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Abstract
We introduce the abstract notion of a smoothable fine compactified Jacobian of a nodal curve, and of a family of
nodal curves whose general element is smooth. Then we introduce the combinatorial notion of a stability assignment
for line bundles and their degenerations.

We prove that smoothable fine compactified Jacobians are in bijection with these stability assignments.
We then turn our attention to fine compactified universal Jacobians – that is, fine compactified Jacobians for the

moduli spaceM𝑔 of stable curves (without marked points). We prove that every fine compactified universal Jacobian
is isomorphic to the one first constructed by Caporaso, Pandharipande and Simpson in the nineties. In particular,
without marked points, there exists no fine compactified universal Jacobian unless gcd(𝑑 + 1 − 𝑔, 2𝑔 − 2) = 1.
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1. Introduction

A classical construction from the XIX century associates with every smooth projective curve X its
Jacobian (the moduli space of degree 0 line bundles on X), a principally polarized abelian variety of
dimension g. The construction carries on to smooth projective families of curves. One challenging
problem arises when X ceases to be smooth. In this case, the Jacobian can still be constructed, but in
general, it fails to be proper. A general problem from the mid XX century was to construct well-behaved
compactifications of the Jacobian, whose boundary corresponds to degenerate line bundles of some kind.

Many different constructions have been pursued according to the particular generality required and
the initial inputs (see, for example, [22], [31], [2], [12], [35], [33], [16]); some of these work in the
relative case of families as well.

For simplicity, here we restrict ourselves to the case where X is a nodal curve. Also, we will fix
the horizon of all possible degenerations of line bundles to torsion-free coherent sheaves of rank 1.
Since we will aim to construct proper moduli stacks of stable sheaves, without losing in generality,
we will additionally assume that all sheaves are simple. In this generality, the moduli space of sheaves
was constructed as an algebraic space by Altman–Kleiman [2]. Esteves [16] later proved it satisfies the
existence part of the valuative criterion of properness. (This moduli space is not of finite type and hence
it is not proper, whenever X is reducible).

Most modular constructions of fine compactified Jacobians use some set of instructions (for example,
coming from GIT) to single out an open subset of the moduli space of simple sheaves choosing certain
stable elements, to end up with a proper moduli stack. The construction is often followed by the
observation that stability of a sheaf only depends on its multidegree and on its locally free locus
in X, and then that these discrete data obey a collection of axioms (for example, the number of stable
multidegrees of line bundles on a nodal curve X equals the complexity of the dual graph of X).

In this paper, we introduce an abstract notion of a fine compactified Jacobian as a connected, open
subspace of the moduli space of rank 1 torsion-free simple sheaves of some fixed degree (not necessarily
zero) on X, which is furthermore proper (see Definition 3.1).1 It was observed in [32, Section 3] that
fine compactified Jacobians can be badly behaved in the sense that they can fail to fit into a family for
an infinitesimal smoothing of the curve. (This phenomenon already occurs when X has genus 1). Thus,
we add a smoothability axiom to the objects that we aim to study. Note that our definition of smoothable
fine compactified Jacobian includes the modular fine compactified Jacobians constructed in the literature
(e.g., those constructed by Esteves [16] and by Oda–Seshadri [31] and recently studied in [29], [28]) .

We then prove our first classification result, stating that smoothable fine compactified Jacobians
correspond to a combinatorial datum that we call a stability assignment (for smoothable fine compactified
Jacobians), which keeps track of the multidegree of the elements of the moduli space and of the locus
where they are locally free:

Theorem 1.1. Let X be a nodal curve. Taking the associated assignment (see Definition 7.1) induces a
bijection {

Smoothable fine compactified
Jacobians of 𝑋

}
→

{
stability assignments for 𝑋 as
introduced in Definition 4.3

}
whose inverse is defined by taking the moduli space of sheaves that are stable with respect to a given
stability assignment (Definition 6.1).

This follows by applying Corollary 7.16 to the case where S is a DVR and X /𝑆 is a regular smoothing
of X. The most difficult part is the proof of properness of the moduli space of stable sheaves with respect
to an arbitrary stability assignment (Lemma 6.5).

In fact, Corollary 7.16 is an extension of Theorem 1.1 to the case of fine compactified Jacobians of
families of nodal curves whose generic element is smooth (Definition 3.7). The combinatorial notion of

1The adjective ‘fine’ classically refers to the existence of a Poincaré sheaf.
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a stability assignment for a family is introduced in Definition 4.9 as the datum of a stability assignment
for each fiber, with an additional constraint of compatibility under the degenerations that occur in the
family (which induce morphisms of the corresponding dual graphs).

A natural question is whether our abstract definition of fine compactified Jacobians produces new
examples. The most general procedure to construct smoothable fine compactified Jacobians that we
are aware of is by means of numerical polarizations. This was introduced by Oda–Seshadri [31] for
the case of a single nodal curve, and then further developed by Kass–Pagani [24], [25] for the case of
the universal family over the moduli space of pointed stable curves (equivalent objects were constructed
by Melo in [26] following Esteves [16]). These definitions and constructions are reviewed in Section 8.

By Theorem 1.1, it is a completely combinatorial (but hard) question whether every smoothable fine
compactified Jacobian is given by a numerical polarization. (Note that ‘smoothable’ here is essential,
due to the aforementioned genus 1 examples in [32, Section 3]. Those examples are not smoothable,
whereas all compactified Jacobians obtained from numerical polarizations are smoothable). The case
where the genus of X equals 1 was settled in the affirmative in [32, Proposition 3.15], and in Example 8.7,
we discuss how to extend this to the case where the first Betti number of the dual graph of X equals 1.
In Example 8.8, we discuss the numerical polarization that induces integral break divisors (slightly
generalizing the analogous result by Christ–Payne–Shen [15] for the case where X is stable).2

We resolve in the positive the similar question for the case of the universal curve over M𝑔. Without
marked points, fine compactified universal Jacobians are all given by universal numerical polarizations:

Theorem 1.2. Let J 𝑔 →M𝑔 be a degree d fine compactified universal Jacobian. Then gcd(𝑑 − 𝑔 + 1,

2𝑔 − 2) = 1, and there exists a universal numerical polarization Φ such that J 𝑔 = J 𝑔 (Φ) (as defined
in Section 8).

This follows from Corollary 9.8. In particular, as we observe in Remark 9.9, without marked points,
there are no more fine compactified universal Jacobians than the (essentialy equivalent) ones constructed
in the nineties by Caporaso [12], Pandharipande [33] and Simpson [35].

A similar result does not hold in the presence of marked points: in [32], the authors produce
examples of fine compactified universal Jacobians for M1,𝑛 for all 𝑛 ≥ 6 that are not obtained from
a universal numerical polarization, and hence that do not arise from the methods developed by Kass–
Pagani [25] or by Esteves and Melo [16, 26] (more details in Remark 8.14). An explicit combinatorial
characterization of the collection Σ𝑑𝑔,𝑛 of degree d fine compactified universal Jacobians for M𝑔,𝑛 is
available via Corollary 7.16 applied to the universal family over M𝑔,𝑛 (see also Definition 4.9 and
Remark 4.10). It would be interesting to interpret each element of Σ𝑑𝑔,𝑛 as a (top-dimensional) chamber
in some stability space, as was done in [25] for the case of compactified universal Jacobians arising
from numerical polarizations. We explore these questions in Section 10.

Compactified universal Jacobians have recently played a role in enumerative geometry in the theory
of the (k-twisted) double ramification cycle; see [6]. As realized in [20], whenever a fine compactified
universal Jacobian contains the locus Z of line bundles of multidegree zero, the double ramification
cycle can be defined as the pullback of [𝑍], via some Abel–Jacobi section. This perspective plays an
important role in [21], where an extension to a logarithmic double ramification cycle is defined as well.
Because there are different fine compactified universal Jacobians containing Z, the double ramification
cycle can be equivalently defined as the pullback of [𝑍] from different spaces, potentially leading
to different formulas, and hence to relations in the cohomology of the moduli space of curves. Our
classification leads to a complete description of all fine compactified universal Jacobians containing Z,
whereas previously, only those obtained via Kass–Pagani’s method [25] were considered.

The problem of studying the stability space of complexes of sheaves on a projective variety X has
attracted a lot of attention in the last two decades, after Bridgeland’s breakthrough [10] (extended to the

2While this paper was under peer review, Filippo Viviani constructed in [37, Example 1.27] an example, based on the
combinatorics of [32, Example 6.15], of a smoothable fine compactified Jacobian of a nodal curve of genus 3 that is not induced
by any numerical stability condition.

https://doi.org/10.1017/fms.2024.101 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.101


4 N. Pagani and O. Tommasi

case of families in [8]). Most of the literature has been devoted to the case where X is nonsingular. It is
natural to try to explicitly describe this stability space for X singular, and one place to start is assuming
that X is a nodal curve. We expect that the combinatorics developed in Theorem 1.1 should be regarded
as some kind of skeleton of that stability space.

Added after peer review: After a first draft of this work had been published on the arXiv repository,
Filippo Viviani shared with us his preprint [37]. His work uses some of our results. Later, Alex Abreu
and an anonymous referee kindly informed us of gaps in the proof of some of our results. These gaps
have been fixed in this version of the paper, by also employing [37, Theorem 1.20]. The latter does not
use any of our results as part of its proof.

2. Notation

Throughout, we work with Noetherian schemes over a fixed algebraically closed ground field k.
A curve over an extension K of k is a Spec(𝐾)-scheme X that is proper over Spec(𝐾), geometrically

connected, and of pure dimension 1. The curve X is a nodal curve if it is geometrically reduced and when
passing to an algebraic closure 𝐾 , its local ring at every singular point is isomorphic to 𝐾 [[𝑥, 𝑦]]/(𝑥𝑦).

A coherent sheaf on a nodal curve X has rank 1 if its localisation at each generic point of X has
length 1. It is torsion-free if it has no embedded components.

If F is a rank 1 torsion-free sheaf on a nodal curve X, we denote by N(𝐹) the subset of X where F fails
to be locally free. Note that N(𝐹) is contained in the singular locus of X. If F is a rank 1 torsion-free sheaf
on X, we say that F is simple if its automorphism group is G𝑚, or equivalently if 𝑋 \N(𝐹) is connected.

A family of curves over a k-scheme S is a proper, flat morphism X → 𝑆 whose fibers are curves.
A family of curves X → 𝑆 is a family of nodal curves if the fibers over all geometric points are nodal
curves.

If X is a nodal curve over K, we denote by Γ(𝑋) its dual graph – that is, the labeled graph where
each vertex v corresponds to an irreducible component 𝑋 𝑣

𝐾
of the base change of X to (the spectrum of)

an algebraic (equivalently, a separable) closure 𝐾 , and edges corresponding to the nodes of 𝑋𝐾 . Note
that if 𝑋 𝑣

𝐾 is an irreducible component defined over K, then it is also defined over any extension L of K,
and the corresponding vertices of the dual graphs Γ(𝑋𝐾 ) and Γ(𝑋𝐿) are canonically identified.

The dual graph is labeled by the geometric genus 𝑝𝑔 (𝑋
𝑣

𝐾
). The definition of dual graph extends to

the case where (𝑋, 𝑝1, . . . , 𝑝𝑛) is an n-pointed curve. In this case, the dual graph Γ(𝑋) also has n half-
edges labeled from 1 to n, corresponding to the marked points 𝑝1, . . . , 𝑝𝑛. We refer to [5] and [27] for
a detailed definition and for the notion of graph morphisms.

Recall from [14, §7.2] that if X /𝑆 is a family of nodal curves and 𝑠, 𝑡 are geometric points of S, then
every étale specialization of t to s (written as 𝑡 � 𝑠) induces a morphism of dual graphs Γ(𝑋𝑠) → Γ(𝑋𝑡 ).
(For the definition of étale specialization in this context, we refer to [14, Appendix A]).

For a graph G and H a subgraph of G, we denote by 𝐺 \ 𝐻 and by 𝐺/𝐻 the graph obtained from G
by removing the edges of H and the graph obtained from G by contracting the edges of H, respectively.

We denote by 𝑐(𝐺) the complexity of the graph G (i.e., the number of spanning trees in G).
(In particular, if G is disconnected, then 𝑐(𝐺) = 0).

If G is a graph and V is a subset of Vert(𝐺), we denote by Γ(𝑉) the induced subgraph on the vertex
set V. We denote by Edges(𝑉,𝑉𝑐) the subset of Edges(𝐺) of the edges that connect some element of V
to some element of 𝑉𝑐 = Vert(𝐺) \ 𝑉 (equivalently, Edges(𝑉,𝑉𝑐) consists of the edges of G that are
neither in Γ(𝑉) nor in Γ(𝑉𝑐)).

We will denote by Δ the spectrum of a DVR with residue field K, and by 0 (resp. by 𝜂) its closed
(resp. its generic) point. A smoothing of a nodal curve 𝑋/𝐾 over Δ is a flat family X /Δ whose generic
fiber X𝜂/𝜂 is smooth and with an isomorphism of K-schemes X0 � 𝑋 . The smoothing is regular if so
is its total space X .

A family of rank 1 torsion-free sheaves over a family of curves X → 𝑆 is a coherent sheaf on X ,
flat over S, whose fibers over the geometric points have rank 1 and are torsion-free.
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If F is a rank 1 torsion-free sheaf on a nodal curve X with irreducible components 𝑋𝑖 , we denote
by 𝐹𝑋𝑖

the maximal torsion-free quotient of the pullback of F to the normalization 𝑋𝑖 of 𝑋𝑖 , and then
define the multidegree of F by

deg(𝐹) := (deg(𝐹𝑋𝑖
)) ∈ ZVert(Γ(𝑋 )) .

We define the (total) degree of F to be deg𝑋 (𝐹) := 𝜒(𝐹) − 1 + 𝑝𝑎 (𝑋), where 𝑝𝑎 (𝑋) = ℎ1 (𝑋,O𝑋 )

is the arithmetic genus of X. The total degree and the multidegree of F are related by the formula
deg𝑋 (𝐹) =

∑
deg𝑋𝑖

𝐹 + 𝛿(𝐹), where 𝛿(𝐹) = #N(𝐹) denotes the number of nodes of X where F fails to
be locally free.3

If 𝑋 ′ ⊆ 𝑋 is a subcurve (by which we will always mean a union of irreducible components), then
deg𝑋 ′ (𝐹) is defined as deg(𝐹𝑋 ′ ), where 𝐹𝑋 ′ is the maximal torsion-free quotient of 𝐹 ⊗O𝑋 ′ . The total
degree on X is related to the degree on a subcurve by the formula

deg𝑋 (𝐹) = deg𝑋 ′ (𝐹) + deg
𝑋\𝑋 ′
(𝐹) + #(N(𝐹) ∩ (𝑋 ′ ∩ (𝑋 \ 𝑋 ′))), (2.1)

where the overline denotes the (Zariski) closure.
From now on, we fix an integer d once and for all.

2.1. Spaces of multidegrees

Here, we define the space of multidegrees on a graph Γ at a connected spanning subgraph as the set
of all possible ways of labeling its vertices with integral weights, suitably organized by total weight
(or total degree). We then define the notion of an assignment on Γ.

Let Γ be a graph and let 𝐺 ⊆ Γ be a spanning subgraph of Γ. We will denote by 𝑛Γ (𝐺) or simply by
𝑛(𝐺) the number of elements in Edges(Γ) \ Edges(𝐺).

