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The relationship between the objects of mathematics and physics has been a recur-
rent source of philosophical debate. Rationalist philosophers can minimize the dis-
tance between mathematical and physical domains by appealing to transcendental cat-
egories, but then are left with the problem of where to locate those categories ontolog-
ically. Empiricists can locate their objects in the material realm, but then have diffi-
culty explaining certain peculiar "transcendental" features of mathematics like the
timelessness of its objects and the unfalsifiability of (at least some of) its truths.
During the past twenty years, the relationship between mathematics and physics has
come to seem particularly problematic, in part because of a strong interest in "natural-
ized epistemology" among American philosophers. The tendency to construe episte-
mological relations in causal and materialist terms seems to enforce a sharp distinc-
tion between mathematical and physical entities, and makes the former seem at best
uncomfortably inaccessible and at worst irrelevant. Paul Benacerraf, for example,
poses this situation as a conundrum. (Benacerraf 1965) And Hartry Field suggests that
we might do best simply to scuttle any appeal to mathematical entities in a physico-
philosophical description of the world. (Field 1980)

I would like to argue that what exists in mathematics are the items that figure in
problems, especially the constellations of problems that we see as constituting its di-
verse domains. Mathematical entities only occur enmeshed in interesting problems;
indeed, they come into view because they are both determinate and opaque and there-
fore problematic: one can formulate questions about them, and the questions don't
have obvious answers. This way of talking about mathematical existence might seem
psychological or historical, but my formulation points out its objectivity: once seen, a
mathematical problem is not an accident of someone's subjectivity, nor a by-product
of historical institutions.

What kind of epistemological picture is needed to explain how we can apprehend
the items of mathematics as problematic? To see a triangle, for example, as a complex
unity establishing a determinate but opaque relationship among its sides and interior
angles, requires some transcendental as well as causal-material activity on our part. A
causal-material account might be able to explain how we come to have an image of a
triangle, or how we abstract the shape of a triangle from instances that we gradually
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learn to see as triangular, but it cannot explain why the resultant apprehension poses a
problem.

Mathematics exists as a multiplicity of diverse domains. Problems and the items
that figure in them form clusters whose discursive boundaries mark them off from
other clusters. This also testifies to the objectivity of mathematical knowledge: certain
kinds of problems, and not others, arise with respect to certain kinds of items. You
can't say whatever you wish about a mathematical object, and you can't pose arbitrary
questions about it.

But mathematical domains are not unrelated; they overlap at their boundaries,
though the nature of the overlap always reveals opacities as it is determined. The partial
unification of domains is not trivial because the domains really are distinct. Thus, estab-
lishing correspondences between domains is itself an interesting mathematical problem.
But what items figure in such problems? In various studies published over the last
decade, I have investigated mathematical research at the overlap of domains and found
that one of its common features is the occurrence of "hybrids." The Cantor space at the
intersection of logic and topology, and the Cartesian parabola at the intersection of alge-
bra and geometry are examples of such hybrids. (Grosholz, 1985,1990/91)

Hybrids are characteristically items that would not have arisen in one or the other
domain investigated in isolation. Sometimes problems arise in a domain, but cannot
be solved there. (The objectivity of items is attested not only by the problems in
which they figure, but also by the intractability of those problems.) Then links with
other domains must be forged so that other methods and perspectives can be brought
to bear on the original problem, and in that process hybrids appear. They hover am-
biguously, items not clearly belonging to one or the other domain, sometimes appear-
ing almost contradictorily qualified as belonging to one and the other. And they may
become the characteristic items of new domains arising at the intersection of old ones,
as Leibniz' infinite-sided polygons which are also continuous curves (algebraic and
transcendental) become the central focus of the emerging domain of the infinitesimal
calculus. (Grosholz forthcoming)

In the seventeenth century, a new correlation was forged between the domains of
mathematics and mechanics. This extended episode in the history of science ought to be
closely examined, then, by philosophers of science concerned with the relationship be-
tween the objects of mathematics and physics. I have been especially interested to note
that the interaction between mechanics and the infinitesimal calculus (arising itself dur-
ing that period out of algebra, geometry and number theory) does not look appreciably
different from the interaction between, say, algebra and geometry. Then perhaps the ob-
jects of physics are the items that intervene in the problems of physics; and a causal-
materialist account of our knowledge of them falls short here just as it does in the case
of mathematics. What makes the motion of a piece of string, a swinging pendulum, a
planet, or the configuration of a hanging chain or a spinning globe, problematic?

