then

N
(1)
K (D,x) + dK(Tx) > hKX(D)(x)− δhH(x)−O(1).

By Lemma 4.5, for all primes p > m0, any x ∈ X(K)[p] satisfies N
(1)
K (D,x) 6 h(ε/2)D(x) +O(1).

On the other hand, Lemma 4.4 guarantees that, after possibly enlarging m0, for all primes

p > m0, any x ∈ X(K)[p] satisfies h(ε/2)D(x) +O(1) > dK(Tx). If also x /∈ Z(K), we deduce that

hεD(x) > hKX(D)(x)− δhH(x)−O(1).

By our choice of H and [HS00, Theorem B.3.2(e)], we obtain

O(1) > (1− δ)hKX((1−ε)D)(x).

Using [HS00, Theorem B.3.2(e,g)], we conclude that the set of x ∈ X(K)p>m0 outside Z(K) is

not dense, and thus X(K)p>m0 is contained in a Zariski-closed proper subset of X. On the other

hand, if m0 > n, then Wm0 = Wn, so X is also an irreducible component of Wm0 and hence

X(K)p>m0 = X, which is a contradiction. This proves that dimWn 6 0.

Finally, if Wn is a finite set of points, then it is well known that the full level structures that

can possibly appear in any of the corresponding finitely many geometric isomorphism classes

are bounded. Indeed, if q ∈ M0
K is a fixed prime of potential good reduction, all twists with

full level-p structure with p > 2, q - p have good reduction at q. Since the p-torsion points inject

modulo q, we have p 6 (1 +Nq1/2)2. Alternatively, following Manin [Man69, § 3], there are only

finitely many isomorphism classes over Kq and, for each, the torsion subgroup is finite. 2
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Appendix. Compactifications with full level structure

Keerthi Madapusi Pera

The purpose of this appendix is to lay out certain facts about toroidal compactifications of the

moduli of principally polarized abelian varieties with full level structure at ‘bad’ primes. This is

a straightforward extension of the theory of [FC90] and could possibly also be extracted from

the work of Lan [Lan16].
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A.1 Equip Z2g = Zg ⊕ Zg with the standard non-degenerate symplectic pairing

ψ : ((u1, v1), (u2, v2)) 7→ u1v
t
2 − u2vt1.

For every integer m ∈ Z>0, equip (Z/mZ)2g with the non-degenerate pairing ψm inherited from
ψ. A symplectic level-m structure on a principally polarized abelian scheme (A, λ) over a base S
will consist of a pair (η, φ), where

η : (Z/mZ)2g
'−→ A[m]; φ : µm

'−→ Z/mZ

are isomorphisms of group schemes over S such that η carries the pairing ψm to the pairing φ◦eλ
on A[m]. Here

eλ : A[m]×A[m] → µm

is the symplectic Weil pairing induced by the polarization λ.

A.2 Let Ãg be the algebraic stack over Z parameterizing principally polarized abelian varieties
of dimension g. Over Z[1/m], we have a finite étale morphism of algebraic stacks

Ãg,m[1/m] → Ãg[1/m]

parameterizing symplectic level-m structures on the universal abelian scheme over Ãg[1/m]. By

a classical argument of Serre, points of Ãg,m[1/m] have trivial automorphism schemes as soon
as m > 3; see e.g. [FC90, ch. IV, Remark 6.2(c) or Corollary 6.9].

Fix any toroidal compactification Ãg of Ãg (see [FC90, ch. IV]). We now obtain an open
immersion

Ãg,m ↪→ Ãg,m
of algebraic stacks over Z by taking the normalization of the open immersion

Ãg ↪→ Ãg

in Ãg,m[1/m].

The stack Ãg,m has no obvious moduli interpretation over Z, and we know little about
the singularities of its fibers over primes dividing m. However, this is not an obstruction to
studying its general structure at the boundary. For this, we will need some information about
the stratification of the boundary.

A.3 We direct the reader to [Mad15, § 1] for the notion of a principally polarized 1-motif (Q,λ)
over a base S. Here we will note that it consists of a 1-motif Q, that is, a two-term complex
u : X → J , where J is a semi-abelian scheme over S that is an extension of an abelian scheme
by a torus, and X is a locally constant sheaf of finite free abelian groups, and an isomorphism

λ : Q
'−→ Q∨ to its dual 1-motif Q∨.