Define the space of multidegrees of total degree d of Γ at G as the set

𝑆𝑑Γ (𝐺) := {d ∈ ZVert(Γ) :
∑

𝑣 ∈Vert(Γ)
d(𝑣) = 𝑑 − 𝑛(𝐺)} ⊂ ZVert(Γ) . (2.2)

The elements of 𝑆𝑑Γ (Γ) are also known as degree𝑑 − 𝑛(𝐺) divisors on Γ.
According to our convention for the multidegree, if X is a nodal curve with dual graph Γ and F is a

rank 1 torsion-free sheaf on X, then the subgraph 𝐺 (𝐹) obtained from Γ by removing the edges N(𝐹)
is a spanning subgraph of Γ, and we have

deg(𝐹) ∈ 𝑆𝑑Γ (𝐺 (𝐹)).

We are now ready for the definition of an assignment on a graph Γ, which will play a role in the
definition of a stability assignment (Definition 4.3).

Definition 2.1. A degree 𝒅 assignment for the graph 𝚪 is a subset

𝜎 = {(𝐺, d) : d ∈ 𝑆𝑑Γ (𝐺)} ⊂ {connected spanning subgraphs of Γ} × ZVert(Γ) .

If 𝜎 is a degree d assignment for the graph Γ and 𝐺 ⊆ Γ is a subgraph, we define

𝜎(𝐺) := {d : (𝐺, d) ∈ 𝜎} ⊂ 𝑆𝑑Γ (𝐺)

(and the latter is empty unless G is connected and spanning).

3Note that in the Notation section of the papers [24, 25, 32], the last equation is incorrectly written with a minus sign: −𝛿 (𝐹 )
instead of the correct +𝛿 (𝐹 ) .
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3. Fine compactified Jacobians

In this section, we introduce the notion of a (smoothable) fine compactified Jacobian for a nodal curve
(Definition 3.1) and for a flat family of nodal curves (Definition 3.7).

Let X /𝑆 be a flat family of nodal curves over a k-scheme S. Then there is an algebraic space
Pic𝑑 (X /𝑆) parameterizing line bundles on X /𝑆 of relative degree d (see [9, Chapter 8.3]). By [2]
and [16], the space Pic𝑑 (X /𝑆) embeds in an algebraic space Simp𝑑 (X /𝑆) parameterizing flat families
of degree d rank 1 torsion-free simple sheaves on X /𝑆. The latter is locally of finite type over S and
satisfies the existence part of the valuative criterion of properness. However, it can fail to be of finite
type and separated. In the special case of 𝑆 = Spec(𝐾) and 𝑋 = X /𝑆, we will simply write Pic𝑑 (𝑋)
(resp. Simp𝑑 (𝑋)) for Pic𝑑 (X /𝑆) (resp. for Simp𝑑 (X /𝑆)).

Let X be a nodal curve over some field extension K of k. The main point of this paper is to describe
well-behaved subspaces of Simp𝑑 (𝑋), generalizing existing notions of compactified Jacobians in the
literature. Specifically, we study the following subschemes.

Definition 3.1. A degree 𝒅 fine compactified Jacobian is a geometrically connected open subscheme
𝐽 ⊆ Simp𝑑 (𝑋) that is proper over Spec(𝐾).

We say that the fine compactified Jacobian 𝐽 is smoothable if there exists a regular smoothing
X → Δ of X, where Δ is the spectrum of a DVR with residue field K, such that 𝐽 is the fiber over 0 ∈ Δ
of an open and Δ-proper subscheme of Simp𝑑 (X /Δ).

Note that the fiber over the generic point 𝜂 of a nonempty, open and Δ-proper subscheme of
Simp𝑑 (X /Δ) is necessarily the moduli space of degree d line bundles Pic𝑑 (X𝜂/𝜂). As openness and
properness are stable under base change, the fiber over 0 ∈ Δ is open in Simp𝑑 (𝑋) and K-proper.
The axiom ‘geometrically connected’ is redundant in the smoothable case because the moduli space of
degree d line bundles on the generic point is geometrically connected and dense in Simp𝑑 (X /Δ).

Remark 3.2. It follows from Lemma 6.5 (combined with Proposition 7.2) that requiring the subscheme
𝐽 ⊆ Simp𝑑 (𝑋) to extend to some regular smoothing of the curve is equivalent to requiring that it
extends to all smoothings.

In this paper, we will focus on smoothable fine compactified Jacobians, since they are better behaved
and occur more often in applications.

Remark 3.3. When 𝐾 = 𝑘 is algebraically closed and char(𝑘) = 0, Definition 3.1 coincides with [32,
Definitions 2.1, 2.4] (by passing to the completion of the DVR).

In [32, Section 3], the authors give a complete classification of fine compactified Jacobians of curves
of genus 1, showing in particular the existence of nonsmoothable examples.

Example 3.4. If X is a geometrically irreducible curve over K, then Simp𝑑 (𝑋) is proper over K, so the
only degree d fine compactified Jacobian is Simp𝑑 (𝑋) itself. These Jacobians are always smoothable.
(See Examples 4.5 and 8.5 for the corresponding unique stability assignment).

Example 3.5. In the case of curves with two geometrically irreducible components, fine compactified
Jacobians are no longer irreducible. Assume for simplicity that X is a vine curve of type 𝒕 – that is, the
union of two nonsingular curves intersecting transversely at t nodes. We will later see in Example 7.5
that every fine compactified Jacobian of X is smoothable, and that it consists of t irreducible components
whose generic points correspond to line bundles of consecutive bidegrees.

Remark 3.6. The moduli space Simp𝑑 (𝑋) of a nodal curve X admits a natural stratification (see, for
example, [29]) into locally closed subsets

Simp𝑑 (𝑋) =
⊔
(Γ0 ,d)

J(Γ0 ,d) , (3.1)
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where the union runs over all connected spanning subgraphs Γ0 ⊆ Γ(𝑋) and all multidegrees
d ∈ 𝑆𝑑Γ(𝑋 ) (𝐺). Each subspace J(Γ0 ,d) ⊂ Simp𝑑 (𝑋) is defined as the locus whose points are sheaves F
that fail to be locally free on N(𝐹) = Edges(Γ) \ Edges(Γ0), and whose multidegree deg(𝐹) equals d.

We now extend the notion of a fine compactified Jacobian to the case of a family of nodal curves
X /𝑆. Recall that the moduli space Simp𝑑 (X /𝑆) is also defined in [26] when X /𝑆 is the universal
curve C𝑔,𝑛/M𝑔,𝑛 over the moduli stack of stable n-pointed curves of arithmetic genus g. In this case,
Simp𝑑 (C𝑔,𝑛/M𝑔,𝑛) is a Deligne–Mumford stack representable (by algebraic spaces) and flat overM𝑔,𝑛.

Definition 3.7. Assume that S is irreducible with generic point 𝜃, and assume that the generic fiber
X𝜃/𝜃 is smooth.

A family of degree 𝒅 fine compactified Jacobians for the family X /𝑆 is an open algebraic subspace
J ⊆ Simp𝑑 (X /𝑆) that is proper over S.

We say that a degree d fine compactified Jacobian J 𝑔,𝑛 ⊂ Simp𝑑 (C𝑔,𝑛/M𝑔,𝑛) is a degree 𝒅 fine
compactified universal Jacobian for the universal curve over 𝑴𝒈,𝒏. (We will often omit to specify
‘for the universal curve over M𝑔,𝑛’, when clear from the context).

Note that the assumption that the generic fiber is smooth implies that all fibers over S of a degree d
fine compactified Jacobian are smoothable.

4. Stability assignments for smoothable fine compactified Jacobians

Here, we define the combinatorial data identifying smoothable fine compactified Jacobians. We first do
so for a single nodal curve – that is, for a fixed dual graph (Definition 4.3) – and then we generalize the
definition to families (Definition 4.9).

If X is a nodal curve over an algebraically closed field, a sheaf 𝐹 ∈ Simp𝑑 (𝑋) has two natural
combinatorial invariants, given by its multidegree and by the subset N(𝐹) ⊆ Sing(𝑋) = Edges(Γ(𝑋))
of points of the curve where F fails to be locally free. Hence, it makes sense to study a fine compactified
Jacobian 𝐽 on X by looking at all pairs

(
𝐺 (𝐹) = Γ(𝑋) \ N(𝐹), deg(𝐹)

)
with 𝐹 ∈ 𝐽. Recall that, with the

notation introduced in Equation 2.2, we can regard deg(𝐹) as an element of the space of multidegrees
𝑆𝑑Γ(𝑋 ) (𝐺 (𝐹)).

For a single curve X, we identify, in Definition 4.3, the two properties characterizing the set of such
pairs. One is related to properness, combined with the smoothability of the Jacobian, and it requires that
the set of stable multidegrees should be a minimal complete set of representatives for the natural chip-
firing action on the dual graph (see Definition 4.1). The other corresponds to openness. In combinatorial
terms, this means that if we add an edge e to G, the set of stable multidegrees on Γ∪ {𝑒} should contain
all multidegrees obtained by ‘adding a chip’ to either endpoints of e.

For a family of curves, we further require compatibility with all contractions of the dual graphs
involved.

4.1. Stability assignments for a single curve

We start by introducing the twister group of a graph, which will play a role in characterizing smoothable
compactified Jacobians.

Definition 4.1. Let G be a graph. For each 𝑣 ∈ Vert(𝐺), define the twister of G at v to be the element
of ZVert(𝐺) defined by

Tw𝐺,𝑣 (𝑤) =

{
# of edges of 𝐺 having 𝑣 and 𝑤 as endpoints when 𝑤 ≠ 𝑣,

− # of nonloop edges of 𝐺 having 𝑣 as an endpoint when 𝑤 = 𝑣.
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The twister group (or chip-firing group) Tw(𝐺) is the subgroup of ZVert(𝐺) generated by the set
{Tw𝐺,𝑣 }𝑣 ∈Vert(𝐺) .

Recall from Equation (2.2) the definition of the space of multidegrees 𝑆𝑑𝐺 (𝐺) of total degree equal
to d. The twister group of G is contained in the sum zero submodule 𝑆0

𝐺 (𝐺) of ZVert(𝐺) . Hence, the
group structure on ZVert(𝐺) restricts to an action of Tw(𝐺) on 𝑆𝑑𝐺 (𝐺). The quotient group

𝐽𝑑 (𝐺) := 𝑆𝑑𝐺 (𝐺)/Tw(𝐺) (4.1)

is then a torsor over 𝐽0(𝐺), which is a finite abelian group. The latter is also known as the Jacobian of
the graph G, and it has a number of element equal to the complexity 𝑐(𝐺) of the graph G. (It is also
known by other names in the literature, such as the degree class group, or the sandpile group, or the
critical group of the graph G).

Remark 4.2. Let X be a regular smoothing of X over some discrete valuation ring Δ with generic
point 𝜂. Let T be the image under the restriction map Pic(X ) → Pic(𝑋) of the kernel of the surjection
Pic(X ) → Pic(X𝜂) (the restriction to the generic point). We claim that the restriction to T of the
multidegree homomorphism Pic(𝑋) → ZVert(Γ) defines an isomorphism 𝑇 → Tw(Γ).

Since X is regular, the irreducible components {𝑋𝑣 }𝑣 ∈Vert(Γ) of X are Cartier divisors on X , and it
is easy to check that the elements of T are of the form

OX
��


∑
𝑣 ∈Vert(Γ)

𝑑𝑣𝑋𝑣
��� ⊗ O𝑋

with d ∈ ZVert(Γ) . One can explicitly compute that the restriction to T of the multidegree map
Pic(𝑋) → ZVert(Γ) is given by

OX
(∑

𝑣 ∈Vert(Γ) 𝑑𝑣𝑋𝑣
)
⊗ O𝑋 ↦−→

∑
𝑣 ∈Vert(Γ) 𝑑𝑣 TwΓ,𝑣 .

This homomorphism is injective by [34, (5.2)], and its image is Tw(Γ) (by definition). This proves that
𝑇 → Tw(Γ) is an isomorphism. In particular, T as an abstract group is independent of the choice of
the regular smoothing (though one could see that the embedding 𝑇 ⊂ Pic(𝑋) is not independent of the
smoothing).

We are now ready to define our notion of a stability assignment.

Definition 4.3. A degree 𝒅 smoothable fine compactified Jacobian stability assignment, or shortly,
a degree 𝒅 stability assignment for the graph Γ, is a degree d assignment for Γ (as in Definition 2.1)
that satisfies the following conditions:

1. For all edges e of Edges(Γ) \ Edges(𝐺) with endpoints 𝑣1 and 𝑣2, we have

(𝐺, d) ∈ 𝜎 ⇒ (𝐺 ∪ {𝑒}, d + e𝑣1
), (𝐺 ∪ {𝑒}, d + e𝑣2

) ∈ 𝜎,

where e𝑣𝑖 denotes the vector in the standard basis of ZVert(Γ) corresponding to 𝑣𝑖 .
2. For every connected spanning subgraph G, the subset

𝜎(𝐺) := {d : (𝐺, d) ∈ 𝜎} ⊂ 𝑆𝑑Γ (𝐺)

is a minimal complete set of representatives for the action of the twister group Tw(𝐺) on 𝑆𝑑Γ (𝐺).

If X is a nodal curve, a degree d stability assignment on X is a degree d stability assignment on its
dual graph Γ(𝑋).

Note that the genus of each of the components of X does not play any role in the above definition.
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Remark 4.4. With the notation as above, the number of elements of 𝜎(𝐺) equals the number of elements
of the Jacobian 𝐽0 (𝐺). By the Kirchoff–Trent theorem, this number equals the complexity 𝑐(𝐺) of the
graph G. In particular, it is finite.

It is, in general, hard to classify all stability assignments on a given stable graph. However, the task
is within reach when the number of vertices is small.

Example 4.5. If Γ only has 1 vertex (i.e., it is the dual graph of an irreducible curve), there is exactly 1
stability assignment on Γ. If there are t edges, the unique degree d stability assignment is

𝜎 =
⋃

0≤𝑖≤𝑡

⋃
𝐸⊆Edges(Γ) , |𝐸 |=𝑖

{(Γ \ 𝐸, 𝑑 − 𝑖)}.

Example 4.6. If instead Γ consists of 2 vertices 𝑣1, 𝑣2 connected by t edges, and no other edges (i.e., Γ
is the dual graph of a vine curve of type t; see Example 3.5), let Γ1, . . . , Γ𝑡 be the spanning trees. Then it
follows from the definition that for every stability assignment 𝜎, there exists a unique integer 𝜆 such that

1. 𝜎(Γ𝑖) = {(𝜆, 𝑑 + 1 − 𝜆 − 𝑡)} for all 𝑖 = 1, . . . , 𝑡;
2. 𝜎(Γ) = {(𝜆, 𝑑 − 𝜆), (𝜆 + 1, 𝑑 − 𝜆 − 1), . . . , (𝜆 + 𝑡 − 1, 𝑑 + 1 − 𝜆 − 𝑡)}.

The following result will be used later as a tool to prove that certain collections are stability assign-
ments. It was first proved by Barmak [7]. A first publicly available proof of part of this result, based
upon Barmak’s argument, appeared in Yuen’s Phd thesis, [38, Theorem 3.5.1].

