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Abstract

The effects of fish oil (FO) supplementation on glycaemic control are unclear, and positive effects may occur only when the phospholipid
content of tissue membranes exceeds 14 % as 7-3 PUFA. Subjects (1 306, thirty-three completed) were paired based on metabolic parameters
and allocated into a parallel double-blind randomised trial with one of each pair offered daily either 6 g of FO (3-9 g 72-3 PUFA) or 6 g of maize
oil (MO) for 9 months. Hyperinsulinaemic—euglycaemic—euaminoacidaemic (HIEGEAA) clamps (with [6,6 *H, glucose]) were performed at the
start and end of the intervention. Endogenous glucose production (EGP) and whole-body protein turnover (WBPT) were each measured after
an overnight fast. The primary outcome involved the effect of oil type on insulin sensitivity related to glycaemic control. The secondary
outcome involved the effect of oil type on WBPT. Subjects on FO (2 16) had increased erythrocyte 7-3 PUFA concentrations >14 %, whereas
subjects on MO (n 17) had unaltered 7-3 PUFA concentrations at 9 %. Type of oil had no effect on fasting EGP, insulin sensitivity or total
glucose disposal during the HIEGEAA clamp. In contrast, under insulin-stimulated conditions, total protein disposal (P=0-007) and
endogenous WBPT (P=0-001) were both increased with FO. In an associated pilot study (7 4, three completed), although 7-3 PUFA in
erythrocyte membranes increased to >14 % with the FO supplement, the enrichment in muscle membranes remained lower (8 %; P<0-001).
In conclusion, long-term supplementation with FO, at amounts near the safety limits set by regulatory authorities in Europe and the USA, did
not alter glycaemic control but did have an impact on WBPT.
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In many Western societies, type 2 diabetes affects 5-8 % of the
population with an associated burden on health resources™.
This incidence is associated, in part, with the increase in global
obesity, as approximately 80 % of people with type 2 diabetes
are overweight or obese”. The transition to, and onset of, type
2 diabetes is characterised by insulin resistance®, and in both
people who have developed diabetes and those in a ‘pre-
diabetes’ state altered lifestyle including exercise and/or weight
loss can improve glycaemic control®™. Nonetheless, continued
compliance with such interventions is often unsatisfactory and
other interventions have been sought.

One approach involves supplementation with long-chain 7-3
PUFA, notably EPA and DHA, found in fish and other marine
0ils'®”. Their potential benefit was noted several decades ago
in Alaskan Inuit who had a low prevalence of type 2 diabetes

even when obese®” — a feature lost when they adopted a

non-traditional lifestyle"®”. The role of long-chain 7-3 PUFA
was supported by rodent studies where supplementation with
n-3 PUFA ameliorated the insulin resistance caused by a diet
rich in SFAV. Nonetheless, supplementation of human diets
with 7-3 PUFA has produced inconsistent outcomes, with a few
studies reporting positive outcomes*?71> but with these
counterbalanced by other publications that showed negative
responses(l(”zm . In practice, however, the majority of studies
reported show either a null or mixed outcome®?'3”. On the
basis of such variable outcomes, it is not surprising that a meta-
analysis of the available literature data concluded that there was
no benefit of fish oil (FO) supplementation, at least in terms of
aspects of glycaemic control®®.

The reason for these inconsistent outcomes of FO supple-
mentation in humans may have a basis from more recent
studies in farm species where responses in both glucose and

Abbreviations: BCAA, branched-chain amino acids; EGP, endogenous glucose production; FO, fish oil; HIEGEAA, hyperinsulinaemic—euglycaemic—

euaminoacidaemic; MO, maize oil; MOP, 4-methyl-2-oxo pentanoic acid.
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protein metabolism were not observed until a threshold phos-
pholipid enrichment in tissue membranes was achieved %4,
Such membrane phospholipid enrichments may not be attained
in many of the human studies where either low doses of FO and
(or) short intervention periods were employed, and therefore
may not achieve values associated with positive health out-
comes V. Interestingly, recent studies in humans have reported
that FO supplementation may impact on muscle protein
synthesis over relatively short timescales (8 weeks®”*?), which
might indicate differences in insulin sensitivity between glucose
and protein metabolism.

Therefore, the present study was based on a dose of 7-3 PUFA
(3-9 g/d) that is between the upper safe limit recommended in the
USA Bg/d“’ and Europe (5g/d“ and supplied over
a 9-month period to older subjects with impaired glucose
regulation. The primary outcome was to assess whether this
supplementation improved insulin sensitivity in terms of glycaemic
control. The secondary outcome was to examine whether the
supplementation altered whole-body protein metabolism. A pilot
study was also conducted to investigate whether 7-3 PUFA
enrichments in membranes of erythrocytes provided good
surrogate markers of the phospholipid content in skeletal muscles.

Methods
Subjects and study design

Male and post-menopausal female Caucasian subjects were
considered eligible for the study if aged between 40 and 61
years and had at least one of the following: impaired fasting
glucose (fasting plasma glucose 6-1-6-9 mmol/); impaired
glucose tolerance (plasma glucose 7-8-11-1 mmol/l following a
2h 75¢g oral glucose tolerance test); type 2 diabetes mellitus
newly diagnosed as a result of screening for this study but
with HbAlc <53 mmol/mol (7 %) and fasting plasma glucose
>5-5mmol/l but not requiring hypoglycaemic therapy.
Exclusion criteria were diabetes requiring hypoglycaemic
therapy, use of anticoagulants, alcoholism, hepatic or renal
failure, anaemia, CVD or respiratory disease, malignancy,
epilepsy, regular steroid or non-steroidal anti-inflammatory
drug treatment plus any objections raised by the volunteer’s
general practitioner. Medication with stains was not an
exclusion criterion. Recruitment was under the supervision of
the first author (L. F. C.), a Specialist Registrar in diabetes care.