1. Leibniz' Tractrix

I would like to discuss briefly one such example of the interaction of mechanics
and mathematics in the seventeenth century, and point out certain of its important fea-
tures, appealing explicitly to the model of the partial unification of mathematical do-
mains just sketched. Typically, in this kind of unification problem-solving strategies
from allied (but still distinct) domains are brought to bear on a family of problems
that arise in one domain but cannot be solved there. This interaction changes the
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shape of the domains involved though they still maintain their autonomy, and tends to
precipitate hybrids at the overlap of the domains.

The tractrix, Leibniz claims, is especially well suited to his new calculus. It was
introduced to him in a drawing room in Paris when a mathematician dragged his
watch across a table, describing a straight line with the free end of the fob, and asked
the assembled guests what curve it traced. He added that because of the effect of fric-
tion, at any given point on the curve the direction of the motion of the watch is sup-
posed to be along the fob, which is thus seen as the tangent to the curve. That's to say,
he would never have asked his companions to examine the path of his watch on the
table unless he had already learned to see its fob as a tangent, and its trajectory as an
analyzable curve. (Bos 1988, pp. 9-12)

This parlor game owed its interest to the work of two generations of mathemati-
cians on the problem of tangents. Leibniz retells the tale because his own work fo-
cussed on the inverse problem of tangents, and because mechanics had played a cen-
tral role in his attempts to extend the new synthesis of geometry and algebra beyond
the Cartesian program. Mechanics in the early 1670's was in part a practical exercise
involving fountains, catapults and winches, and in part an emerging theory based on
rediscovered texts by pseudo-Aristotle, Archimedes and Heron of Alexandria, as well
as the writings of Descartes and Huygens. The use of "mechanical procedures" like
this instance of the watch tracing a path on the table allowed Leibniz to locate, sys-
tematize and justify the introduction of transcendental curves and numbers, infinite
series and reasonings involving infinitesimal magnitudes. And it was also one small
step in the unification of practical and mathematical mechanics.

The mathematician asks for a description of motion under certain constraints, and
the object of inquiry is the trajectory of the body in motion. Experience offers the
watch on the table in Paris, whose motion is a problem; mathematics offers a curve
which is already a hybrid because it exists as a geometrical shape, the solution of a
differential equation in Leibniz's new calculus, an algebraic equation and a point-wise
"mechanical" construction on the basis of other, constructing curves. A trajectory is a
peculiar object to locate in experience. Its unity is not that of a physical object in its
substantial oneness (a oneness which is indeterminate empirically but absolute tran-
scendentally). Rather, its unity is that of a nexus of forces on the one hand, and on the
other hand the unity of a mathematical curve, ambiguously defined as a hybrid.

Leibniz' tractrix can be embedded in two quite different kinds of diagrams. The
first is a schematic picture of the drawing-room table and the watch. The x-axis is the
base curve, along which the end of the watch-fob is pulled; if the cord-length is set
equal to a, the initial position of the watch will be at a distance a up the y-axis and the
end of the watch fob at the origin; call the line segment representing the watch and its
fob PQ. Then as the end of the fob, Q, is pulled. P traces out the curve. This tracing
specifies a differential equation, dx = - {yd1 - y2) / y dy, which follows from the simi-
larity of the characteristic (differential) triangle and the finite triangle with sides a, a
and y. (Diagram 1) In a sense it gives the tractrix in a nutshell: that curve in which the
differences between the abscissae and the differences between the ordinates obey this
relationship. But what curve is that? The differential equation sums up the situation,
but it must be solved. (Bos 1988, pp. 21-22)

Integrating both sides (the variables are already separated) yields
ax= -a] a2 - y21 y dy. In a second, geometrical rather than mechanical, diagram
Leibniz shows how to construct the curve z = -a( Va2 - y2 /y). He draws it point by
point, making use of certain lines and a circle quadrant to construct it as the auxiliary
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curve ZZA that he calls the linea tangentium; and then, assuming that the latter can be
integrated, he constructs the tractrix by finding for every point y a point x whose dis-
tance from the y-axis is equal to the area under the auxiliary curve at y, divided by the
constant a: XY = area YAZ / a. (Diagram 2) (Bos 1988, pp. 22-24)

The role of the tractrix in the two diagrams is very different. Its occurrence in both
signals its hybrid nature, for the first is a schematic picture of its mechanical genesis, a
watch being dragged across a table, and the second exhibits its relation as a point-wise
construction to the circle and the linea tangentium in geometrical fashion. The first dia-
gram augments geometry with a mechanical process; and it likewise imposes on me-
chanics a geometrical interpretation which in fact oversimplifies the dynamical situa-
tion. The diagram contains no representation of the variable time; the only vestige of the
dynamical aspect of the real situation is the assumption of friction between the watch
and the table (the fob itself is assumed frictionless). This can be read off the diagram in
the assumption that the motion of the watch is always in the direction of the fob.