Proposition 4.7 [37, Theorem 1.17 Part (1) and (2.a)]. Let 𝜎 be a degree d assignment on the graph Γ
(see Definition 2.1), and assume that 𝜎 satisfies Part (1) of Definition 4.3, and that 𝜎(𝑇) is nonempty
for every spanning tree 𝑇 ⊆ Γ.

Then for all spanning subgraphs 𝐺 ⊆ Γ, we have |𝜎(𝐺) | ≥ 𝑐(𝐺) (the complexity of G). Moreover,
if |𝜎(Γ) | = 𝑐(Γ), then |𝜎(𝐺) | = 𝑐(𝐺) for each spanning subgraph 𝐺 ⊆ Γ.

4.2. Stability assignments for families

So far, we have discussed the notion of a stability assignment for a curve in isolation. The flatness
condition for families of sheaves imposes an additional compatibility constraint.

Definition 4.8. Let 𝑓 : Γ → Γ′ be a morphism of graphs and let 𝜎 and 𝜎′ be degree d stability
assignments on Γ and Γ′, respectively. We say that 𝜎 is f -compatible with 𝜎′ if for every connected
spanning subgraph G of Γ, we have

(𝐺, d) ∈ 𝜎 =⇒ (𝐺 ′, d′) ∈ 𝜎′,

where 𝐺 ′ is the image of G under f (and therefore, it is a connected spanning subgraph of Γ′), and d′ is
defined by

d′(𝑤) =
∑

𝑓 (𝑣)=𝑤

d(𝑣) + #{edges of Γ \ 𝐺 that are contracted to 𝑤 by 𝑓 }. (4.2)

Note that the notion of f -compatibility only depends upon the map that f induces on the set of vertices
of the two graphs. We are now ready for the definition of the compatibility constraint.

Definition 4.9. Let X /𝑆 be a family of nodal curves. A family of degree 𝒅 stability assignments (for
fine compactified Jacobians) for X /𝑆 consists of associating a degree d stability assignment 𝜎𝑠 on
Γ(𝑋𝑠) (as in Definition 4.3) with every geometric point s in S, in a way that is compatible with all
morphisms Γ(𝑋𝑠) → Γ(𝑋𝑡 ) arising from any étale specialization 𝑡 � 𝑠 occurring on S.
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We will say that a family of degree d stability assignments for the universal family C𝑔,𝑛 over M𝑔,𝑛

is a degree 𝒅 universal stability assignment of type (g, n) (and often omit ‘of type (𝑔, 𝑛)’ when clear
from the context). These stability assignments will be studied in Section 9.

Universal stability assignments can be defined purely in terms of the category 𝐺𝑔,𝑛 of stable graphs:

Remark 4.10. In the case of universal stability assignments, the étale specializations of points of M𝑔,𝑛

induce all morphisms in the category 𝐺𝑔,𝑛 of stable graphs of genus g with n marked half-edges.
In particular, if 𝜎 is a degree d universal stability assignment of type (𝑔, 𝑛) and 𝛼 : Γ(𝑋1) → Γ(𝑋2)

is an isomorphism of the dual graphs of two pointed curves [𝑋1], [𝑋2] ∈M𝑔,𝑛, then 𝛼 identifies 𝜎[𝑋1 ]

with 𝜎[𝑋2 ] .
We conclude that a degree d universal stability assignment of type (𝑔, 𝑛) is a collection {𝜎Γ}Γ∈𝐺𝑔,𝑛

such that 𝜎Γ is a degree d stability assignment on Γ and 𝜎Γ is f -compatible with 𝜎Γ′ for any morphism
𝑓 : Γ→ Γ′ in 𝐺𝑔,𝑛.

5. Combinatorial preparation: Perturbations and lifts

This section contains combinatorial results that will be used in later proofs. First, we introduce the
notion of a perturbation for the multidegree of a sheaf that fails to be locally free at some nodes.
This corresponds to deforming a simple sheaf into a line bundle (Lemma 5.2). Then we investigate
the relationship between the chip-firing action on a graph Γ and the chip-firing action on the graph
obtained from Γ by subdividing each of its edges a certain number of times. In terms of dual graphs,
this construction corresponds to blowing up a certain number of times the nodes of our curve. Our main
techincal result here is Proposition 5.4.
Definition 5.1. Let 𝐺 ⊆ Γ be a connected spanning subgraph. A G-perturbation is an element in
𝑆𝑛(𝐺)𝐺 (𝐺) (for 𝑛(𝐺) = | Edges(Γ) \ Edges(𝐺) |) of the form∑

𝑒∈Edges(Γ)\Edges(𝐺)
e𝑡 (𝑒) ,

where t is some choice of an orientation on Edges(Γ) \ Edges(𝐺).
(If D is a G-perturbation for some G, then D is also known in the literature as a semibreak divisor;

see [19, Definition 3.1]).
By the description in Remark 3.6 of the stratification of Simp𝑑 (𝑋), and by Lemma 5.2, if G is a

connected spanning subgraph of Γ, a G-perturbation is the same as the multidegree of a line bundle
on X that specializes to a sheaf F with 𝐺 (𝐹) = 𝐺, deg(𝐹) = 0. We are now ready for the following
technical lemma.
Lemma 5.2. Let X be a family of nodal curves over the spectrum Δ of a DVR with algebraically closed
residue field 𝐾 , and consider a section 𝜎 : Δ → Simp𝑑 (X /Δ). Let us fix a geometric point 𝜂 lying
over the generic point of Δ and denote by Γ and Γ′ the dual graphs of the geometric fibers 𝑋0 and 𝑋𝜂

of X , respectively, and by 𝑓 : Γ→ Γ′ the morphism of graphs induced by the specialization of 𝜂 to 0.
Write 𝐹0 and 𝐹𝜂 for 𝜎(0) and 𝜎(𝜂), respectively, and set 𝐺 = 𝐺 (𝐹0) ⊆ Γ and 𝐺 ′ = 𝐺 (𝐹𝜂) ⊆ Γ′ for the
connected subgraphs where the corresponding sheaf is locally free. Then there exists a 𝐺 ⊆ 𝑓 −1(𝐺 ′)-
perturbation T such that the multidegrees d = deg(𝐹0) and d′ = deg(𝐹𝜂) satisfy the relation

d′ = 𝑓
(
d + 𝑇

)
.

Note that if 𝐺 ′ ⊆ Γ′ is connected and spanning, then so is 𝑓 −1(𝐺 ′) ⊆ Γ.

Proof. The section 𝜎 defines a rank 1 sheaf F over X /Δ . By [17, Proposition 5.5], the projectivization
Y = PX (F) is a family of curves over Δ , and there exists a line bundle L over Y/Δ such that F = 𝜓∗L
holds for the natural map 𝜓 : Y → X . Geometrically, the restriction of 𝜓 to 𝑌𝜂 → 𝑋𝜂 is the blow-up
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that corresponds to adding a genus 0 vertex on all edges of Γ′ that do not belong to 𝐺 ′. The description
of 𝜓0 : 𝑌0 → 𝑋0 in terms of Γ and G is completely analogous. Moreover, the multidegrees of 𝐿𝜂 and 𝐿0
can be obtained from the multidegrees of 𝐹𝜂 and 𝐹0, respectively, by taking d′ (resp. d) and assigning
degree 1 to the additional vertices. Then the claim follows from the fact that 𝐿0 is a specialization of
the line bundle 𝐿𝜂 . �

We will now prove some combinatorial ingredients that relate the chip-firing on a graph with the
chip-firing on its blow-up. We fix a graph Γ and a function 𝑚 : Edges(Γ) → N and let Γ̃𝑚 be the graph
obtained by subdividing each edge e of Γ into 𝑚(𝑒) + 1 edges (called an exceptional chain) by adding
𝑚(𝑒) vertices (called exceptional vertices) in the middle.

We start by relating the complexities of Γ and Γ̃.

Lemma 5.3 [11, Theorem 3.4]. The following formula relates the number of spanning trees (i.e., the
complexity) of Γ̃𝑚 with the complexity of the spanning subgraphs of Γ:

𝑐(Γ̃𝑚) =
∑

𝐺⊆Γ connected
spanning subgraph

��

∏

𝑒∈Edges(Γ)\Edges(𝐺)
𝑚(𝑒)

��� · 𝑐(𝐺). (5.1)

In order to state and then prove Proposition 5.4, we first need to define the lift of an assignment to Γ̃.
Let 𝜎 be a degree d assignment for Γ (see Definition 2.1). For each 𝑚 : Edges(Γ) → N, let 𝜎̃𝑚,

and then define the lift 𝜎̃𝑚 ⊂ 𝑆𝑑
Γ̃
(Γ̃) of 𝜎 as follows. First of all, for every element (Γ, d) ∈ 𝜎, we

can naturally identify d with the element of ZVert(Γ̃) obtained by extending d to zero on all exceptional
vertices. Then a lift of (𝐺, d) is any element d̃ ∈ 𝑆𝑑

Γ̃
(Γ̃) of the form

d̃ = d +
∑

𝑒∈Edges(Γ)\Edges(𝐺)
e𝑣 (𝑒) , (5.2)

for any choice of a function 𝑣 : Edges(Γ) \ Edges(𝐺) → Vert(Γ̃) such that each vertex 𝑣(𝑒) is one of
the 𝑚(𝑒) interior vertices of the exceptional chain in Γ̃ that corresponds to the edge e.

Then we have the following:

Proposition 5.4. Let 𝜎 be a degree d assignment on Γ that satisfies Part (1) of Definition 4.3. Then,

1. Let 𝑚 : Edges(Γ) → N be the constant function equal to 1, and let Γ̃ = Γ̃𝑚 and 𝜎̃ = 𝜎̃𝑚 be as defined
above. Assume that |𝜎(𝐺) | ≥ 𝑐(𝐺) for all connected spanning subgraphs G of Γ. If 𝜎̃ ⊂ 𝑆𝑑 (Γ̃) is a
minimal complete set of representatives for the action of Tw(Γ̃), then the assignment 𝜎 is a degree
d stability assignment for Γ.

2. If the assignment 𝜎 also satisfies Part (2) of Definition 4.3, then for all 𝑚 : Edges(Γ) → N, the lift
𝜎̃𝑚 ⊂ 𝑆𝑑 (Γ̃𝑚) (defined above) is a minimal complete set of representatives for the action of Tw(Γ̃𝑚).

Proof. We first prove (1) (i.e., we assume m is constant and equal to 1 and prove that 𝜎 also satisfies
Part (2) of Definition 4.3). By [37, Theorem 1.20, (c) ⇒ (b)], it suffices to prove that
|𝜎(𝐺) | = 𝑐(𝐺) for all 𝐺 ⊆ Γ. By Proposition 4.7, it suffices to prove the inequality |𝜎(Γ) | ≤ 𝑐(Γ).
Arguing by contradiction, it is enough to show that if any two different elements e and e′ of 𝜎(Γ) are in
the same orbit for the action of Tw(Γ), then the corresponding lifts ẽ and ẽ′ to 𝜎̃ via Equation 5.2 are
different and in the same Tw(Γ̃)-orbit.

Therefore, we assume that there exists 𝑓 : Vert(Γ) → Z such that

e − e′ =
∑

𝑣 ∈Vert(Γ)
𝑓 (𝑣) TwΓ,𝑣 .
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We now define4 a lift 𝑔 : Vert(Γ̃) → Z of f as follows:

𝑔(𝑣) =

{
2 𝑓 (𝑣′) when 𝑣 is not exceptional and corresponds to 𝑣′ ∈ Vert(Γ),
𝑓 (𝑤) + 𝑓 (𝑤′) when 𝑣 is exceptional and lies between 𝑤, 𝑤′ ∈ Vert(Γ).

With this definition, we have

ẽ − ẽ′ =
∑

𝑣 ∈Vert(Γ̃)

𝑔(𝑣) TwΓ̃,𝑣 .

This proves that the lifts ẽ and ẽ′, which are different elements of 𝜎̃, are in the same Tw(Γ̃)-orbit. This
completes our proof of (1).

To prove (2), we begin by observing that if 𝜎 is a stability assignment (as in Definition 4.3), then the
number of elements of 𝜎̃𝑚 equals the right-hand side of (5.1), which equals the complexity of Γ̃𝑚 by
Lemma (5.3). Thus, it suffices to prove that any two different elements ẽ and ẽ′ of 𝜎̃𝑚 belong to different
Tw(Γ̃𝑚)-orbits. By Lemma 5.5 below, it suffices to prove the inequality������∑

𝑣 ∈𝑉

ẽ(𝑣) − ẽ′(𝑣)

������ <
���Edges(𝑉,𝑉𝑐)

��� (5.3)

for all 𝑉 ⊂ Vert(Γ̃𝑚) such that the induced subgraph Γ(𝑉) is connected.
Let 𝑗 : Vert(Γ) → Vert(Γ̃) be the inclusion of the nonexceptional vertices. If 𝑉 is not in the image of

j, then 𝑉 is a subset of an exceptional chain, so the right-hand side of (5.3) equals 2 and by the definition
of a lift, we have that the left-hand side of (5.3) equals 0 or 1. From now on, we will assume that 𝑉
contains some nonexceptional vertices.

We now prove (5.3) under the additional assumption that ẽ and ẽ′ are zero on all exceptional vertices
– namely, that they are lifts of elements e and e′ that belong to 𝜎(Γ). Because 𝜎 is a degree d stability
assignment for Γ, by [37, Theorem 1.20, (b)⇒ (a)], it is also a ‘V-stability condition’ in the sense of
[37]. By [37, Remark 1.10]), this means that, for all 𝑉 ⊆ Vert(Γ) such that Γ(𝑉) is connected, there
exist integers 𝑛e(𝑉) and 𝑛e′ (𝑉) such that the inequalities

𝑛e (𝑉) ≤
∑
𝑣 ∈𝑉

e(𝑣) ≤ 𝑛e (𝑉) + |Edges(𝑉,𝑉𝑐) | − 1

and

𝑛e′ (𝑉) ≤
∑
𝑣 ∈𝑉

e′(𝑣) ≤ 𝑛e′ (𝑉) + |Edges(𝑉,𝑉𝑐) | − 1

hold. The combination of these two inequalities applied to 𝑉 := 𝑗−1(𝑉) implies Inequality (5.3).
If ẽ and ẽ′ are not zero on all of the exceptional vertices of Γ̃, we first replace them by elements of

𝜎̃𝑚 that satisfy this additional hypothesis. This can be achieved by replacing each 1 on each exceptional
vertex in 𝑉̃ (resp. in 𝑉̃𝑐) with a 0, and for each such replacement by adding +1 on (one of) the closest
nonexceptional vertex in Γ(𝑉̃) (resp. in Γ(𝑉̃𝑐)). This replacement does not change the left-hand side
of (5.3). That these replacements are also elements of 𝜎̃𝑚 follows from the fact that 𝜎 satisfies Part (1)
of Definition 4.3. This concludes our proof. �

We conclude by proving the following, which was used in the proof of the above.

4This argument is a particular case of a general procedure discussed in [3, Section 2.4].
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Lemma 5.5. Let ẽ and ẽ′ be elements of 𝜎̃𝑚. If the inequality�����∑
𝑣 ∈𝑊

ẽ(𝑣) − ẽ′(𝑣)

����� < |Edges(𝑊, 𝑊𝑐) | (5.4)

holds for all 𝑊 ⊂ Vert(Γ̃𝑚) such that the induced subgraph Γ(𝑊) is connected, then ẽ and ẽ′ belong to
different Tw(Γ̃𝑚)-orbits.