A total of 108 subjects were approached after the screening
procedure. Of these, fifty-one did not respond, whereas another
seventeen did not meet eligibility criteria. Those who were
eligible (z2 40) then elected to undergo at the start and end of
the interventions either measures of insulin sensitivity (12 306),
based on the hyperinsulinaemic—euglycaemic—euaminoacidaemic
(HIEGEAA) clamp procedure, or instead provide muscle
biopsies (1 4) for a pilot trial. This study was conducted
according to the guidelines laid down in the Declaration of
Helsinki. The trial was registered (NCT01241474; https://clin-
icaltrials.gov/) and ethics approval was obtained from the North
of Scotland Research Ethics Committee. All the subjects gave
their written informed consent. Three subjects withdrew from
the clamp cohort for various reasons: development of type 2

diabetes mellitus requiring oral hypoglycaemic therapy
(one volunteer), vasovagal event during the first HIEGEAA
clamp (one volunteer) and general health deterioration
(one volunteer). These occurred at or after the first clamp,
and all the data obtained were excluded, with 7 17 remaining in
the MO cohort and # 16 in the FO cohort. One volunteer
withdrew from the muscle biopsy cohort following discomfort
from the first procedure.

Design and treatments

At enrolment, volunteers underwent a 2-month introductory per-
iod with the dietary 72-3:72-6 ratio standardised to 1:6 by supply of
oils for cooking and dressings (soya:sunflower oils used in a
3:1 ratio) and a spread (Flora Buttery™). Volunteers continued to
use these oils and spread throughout the study. Height and weight
were measured at enrolment as was RMR determined by indirect
calorimetry as described previously®™. Body composition was
determined by air-displacement plethysmography (BOD POD®,
Body Composition System, Life Measurement Instrument) at the
beginning and end of the study™”. These procedures were carried
out at the Human Nutrition Unit of the Rowett Institute of Nutrition
and Health.

The daily 7-3 PUFA supplement contained 6 g of FO (men-
haden, Pacific herring) as 6 x 1 g of EPAX 6000 TG (EPAX AS).
Although the nominal content of EPA + DPA in the oil was 50 %,
the actual composition of the 6000T batch included EPA 39-8 %,
DPA 3-6%, DHA 25-5% and a-linolenic acid 2-8% when
assessed by GC. The actual daily intake of EPA plus DHA
(39 g/d) was therefore above the safe limit (3 g/d) recom-
mended by the US Food and Drug Administration‘® but within
the 5g/d set by the European Food Safety Authority"*”. The
control supplement consisted of maize oil (MO, 6 X 1 g capsules
daily) also supplied by EPAX and contained <2% EPA
plus DHA.

In order to match the treatment groups for the clamp cohort,
the initial volunteers after their first HIEGEAA clamp were
randomly assigned to either FO or MO treatments via a double-
blind procedure, using a computer-generated randomisation list
and supervised by an independent statistician. If a subsequent
volunteer of the same sex required an infusion rate of glucose
(mg/min per kg fat-free mass (FFM)) during the 3rd hour of the
clamp within 25% of that of an unpaired earlier volunteer,
they were paired together and given the alternative oil as
the treatment. For the last three volunteers, this closeness of
fit based on glucose
(difference > 25 %), and thus alternative criteria of amino acid
disposal and body composition were used to complete one
pairing while the other remained unpaired. Capsules of the two
oils were identical in outward appearance and were provided
via the double-blind procedure in similar containers labelled
under the independent
nutritionist. Neither volunteers nor researchers knew which

infusion rate was not achieved

sequentially supervision of an
treatment was allocated.

Each month, subjects attended the Rowett Institute of
Nutrition and Health for review. They completed a brief
health questionnaire, received new oil capsules, were weighed
and overnight fasted blood samples were collected and
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subsequently separated into erythrocytes and plasma, with
portions of each stored at —8°C for further analyses.

Hyperinsulinaemic-euglycaemic—euaminoacidaemic clamp
and biopsy procedures

The thirty-three volunteers (twenty men and thirteen women
aged 51-09 years) underwent two HIEGEAA clamps in the
Department of Diabetes, Aberdeen Royal Infirmary, Aberdeen,
UK. The first was after the 2-month introductory period and
the second after 9 months of oil supplementation. Dietary
recommendations were given for the 3d before the
clamps, standardised for both quantity (1-5XRMR) and
macronutrient composition (52% carbohydrate, 15% protein
and 33 % fat).

After an overnight fast (from 19.00 hours the day before),
subjects were cannulated in a dorsal hand or wrist vein
(retrograde, for sampling) and in an antecubital vein
(antegrade, for infusions using a three-way tap) of the
contralateral arm. The blood samples were ‘arterialised’ by
placing the hand in a warm blanket (Dreamland Thermo
Therapy Heatpad). Before infusions, four background samples
were obtained at 5-min intervals to determine baseline glycae-
mia. Volunteers then received a prime dose of 7-8 mg/kg FFM
p-[6,6-*H,] glucose and 0-076 mg/kg FEM per min 1-[1-'°C]
leucine followed by a 2-h infusion of 0-075 mg/kg FFM per min
p-[6,6-*H,) glucose and 0-0126 mg/kg FFM per min [1-13C]
leucine. During the last 30 min of infusion, six plasma samples
were obtained at 5-min intervals and concentrations of
glucose (glucose oxidase method; Yellow Springs Instrument)
and plasma branched-chain amino acids (BCAA)(%) were
determined. Portions of plasma were also stored at —80°C
for subsequent analyses of glucose and leucine oxo-acid
enrichments.