We will say that (Q,λ) is of type (r, s) for r, s ∈ Z>0 if the abelian part of J has dimension
s and if X = Zr. The polarization λ then canonically identifies the toric part of J with Gr

m.
Suppose that (Q,λ) is of type (r, s), and set g = r+s. Given m ∈ Z>0, one has the m-torsion

Q[m] of the 1-motif Q: this is a finite flat group scheme over S of rank 2g, and the polarization
equips it with a non-degenerate Weil pairing eλ with values in µm.

Let B be the abelian part of J . Then there is a natural ascending three-step filtration

0 = W−3Q[m] ⊂W−2Q[m] = µrm ⊂W−1Q[m] ⊂W0Q[m] = Q[m],
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where W−2Q[m] is isotropic for the Weil pairing, W−1Q[m] is its orthogonal complement,

grW−1Q[m] is identified with B[m], compatibly with Weil pairings, and grW0 Q[m] is identified

with (Z/mZ)r. The induced pairing

(Z/mZ)r × µrm = grW0 Q[m]×W−2Q[m]
eλ−→ µm

is the canonical one.

Let Ir ⊂ Z2g be the isotropic subspace spanned by the first r basis vectors of the first copy

of Zg. We have identifications

Zr = Ir; Zr = Z2g/I⊥r ,

so that the induced non-degenerate pairing

Zr × Zr = Ir × Z2g/I⊥r
ψ−→ Z

is the standard symmetric pairing (u, v) 7→ uvt.

A symplectic level-m structure on (Q,λ) is a pair (η, φ), where

η : (Z/mZ)2g
'−→ Q[m];φ : µm

'−→ Z/mZ

are isomorphisms of group schemes over S such that η carries the pairing ψm to the pairing φ◦eλ
on Q[m] and the subspace Ir/mIr onto W−2Q[m], so that the induced isomorphism

(Z/mZ)r = Ir/mIr
'−→ W−2Q[m] = µrm

'−−→
φ−1

(Z/mZ)r

is the identity.

We now obtain a moduli stack Ỹr,s over Z of principally polarized 1-motifs, and a finite étale

cover

Ỹr,s,m[1/m] → Ỹr,s[1/m]

over Z[1/m], parameterizing symplectic level-m structures on the universal principally polarized

1-motif.

A.4 Consider the moduli stack Ỹr,0: this parameterizes principally polarized 1-motifs of the form

u : Zr → Gr
m. Alternatively, it parameterizes symmetric pairings Zr × Zr → Gm. As such, it is

represented over Z by the torus with character group Sr = Sym2Zr.
Similarly, by the discussion in [FC90, ch. IV, § 6.5], the morphism

Ỹr,0,m[1/m] → Ỹr,0[1/m]

parameterizes lifts (1/m)Zr → Gr
m of the universal homomorphism Zr → Gr

m, and so is

represented over Z[1/m] by the torus with character group (1/m)Sr. The natural map

Ỹr,0,m[1/m] → Ỹr,0[1/m]

corresponds to the map of tori induced by the inclusion Sr ↪→ (1/m)Sr of character groups.

Therefore, the normalization Ỹr,0,m of Ỹr,0 in Ỹr,0,m[1/m] is represented over Z by the torus

with character group (1/m)Sr, and is in particular smooth over Z.
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A.5 When s > 0, Ỹr,s permits a similar, but slightly more elaborate, description. We have the

obvious map Ỹr,s → Ãs assigning to a polarized 1-motif (Q,λ) of type (r, s) the abelian part of
the semi-abelian scheme J .

There is a natural action of the torus Yr,0 on Yr,s: given a polarized 1-motif (Q0, λ0) of type
(r, 0) associated with a homomorphism u0 : Zr → Gr

m and a polarized 1-motif (Q,λ) of type
(r, s) associated with u : Zr → J , the product u0 · u : Zr → J corresponds to another principally
polarized 1-motif of type (r, s).

The quotient of Ỹr,s by this action is naturally identified with the abelian scheme C̃r,s → Ãs
that parameterizes homomorphisms

v : Zr → B,

where B is the universal abelian scheme over Ãs. So, we obtain a tower of algebraic stacks:

Ỹr,s → C̃r,s → Ãs, (A.1)

where the first morphism is a Ỹr,0-torsor, and the second is an abelian scheme.

From the discussion in [FC90, ch. IV, § 6.5], we find that the stack Ỹr,s,m[1/m] admits a
compatible tower structure:

Ỹr,s,m[1/m] → C̃r,s,m[1/m] → Ãs,m[1/m]. (A.2)

Here C̃r,s,m[1/m] parameterizes homomorphisms

vm :
1

m
Zr → B,

where B is the universal abelian scheme over Ãs,m[1/m], and Ỹr,s,m[1/m] parameterizes
homomorphisms

um :
1

m
Zr → J

lifting vm, where J is the universal semi-abelian scheme over C̃r,s,m[1/m] parameterized by the
homomorphism

m · vm : Zr → B
'−→ B∨.