Proof. Assume for a contradiction that there exists 𝑓 : Vert(Γ̃𝑚) → Z such that

ẽ′ = ẽ +
∑

𝑣 ∈Vert(Γ̃𝑚)

𝑓 (𝑣) TwΓ̃𝑚 ,𝑣
.

Defining W to be a subset of {𝑤 : 𝑓 (𝑤) = min𝑣 ∈Vert(Γ) ( 𝑓 )} such that both induced subgraph Γ(𝑊) is
connected (one such W subset always exists), we then deduce∑

𝑣 ∈𝑊

ẽ′(𝑣) ≥
∑
𝑣 ∈𝑊

ẽ(𝑣) + |𝐸 (𝑊, 𝑊𝑐) |.

This contradicts (5.4), thus concluding our proof. �

6. From stability assignments to smoothable fine compactified Jacobians

In this section, we show how to construct a fine compactified Jacobian from a given stability assignment.
We define a sheaf to be stable if its multidegree is as prescribed by the stability assignment, both in
the case of a single nodal curve and for families. Then we show that the moduli space of stable sheaves
thus defined is a fine compactified Jacobian as introduced in Definitions 3.1 and 3.7. The case of a
curve in isolation is Corollary 6.4, and the more general case of families with smooth generic element
is Theorem 6.3. The most difficult part is the proof of properness (Lemma 6.5).

Throughout this section, let X be a nodal curve over some field extension K of k, and let Γ be its dual
graph.

Definition 6.1. Let 𝜎 be a degree d stability assignment for Γ (see Definition 4.3). We say that
[𝐹] ∈ Simp𝑑 (𝑋) is stable with respect to 𝝈 if (𝐺 (𝐹), deg(𝐹)) is in 𝜎, where 𝐺 (𝐹) = Γ \N(𝐹) is the
(necessarily connected and spanning) subgraph of Γ that is dual to the normalization of X at the points
(necessarily nodes) where F fails to be locally free.

We define 𝐽𝜎 ⊆ Simp𝑑 (𝑋) as the subscheme of sheaves that are stable with respect to 𝜎.

Let now X /𝑆 be a family of nodal curves over a k-scheme S. For every geometric point s of S, denote
by Γ𝑠 the dual graph of the fiber X𝑠 .

Definition 6.2. Let 𝔖 = {𝜎𝑠}𝑠∈𝑆 be a family of degree d stability assignments for X /𝑆 as in
Definition 4.9.

If F is a geometric point of Simp𝑑 (X /𝑆) lying over 𝑠 ∈ 𝑆, we say that F is stable with respect to 𝑺
if F is stable with respect to 𝜎𝑠 (see Definition 6.1).

We define J 𝑑

𝔖 ⊆ Simp𝑑 (X /𝑆) as the algebraic subspace whose geometric points are sheaves that
are stable with respect to 𝔖.

The main result of this section is the following:

Theorem 6.3. Assume that S is irreducible with generic point 𝜃 and that the generic element of the family
X𝜃/𝜃 is smooth. Let𝔖 be a family of degree d stability assignments for X /𝑆. Then J 𝑑

𝔖 ⊆ Simp𝑑 (X /𝑆)
is a degree d fine compactified Jacobian for the family X /𝑆.

We immediately deduce the following:
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Corollary 6.4. The moduli space 𝐽𝜎 ⊆ Simp𝑑 (𝑋) of 𝜎-stable sheaves is a smoothable degree d fine
compactified Jacobian for X.

Proof. Apply Theorem 6.3 to a regular smoothing X /Δ of X. �

The most delicate part of the proof of Theorem 6.3 is the following result, which builds on the
combinatorial preparation of the previous section.

Lemma 6.5. With the same assumptions as in Theorem 6.3, the moduli space J 𝑑

𝔖 is proper over S.

Proof. By Definitions 4.3 and 6.1, the scheme J 𝑑

𝔖 is the union of finitely many locally closed strata
and hence of finite type and quasi-separated over S. To prove properness, we apply the refined valuative
criterion [36, Lemma 70.22.3].

Given the spectrum Δ of a DVR and a commutative diagram (of solid arrows)

𝜂 = Δ \ {0}
𝑓 ��

� �

��

Pic𝑑 (X𝜃 )
� � �� J 𝑑

𝔖

��
Δ ��

��

𝑆,

we need to prove that there exists exactly one dotted arrow that keeps the diagram commutative. (Note
that Pic𝑑 (X𝜃 ) is open and dense in J 𝑑

𝔖).
Let us recall that morphisms to moduli spaces of sheaves (line bundles, simple sheaves) correspond

to sheaves on the corresponding family of curves, but this correspondence is a bijection only after
identifying two such sheaves whenever they differ by the pullback of a line bundle from the base. In the
remainder of this proof, we will slightly abuse the notation and assume this identification.

Let us denote by XΔ/Δ the base change of X /𝑆 under Δ → 𝑆 and by J 𝑑

Δ ⊆ Simp𝑑 (X /Δ) the base
change of J 𝑑

𝔖. Let s be the image of 0 ∈ Δ under Δ → 𝑆. Denoting by 𝑋 = X𝑠 = XΔ ,0 the fiber
over 0 ∈ Δ of the family XΔ/Δ , by the hypothesis that X𝜃/𝜃 is smooth, we deduce that XΔ/Δ is a
smoothing of X. Moreover, we have that J 𝑑

Δ is the disjoint union of Pic𝑑 (XΔ ,𝜂) = Simp𝑑 (XΔ ,𝜂) and of
𝐽𝜎 ⊆ Simp𝑑 (𝑋), where 𝜎 is the stability assignment for X𝑠 .

The morphism 𝑓 : Δ \ {0} → Pic𝑑 (X𝜃 ) corresponds to a line bundle [L𝜂] ∈ Pic𝑑 (XΔ ,𝜂/𝜂). We
know from [16] that Simp𝑑 (XΔ/Δ) satisfies the existence part of the valuative criterion of properness;
hence, L𝜂 extends (possibly nonuniquely) to an element [L′] ∈ Simp𝑑 (XΔ/Δ). Our proof is concluded
if we can show that L𝜂 extends to a unique [L] ∈ J 𝑑

Δ . When the total space XΔ of the smoothing XΔ/Δ
is regular, this follows immediately from Remark 4.2.

In general, each node e of the central fiber 𝑋 ⊂ XΔ is a singularity of type 𝐴𝑚(𝑒) of the total space
XΔ , for some 𝑚(𝑒) ∈ N. Let 𝑔 : X̃ → XΔ be the resolution of singularities obtained by blowing up 𝑚(𝑒)
times each singularity e of XΔ . The central fiber 𝑋 ⊂ X̃ is therefore obtained by replacing each node e of
the central fiber X of XΔ with a rational bridge of length 𝑚(𝑒). In other words, the dual graph Γ̃ of 𝑋 is
obtained by subdividing 𝑚(𝑒) times each edge of Γ = Γ(𝑋) by adding 𝑚(𝑒) additional genus 0 vertices.

We have now achieved that X̃ is regular. Moreover, by [17, Proposition 5.5], for each [𝐹] ∈ Simp𝑑 (𝑋),
there exists [𝐿] ∈ Pic𝑑 (𝑋) such that 𝑔∗(𝐿) = 𝐹, and the multidegree d of F and the multidegree d̃ of
any such L are related by Equation (5.2), where 𝐺 := 𝐺 (𝐹) is the spanning subgraph consisting of all
nodes where F is locally free.

In order to prove the existence and uniqueness of an extension of L𝜂 to XΔ/Δ with a sheaf in J 𝑑

Δ ,
we prove that 𝑔∗(L𝜂) extends uniquely on X̃ /Δ to a line bundle whose restriction to 𝑋 has multidegree
in 𝜎̃, where the elements of 𝜎̃ are defined by lifting elements of 𝜎 to Γ̃ as in Equation (5.2). Note that
taking the direct image via g maps line bundles on 𝑋 whose multidegree is in 𝜎̃ to rank 1, torsion free,
simple sheaves on X whose multidegree is in 𝜎(𝐺) for 𝐺 ⊆ Γ the spanning subgraph whose edges
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correspond to the exceptional rational bridges in Γ̃ where the multidegree of the line bundle is equal to
zero on all vertices.

By Part (2) of Proposition 5.4, we deduce that 𝜎̃ is a minimal complete set of representatives for the
action of the twister group Tw(Γ̃) on 𝑆𝑑 (Γ̃).

We conclude, as in the regular case, that 𝑔∗(L𝜂) extends to a unique line bundle L̃ on X̃ /Δ whose
multidegree on the central fiber 𝑋 is an element of 𝜎̃. Therefore, 𝑔∗L̃ is the unique extension of L𝜂

whose multidegree on X is an element of 𝜎. This completes the proof. �

We are now ready to complete the proof of Theorem 6.3.

Proof of Theorem 6.3. As J 𝑑

𝔖 is by definition constructible, openness is shown by proving that
J 𝑑

𝔖 ⊆ Simp𝑑 (X /𝑆) is stable under generalization ([36, Lemma 5.19.10]). That J 𝑑

𝔖 is stable under
generalization follows from the first requirement of Definition 4.3 and from the requirement that the
family of stability assignments is compatible for graph morphisms arising from étale specializations
(as specified in Definition 4.9).

Properness is Lemma 6.5. �

7. From smoothable fine compactified Jacobians to stability assignments

In this section, we show that a smoothable fine compactified Jacobian defines a stability assignment in
a natural way.

We start by considering the case of a curve in isolation and prove that the stability assignment
associated with a (not necessarily smoothable) fine compactified Jacobian satisfies the first condition of
Definition 4.3. This enables us to describe in Section 7.2 all fine compactified Jacobians for two classes
of examples: vine curves and curves whose dual graph has topological genus 1. As an application, we
prove in Lemma 7.8 that the stability assignment of a fine compactified Jacobian of an arbitrary nodal
curve is nonempty for every connected spanning subgraph of the dual graph Γ of the curve (a result
needed in the proof of our main results, Corollaries 7.13 and 7.16).

Then we restrict ourselves to the case where the fine compactified Jacobian is smoothable and proceed
to prove the second condition of Definition 4.3 for the associated stability assignment (Corollary 7.13).
Finally, we consider the case of families (Proposition 7.14), and we conclude by proving our main result,
Corollary 7.16, which establishes that the operations described in this section and in the previous one
are inverse to each other.

Throughout this section, we will consider a fixed nodal curve X over a field extension K of k, with
dual graph Γ, and denote by 𝐽 ⊂ Simp𝑑 (𝑋) a degree d fine compactified Jacobian of X.

7.1. Definition and first properties

Definition 7.1. We define the associated assignment 𝜎𝐽 of 𝐽 as

𝜎𝐽 = {(𝐺 (𝐹), deg(𝐹)) : [𝐹] ∈ 𝐽},

where 𝐺 (𝐹) = Γ \ N(𝐹) is the connected spanning subgraph of Γ obtained by removing the edges
corresponding to the nodes where F fails to be locally free.

A key point is that if a sheaf is an element of a given fine compactified Jacobian, then so are all other
sheaves that fail to be locally free on the same set of nodes and that have the same multidegree:

Lemma 7.2. Let 𝐽 ⊂ Simp𝑑 (𝑋) be a degree d fine compactified Jacobian, and assume that (𝐺, d) ∈ 𝜎𝐽 .
Then 𝐽 contains all sheaves [𝐹] ∈ Simp𝑑 (𝑋) with N(𝐹) = Γ \ 𝐺 and deg(𝐹) = d.

Proof. By possibly passing to the partial normalization of X at the nodes in Γ \𝐺, we may assume that
𝐺 = Γ. Thus, we aim to prove that if J d (𝑋) ∩ 𝐽 ≠ ∅, then J d (𝑋) ⊂ 𝐽.
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The moduli space of line bundles J d(𝑋) of multidegree d is irreducible and 𝐽 is open, so
J d (𝑋) ∩ 𝐽 ≠ ∅ implies that J d(𝑋) ∩ 𝐽 is dense in J d(𝑋). For [𝐹] in J d(𝑋), we can then find a
line bundle L on 𝑋 × Δ , for some Δ , spectrum of a DVR, whose generic element 𝐿𝜂 is in J d (𝑋) ∩ 𝐽
and whose special fiber 𝐿0 equals F.

By properness of 𝐽, there exists a sheaf 𝐿 ′ on 𝑋 × Δ with the property that 𝐿 ′𝑋×𝜂 = 𝐿𝑋×𝜂 (here,
𝜂 is the generic point of Δ) and whose special fiber 𝐿 ′0 is in 𝐽. Then 𝐿 ′ ⊗ 𝐿−1 defines a morphism
Δ → Simp0(𝑋) that maps the generic point 𝜂 to a closed point; hence, it must be the constant morphism.
We conclude, in particular, that [𝐹] = [𝐿 ′0] and so [𝐹] ∈ 𝐽. �

As a consequence of Lemma 5.2, the associated assignment to a fine compactified Jacobian satisfies
the first condition of Definition 4.3:

Corollary 7.3. The associated assignment 𝜎𝐽 satisfies

(𝐺, d) ∈ 𝜎𝐽 ⇒ (𝐺 ∪ {𝑒}, d + e𝑣1
), (𝐺 ∪ {𝑒}, d + e𝑣2

) ∈ 𝜎𝐽 , (7.1)

for all spanning subgraphs 𝐺 ⊆ Γ and all edges e of Edges(Γ) \ Edges(𝐺) with endpoints 𝑣1 and 𝑣2.

Note that the above statement remains valid (with the same proof) for an arbitrary open subscheme
of Simp𝑑 (𝑋); properness does not play any role here.

For every connected spanning subgraph G of Γ, the pairs (𝐺, d) ∈ 𝜎 with 𝐺 ⊂ 𝐺 define a fine
compactified Jacobian on a partial normalization of the curves X.

Lemma 7.4. Let 𝑓 : 𝑋 ′ → 𝑋 be a partial normalization of X at some nodes 𝑒1, . . . , 𝑒𝑘 ∈ Edges(Γ)
and let 𝑗 𝑓 : Simp𝑑−𝑘 (𝑋 ′) → Simp𝑑 (𝑋) be the morphism induced by taking the pushforward along f.
If 𝐽 is a fine compactified Jacobian of X, then any geometrically connected component of 𝑗−1

𝑓 (𝐽) is a
fine compactified Jacobian of 𝑋 ′. Moreover, for every 𝐺 ⊆ Γ(𝑋 ′), we have⋃

𝐽 ′ ⊂ 𝑗−1
𝑓
(𝐽 )

𝜎𝐽 ′ (𝐺) = 𝜎𝐽 (𝐺), (7.2)

where the union is over all geometrically connected components 𝐽 ′ of 𝑗−1
𝑓 (𝐽).

Note that Lemma 7.4 does not exclude the possibility that 𝑗−1
𝑓 (𝐽) = ∅. This possibility will be excluded

later, in Lemma 7.8. Moreover, we observe that the pullback 𝑗−1
𝑓 (𝐽) is not necessarily connected: an

example is given by nonsmoothable fine compactified Jacobians of curves of arithmetic genus 1; see the
𝜌 ≥ 2 case of [32, Lemma 3.7].