Immediately after this 2-h infusion, the 3-h hyperinsulinaemic
clamp was initiated. First, 21 units of insulin (Human Actrapid;
Novo Nordisk) was mixed in 56 ml 0-9 % saline and 4 ml of the
subject’s plasma in a syringe and delivered through a syringe
pump (Graseby Medical Ltd). The infusion rate was based on
body surface area and set at 160 mU/m? per min for 4 min, then
80 mU/m? per min for 4 min and finally maintained at a rate of
40mU/m? per min for the next 172 min. Euglycaemia (+5 % of
fasting glucose concentration or at 5-5 mu if fasting concentra-
tion was >5-5 mm) and euaminoacidaemia (+10 % fasting BCAA
concentration) were maintained during the clamp procedure by
separate variable rate infusions of 20% dextrose (Fresenius
Kabi) enriched to 3 mole percent excess (MPE) with p-[6,6-H,]
glucose (Cambridge Isotope Laboratories Inc.) and vamin 14
(Fresenius Kabi) enriched to 5MPE with 1-[1-'3C] leucine
(Cambiridge Isotope Laboratories Inc.). Vamin 14 is a mixture of
amino acids (total 694 mmol/l) used for parenteral infusions and
contains nine non-essential amino acids and all nine essential
amino acids, including (mmol/D) isoleucine (31-8), leucine
(44-9) and valine (46-5). Approximately 1ml of blood was
obtained every 5min during the clamp to monitor plasma
glucose and BCAA concentrations. Adjustment was based on
experience and, in the case of glucose, with the aid of an
algorithm“”.

During the last hour of the clamp, nine plasma samples were
obtained (at 125, 135, 145, 155, 160, 165, 170, 175 and 180 min)
and frozen at —80°C for later hormone and isotope enrichment
analyses. During clamp 2 (post-supplementation), the glucose
was maintained at the same concentration used for clamp 1
(pre-supplementation), whereas the BCAA were clamped at the
fasting concentrations for the day.

For the muscle biopsy procedure, volunteers were treated
similarly to those who underwent the clamp procedure with
blood samples withdrawn at each of the monthly visits and with
muscle biopsies taken after the 2-month introductory period
and again after 9 months of FO supplementation. Muscle
biopsies (300 mg) were obtained from the Vastus lateralis using
the semi-open technique(48), which involved local anaesthesia,
a skin incision and muscle removal using alligator forceps
(Weil-Blakesley conchotome); the samples were then frozen in
liquid nitrogen and stored at —80°C.

Sample processing and analyses

Membrane phospholipids were extracted from the tissue
(erythrocyte or muscle) using chloroform and methanol, with
butylated hydroxytoluene present to prevent oxidation of fatty
acids, and then separated by TLC“” and analysed by GC (as
methyl ester derivatives). In total, fourteen peaks were present
for all the chromatograms and these were summed to estimate
total and proportional fatty acid concentrations.

Concentrations of inflammatory IL-1f, IL-6) and cardiovas-
cular markers (soluble intracellular adhesion molecule and
soluble vascular adhesion molecule) were analysed using a
multiplex system (Millipore Corporation), and high sensitivity
C-reactive protein (hsCRP) level was determined using a com-
mercially available kit on a Konelab30 selective chemistry
analyser (Thermo Fisher Scientific). Insulin and C-peptide
concentrations were measured in duplicate using ELISA
(Mercodia). Plasma lipid profiles
commercial kits on the Konelab30.

Enrichment (as tracer:tracee ratios) of D—[6,6—2H2] glucose was
the penta-acetate derivative®”,
enrichments of 1-[1-’C] leucine and 1-{1-'3C] 4-methyl-2-oxo
pentanoic acid (MOP) were quantified as described
previously®V.

were analysed using

determined as whereas

Calculations

Fasted endogenous glucose production (EGP) was calculated
based on tracer dilution and a standard steady-state model®?,
with values for the last 20 min of collection used, where a
temporal change of only +1% in glucose tracer:tracee was
observed over this period (0-0316 v. 0-0319; P<0-001), with no
significant effect of type of oil and month of oil X month inter-
action. During normal high-insulin-euglycaemic clamp proce-
dures, plasma amino acid concentrations decline and this may
induce confounding metabolic effects that are avoided by the
HIEGAA procedure®®. In addition, the amount of amino acid
infused to maintain euaminoacidaemia provides a measure of
the sensitivity to the insulin challenge®”**>®  analogous to the
situation with glucose. The dual clamp procedure requires
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separate calculations for glucose and amino acid (leucine)
kinetics. During the last 60 min of the HIEGEAA clamp, glucose
kinetics were determined based on Steele’s model®® for non-
steady-state conditions with rate of appearance (Ra) in plasma
calculated using a previously published model®?:

1 pVG(r)dSAp(r) GINE(1)
T SAp() SAp(n)  dr 57SAp(r)

Ra(t) —GINF(1)

where 7 is the rate of infusion of b-[6,6-°H,] glucose
(mmol/min), pV is pool size =0-65 X 0-25 X body weight based
on analysis of similar subjects®”, G(#) is the plasma glucose
concentration (mmol/D, dSAp(#)/dt is the rate of change in
plasma enrichment of D-[6,6—2H2] glucose (mmol/l per min), SAg
is enrichment of infusate (D—[6,6—2H2] glucose mmol/l) and GINF(9)
is the exogenous glucose infusion rate (mmol/min). Rates of
disappearance (Rd) were calculated using the same mo
del approach®? with allowance for changes in pool sizes as
follows:

I pVG(t)dsAp(z)

_ GINF(¢) dG(z)
T SAp(1)  SAp(r)  dt B

v
gSAp(t) PY=ar

Rd(#)

where pVdG(#) /d(¢) is the rate of change in plasma glucose
concentration (mmol/l per min). During the clamp procedure
(insulin infusions), residual (non-suppressed) EGP was calcu-
lated as Ra minus infused glucose.