It is therefore naturally a Ỹr,0,m[1/m]-torsor over C̃r,s,m[1/m].
From this description, it is clear that the normalization of the tower (A.1) in the tower (A.2)

gives us a tower
Ỹr,s,m → C̃r,s,m → Ãs,m,

where
C̃r,s,m → Ãs,m

is still an abelian scheme parameterizing homomorphisms vm : (1/m)Zr → B (with B the
universal abelian scheme over Ãs,m), and

Ỹr,s,m → C̃r,s,m

is once again a Ỹr,0,m-torsor parameterizing lifts um : (1/m)Zr → J of vm, where J is still
classified by v = m · vm.

In particular, the morphism

Ỹr,s,m → Ỹr,s ×C̃r,s C̃r,s,m (A.3)
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is obtained via pushforward of torsors along the morphism

Ỹr,0,m → Ỹr,0

of tori, which is of course canonically isomorphic to the multiplication-by-m map

Ỹr,0
[m]−−→ Ỹr,0.

A.6 Fix a rational polyhedral cone σ ⊂ (Sr)Q: this gives us twisted toric embeddings

Ỹr,s ↪→ Ỹr,s(σ); Ỹr,s,m ↪→ Ỹr,s,m(σ).

The complements of these embeddings admit a natural stratification with a unique closed
stratum, which we denote by Zr,s(σ) and Zr,s,m(σ), respectively.

Let
̂̃Yr,s(σ) and

̂̃Yr,s(σ) be the formal completions of Ỹr,s(σ) and Ỹr,s,m(σ), respectively,

along their closed strata. By abuse of notation, write
̂̃Yr,s,m(σ)[1/m] for the completion of

Ỹr,s,m(σ)[1/m] along its closed stratum.
Note that the morphism

Ỹr,s,m(σ) → Ỹr,s(σ)×C̃r,s C̃r,s,m (A.4)

is obtained via contraction along the multiplication-by-m map on Ỹr,0.

A.7 Let Γ(σ) ⊂ GLr(Z) be the stabilizer of σ, and let Γm(σ) 6 Γ(σ) be the subgroup of matrices
that are trivial mod m: these are both finite groups, and Γm(σ) is trivial as soon as m > 3.

By the main results of [FC90, ch. IV], the toroidal compactification Ãg admits a stratification
by locally closed substacks Z(r, σ) equipped with an isomorphism to Γ(σ)\Zr,g−r(σ) for some
r 6 g and some σ ⊂ (Sr)Q, and such that this isomorphism extends to one of formal completions(

Ãg
)∧
Z(r,σ)

'−→ Γ(σ)\ ̂̃Yr,g−r(σ).

Faltings and Chai use the language of degeneration data. For a formulation using our language
of 1-motifs, we guide the reader to [Str10, § 3.1.5].

The main idea is that, on every formally étale affine chart

Spf(R, I) →
̂̃Yr,g−r(σ),

one obtains a principally polarized 1-motif (Q,λ) of type (r, g−r) over the fraction field K(R) of
R associated with a semi-abelian scheme J → SpecR, and a period map u : Zr → J(K(R)). This
period map ‘degenerates’ along SpecR/I, and a construction of Mumford, explained in [FC90,
ch. III], now gives us a principally polarized abelian scheme (A,ψ) over K(R) with semi-abelian

degeneration over R, and equipped with a canonical symplectic identification Q[m]
'−→ A[m] for

every integer m. The pair (A,ψ) now gives a map SpecK(R) → Ãg, which extends to a map

SpecR → Ãg,

which in turn induces a map

Spf(R, I) →
(
Ãg
)∧
Z(r,σ)
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of formal algebraic stacks. These maps are now glued together to give the inverse of the desired
isomorphism of formal neighborhoods.

Similarly, Ãg,m[1/m] admits a compatible stratification by locally closed substacks
Zm(r, σ)[1/m] equipped with an isomorphism to Γ(σ)\Zr,g−r,m(σ)[1/m], and such that this
isomorphism extends to one of formal completions(

Ãg,m[1/m]
)∧
Zm(r,σ)[1/m]

'−→ Γm(σ)\ ̂̃Yr,g−r,m(σ)[1/m].