Proof. The fact that 𝑗−1
𝑓 (𝐽) is open in Simp𝑑−𝑘 (𝑋 ′) follows from the fact that openness is stable under

base change.
Moreover, 𝑗−1

𝑓 (𝐽) is separated and of finite type because 𝐽 is. To complete the first part of the
statement, it remains to show that 𝑗−1

𝑓 (𝐽) satisfies the existence part of the valuative criterion of
properness.

Let Δ \ {0} → 𝑗−1
𝑓 (𝐽) be a morphism out of a DVR without its closed point, which corresponds to

an element F ′ in Simp𝑑−𝑘 (𝑋 ′ × 𝜂/𝜂). Because 𝐽 satisfies the existence part of the valuative criterion
of properness, there exists a family of sheaves F̃ in Simp𝑑−𝑘 (𝑋 × Δ/Δ) whose restriction to 𝜂 equals
𝑓∗(F). Then the family 𝑓 ∗(F̃)/torsion is an extension of the original family F ′, and with central fiber
belonging to 𝑗−1

𝑓 (𝐽) (because 𝑓 ∗( 𝑓∗(F̃))/torsion = F̃ – see [1, Lemma 1.5]). This concludes the first
part.

The second part, or Equation (7.2), follows immediately from the definition of an associated
assignment. �
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7.2. Examples

In this subsection, we consider fine compactified Jacobians for two classes of curves: vine curves
(defined in Example 3.5) and curves whose dual graph Γ has first Betti number 1.

In the case of vine curves, Corollary 7.3 allows us to describe explicitly all fine compactified Jacobians
and conclude that they are automatically smoothable.
Example 7.5. Let X be a vine curve of type t (as defined in Example 3.5) over some algebraically closed
field K. We claim that any fine compactified Jacobian 𝐽 of X is of the form 𝐽 = 𝐽𝜎 (𝑋) for some stability
assignment 𝜎 as in Example 4.6. In particular, by Corollary 6.4, 𝐽 is smoothable.

This is clear when 𝑡 = 1, as in that case each geometrically connected component of Simp𝑑 (𝑋) =
Pic𝑑 (𝑋) is proper.

For the case of arbitrary 𝑡 > 1, we work by induction on t, using only Part (1) of Definition 4.3 and
the claim of Lemma 7.2 (neither of which relies on the hypothesis of smoothability).

For 𝑒 ∈ Edges(Γ(𝑋)), we let 𝑋𝑒 be the partial normalization of X at the node e only. In view of 𝑡 > 1,
we have that 𝑋𝑒 is connected and therefore Simp𝑑−1 (𝑋𝑒) ≠ ∅. Let 𝑗𝑒 : Simp𝑑−1 (𝑋𝑒) → Simp𝑑 (𝑋) be
the morphism obtained by taking the pushforward along the partial normalization 𝑋𝑒 → 𝑋 .

We observe that there exists an 𝑒 ∈ Edges(Γ(𝑋)) such that 𝑗−1
𝑒

(
𝐽
)
≠ ∅, for otherwise we would have

that 𝐽 is contained in Pic𝑑 (𝑋), so 𝐽 could not be proper. Fix one such edge e and let 𝐽𝑒 ⊆ 𝑗−1
𝑒

(
𝐽
)

be

a connected component. Then 𝐽𝑒 is a degree 𝑑 − 1 fine compactified Jacobian of 𝑋𝑒, and 𝑋𝑒 is a vine
curve of type 𝑡 − 1. We apply the induction hypothesis to deduce that there exists some degree 𝑑 − 1
stability assignment 𝜎𝑒 as described in Example 4.6 such that 𝐽𝑒 = 𝐽𝜎𝑒 (𝑋𝑒).

Let 𝜎 be the stability assignment on X of the type studied in Example 4.6 that is minimal among those
that respect Condition (1) of Definition 4.3 and whose restriction to 𝑋𝑒 equals 𝜎𝑒. By Corollary 7.3, we
have that 𝐽𝑒 = 𝐽𝜎 (𝑋) is contained in 𝐽. By Corollary 6.4, 𝐽𝜎 (𝑋) is open in Simp𝑑 (𝑋), and it is proper
and geometrically connected. As 𝐽 also enjoys these three properties, we conclude that 𝐽 = 𝐽𝜎 (𝑋).

Next, we discuss curves whose unlabeled dual graph has genus 1, and we prove that the combinatorial
description of the strata of fine compactified Jacobians of nodal curves of arithmetic genus 1 given in
[32, Section 3] generalizes to the fine compactified Jacobians of an arbitrary nodal curve X with dual
graph Γ with 𝑏1 (Γ) = 1.
Lemma 7.6. If 𝐽 is a fine compactified Jacobian of a curve X with 𝑏1 (Γ) = 1, then 𝜎𝐽 (𝐺) ≠ ∅ holds
for all connected spanning subgraphs 𝐺 ⊆ Γ.
Proof. We can assume that Γ has no separating edges. Indeed, by [32, Lemma 2.7], the fine compactified
Jacobian of a curve with a separating node is the product of fine compactified Jacobians of the two
curves obtained by normalizing that node.

We may also assume that Γ does not contain any loops based at one vertex, as the claim is trivial in
that case. Let us assume that |Vert(Γ) | = 𝑛 ≥ 2. Because 𝑏1(Γ) = 1, we can imagine Γ as a ‘necklace’of
n vertices each connected to the next by one edge, each carrying its own genus weighting. The only
possible connected spanning subgraphs of Γ in this case are Γ itself, and all graphs obtained by removing
any one edge from Γ.

The generalized Jacobian J 0(𝑋) of X is a semi-abelian variety which is a G𝑚-bundle over the
product of the Jacobians of the irreducible components of X. As a consequence, the strata J 𝑑

(𝐺,d) of
Simp𝑑 (𝑋) are either open (when 𝐺 = Γ) or closed (when G is obtained by removing one edge e from
Γ). The open strata are all isomorphic to J 0(𝑋), while the closed ones are isomorphic to the abelian
variety given by the product of the degree 0 Jacobians of the components of X.

Let 𝐽 be a fine compactified Jacobian of X. By openness, there exists some d such that 𝐽 contains the
open stratum J 𝑑

(Γ,d) .

We have that 𝐽 satisfies the valuative criterion for properness; thus, the present situation is similar to
[32, Section 3]. Consider any morphism Δ \ {0} → J 𝑑

(Γ,d) (where Δ is the spectrum of a DVR), which
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is not the restriction of a morphism Δ → J 𝑑
(Γ,d) . Then the argument in loc. cit. can be adapted to show

that 𝑓 : Δ \ {0} → J 𝑑
(Γ,d) extends to a morphism Δ → Simp𝑑 (𝑋) in n different ways, each one of them

hitting a different closed stratum J 𝑑
(Γ\{𝑒},d′) for some d′.

This implies that the closure of J 𝑑
(Γ,d) inside Simp𝑑 (𝑋) looks like a compactification of the semi-

abelian variety which is made non-separated by the fact that the divisors over both the 0-section and the
∞-section of the extension of the G𝑚-bundle J 0 (𝑋) to a P1-bundle are present in n copies.

Moreover, the poset associated with the stratification of Simp𝑑 (𝑋) is isomorphic to the poset associ-
ated with the stratification of Simp𝑑 (𝑋 ′), where Γ(𝑋) and Γ(𝑋 ′) have the same underlying graph, but
possibly a different genus weighting on each vertex. Hence, the combinatorial characterization of the
neighborhoods of the points of J 𝑑

(Γ\{𝑒},d) is the same as in the genus 1 case. This allows us to conclude
that the geometrical considerations applied to the description of the fine compactified Jacobians of 𝑋 ′

in [32, Section 3] apply in the same way to the fine compactified Jacobians of X. This establishes, in
particular, that 𝜎𝐽 (Γ \ {𝑒}) is nonempty for every edge e. �

Remark 7.7. The proof of Lemma 7.6 above actually shows that if 𝑋 ′ is an arbitrary curve whose dual
graph Γ′ is isomorphic to Γ, with possibly a different choice of the genera labeling the vertices, then
the assignment 𝜎𝐽 associated with 𝐽 also describes a fine compactified Jacobian on 𝑋 ′. We can deduce
from this that the combinatorial description of fine compactified Jacobians of nodal curves of arithmetic
genus 1 given in [32, Section 3] generalizes to fine compactified Jacobians of arbitrary nodal curves
with dual graph Γ with 𝑏1 (Γ) = 1.

In preparation of our main results later (Corollaries 7.13, 7.16), we now prove the following.
Lemma 7.8. 5 Let 𝐽 ⊂ Simp𝑑 (𝑋) be a degree d fine compactified Jacobian. Then 𝜎𝐽 (𝐺) ≠ ∅ holds for
all connected spanning subgraphs 𝐺 ⊆ Γ.

In the course of the proof, we will use the following
Lemma 7.9. Let 𝐽 ⊂ Simp𝑑 (𝑋) be a degree d fine compactified Jacobian. Then there exists a spanning
tree T of Γ such that 𝜎(𝑇) ≠ ∅.
Proof. By Lemma 7.2, we have that 𝐽 is a union of strata of Simp𝑑 (𝑋). The strata of Simp𝑑 (𝑋) in (3.1)
that are universally closed are the minimal strata (i.e., those that correspond to the case where G in (3.1)
is a spanning tree of Γ). Because 𝐽 is universally closed, it must contain at least one minimal stratum of
Simp𝑑 (𝑋). �

Proof of Lemma 7.8. Let us recall from Lemma 7.9 that there exists a spanning tree 𝑇 ⊆ Γ such that
𝜎𝐽 (𝑇) ≠ ∅. If 𝑏1(Γ) = 0, then Γ = 𝑇 , and the proof is concluded. If 𝑏1 (Γ) = 1, then the result follows
from Lemma 7.6. From now on, we assume 𝑏1(Γ) ≥ 2.

Let us assume by contradiction that there exists a connected spanning subgraph G such that
𝜎𝐽 (𝐺) = ∅. Let us choose G maximal for this property; note that G is always different from Γ as
a consequence of the fact that 𝐽 is open in Simp𝑑 (𝑋). After possibly replacing Γ with a subgraph con-
taining G and X with the partial normalization corresponding to this subgraph, and by Lemma 7.4, we
may assume that G is obtained from Γ by removing a single edge e.

If 𝑇 ⊆ 𝐺, then a contradiction arises immediately from Corollary 7.3. We can therefore assume
𝑇 ⊄ 𝐺 – in other words, that 𝑒 ∈ Edges(𝑇) \ Edges(𝐺).

There exists 𝑒′ ∈ Edges(𝐺) \ Edges(𝑇) such that the graph 𝑇 ′, obtained from T by adding the edge
𝑒′ and removing the edge e, is connected (hence a spanning tree) and contained in G. We set Γ′ to be
the graph obtained by adding 𝑒′ to the edge set of T (or equivalently, by adding e to the edge set of 𝑇 ′).
Then we have that 𝑏1 (Γ′) = 1.

Let 𝑋 ′ ⊂ 𝑋 be the subcurve whose dual graph equals Γ′, let 𝑘 := |Edges(Γ) \ Edges(Γ′) |, and let
𝑗 : Simp𝑑−𝑘 (𝑋 ′) → Simp𝑑 (𝑋) be the morphism obtained by taking the pushforward along the partial

5This result is proved independently, and with a different argument, in [37, Theorem 2.16].
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normalization 𝑋 ′ → 𝑋 . Because 𝜎𝐽 (𝑇) ≠ ∅, and by Lemma 7.4, there exists some geometrically
connected component 𝐽 ′ of 𝑗∗(𝐽) that is a degree 𝑑 − 𝑘 fine compactified Jacobian of 𝑋 ′.

Because 𝑏1 (Γ′) = 1, from the last paragraph, we can then conclude by Lemma 7.6 that 𝜎(𝑇 ′) ≠ ∅
for all spanning trees 𝑇 ′ ⊆ Γ′. In particular, there exists a 𝑇 ′ ⊆ 𝐺 such that 𝜎(𝑇 ′) ≠ ∅; thus, by
Equation (7.2) combined with Corollary 7.3, we conclude that 𝜎𝐽 (𝐺) ≠ ∅, which contradicts the
assumption 𝜎𝐽 (𝐺) = ∅ made at the beginning. �

7.3. Stability assignments of smoothable fine compactified Jacobians

We now go back to our main line of reasoning and show that the assignment associated to a smoothable
fine compactified Jacobian also satisfies the second condition of Definition 4.3.

Proposition 7.10. If 𝐽 ⊆ Simp𝑑 (𝑋) is also smoothable, then for all spanning subgraphs 𝐺 ⊆ Γ, the
subset 𝜎𝐽 (𝐺) ⊂ 𝑆𝑑Γ (𝐺) is a minimal complete set of representatives for the action of the twister group
Tw(𝐺) on 𝑆𝑑Γ (𝐺).

Proof. We first fix some notation for our proof. Let X /Δ be a regular smoothing of X such that there
exists an open J X /Δ ⊆ Simp𝑑 (X /Δ) and Δ-proper subscheme, whose special fiber equals 𝐽. Then
consider the degree 2 base change Δ → Δ of X /Δ , giving a nonregular smoothing X ′/Δ with 𝐴1
singularities at all nodes of the special fiber X. By functoriality of the Picard functor, and by stability
under base change of openness and properness, we have that the base change J ′X ′/Δ is also an open and
Δ-proper subscheme of Simp𝑑 (X ′/Δ). Finally, let 𝑓 : X̃ → X ′ be the blow-up at all singularities. The
family X̃ is then a regular smoothing of the special fiber 𝑋 , the curve obtained from X by replacing
each node with an irreducible rational bridge.

We are now ready for the proof. First, observe that, by Corollary 7.3 and by Lemma 7.8 combined
with Proposition 4.7, the set 𝜎𝐽 satisfies the hypothesis of Proposition 5.4 Part (1). By applying loc. cit.,
it is enough to prove that the collection 𝜎̃𝐽 obtained by lifting every element of 𝜎𝐽 via Equation 5.2 is
a minimal complete set of representatives for the action of Tw(Γ(𝑋)).

Let d be the lift via (5.2) of some d ∈ 𝑆𝑑Γ (𝐺) for some 𝐺 ⊆ Γ. There exists [𝐿] ∈ Pic𝑑 (𝑋) such
that deg( 𝑓∗(𝐿)) ∈ 𝑆d

Γ (𝐺). By Hensel’s lemma, L extends to a family [L] ∈ Pic𝑑 (X̃ /Δ). Since 𝐽X ′/Δ is
universally closed over Δ , there exists F ′ ∈ Simp𝑑 (X ′/Δ) such that F ′ |X ′𝜂 = 𝑓∗LX ′𝜂 and [F ′ |𝑋 ] ∈ 𝐽𝑋 ′ .
We take [L′] ∈ Pic𝑑 (X̃ /Δ) such that 𝑓∗(L′) = F ′. Thus, we have that

(
L′ ⊗ L−1)

X̃𝜂
= OX𝜂 . We let

then t = deg(L′ ⊗ L−1 |𝑋 ), and so d + t = deg(L′ |𝑋 ) is in 𝜎̃𝐽 . This proves that 𝜎̃𝐽 is a complete set of
representatives.