Protein (leucine) dynamics were estimated using a steady-
state stochastic model with MOP chosen as the precursor
pool® by the following equation:

__Infusion rate of labelled leucine(pumol / kg FFM per min)

Rd
tracer : tracee ratio MOP in plasma

In the fasted state, Rd represents whole-body protein
breakdown (WBPB). During the HIEGEAA clamp, the Rd of
leucine represents the sum of leucine infused (quantified from
the vamin 14 infusion) plus endogenous WBPB as altered
by the infused insulin. Although at steady state Rd equals the
Ra, the latter could not be resolved into the two components of
oxidative and non-oxidative (synthesis) rates. The homoeostatic
model assessment of insulin resistance and f-cell reserve were

calculated using an online calculator®®.

Statistical analysis and power calculations

The primary outcome was altered insulin sensitivity and gly-
caemic control based on the HIEGEAA clamps. From literature
sources, the between-subject spread was estimated as 15 %, so
that a minimum of 12-16 volunteers were required per arm to
detect an improvement of 18-20% in insulin sensitivity for
glucose metabolism at a power of 90 % for the 5 % significance
level. The secondary outcome was change in whole-body
leucine Rd, and based on our own and literature data the
between-subject spread was 10 %, and thus to detect a 15%
change at a power of 90 % for the 5 % significance level would
require only nine subjects per group. For the pilot study, to look
at differences between muscle and erythrocyte phospholipid

contents, a 20 % difference was detected at a power of 90 % for
the 5% significance level with four subjects based on 8%
within-subject spread. Following initial recruitment, thirty-six
volunteers were selected and paired between treatment arms
on the basis of the amount of glucose infused during the 3rd
hour of the HIEGEAA clamp. Three volunteers did not complete
the study, and thus the final data were analysed as sixteen
pairings with one unpaired subject (blind allocation to MO).

Data were analysed by fitting a mixed model using residual
maximal likelihood with the statistical package GenStat
(13th edition release 13.1, VSN International Ltd). For pre-
intervention (baseline) data, pair was treated as a random
effect, whereas the fixed effects were type of oil, sex and their
interaction, with age and BMI as covariates. For the main ana-
lysis — namely, to compare the effect of FO with that of MO —
a random effects model was fitted with pair as a random effect,
whereas sex, type of oil and their interaction were fitted as fixed
effects. The pre-intervention value (month 0), age and BMI
(both measured at month 0) were included as covariates. The
effect of changes in body composition variables on markers of
glycaemic control and insulin sensitivity were assessed by
ANOVA through comparison of the differences between month
0 and 9 values with pair as the random effect, oil as the fixed
effect and the difference in body composition change as a
covariate. For all comparisons, P<0-05 was considered
statistically significant; P<0-10 was considered as a tendency.
Data are presented as arithmetic means with either standard
deviation or standard errors of the difference between means as
appropriate.

Results

Volunteers randomly assigned to receive FO or MO were similar
in demographics, plasma lipid profiles and plasma inflamma-
tory markers (all P> 0-10; Table 1). Females had a higher body
fat percentage than males (47-6 v. 32-3 %; sem 1-8 %; P<0-001).
Females also had a greater hsCRP than males (6-1 v. 2-1 mg/l;
sem 0-81; P=0-002). Compliance was checked during the study
period by capsule usage each month. A further check was made
retrospectively after final data analysis for the subjects allocated
FO, based on the changes in phospholipid composition of
erythrocyte membranes (see below).

Membrane phospholipid contents

As expected, type of oil influenced the total 72-3 PUFA content
in erythrocyte membranes (P < 0-001; Table 2), with an increase
in response to FO (+76 %), whereas in the MO cohort it was
unchanged (see below). These changes were also reflected in
the increased composition of the individual 7-3 PUFA (EPA,
DPA and DHA; all P<0-001) for FO compared with MO. There
was a corresponding decrease in both total and specific 7-6
PUFA with FO compared with MO (all P<0-001; Table 2). The
increase in 7-3 PUFA and decrease in 7-6 PUFA with FO
balanced and, in consequence, the sum of 7+ 3 and 72+ 6 PUFA
remained stable between FO and MO groups (online
Supplementary Table S1). Total MUFA and SFA were both
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Table 1. Baseline demographics of subjects allocated to receive either fish oil (FO) or maize oil (MO) supplements for 9 months
(Arithmetic means and standard deviations)

MO (n 17) group

FO (n 16) group

Mean SD Mean SD P*

Sex (M/F) 10/7 10/6
Age (years)t 0-194

Mean 58-1 61-8

Range 51-68 52-67
Weight (kg) 972 208 899 137 0-227
BMI (kg/m?) 338 67 318 5.2 0-395
% Fatf 391 9-8 374 11.8 0-551
Total cholesterol (mmol/l) 4.75 1.02 4.68 091 0-841
HDL-cholesterol (mmol/l) 112 0-32 0-99 0-40 0175
LDL-cholesterol (mmol/l) 282 0-99 2.82 0-83 0-984
TAG (mmol/l) 1.75 0-99 1-68 0-99 0-847
IL-18 (ug/l) 17 35 4.7 11.2 0-428
IL-6 (ug/l) 1-6 16 1.9 36-8 0-297
sSICAM-1 (ug/l) 297 150 238 87 0-169
SVCAM-1 (ug/l) 1172 199 1249 318 0-438
hsCRP (mg/l)§ 25 20 4.7 56 0-175

M/F, male/female; sICAM, soluble intracellular cellular adhesion molecule-1; sVCAM-1, soluble vascular cellular adhesion molecule-1; hsCRP, high-sensitivity C-reactive peptide.
* P values for effect of allocation to type of oil from a random effects model with pairing as a random effect and sex x type of oil and their interaction as fixed effects.
1 Sex effect P=0-037 (females younger than males with mean values 582 v. 60-0 years).