Proposition A.1. The stratification on Ãg,m[1/m] extends to one of Ãg,m by substacks Zm(r, σ)
equipped with an isomorphism to Zr,g−r,m(σ), extending to an isomorphism(

Ãg,m
)∧
Zm(r,σ)

'−→ Γm(σ)\ ̂̃Yr,g−r,m(σ).

Proof. Let

Spf(R, I) →
̂̃Yr,g−r,m(σ)

be a formally étale affine chart. The tautological principally polarized 1-motif (Q,λ) over
SpecK(R) is now equipped with a canonical symplectic level-m structure, which in turn
also equips the principally polarized abelian scheme (A,ψ), obtained from it via Mumford’s
construction, with a symplectic level-m structure.

This implies that the associated map SpecK(R) → Ãg has a canonical lift

SpecK(R) → Ãg,m,

which then extends to a map SpecR → Ãg,m.

Assume now that R is a complete local ring of Ỹr,g−r,m(σ) with maximal ideal I and

algebraically closed residue field, and let R′ be the complete local ring of Ãg,m at the image of
the geometric closed point of SpecR. We claim that the induced map R′ → R is an isomorphism.
This follows from two observations: first, it is a finite map of normal local rings. Second, by the
description of the stratification in characteristic 0, if p is the residue characteristic of R, then, for
any maximal ideal m′ ⊂ R′[1/p], the ideal m = m′R[1/p] is once again maximal, and the induced
map

R̂′[1/p]m′ → R̂[1/p]m

is an isomorphism. The second assertion shows, via faithfully flat descent, that every element of
R is contained in R′[1/p], and the first shows that it must already be contained in R′.

Let ηm : Ãg,m → Ãg be the natural finite map. Combining the previous paragraph with Artin
approximation, we find that ηm is étale locally isomorphic to the finite map

Yr,g−r,m(σ) → Yr,g−r(σ) (A.5)

for varying choices of r and σ.
We claim that the reduced stack Zm(r, σ) underlying the locally closed substack

η−1m (Z(r, σ)) ⊂ Ãg,m is normal. This can be checked on complete local rings using the observation
that the reduced substack underlying the pre-image of Zr,g−r(σ) under the map (A.5) is normal.

Moreover, from this and the fact that the locally closed substacks Z(r, σ) stratify Ãg, one

can deduce that the locally closed substacks Zm(r, σ) stratify Ãg,m.
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By normality of the target, the map

Zr,g−r,m(σ)[1/m]
'−→ Zm(r, σ)[1/m] ↪→ Ãg,m

extends uniquely to a map

Zr,g−r,m(σ) → Ãg,m
lifting the composition

Zr,g−r,m(σ) → Zr,g−r(σ) → Ãg.
This extension necessarily factors through a finite map

Γm(σ)\Zr,g−r,m → Zm(r, σ),

which is an isomorphism in the generic fiber. By looking at complete local rings, it is seen to be
a finite étale map and hence an isomorphism.

The last assertion about the formal completions now follows from [Mad15, (A.3.2)]. 2

From this and the explicit nature of the map (A.4), we immediately obtain the following
result.

Proposition A.2. Let ηm : Ãg,m → Ãg be the natural finite map, and let Dm ⊂ Ãg,m be the

complement of Ãg,m, equipped with its reduced scheme structure.

Then Dm is a relative Cartier divisor over Z. Moreover, if D ⊂ Ãg is the boundary divisor
with its reduced scheme structure, then we have an equality of Cartier divisors η∗mD = m · Dm.

Remark A.3. Note that the above proposition remains true if we replace Ãg,m and its
compactification with the normalizations of their base change over OK , for any number field
K/Q.

Proposition A.4. Let Ã[m]
g and Ã

[m]

g be as in § 4. Let πm : Ã
[m]

g → Ãg be the natural finite map,

and let D[m] ⊂ Ã
[m]

g be the complement of Ã[m]
g , equipped with its reduced scheme structure.

Then D[m] is a relative effective Cartier divisor over Z.2 Moreover, we have π∗mD = m · D[m].

Proof. Over Z[1/m, µm], Ã[m]
g and Ã

[m]

g can be identified with a disjoint union of copies of

(Ãg,m)Z[1/m,µm] and (Ãg,m)Z[1/m,µm], respectively. So, the result is true over Z[1/m]. Moreover,
by Proposition A.2 and Remark A.3, it is true after a change of scalars to Z[µm] followed by
normalization. Combining the two, we find that the result is already true over Z. 2
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