To prove minimality, assume that there exist lifts d1, d2 ∈ 𝜎̃𝐽 such that d2 = d1 + t for some
t ∈ Tw(Γ(𝑋)). By Hensel’s lemma and by Lemma 7.2, there exist [L1], [L2] ∈ Pic𝑑 (X̃ /Δ), coinciding
on the generic fiber, and whose multidegrees on 𝑋 equal d1, d2. The pushforwards 𝑓∗(L1) and 𝑓∗(L2)
coincide on X ′𝜂 , and because 𝐽X ′/Δ is separated over Δ , their central fibers must coincide, which implies
that t = 0. This proves minimality. �

Remark 7.11. In [13], Caporaso introduced the notion of ‘being of Néron type’ for a degree d compact-
ified Jacobian of a nodal curve X. In our notation, this can be restated as the property that 𝜎𝐽 (Γ(𝑋)) is
a minimal complete set of representatives for the action of Tw(Γ(𝑋)) on 𝑆𝑑Γ(𝑋 ) (Γ(𝑋)).

Proposition 7.10 proves, in particular, that all smoothable fine compactified Jacobians are of Néron
type. Similar results were obtained in [23] and [29] for fine compactified Jacobians obtained from some
numerical polarizations (see Section 8 for the notion of a numerical polarization).

We refer the reader to [23] for the definition of a Néron model and its relations with compactified
Jacobians.

Remark 7.12. The smoothability assumption in the statement of Proposition 7.10 is crucial. In [32],
the authors give an example, for X a nodal curve of genus 1, of degree 0 fine compactified Jacobians
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𝐽 ⊂ Simp0(𝑋) whose collection of line bundle multidegrees contain an arbitrary number 𝑟 ≥ 2 of
elements for each orbit of the action of Tw(Γ) on 𝑆0

Γ (Γ). Such compactified Jacobians can always be
extended to a universally closed family over a regular smoothing, but such extensions are separated if
and only if r equals 1.

We conclude with the main result:

Corollary 7.13. The associated assignment (Definition 7.1) to a smoothable degree d fine compactified
Jacobian of X is a degree d stability assignment for the dual graph Γ(𝑋) (as in Definition 4.3).

Proof. This is obtained as a combination of Corollary 7.3 and Proposition 7.10. �

We conclude by observing that the same result holds for families.

Proposition 7.14. Let X /𝑆 be a family of nodal curves over a base scheme (or Deligne–Mumford stack)
S, and let J = J X /𝑆 be a degree d fine compactified Jacobian for the family. Assume that for each
geometric point s of S, the fine compactified Jacobian 𝐽𝑠 of the fiber 𝑋𝑠 over 𝑠 ∈ 𝑆 is smoothable.

Then the collection {𝜎𝐽 𝑠
} of associated assignments of 𝐽𝑠 for all geometric points s of S is a family

of degree d stability assignments (as in Definition 4.9).

Proof. The case where S is a single geometric point is Corollary 7.13.
To complete our proof, we will show that the assignment of 𝜎𝐽 𝑠

is compatible with all morphisms
𝑓 : Γ(X𝑠) → Γ(X𝑡 ) arising from étale specializations 𝑡 � 𝑠.

Assume that 𝐹𝑡 is a simple sheaf on the nodal curve X𝑡 that specializes to 𝐹𝑠 on X𝑠 . Suppose that
the subcurve X𝑡 ,0 ⊆ X𝑡 generalizes the subcurve X𝑠,0 ⊆ X𝑠 . By flatness and by continuity of the Euler
characteristic, and because we are passing to the torsion-free quotients, the degrees are related by

degX𝑡,0
(𝐹𝑡 ) = degX𝑠,0

(𝐹𝑠) + 𝑛(𝐹𝑠 , 𝑓 ), (7.3)

where 𝑛(𝐹𝑠 , 𝑓 ) is the number of nodes of X𝑠,0 that are smoothened in t and where 𝐹𝑠 fails to be locally
free. (See Equation (2.1)). Formula (7.3) is precisely the condition of Equation (4.2). �

Remark 7.15. Assume that the dual graph of the fibers of X /𝑆 is constant in S, and let S be irreducible
with 𝜂 ∈ 𝑆 its generic point. Then the familyX /𝑆 induces a group homomorphism from the group of étale
specializations of 𝜂 to itself, which equals the Galois group Gal(𝑘 (𝜂)sep, 𝑘 (𝜂))), to the automorphism
group Aut(Γ(𝑋𝑘 (𝜂)sep)) of the dual graph of the generic fiber. Let G be the image of this group
homomorphism. In this case, Proposition 7.14 implies that the associated assignment 𝜎𝐽 𝑘 (𝜂)

, which is
defined as a collection of discrete data on the dual graph Γ(𝑋𝑘 (𝜂)sep) = Γ(𝑋

𝑘 (𝜂)
), is invariant under the

action of G.
In the particular case where S is a stratum of M𝑔,𝑛 (i.e., S is the Deligne–Mumford moduli stack of

curves whose dual graph is isomorphic to a fixed graph Γ ∈ 𝐺𝑔,𝑛), we have 𝐺 = Aut(Γ).

By combining Theorem 6.3/Corollary 6.4 with Proposition 7.14 and Lemma 7.2, we immediately
obtain that the two operations of (1) taking the associated assignment to a fine compactified Jacobian,
and (2) constructing the moduli space of stable sheaves associated with a given stability assignment, are
inverses of each other.

Corollary 7.16. Let X /𝑆 be a family of nodal curves over an irreducible scheme (or Deligne–Mumford
stack) S, and assume that X𝜃/𝜃 is smooth for 𝜃 the generic point of S.

If J ⊆ Simp𝑑 (X /𝑆) is a degree d fine compactified Jacobian and 𝜎J is its associated assignment
(Definition 7.1), then the moduli space J 𝜎J

of 𝜎J -stable sheaves (Definitions 6.1 and 6.2) equals J .
Conversely, if 𝜏 is a family of degree d stability assignments, and J 𝜏 is the moduli space of 𝜏-stable

sheaves, then the associated assignment 𝜎J 𝜏
equals 𝜏.

https://doi.org/10.1017/fms.2024.101 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.101


Forum of Mathematics, Sigma 21

8. Numerical polarizations

An example of a (smoothable fine compactified Jacobian) stability assignment on a nodal curve 𝑋/𝐾
(as in Definition 4.3) comes from numerical polarizations, introduced by Oda–Seshadri in [31]. (In fact,
the Oda–Seshadri formalism permits to also construct compactified Jacobians that are not necessarily
fine in the sense of Definition 3.1).

In this section, we review the notion of numerical stability for a single curve (Definition 8.1) and
extend it to families (Definition 8.10) following [25].

We let Γ be the dual graph of X.

Definition 8.1. Let 𝑉𝑑 (Γ) ⊂ RVert(Γ) be the sum-d affine subspace. Let 𝜙 ∈ 𝑉𝑑 (Γ), and let G be a (not
necessarily connected) spanning subgraph of Γ, with 𝐸0 := Edges(𝐺) and 𝐸𝑐

0 := Edges(Γ) \𝐸0. We say
that d ∈ 𝑆𝑑Γ (𝐺) is 𝝓-semistable (resp. 𝝓-stable) on G when the inequality�����∑

𝑣 ∈𝑉

(d(𝑣) − 𝜙(𝑣)) +
��𝐸𝑐

0 ∩ 𝐸 (Γ(𝑉))
�� + ��𝐸𝑐

0 ∩ E(𝑉,𝑉𝑐)
��

2

����� ≤ |𝐸0 ∩ E(𝑉,𝑉𝑐) |

2
(8.1)

(resp. <) is satisfied for all ∅ ≠ 𝑉 � Vert(Γ). (To keep the notation compact, in the inequality, we have
denoted the edge sets by E instead of Edges).

For 𝜙 ∈ 𝑉𝑑 (Γ), we define the (numerical, Oda–Seshadri) assignment associated with 𝜙, denoted
𝜎Γ,𝜙 , by setting

𝜎Γ,𝜙 (𝐺) := {d ∈ 𝑆𝑑Γ (𝐺) : d is 𝜙-semistable on 𝐺} ⊂ 𝑆𝑑Γ (𝐺) (8.2)

for all spanning subgraphs 𝐺 ⊆ Γ.
We define 𝜙 ∈ 𝑉𝑑 (Γ) to be nondegenerate when for every spanning subgraph 𝐺 ⊆ Γ, all elements

of 𝜎Γ,𝜙 (𝐺) are 𝜙-stable.

Elements of 𝑉𝑑 (Γ) are called numerical polarizations.

Remark 8.2. If the spanning subgraph 𝐺 ⊆ Γ is not connected, then Edges(Γ)\Edges(𝐺) is a collection
of edges that disconnects Γ. If we take for V a subset of Vert(Γ) such that the induced subgraph Γ(𝑉)
is a connected component of G, the right-hand side of Inequality (8.1) equals zero. Therefore, if 𝜙 is
nondegenerate, we always have 𝜎Γ,𝜙 (𝐺) = ∅ whenever G is not connected.

We conclude that, for nondegenerate 𝜙’s, the disconnected spanning subgraphs G of Γ do not carry
any additional information and they can be disregarded, as we have done in Definition 4.3.

Every nondegenerate numerical polarization gives a stability assignment:

Proposition 8.3. Let X be a nodal curve and let 𝜙 ∈ 𝑉𝑑 (Γ(𝑋)) be nondegenerate. Then the numerical
assignment 𝜎Γ,𝜙 defined in 8.1 is a degree d stability assignment (as in 4.3), and the moduli space
𝐽𝜎Γ,𝜙 (𝑋) of sheaves that are stable with respect to 𝜎Γ,𝜙 (as defined in 6.1) is a degree d smoothable
fine compactified Jacobian.

Proof. The fact that the moduli space is a smoothable fine compactified Jacobian is [32, Proposition 2.9].
Thus, 𝜎Γ,𝜙 defines a stability assignment by Corollary 7.13. �

This leads to the following natural question:

Question 8.4. Let 𝜎Γ be a degree d stability assignment. Does there exist a 𝜙 ∈ 𝑉𝑑 (Γ) such that
𝜎Γ = 𝜎Γ,𝜙? (If one such 𝜙 exists, it is necessarily nondegenerate).

Below, we give three classes of examples where we can answer Question 8.4 in the positive.6

6As mentioned in the introduction, after a first draft of this paper appeared in the arXiv repository, Filippo Viviani constructed
in [37, Example 1.27] an example of a stability assignment on a nodal curve of genus 3 that is not induced by a numerical stability
condition. The example in loc.cit. also uses the combinatorics of [32, Example 6.15].
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Example 8.5 (Irreducible curves). If X is irreducible, then there is a unique stability assignment 𝜎 (see
Example 4.5), and we have 𝜎 = 𝜎𝜙 for 𝜙 the only element of 𝑉𝑑 (𝑋) = {𝑑}.

Example 8.6 (Vine curves of type t). Let Γ consist of 2 vertices 𝑣1, 𝑣2 connected by t edges (and no
loops). The complexity of Γ equals t. With the notation as in Example 4.6, it is straightforward to check
that a stability assignment 𝜎Γ determined by some 𝜆 ∈ Z as described in loc. cit. equals 𝜎Γ,𝜙Γ for

𝜙Γ (𝑣1, 𝑣2) :=
(
𝜆 −

𝑡 − 1
2

, 𝑑 − 𝜆 +
𝑡 − 1

2

)
,

and that 𝜙Γ ∈ 𝑉𝑑 (Γ) is nondegenerate.

Example 8.7 (Curves whose dual graph has genus 1). Let X be such that 𝑏1(Γ(𝑋)) = 1. A degree
d stability assignment 𝜎 on Γ(𝑋) is the same datum as a stability assignment on Γ′, where Γ′ is
obtained from Γ(𝑋) by setting the genus of each vertex to 0. Let 𝑋 ′ be a curve whose dual graph is Γ′.
Then by Corollary 6.4, the scheme 𝐽𝜎 (𝑋

′) is a smoothable fine compactified Jacobian. Smoothable
fine compactified Jacobians on 𝑋 ′ have been classified in [32]: they all arise as 𝐽𝜎𝜙 (𝑋

′) for some
𝜙 ∈ 𝑉𝑑 (Γ′) = 𝑉𝑑 (Γ(𝑋)). Thus, by Corollary 7.13, we have that 𝜎 is also of that form.

Example 8.8 (Integral Break Divisors). Let Γ be a (not necessarily stable) graph and assume 𝑑 = 𝑔(Γ).
Define the stability assignment 𝜎IBD by

𝜎IBD(𝐺) = {integral break divisors for 𝐺},

for all connected spanning subgraphs 𝐺 ⊆ Γ. Recall that d ∈ 𝑆
𝑔 (Γ)
Γ (𝐺) is an integral break divisor for

G if and only if it is of the form

d(𝑣) = 𝑔(𝑣) +
∑

𝑒∈Edges(𝐺)\Edges(𝑇 )
e𝑡 (𝑒) (𝑣)

for some choice of a spanning tree 𝑇 ⊆ 𝐺 and of an orientation 𝑡 : Edges(𝐺) \ Edges(𝑇) → Vert(𝐺)
(for 𝑤 ∈ Vert(𝐺), we denote by e𝑤 the function that is 1 on the vertex w and 0 elsewhere).

We claim that 𝜎IBD is indeed a degree 𝑑 = 𝑔(Γ) stability assignment. Condition (1) of Definition 4.3
follows directly from the definition of an integral break divisor. The second axiom follows immediately
from [4, Theorem 1.3] (earlier proved in [30]).

When Γ is stable, it follows from [15, Lemma 5.1.5] that 𝜎IBD = 𝜎Γ,𝜙Γ
can

, for

𝜙Γ
can(𝑣) :=

𝑔(Γ)
2𝑔(Γ) − 2

· (2𝑔(𝑣) − 2 + valΓ (𝑣)), (8.3)

where valΓ (𝑣) is the valence of the vertex v in Γ. (This follows from loc. cit. as 𝜙Γ
can is induced from the

canonical divisor, which is ample when Γ is stable).
When Γ is not necessarily stable, we define

𝜙IBD (𝑣) :=
𝑔(Γ) + |Vert(Γ) |

2(𝑔(Γ) + |Vert(Γ) |) − 2
· (2𝑔(𝑣) + valΓ (𝑣)) − 1. (8.4)

We claim that 𝜎IBD = 𝜎Γ,𝜙IBD .
Let Γ′ be the graph obtained from Γ by increasing the genus of each vertex by 1. Then the integral

break divisors of Γ′ are the integral break divisors on Γ increased by 1 on each vertex and Γ′ is stable.
Therefore, the integral break divisors on Γ are stable for the stability assignment 𝜙Γ′

can − 1, which equals
𝜙IBD. This proves our claim.
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We are now ready to define families of numerical polarizations, similarly to what was done in
Definition 4.9 for families of stability assignments. We shall see that there are two ways of doing so,
and that they are not equivalent.

Definition 8.9. Let 𝑓 : Γ→ Γ′ be a morphism of stable graphs. We say that 𝜙 ∈ 𝑉𝑑 (Γ) is f -compatible
with 𝜙′ ∈ 𝑉𝑑 (Γ′) if

𝜙′(𝑤) =
∑

𝑓 (𝑣)=𝑤

𝜙(𝑣).