1 Sex effect P<0-001 (greater for females than males 47-6 v. 32-2 %).
§ Sex effect P=0-002 (greater for females than males 6-1 v. 21-2 mg/l).

Table 2. Effect of 9-month intervention of fish oil (FO) or maize oil (MO) on percentage contribution of various PUFA to total phospholipids in erythrocyte

membranes

(Arithmetic means with their standard errors of the difference between means)

MO group (n 17)

FO group (n 16)

Month 0 Month 9 Month 0 Month 9 SED” P type of oil*
Total n-3 PUFATE 9-3 88 10-0 176 0-47 <0-001
ALA 03 0-2 02 0-3 0-12 0-752
EPAT 1.9 1.6 20 5.9 0-32 <0-001
DPAS§ 25 24 28 39 017 <0-001
DHA%t 4.9 4.8 52 7-9 0-26 <0-001
Total n-6 PUFAL 319 331 316 251 1.25 <0-001
C20: 3n-6%ll 20 2.0 22 1.4 0-11 <0-001
C20:4n-6% 156 16-2 16-3 116 0-95 <0-001
C22:4n-6% 25 27 27 11 018 <0-001

ALA, a-linolenic acid.

* For the main analysis, to compare the intervention of type of oil (FO v. MO), a random effects model was fitted with pair as a random effect, whereas sex, type of oil and their
interaction were fitted as fixed effects. The pre-intervention value (month 0), age and BMI (both measured at month 0) were included as covariates. There were no significant
differences for any variable at month 0 between the subjects allocated to either the FO or MO treatments, except for EPA where there was a sex-by-oil interaction (P=0-050), with
values lower for males compared with females allocated to MO, but with the situation reversed for those allocated to FO.

1 Total n-3 PUFA expressed as sum of EPA + DPA + DHA.
1 Effect of age (P<0-05).
§ Effect of BMI (P=0-014).

Il Effect of sex (P=0-017) with average values for males greater than for females by 11 %.

unchanged by supplementation with either oil (P> 0-10;
online Supplementary Table S1).

Before supplementation, for all the volunteers, the sum of
EPA and DHA represented, on average, 6-9 % (range 4-6-9-7 %)
of erythrocyte membrane phospholipids and this increased to
94 % (range 6-5-12-6%) when DPA was included. For those
volunteers who then received FO, the combined EPA, DPA plus
DHA attained >14% n-3 PUFA enrichment in erythrocyte
membrane phospholipids (range 14-7-20-3%; Fig. 1) after
6 months of supplementation, but not when only EPA and DHA
were combined (range 11:1-16-2%). The proportion of 7-3

PUFA in the erythrocyte membranes was greater in the FO
group compared with the MO group from month 2 onwards
(P<0-001; Fig. 1). The changes in phospholipid composition in
the erythrocyte membranes for the volunteers allocated to FO
were in agreement with the compliance information obtained
from capsule usage for this group.

For the pilot study, to compare phospholipid enrichments
between membranes from erythrocytes and skeletal muscles, in
the three volunteers who completed both muscle biopsies, the
average 7-3 PUFA in muscle membranes before FO supple-
mentation was 2-4 % (range 1-8-3-4 %) for EPA plus DHA and
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% n-3 PUFA in erythrocytes membrane
phospholipid

Month

Fig. 1. Mean percentage, with their standard errors, of n-3 PUFA
(EPA+DHA + DPA) in phospholipids from erythrocyte membranes over the
9-month intervention with either maize oil (O, n 17) or fish oil (@, n 16). Values
at the various time points are arithmetic means, with their standard errors.
*** Significant between oils within that month (standard errors of difference
between type of oil within month 1.34), based on a random effects model
analysis with volunteer and oil within volunteer as random effects and type of
oil, month and their interaction as fixed effects (P<0-001).

3-4% (range 2-7-47 %) when DPA was included (Fig. 2). FO
increased the proportion of muscle membrane phospholipids to
6:2% (range 5-0-7°9%) as EPA plus DHA or 7-8% (range
6:0-9-7%) when DPA was included. The muscle 7-3 PUFA
proportion as combined EPA, DHA and DPA was lower
(28-59 %; SED 4-9 %; P< 0-001) than that in erythrocytes before
and after intervention (Fig. 2).

Glucose metabolism

For the primary outcome — assessment of the impact of FO on
aspects of glycaemic control — changes in variables were
considered in both the overnight fasted state (i.e. non-insulin
stimulated) and during the HIEGEAA clamp (insulin-stimu-
lated). In the fasted state, neither type of oil nor study duration
altered the concentrations of plasma glucose or EGP (Table 3).
Fasting insulin levels before intervention tended (P=0-067) to
be lower for those allocated to FO and over the period of FO
supplementation tended (P=0-053) to increase, but only to
values similar to those in the MO group, which remained
unchanged over the study period. A similar trend was observed
for fasting C-peptide, where concentrations also tended
(P=0-093) to be lower for FO than MO before intervention, but
during supplementation the 19 % increase (P=0-074) with FO
raised values similar to those observed initially for the MO
group (Table 3).

During the final hour of each HIEGEAA clamp, plasma
glucose concentrations were maintained within 5% of fasting
values in sixty-four clamps (mean +2-0%; sp 1-9 %; online
Supplementary Table S2). On two other occasions, in different
subjects, glucose was maintained at 8-4 and 8-7 % of the target.
In the insulin-stimulated state during the HIEGEAA clamp,
neither total glucose disposal nor the amount of glucose
(dextrose) infused differed between type of oil supplemented
(Table 4), even when scaled against plasma insulin concentra-
tions (Table 4). The residual (non-suppressed) EGP increased

25
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% n-3 PUFA in membrane phospholipid
o
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Fig. 2. Changes in the percentage of n-3 PUFA (EPA+DHA+DPA) in
phospholipids from membranes of erythrocytes or muscle during the 9 months
where three volunteers received fish oil (FO): pre-intervention (], month 0),
additional n-3 PUFA after 9 months of FO supplementation ().

more for FO compared with MO (+40% v. 8%; P=0-050)
during the 9 months of supplementation, with a similar ten-
dency (P=0-063) when scaled against plasma insulin. None-
theless, even with these increases, the residual EGP still only
represented a small proportion (average 15-20%) of fasting
EGP (Table 4) for both groups.