Definition 8.10. Let X /𝑆 be a family of nodal curves, and let Φ = (𝜙𝑠 ∈ 𝑉𝑑 (Γ(X𝑠)))𝑠∈𝑆 be a collection
of numerical polarizations, one for each geometric point of S. Assume also that Φ is nondegenerate,
by which we mean that so is each of its coordinates 𝜙𝑠 for 𝑠 ∈ 𝑆 (as per Definition 8.1).

The collection Φ is weakly compatible if the collection 𝜎Φ := (𝜎Γ(𝑋𝑠) ,Φ(Γ(𝑋𝑠)) )𝑠∈𝑆 of degree
d stability assignments defined via Proposition 8.3 is a family of degree d stability assignments as
prescribed by Definition 4.9.

The collection Φ is strongly compatible if it is f -compatible for all morphisms 𝑓 : Γ(X𝑠) → Γ(X𝑡 )

that arise from some étale specialization 𝑡 � 𝑠 occurring on S.

For a strongly compatible collection, one can define the notion of a Φ-stable sheaf for all fibers as
in Definition 8.1. We shall not do that, as this would be a repetition of our Definition 6.2. Instead, we
observe the following:

Corollary 8.11. Let X /𝑆 be a family of nodal curves over an irreducible scheme S with generic point
𝜃, and assume that the generic element X𝜃/𝜃 is smooth. If Φ is a nondegenerate and weakly compatible
family of numerical polarizations, the moduli space J 𝜎Φ of sheaves that are stable with respect to 𝜎Φ

is a family of degree d fine compactified Jacobians.

Proof. By combining Proposition 8.3 with the fact that Φ is nondegenerate and weakly compati-
ble, we deduce that 𝜎Φ is a family of stability assignments for X /𝑆. The result follows then from
Theorem 6.3. �

In [25], the authors studied the theory of universal Oda–Seshadri stability assignments for compact-
ified Jacobians. In loc. cit., they defined, for fixed (𝑔, 𝑛) such that 2𝑔 − 2 + 𝑛 > 0, the space 𝑉𝑑

𝑔,𝑛 of
universal numerical polarizations – that is, elements Φ = (𝜙𝑠)𝑠∈M𝑔,𝑛

that are strongly compatible
for morphisms 𝑓 : Γ1 → Γ2 between any two elements of 𝐺𝑔,𝑛 (a skeleton of the category of stable
n-pointed graphs of genus g).

In loc. cit., the authors also constructed, for each such nondegenerate Φ ∈ 𝑉𝑑
𝑔,𝑛, a compactified

Jacobian J 𝑔,𝑛 (Φ). In the language of this paper, this can be rephrased as follows.

Corollary 8.12. IfΦ ∈ 𝑉𝑑
𝑔,𝑛 is a nondegenerate universal numerical stability condition, thenJ 𝑔,𝑛 (Φ) ⊂

Simp𝑑 (C𝑔,𝑛/M𝑔,𝑛) is a fine compactified universal Jacobian.

Remark 8.13. The space 𝑉𝑑
𝑔,𝑛 is never empty, as it always contains the universal canonical polarization,

defined as Φ𝑑
can := 𝑑

2𝑔−2 deg(𝜔𝜋) ∈ 𝑉𝑑
𝑔,𝑛. (When 𝑑 = 𝑔, this coincides with the polarization defined

in Equation (8.3)). It was observed in [25, Remark 5.13] that Φ𝑑
can is nondegenerate precisely when

𝑑 − 𝑔 + 1 and 2𝑔 − 2 are coprime. (In the 𝑛 = 0 case, this is already in [12, p. 594]).

A natural question that we will address next is whether every fine compactified universal Jacobian
arises as in Corollary 8.12, or if one can construct fine compactified universal Jacobian from nondegen-
erate weakly compatible numerical stability conditions that are not strongly compatible.

Remark 8.14. It is clear that a strongly compatible nondegenerate family of numerical polarizations
is also weakly compatible. The converse is not true. Even more: on some families X /𝑆 there exist
nondegenerate families of numerical polarizations Φ = (𝜙𝑠 ∈ 𝑉 (Γ𝑠)) that are weakly compatible,
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and such that there exists no nondegenerate Φ′ = (𝜙′𝑠)𝑠∈𝑆 that is strongly compatible and satisfies
𝜎Γ𝑠 ,𝜙′𝑠 = 𝜎Γ𝑠 ,𝜙𝑠 for all 𝑠 ∈ 𝑆.

Such examples are shown to exist in [32, Section 6], when X /𝑆 is the universal family C1,𝑛/M1,𝑛
and 𝑛 ≥ 6. In other words, for all 𝑛 ≥ 6, there are fine compactified universal Jacobians J 1,𝑛 that are
not of the form J 1,𝑛 (Φ) for any Φ ∈ 𝑉𝑑

1,𝑛.

Our main result in the next section, Theorem 9.7, settles in the affirmative the analogous question
for the case of the universal family C𝑔/M𝑔 for all 𝑔 ≥ 2. More explicitly, when 𝑛 = 0, every fine
compactified universal Jacobian J 𝑔 arises as in Corollary 8.12 (i.e., it is of the form J 𝑔 (Φ) for some
Φ ∈ 𝑉𝑑

𝑔 = 𝑉𝑑
𝑔,0).

9. Classification of universal stability assignments

The main result in this section is a classification of universal stability assignments – that is, the case
where the family X /𝑆 is the universal family over 𝑆 = M𝑔, the moduli stack of stable curves of genus g
(and no marked points). As an intermediate step, we will also produce results that are valid for the case
of the universal family over 𝑆 = M𝑔,𝑛 for arbitrary n.

One way to generate universal stability assignments is by means of strongly compatible (universal)
numerical polarizations; see Definition 8.10 and Corollary 8.12. Our main result here is Theorem 9.7,
where we classify all universal stability assignments with 𝑛 = 0 and for every genus, by proving
that they all arise from strongly compatible numerical polarizations (i.e., they all are of the form
𝜎Φ for some Φ ∈ 𝑉𝑑

𝑔 (see Corollary 8.11 and Corollary 8.12)). Combining with the fact, shown in
Proposition 7.14, that universal stability assignments classify fine compactified universal Jacobians, we
deduce in Corollary 9.8 that, in the absence of marked points, there are no fine compactified universal
Jacobians other than the classical ones constructed in the nineties by Caporaso, Pandharipande and
Simpson.

As discussed in Remark 8.14, an analogous result does not hold, in general, when 𝑛 > 0.
Recall from Example 3.5 that for 𝑡 ∈ N, a vine curve of type 𝒕 is a curve with 2 nonsingular

irreducible components joined by t nodes. These curves and their dual graphs will play an important
role in this section.

We will break down our argument in 3 parts.

9.1. First part: Universal stability assignments are uniquely determined by their restrictions to vine
curves

The main result of this subsection, summarized in the title, is Corollary 9.3 below. The result is obtained
as a combination of Lemma 9.1 and Lemma 9.2. The first establishes that a stability assignment for a
given curve is uniquely determined by its restriction to the spanning trees of the dual graph of that curve.
The second one shows that an assignment of integers on all spanning trees of all elements of 𝐺𝑔,𝑛 that
is compatible with graph morphisms is uniquely determined by its values over the dual graphs of all
vine curves.

Let us fix a degree d universal stability assignment 𝜎 of type (𝑔, 𝑛). Recall from Definition 4.9 (and
Remark 4.10) that this is the datum of a collection

𝜎 = {𝜎Γ}Γ∈𝐺𝑔,𝑛

that is compatible with all graph morphisms in 𝐺𝑔,𝑛.
By Condition (1) of Definition 4.3, if 𝑇 ⊆ Γ is a spanning tree, then 𝜎Γ (𝑇) = {d𝑇 } contains a unique

multidegree d𝑇 ∈ 𝑆𝑑Γ (𝑇). The following lemma shows that a stability assignment is ‘overdetermined’
by the collection of data obtained by extracting this unique value from all spanning trees.
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Lemma 9.1. Let Γ be a stable graph and let us fix, for all spanning trees T of Γ, a multidegree
d𝑇 ∈ 𝑆𝑑Γ (𝑇). Then there exists at most one degree d stability assignment 𝜎Γ whose value 𝜎Γ (𝑇) equals
{d𝑇 } for all spanning trees T.

Proof. Let 𝜎Γ be a degree d stability assignment that satisfies the hypothesis. Inductively define another
collection 𝑀Γ by defining 𝑀Γ (𝐺) ⊂ 𝑆𝑑Γ (𝐺) for all spanning subgraphs G of Γ. Starting from the
assignments 𝑀Γ (𝑇) := {𝑑𝑇 } for all spanning trees 𝑇 ⊆ 𝐺, let 𝑀Γ be the minimal assignment that
satisfies Condition (1) of Definition 4.3.

Because 𝜎Γ satisfies Condition (1) of Definition 4.3, for all spanning subgraphs 𝐺 ⊆ Γ, we have
the inclusion 𝑀Γ (𝐺) ⊆ 𝜎Γ (𝐺). The inequality |𝑀Γ (𝐺) | ≥ 𝑐(𝐺) follows from Proposition 4.7. By
Condition (2) of Definition 4.3, we also have the equality | 𝜎Γ (𝐺) | = 𝑐(𝐺). From this, we conclude that
𝑀Γ (𝐺) and 𝜎Γ (𝐺) must coincide. �

By applying the same idea as in [24, Lemma 3.8] and [25, Lemma 3.9], we now see how compatibility
with graph morphisms propagates an assignment of multidegrees on all strata of vine curves (with
the exception of the vine curves whose graph admits a symmetry that swaps the two vertices) to an
assignment on all vertices of all spanning trees of all graphs Γ ∈ 𝐺𝑔,𝑛. The reason for excluding the
symmetric graphs is that compatibility under automorphisms forces all universal degree d stability
assignments to have the same value on those graphs.

Let 𝑇𝑔,𝑛 ⊆ 𝐺𝑔,𝑛 be the collection of loopless graphs with 2 vertices, and let 𝑇 ′𝑔,𝑛 ⊆ 𝑇𝑔,𝑛 be the
subset of graphs such that each automorphism fixes the two vertices. For each element 𝐺 ∈ 𝑇𝑔,𝑛, fix
an ordering of its two vertices (i.e., Vert(𝐺) = {𝑣𝐺1 , 𝑣𝐺2 }). Let 𝐶𝑔,𝑛 ⊆ 𝑇𝑔,𝑛 and be the subset of graphs
with exactly 1 edge (equivalently, the dual graphs of vine curves with no separating nodes, equivalently,
the dual graphs of vine curves whose strata have codimension 1 in M𝑔,𝑛), and let 𝐺NS

𝑔,𝑛 ⊆ 𝐺𝑔,𝑛 be the
subset of graphs without separating edges.

Lemma 9.2. For each function 𝛼 : 𝑇 ′𝑔,𝑛 → Z, there exists a unique collection of assignments dΓ,𝑇 ∈

𝑆𝑑Γ (𝑇) for each spanning tree 𝑇 ⊆ Γ of each element Γ ∈ 𝐺𝑔,𝑛 such that we have∑
𝑣 ∈Vert(Γ): 𝑓 (𝑣)=𝑣𝐺1

dΓ,𝑇 (𝑣) = 𝛼(𝐺) (9.1)

for all morphisms 𝑓 : Γ→ 𝐺 where G is in 𝑇𝑔,𝑛.
Similarly, for each function 𝛽 : 𝑇 ′𝑔,𝑛 \ 𝐶𝑔,𝑛 → Z, there exists a unique collection of assignments

dΓ,𝑇 ∈ 𝑆𝑑Γ (𝑇) for each spanning tree 𝑇 ⊆ Γ of each element Γ ∈ 𝐺NS
𝑔,𝑛 such that (9.1) is satisfied for all

morphisms 𝑓 : Γ→ 𝐺 where G is in 𝑇𝑔,𝑛.

Note that Equation (9.1) is the same as compatibility for graph morphisms defined in Definition 4.8,
Equation (4.2).

Proof. We only prove the first statement and leave the second to the reader.
The statement is an extension of the proof given in [24, Lemma 3.8]. The main point of the proof is

that for a fixed spanning tree 𝑇 ⊆ Γ, contracting all but one edge of T induces a bijection from Edges(𝑇)
to the set of morphisms from Γ to some graph G isomorphic to an element of 𝑇𝑔,𝑛. The isomorphism is
unique when 𝐺 ∈ 𝑇 ′𝑔,𝑛, and there are two isomorphisms when 𝐺 ∈ 𝑇𝑔,𝑛 \ 𝑇 ′𝑔,𝑛.

Each 𝑒 ∈ Edges(𝑇) induces a morphism Γ → Γ𝑒 obtained by contracting all edges Edges(𝑇) \ {𝑒}.
There are two cases, depending on how each automorphism of Γ𝑒 acts on Vert(Γ𝑒): (1) If each acts
trivially, then there exists a unique isomorphism from Γ𝑒 to an element of 𝑇 ′𝑔,𝑛. (2) If some act
nontrivially, there are two isomorphisms from Γ𝑒 to an element of 𝑇𝑔,𝑛 \ 𝑇 ′𝑔,𝑛.

Now we view dΓ,𝑇 as a vector with |Vert 𝑇 | = |Vert Γ| unknown entries. In Case (1), we obtain an
affine linear constraint among these unknowns by Equation (9.1). In Case (2), a linear constraint is given
by compatibility for the extra automorphism, which imposes that the sum of the values of dΓ,𝑇 on the
vertices on one side of e equals the sum of the values on the vertices on the other side of e. Altogether,
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this gives |Edges(𝑇) | = |Vert(Γ) | − 1 affine linear constraints on the |Vert(Γ) | different entries of dΓ,𝑇 .
One more affine linear constraint is given by the fact that dΓ,𝑇 ∈ 𝑆𝑑Γ (𝑇) ⊂ ZVert(Γ) . All in all, we
obtain an affine linear system of |Vert(𝑇) | equations in |Vert(𝑇) | unknowns, which one can check has
invertible determinant over Z – hence a unique solution for dΓ,𝑇 . �

Lemmas 9.1 and 9.2 allow us to regard every degree d universal stability assignment of type (𝑔, 𝑛) as
an element of Z𝑇 ′𝑔,𝑛 . However, not all elements of Z𝑇 ′𝑔,𝑛 give rise to a universal stability assignment. For
Γ ∈ 𝐺𝑔,𝑛, it can happen that the collection on all spanning trees {dΓ,𝑇 }𝑇 obtained from some 𝛼 ∈ Z𝑇 ′𝑔,𝑛

as in Lemma 9.2 is not the restriction of any stability assignment on the graph Γ (see Lemma 9.1).

Corollary 9.3. Let 𝜎, 𝜏 be degree d universal stability assignments of type (𝑔, 𝑛). If 𝜎𝐺 = 𝜏𝐺 for all
𝐺 ∈ 𝑇 ′𝑔,𝑛, then 𝜎 = 𝜏. If 𝜎𝐺 = 𝜏𝐺 for all 𝐺 ∈ 𝑇 ′𝑔,𝑛 \𝐶𝑔,𝑛, then 𝜎 and 𝜏 coincide on all curves that have
no separating nodes.