Endogenous insulin release, as assessed by C-peptide con-
centrations, continued during the last hour of the HIEGEAA
clamp but overall was less than pre-clamp values (812 v. 946;
sED 26-4; P<0-001), with no difference in response for type of
oil (see Tables 3 and 4). The C-peptide during the HIEGEAA
clamp responded differently (P=0-028) between type of oil
supplemented, with a slight decrease for MO (=5 %) over the
9 months while FO caused an increase (+18 %; Table 4). These
subtle effects on endogenous insulin release were masked by
the exogenous insulin infusion as this elevated plasma
concentrations by 70 mU/1, a 10-fold increase (range 2-50-fold)
on fasting values, but did not differ (2> 0-10) between type of
oil (online Supplementary Table S2).

Protein metabolism

For the secondary objective — examination of the effect of FO
on whole-body protein metabolism — there were no differences
in plasma total BCAA in the overnight fasted state in response to
supplementation with either FO or MO (Table 5). Similarly,
fasting protein breakdown scaled for lean body mass did not
differ either between type of oil or over the study duration, but
values were greater (+11 %; P=0-018) for females compared
with males.

During the HIEGAA clamp, under the combined action of
infused insulin, glucose and amino acids, the total amino acid
disposal (based on MOP as precursor) differed between type of
oil (P=0-007) with a 9% increase for FO and a 10 % decrease
for MO over the 9 months of supplementation. This difference
between type of oil was mainly due to altered endogenous
(non-suppressed) protein breakdown (P=0-001), with again an
increase following FO (+10%) compared with a decrease
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Table 3. Effect of 9-month supplementation with either fish oil (FO) or maize oil (MO) on fasting glucose or hormones and endogenous glucose
production (EGP)
(Arithmetic means with their standard errors of the difference between means)

MO group (n 17) FO group (n 16)
Month 0 Month 9 Month 0 Month 9 SED* P type of oil*
Fasting plasma glucose (mmol/l) 6-03 6-16 5.97 6:10 0-255 0-874
Fasting insulin (mU/l)t 146 144 95 13.0 1.82 0-043
Fasting C-peptide (pmol/l)t,t 979 1002 823 979 814 0-067
HOMA2-IRt 2.06 1.92 1-39 1-83 0-279 0-121
HOMA2-3 972 91-8 80-3 924 9-35 0-282
Fasting EGP (mg/kg FFM per min)t 2:60 264 2.82 2:84 0-080 0-428
Fasting EGP scaled to insulin (mg/kg FFM per min per mU insulin)§ 0-334 0-286 0417 0-434 0-067 0-137

HOMAZ2-IR, homoeostatic model assessment-insulin resistance; HOMA2-8, homoeostatic model assessment-g cell function; FFM, fat-free mass.

* For the main analysis, to compare the intervention of type of oil (FO v. MO), a random effects model was fitted with pair as a random effect, whereas sex, type of oil and their
interaction were fitted as fixed effects. The pre-intervention value (month 0), age and BMI (both measured at month 0) were included as covariates. For most variables, there were
no significant differences at month 0 between the subjects allocated to either the FO or MO treatments.

1 Tendency for effect of oil (P<0-10) at month 0 with greater values for the MO group, except for fasting EGP where values for FO were greater.

1 Effect of sex (P=0-021) with values for males greater, on average, by 18 %.

§ Effect of age (P=0-026).

Table 4. Effect of 9-month supplementation with either fish oil (FO) or maize oil (MO) on parameters of glucose metabolism during high-insulin—eugly-
caemic—euaminoacidaemic clamps
(Arithmetic means with their standard errors of the difference between means)

MO group (n 17) FO group (n 16)
Variables Month 0 Month 9 Month 0 Month 9 SED* P type of oil*
Total glucose infused (mg/kg FFM per min) 5-39 548 5-89 578 0-627 0-791
Total glucose disposal (mg/kg FFM per min) 5-81 6-02 6-30 6-46 0-642 0-937
Residual EGP (mg/kg FFM per min) 042 0-45 041 0-57 0-064 0-042
% Residual EGP:fasting EGP 16-0 16-9 15-4 200 2.52 0-099
Total glucose infused scaled for insulin (mg/kg FFM per min per mU) 0-071 0-069 0-078 0-075 0-010 0-903
Total glucose disposal scaled for insulin (mg/kg FFM per min per mU) 0-076 0-075 0-084 0-083 0-010 0-817
Residual EGP scaled for insulin (mg/kg FFM per min per mU) 0-0046 0-0050 0-0054 0-0071 0-0008 0-055
C-peptide during the 3rd hour of the clamp (pmol/l) 875 831 704 834 79-4 0-023

FFM, fat-free mass; EGP, endogenous glucose production.

* For the main analysis, to compare the intervention of type of oil (FO v. MO), a random effects model was fitted with pair as a random effect, whereas sex, type of oil and their
interaction were fitted as fixed effects. The pre-intervention value (month 0), age and BMI (both measured at month 0) were included as covariates. There were no significant
differences for any variable at month 0 between the subjects allocated to either the FO or MO treatments.