Proof. Follows immediately from Lemmas 9.1 and 9.2. �

9.2. Second part: When 𝑛 = 0, over each vine curve with at least 2 nodes there is at most 1 stability
assignment that extends to a universal stability

In this subsection, we fix 𝑔 ≥ 2 and 𝑛 = 0. The main result here is Corollary 9.5.
We first need some combinatorial preparation. Let GSym𝑔 be the trivalent graph with 2𝑔−2 vertices

𝑣1, . . . , 𝑣2𝑔−2 of genus 0, where each vertex 𝑣𝑖 is connected to 𝑣𝑖−1, 𝑣𝑖+1 and 𝑣𝑖+𝑔−1 (indices should be
considered modulo 2𝑔 − 2). For 𝑖 ∈ Z/(2𝑔 − 2)Z and 𝑗 = 1, . . . , 𝑔 − 1, we shall denote by 𝑒𝑖 the edge
joining 𝑣𝑖 and 𝑣𝑖+1 and by 𝑒′𝑗 the edge joining 𝑣 𝑗 and 𝑣 𝑗+𝑔−1. (See Picture 1).

Let Γ𝑔 ⊂ GSym𝑔 be the maximal 1-cycle consisting of all edges of the form 𝑒𝑖 .

Lemma 9.4. For every 𝑑 ∈ Z, there is at most one assignment

𝜎GSym𝑔
(Γ𝑔) ⊂ 𝑆𝑑GSym𝑔

(Γ𝑔)

that satisfies the two conditions of Definition 4.3 and that extends to a degree d universal stability
assignment of type (𝑔, 0). When such an assignment exists, the integers 𝑑 − 𝑔 + 1 and 2𝑔 − 2 are
necessarily coprime.

Figure 1. A picture of the graph GSym𝑔.
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Proof. Assume that 𝜎GSym𝑔
is the restriction to GSym𝑔 of some universal stability 𝜎. Since Γ𝑔 is a

graph of genus 1, we can apply the results from [32, Section 3] to describe the assignment 𝜎GSym𝑔
(Γ𝑔).

Namely, in genus 1, it is known that all such assignments are induced by a polarization 𝜙 whose value
𝜙(𝑣𝑖) at each vertex 𝑣𝑖 is given by the average of the 2𝑔 − 2 admissible multidegrees in 𝜎GSym𝑔

(Γ𝑔).
In particular, the polarization 𝜙 should be invariant under the automorphisms of GSym𝑔 preserving
Γ𝑔, such as the cyclic automorphism mapping 𝑒𝑖 to 𝑒𝑖+1 for all i. From this, we deduce that all 𝜙(𝑣𝑖)
are equal, and since we have obtained Γ𝑔 from GSym𝑔 by removing the 𝑔 − 1 edges 𝑒′𝑖 , we have∑
𝑖∈Z/(2𝑔−2)Z 𝜙𝑖 = 𝑑 − 𝑔 + 1. It follows that there exists at most 1 assignment, and that this assignment

should be the one induced by 𝜙(𝑣𝑖) =
𝑑−𝑔+1
2𝑔−2 for all 𝑖 = 1, . . . , 2𝑔 − 2. Then the claim follows from the

fact that this polarization is nondegenerate if and only if 𝑑 − 𝑔 + 1 and 2𝑔 − 2 are coprime. �

We can now prove the following.

Corollary 9.5. If 𝐺 ∈ 𝑇𝑔,0 \ 𝐶𝑔,0 ⊆ 𝐺𝑔,0 is a loopless graph with 2 vertices and at least 2 edges, there
exists at most one degree d stability assignment for the graph G that extends to a degree d universal
stability assignment.

In the proof, we will denote by Γ(𝑡, 𝑖, 𝑗) the object of 𝐺𝑔 that consists of two vertices of genus i and
j connected by t edges. (Note that 𝑔 = 𝑖 + 𝑗 + 𝑡 − 1).

Proof. The claim is obtained by proving that the value of an assignment on vine curves of type 𝑡 ≥ 2 can
be obtained, using compatibility with graph morphisms (Definition 4.8), from the assignment calculated
on Γ𝑔 ⊂ GSym𝑔 (described in Lemma 9.4). Recall that a degree d stability assignment over a graph
with 2 vertices has the same value on all spanning trees and is uniquely determined by this value
(Example 4.6).

First, we prove the claim when 𝐺 = Γ(𝑡, 𝑖, 0) has one vertex of genus zero. Apply Lemma 9.4
to deduce the uniqueness of an assignment 𝜎GSym𝑔

(Γ𝑔) that satisfies the two conditions of Defini-
tion 4.3 and automorphism-invariance. Then apply to Γ𝑔 the first composition of contractions defined
in [25, Lemma 3.9].

The statement for an arbitrary graph 𝐺 = Γ(𝑡, 𝑖, 𝑗) is obtained by applying the second set of
contractions used in the proof of [25, Lemma 3.9] to deduce the value of 𝜎 on Γ(𝑡, 𝑖, 𝑗) from the value
of 𝜎 on 𝐺 = Γ(𝑖− 𝑗+2, 𝑡+2 𝑗−2, 0). More precisely, consider the graph 𝐺 ′with 4 vertices 𝑤1, 𝑤2, 𝑤3, 𝑤4
defined in the proof of [25, Lemma 3.9] and its spanning subgraph 𝐺 ′0 := 𝑤1 − 𝑤2 − 𝑤4 − 𝑤3 − 𝑤1. Let
𝛼 ∈ Z be defined by the condition

𝜎Γ(𝑖− 𝑗+2,𝑡+2 𝑗−2,0) (𝐺0) = {(𝑑 − 𝑖 + 𝑗 − 1 − 𝛼, 𝛼)}

for 𝐺0 a spanning tree of Γ(𝑖 − 𝑗 + 2, 𝑡 + 2 𝑗 − 2, 0). By combining the axioms of a degree d stability
with compatibility with graph morphisms (Definition 4.8), we find out

𝜎𝐺′ (𝐺
′
0) = {(𝛽 + 1, 𝛽, 𝛼, 𝛼), (𝛽, 𝛽 + 1, 𝛼, 𝛼), (𝛽, 𝛽, 𝛼 + 1, 𝛼), (𝛽, 𝛽, 𝛼, 𝛼 + 1)}

for the unique 𝛽 ∈ Z such that 2𝛼+2𝛽 = 𝑑 +1− 𝑡 − 𝑖 + 𝑗 (observe that 𝑑 +1− 𝑡 − 𝑖 + 𝑗 must be even since
so is 𝑑 − 𝑔 + 1, because by Lemma 9.4, it is coprime with 2𝑔 − 2, and by using 𝑔 = 𝑡 + 𝑖 + 𝑗 − 1). From
Condition (1) of Definition 4.3, we deduce that the unique assignment on the spanning tree 𝐺 ′′0 ⊂ 𝐺 ′0
defined by 𝑤2 − 𝑤1 − 𝑤3 − 𝑤4 equals

𝜎𝐺′ (𝐺
′′
0 ) = {(𝛽, 𝛽, 𝛼, 𝛼)},

and applying the second set of contractions used in the proof of [25, Lemma 3.9], we deduce the value
of 𝜎 on the graph 𝐺 = Γ(𝑡, 𝑖, 𝑗). �
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9.3. Third part: Conclusion

In this subsection, we fix 𝑔 ≥ 2 and 𝑛 = 0.
Note that if gcd(𝑑−𝑔+1, 2𝑔−2) = 1, the universal canonical numerical polarization Φ𝑑

can defined in
Remark 8.13 is nondegenerate, and so there is a canonical universal stability assignment 𝜎Φ𝑑

can
of type

(𝑔, 0) defined via Definition 8.10. More stability assignments can be obtained by modifying the stable
bidegrees over the boundary divisors of M𝑔 having two components (the vine curves whose dual graph,
borrowing from the notation of the previous subsection, has the form 𝐺 = Γ(1, 𝑖, 𝑔 − 𝑖) for 1 ≤ 𝑖 < 𝑔/2,
the first vertex having genus i and the second having genus 𝑔 − 𝑖).

Proposition 9.6. Assume gcd(𝑑 − 𝑔 + 1, 2𝑔 − 2) = 1 and fix an integer 𝛼𝑖 for each 1 ≤ 𝑖 < � 𝑔−1
2 �.

Then there exists a stability assignment of the form 𝜎Φ for Φ a nondegenerate element of 𝑉𝑑
𝑔 (as in

Definition 8.10) such that Φ(𝐺 (1, 𝑖, 𝑔 − 𝑖)) = (𝛼𝑖 , 𝑑 − 𝛼𝑖) for all i.

Proof. The existence of a nondegenerate universal stability assignment Φ that satisfies the given
constraints follows immediately from [25, Corollary 3.6, and Theorem 2, in the 𝑛 = 0 case]. By
Corollary 8.12, the assignment 𝜎Φ defines a degree d universal stability assignment. �

We are now in a position to conclude.

Theorem 9.7. If a degree d universal stability assignment of type (𝑔, 0) (Definition 4.9 and Remark 4.10)
exists, then gcd(𝑑 − 𝑔 + 1, 2𝑔 − 2) = 1. Assuming the latter equality holds, let 𝜏 be one such stability
assignment. Then there exists a unique stability assignment of the form 𝜎Φ for Φ ∈ 𝑉𝑑

𝑔 nondegenerate
such that 𝜏 equals 𝜎Φ. This stability assignment coincides with the canonical stability assignment 𝜎Φ𝑑

can

(see Remark 8.13) on all curves [𝐶] ∈M𝑔 with no separating nodes.

Proof. By Lemma 9.4, if gcd(𝑑−𝑔+1, 2𝑔−2) ≠ 1, there exists no universal stability assignment. From
now on, we will assume gcd(𝑑 − 𝑔 + 1, 2𝑔 − 2) = 1.

We now prove the second statement. By the first part of Corollary 9.3, proving the equality 𝜏 = 𝜎Φ

for some nondegenerate Φ ∈ 𝑉𝑑
𝑔 is equivalent to proving the equality of the restrictions

𝜏𝐺 = 𝜎𝐺,Φ(𝐺) for all loopless graphs 𝐺 ∈ 𝐺𝑔,0 with 2 vertices. (9.2)

By Proposition 9.6, there exists a stability assignment of the form 𝜎Φ that coincides with 𝜏 when
restricted to all loopless graphs G with 2 vertices and 1 edge. By the uniqueness statement in
Corollary 9.5, we conclude that Condition (9.2) holds, and hence that 𝜏 = 𝜎Φ.

Our last statement follows from the second part of Corollary 9.3. �

By combining Theorem 9.7 and Proposition 7.14 (with X /𝑆 the universal family over 𝑆 = M𝑔), we
immediately deduce the following classification result.

Corollary 9.8. If J 𝑔 is a degree d fine compactified universal Jacobian for M𝑔, then d satisfies
gcd(𝑑 − 𝑔 + 1, 2𝑔 − 2) = 1, and there exists Φ ∈ 𝑉𝑑

𝑔 such that J 𝑔 = J 𝑔 (Φ).

We conclude by relating this result to the compactified universal Jacobians constructed in the nineties
by Caporaso [12], Pandharipande [33] and Simpson [35]. By earlier work, this amounts to relatingJ (Φ),
for any Φ ∈ 𝑉𝑑

𝑔 , to the canonical fine compactified universal Jacobian J (Φ𝑑
can).

Remark 9.9. Let Φ ∈ 𝑉𝑑
𝑔 and assume gcd(𝑑 − 𝑔 + 1, 2𝑔 − 2) = 1. Then we claim that there exists a

line bundle 𝑀 ∈ Pic0 (C𝑔) such that Φ = Φ𝑑
can + deg(𝑀). In particular, translation by M induces an

isomorphism J 𝑔 (Φ𝑑
can) → J 𝑔 (Φ) that commutes with the forgetful maps to M𝑔.

The claim follows from [25, Section 6]. In loc. cit., the authors study the natural translation action
of Pic0(C𝑔,𝑛) on 𝑉𝑑

𝑔,𝑛. This action induces an action on the collection of connected components of the
nondegenerate locus, and by [25, Lemma 6.15 (2)], this action is transitive when n equals zero.
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The relation betweenJ 𝑔 (Φ𝑑
can) and the compactified Jacobians of Caporaso [12], Pandharipande [33]

is discussed in [25, Remark 5.14]. The relation with Simpson’s stability with respect to an ample line
bundle is established in [25, Corollary 4.3] (see also [24, Section 3]).

10. Final remarks and open questions

In Definitions 4.3 and 4.9, we introduced the notion of families of degree d stability assignments for a
single curve X and for the universal family C𝑔,𝑛 →M𝑔,𝑛.

For X a nodal curve with dual graph Γ, let Σ𝑑 (Γ) be the set of all degree d stability assignments.
In Section 8, we defined, following Oda–Seshadri [31], a stability space 𝑉𝑑 (Γ) with a subspace of
degenerate elements (a union of hyperplanes). We define P𝑑 (Γ) to be the set whose elements are
the connected components (maximal dimensional polytopes) of the nondegenerate locus in 𝑉𝑑 (Γ). By
Corollary 7.16 and Proposition 8.3, there is an injection P𝑑 (Γ) → Σ𝑑 (Γ), and it is natural to ask when
this map is surjective. This is the same as Question 8.4, the case where 𝑔(𝑋) = 1 (or even 𝑏1(Γ(𝑋)) = 1)
was settled in the affirmative in [32]; see Example 8.7.

Then let Σ𝑑𝑔,𝑛 be the set of all degree d stability assignments of type (𝑔, 𝑛). The latter can be described
as the inverse limit

Σ𝑑𝑔,𝑛 = lim
←−−

𝐺∈𝐺𝑔,𝑛

Σ𝑑 (𝐺),

where 𝐺𝑔,𝑛 is the category of stable n-pointed dual graphs of genus g.
Similarly, for universal (and strongly compatible) numerical polarizations (see Section 8), in [25],

the authors defined the affine space

𝑉𝑑
𝑔,𝑛 := lim

←−−
𝐺∈𝐺𝑔,𝑛

𝑉𝑑 (𝐺)

(where morphisms are as in Definition 8.9). The latter is always nonempty, as it contains the canonical
stability assignment.

LetP𝑑
𝑔,𝑛 be the set whose elements are the connected components of the complement of the degenerate

stability assignments in𝑉𝑑
𝑔,𝑛 (see Definition 8.10). By Corollary 7.16 and Corollary 8.3, we have a natural

injection P𝑑
𝑔,𝑛 → Σ𝑑𝑔,𝑛, and one can ask under which assumptions the latter is surjective.7 The genus 1

case was settled in [32]: the map P𝑑
1,𝑛 → Σ𝑑1,𝑛 is a bijection if and only if 𝑛 ≤ 5 (see Remark 8.14). The

case without marked points is solved by Corollary 9.8: the map P𝑑
𝑔 → Σ𝑑𝑔 is a bijection for all g.

Here are some natural future problems to address.

1. What is the analogue of Theorem 1.1 for the case of smoothable compactified Jacobians (not
necessarily fine)? By this, we mean a smoothable open substack of the moduli space of rank 1
torsion-free sheaves (not just the simple ones) that have a proper good moduli space.

2. Is there a natural stability space with walls, containing 𝑉𝑑
𝑔,𝑛, and a natural bijection from the set of

its maximal-dimensional chambers to Σ𝑑𝑔,𝑛?
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