Table 5. Effect of 9-month supplementation with either fish oil (FO) or maize oil (MO) on infusion and plasma concentrations of branched-chain amino acids
and estimates of protein metabolism based on leucine kinetics in either the fasting state or during hyperinsulinemic—euglycaemic—euaminoacidaemic
(HIEGEAA) clamps

(Arithmetic means with their standard errors of the difference between means)

MO group (n 17) FO group (n 16)
Month 0 Month 9 Month 0 Month 9 SED* P type of oil*
Fasting BCAA concentration (umol/l) 348 343 360 360 188 0-811
Fasting protein breakdown (umol/min per kg FFM)t,§ 2.75 268 2.57 2.64 0-093 0135
Leucine infused as vamin 14 (umol/min per kg FFM)% 0-59 0-53 0-60 0-64 0-068 0-237
Total protein disposal (umol/min per kg FFM)t 2-46 2119 2-39 2:62 0-144 0-007
Endogenous protein breakdown (umol/min per kg FFM)t 1-90 1-69 1.83 2.02 0-093 0-002
% EPB:FPB 69-4 635 716 779 4.05 0-005

BCAA, combined branched-chain amino acids (isoleucine, leucine and valine); FFM, fat-free mass; EPB, endogenous protein breakdown during the HIEGEAA clamp; FBP, fasting
protein breakdown.

* For the main analysis, to compare the intervention of type of oil (FO v. MO), a random effects model was fitted with pair as a random effect, whereas sex, type of oil and their
interaction were fitted as fixed effects. The pre-intervention value (month 0), age and BMI (both measured at month 0) were included as covariates. There were no significant
differences for any variable at month 0 between the subjects allocated to either the FO or MO treatments.

+ Estimates of protein metabolism based on plasma enrichments of [1-'3C 4-methyl-2-oxo pentanoic acid], the oxo-acid of leucine, as the precursor pool.

1 Leucine present at 44-9 mmol/l in vamin 14 (total amino acids present at 694 mmol/l).

§ Effect of sex (P=0-018), females greater than males (2-83 v. 2:55 pmol/min per kg FFM, seb 0-125).
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(=11%) with MO (Table 5). In consequence, endogenous
protein breakdown during the clamp expressed as a proportion
of fasting protein breakdown differed (P<0-001) with type of
oil used as supplement, with an increase when FO was supplied
compared with a decrease with the MO intervention (Table 5).

Responses in body composition, plasma lipid profile and
inflammatory and cardiovascular markers

Most of the body composition parameters were not altered by
type of oil provided as supplement (online Supplementary
Table S3), except that both groups showed a small increase
over time in percent fat mass (+1-2 and +1-4 % for MO and FO,
respectively, Puyena=0-057 for month) and total fat mass
(+1-9kg for both MO and FO, P=0-014 for month). This
probably relates to the additional energy provided as the oil
supplements (59 MJ (14 Mcal) over study duration). In contrast,
lean body mass (kg) was unaltered by intervention with either
oil (online Supplementary Table S3). There were no impacts
(P> 0-05) of changes in either body weight or total body fat on
the amount of glucose infused during the clamp, total
glucose disposal (Rd) or residual (non-suppressed) EGP.
HDL-cholesterol increased (17 %) with FO and decreased
(=5 %) with MO (P=0-085 for type of oil; online Supplementary
Table S4). Although TAG were unaffected by oil supple-
mentation (online Supplementary Table S4), this may have
been influenced by those volunteers on statin medication. For
the volunteers who were not on statin medication, those in the
FO group (n 10) had a percentage decrease during the
supplementation while those on MO (7 10) increased (-17-4 v.
+20-8%; sep 16-6; P=0-043). There were no changes in
inflammatory markers or the two adhesion molecules
between the types of oil provided as the supplement (online
Supplementary Table S5).

Discussion

Previous studies on the impact of FO supplements on insulin
sensitivity and glycaemic control have produced inconsistent
outcomes. A small number reported positive effects, for
example ™!
in glycaemic control, for example(l()’m . The majority of studies,
however, reported either no or inconsistent responses, for
example®?”. This provides a dilemma for nutritionists as to
whether to recommend FO as an effective dietary supplement

, whereas a similar number showed a deterioration

to people with impaired glycaemic control or patients with
type 2 diabetes controlled by diet and lifestyle changes®®. The
various human studies involved a wide range of both dose of
FO (1-8-7-5g/d) and study duration (2-24 weeks), but data
from piglets and steers have suggested that an enrichment of
the muscle membrane phospholipid to 14 % of 7-3 PUFA is
required to effect a change in insulin sensitivity linked to glu-
cose and protein metabolisms®”.  Achievement of such
membrane enrichments in humans would necessitate either a
high dose of FO for moderate duration or a moderate dose for
long duration, and few of the published studies have achieved
these requirements. Therefore, the present study sought to

determine whether a dose (3-9 g/d), between the upper limits
recommended in the USA and Europe™*® given over
9 months would change glycaemic control and (or) insulin
sensitivity in humans with impaired glucose regulation.

Despite this dose and length of time of supplementation with
n-3 PUFA, there was no improvement in either insulin sensi-
tivity or regulation of glycaemia. The observed small increase in
residual EGP following the FO intervention was insufficient to
impact markedly on overall glucose disposal. This raises the
following question: how can the present findings be reconciled
with the epidemiological associations reported for the Inuit or
with the animal studies where positive health benefits of FO are
often reported?

The phospholipid content of erythrocyte membranes
comprise 11 % 7-3PUFA in Inuit who consume >32 % of their
diet from traditional foods>” and reached 20 % in muscles from
animal studies where improved insulin sensitivity was
achieved®*”. In the present study, the phospholipid content as
combined EPA, DPA and DHA in erythrocyte membranes
increased to a mean of 17 % after 9 months and all the subjects
attained >14% n-3 PUFA. Similar erythrocyte membrane
enrichments were observed in the small biopsy cohort, but
these subjects only achieved a maximum of 9-7 % (mean 7-8 %)
in muscle membrane phospholipids, similar to values reported
with just 8 weeks of supplementations®”**. These low values
may partly explain why neither improved glycaemic control nor
insulin sensitivity occurred after the FO intervention in the
earlier®*? and present studies. On the basis of the current
findings, however,
membrane 7-3 PUFA enrichments postulated to result in
improved insulin sensitivity in animal studies may be difficult
under experimental, or normal lifestyle, conditions within the
safe recommended intakes for the USA and Europe.

Furthermore, direct comparison with the original health-
related findings from the Inuit population®? is difficult because
sources of 7-3 PUFA in the Inuit diet include marine mammals,
the oil of which differs in phospholipid composition to that of
fish, but that has equal or superior health-related proper-
ties”>®. An additional concern is that in animal studies, where
improvements in either glucose and (or) protein metabolism
have been reported, the doses of dietary 7-3 PUFA (expressed
as g/d per kg body weight) have been high — for example, in
rats 0-75-2-7 g(sg’(’m, in piglets 5-2 g(é) and in steers 0-20 g“”. In
this study, the average dose of n-3 PUFA was 0-03 g/kg body
weight, and thus whether 14 % 7-3 PUFA in muscle membranes
of human is possible under Western dietary conditions and
recommended safety limits has yet to be determined. This may
be further complicated if humans are similar to sea mammals
and limit 7-3 PUFA in muscle membranes to considerably
below the amounts present in the diet©V.

The aetiology of obesity and type 2 diabetes are thought
to be due, in part, to inﬂammation(5'15’62’63), and some of
the beneficial effects of n-3 PUFA have been ascribed to
anti-inflammatory properties™®>1>%4% Nonetheless, no chan-
ges in inflammatory markers were demonstrated in the present
study. This may reflect the fact that, although the population
studied were ‘at risk’ of type 2 diabetes, they were relatively
healthy with a low status for baseline inflammatory markers.

achievement in humans of muscle
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Other studies have also failed to demonstrate a clear association
between -3 PUFA intake or status and glycaemic con-
[37:4260 ¢ with inflammation in healthy subjects(42’(’6) but
have done so for subjects with metabolic syndrome®®”. The 7-3

PUFA supplementation did not alter the concentration of LDL-
(17,68)

tro

cholesterol, which has been a concern in some studies
whereas HDL-cholesterol concentration increased over the
course of the study. Although 7-3 PUFA has been demonstrated
in the past to lower plasma triglyceride concentrations®” this
only occurred for the current volunteers who were not on statin
medication. Statins have been shown to lower triglyceride
levels"’® and this may have restricted the ability to allow further
reductions with FO.

In contrast to the findings for glucose metabolism, whole-
body protein kinetics were altered as a result of the high-dose
long-term 72-3 PUFA supplementation, but this only occurred
during the insulin-stimulated state, not the basal (fasting)
condition. These data support the findings from a number of
recent studies — for example, muscle protein synthesis in both
young and middle-aged or elderly subjects was increased
following FO supplementation“4**?’
but not basal, state. This has parallels with the situation in both
neonatal pigs”" and elderly humans”?, where elevated insulin
concentrations stimulated muscle protein gain at otherwise
similar nutritional inputs. Furthermore, the increase in protein
disposal during the HIEGEAA clamp in the current subjects
who received FO agrees with findings in growing farm
animals©***? Nonetheless, changes in protein dynamics may
not necessarily translate into improved net protein anabolism —

in the insulin-stimulated,

for example, despite the observed increases in muscle protein
synthesis and whole-body protein disposal in the insulin-
stimulated state, FO supplementation did not improve growth
rates or N retention in pigs((’), steers®*40 9 compared
with control animals. In addition, no changes in lean body
mass were observed in the present study during the 9-month
supplementation with FO. Such lack of responses in protein
gain may relate to metabolism only being stimulated when

or rats

insulin concentrations are elevated — for example, in the
few hours after each large meal. For the rest of the day,
effectively a basal state exists and this may mitigate, or even
counterbalance, the transient effects of the insulin-stimulated
condition. The situation may be different in net catabolic
states, however, as reduced rate of loss of either body weight
or lean mass have been reported for some patients newly
diagnosed with various cancers when given EPA as a
supplement?.

Limitations of the study include the small number of subjects.
This was counterbalanced by the use of a pairing procedure to
match specific initial metabolic parameters between the two
groups. With the considerable number of measurements made,
it was not possible to match all of them, however, and initial
numerical differences between groups in fasting insulin and
C-peptide existed. Total body fat also increased in both groups
over the study duration and may have reduced any response in
glycaemic control and insulin sensitivity as both parameters
have been reported to correlate negatively with increased
BMI7?, although not in all studies”. Although the volunteers
exhibited impaired glycaemic control, their levels of

inflammatory markers were similar to that reported for healthy
subjects and the treatment outcome may be different in popu-
lations with elevated inflammatory status. No measures of tissue
protein synthesis were performed, and thus it was not possible
to confirm the increases in muscle protein synthesis following
FO supplementation as reported by others®”%® The pilot
study to compare phospholipid contents in erythrocyte
and muscle membranes only had three volunteers who
completed the study, but the difference in enrichments were
large and statistically robust. Strengths of the study include
the near-prescription dose used and the longer period of
intervention than that reported for many studies. This allows for
maximum increases in membrane phospholipid content under
safe conditions. The use of HIEGEAA clamp procedures also
provided a well-accepted measure of insulin sensitivity and
glycaemic control. Measurement of lean body mass showed that
the insulin-stimulated changes in whole-body protein metabo-
lism may not necessarily translate into improved net anabolism,
although this outcome may be different in net catabolic states,
including age-related sarcopenia, or for intervention periods
longer than 9 months.

In summary, this study has not established any change in
glucose metabolism following prolonged FO supplementation.
Although there were responses of FO supplementation on
protein dynamics, whether this translates into improved protein
anabolism in other populations remains unclear and requires
further investigation.
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