The first diagram is also as it were mathematically incomplete; it reveals the exact
and determinate genesis of the curve and a few of its important properties, but in itself,
like the differential equation correlated with it, does not show how to investigate the
tractrix further or how to relate the tractrix to other curves. Thus the second diagram
must supplement it. The tractrix can be identified by shape as the same entity in both
diagrams, and the sameness of shape is fundamental, for it is what holds the variables
associated with the curve together in an intelligible unity. But the bridge between the
two diagrams that registers the distinction as well as the relation between the mechani-
cal and geometrical contexts is the expression of the curve in terms of Leibniz* differ-
ential equation and its transformation into ordinary algebraic terms, that is, its solution.
Thus the tractrix exists as a hybrid to which experience and indeed mechanics alone
would never have drawn our attention, and which Cartesian geometry would never
have generated without the Leibnizian extension to mechanical constructions.

2. Resnik's Structuralism

The writings of Michael Resnik represent an important counter-proposal to the
causal-materialist account of mathematical knowledge. Resnik wishes to assimilate
rather than separate the objects of mathematics and physics, and to buttress the onto-
logical and epistemic status of mathematical objects. His structuralist account of the
entities of mathematics characterizes them as positions in patterns and likens our ac-
quaintance with them to our acquisition of knowledge about linguistic and musical
patterns. This then leads him to explore the extent to which our knowledge of physi-
cal entities can also be understood as acquaintance with patterns. Claiming that the
entities of quantum physics themselves look like patterns, he finds no reason to think
that mathematical patterns could not be instantiated by them. His final pronounce-
ment, however, is that what the mappings between mathematical and physical patterns
look like must remain indeterminate, since there is no master pattern which includes
them both. An important feature of his structuralist theory is that a fact of the matter
about how structures correspond exists only when they are subpatterns of the same
pattern. (Resnik 1981,1982,1990)

In this section, I want to criticize Resnik's account of mathematical entities as po-
sitions in pattems, because I think its logicist bias makes certain kinds of complex
unities in mathematics difficult to see. Since they are just the kind of item which I
have discussed as hybrids at the overlap of domains, their absence in his account also
makes the application of mathematics to mechanics harder to understand. All the
same, the central tenet of Resnik's structuralist theory that reference from structure to
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structure may be indeterminate is quite consonant with my own convictions. For our
recurrent attempts to elaborate and revise inter-structural correspondences play an im-
portant role in the advancement of mathematical and scientific knowledge.

Resnik claims that mathematics does not present objects with an "internal" com-
position, given in isolation and with features independent of the structures in which
they happen to occur. Rather, he writes, "The objects of mathematics, that is, the enti-
ties which our mathematical constants and quantifiers denote, are structureless points
or positions in structures. As positions in structures, they have no identity or features
outside of a structure." Nor, he adds, do they have any "internal structures." This
rather polemical claim is immediately modified in what follows: clearly Resnik con-
siders the objects of mathematical study to include structures themselves as well as
points or positions.

Yet the suggestion persists that what mathematics is really about is points or posi-
tions, with stuctures intervening in a secondary way as relations among points or posi-
tions. For Resnik's two leading illustrations of what he means by positions or points
are die natural numbers in sequence, and geometrical points in a (discrete and finite)
spatial array. After all, mathematics has been regarded as the offspring of the Adam of
numbers and the Eve of geometrical points. And the natural numbers considered as it-
erated units, and geometrical points, seem to have no independent presentability and
no internal composition apart from the structures in which they occur.

Resnik defines a structure (or, to use the term he prefers, pattern) as "a complex
entity consisting of one or more objects, which I call positions, standing in various re-
lationships (and having various characteristics, distinguished positions and opera- .
tions.)" (Resnik 1981, p. 530) Examples of structures are models of formal theories,
like (N,S) the natural numbers with the successor function, and a finite, discrete pat-
tern of geometrical points. In general, Resnik says, "patterns are specific models of
theories (up to isomorphism)." (Resnik 1981, p. 536) So it seems that while patterns
have an internal composition, or rather while they are a composition (whether internal
or not is unclear), they cannot be given independent of the points or positions whose
relations they are. There is nothing more to them than those relations.

Herein lies the difficulty. Neither points or positions, nor patterns, seem to be the
kind of thing about which one could pose an interesting mathematical problem. What
is there to say about a point, or the unit? If there is nothing to say, why should there
be anything to say about relations among entities about which there is nothing to say?
This puzzle is not an empty bit of sophistry. Rather, it indicates Resnik's failure to lo-
cate a middle ground of mathematical objects that exhibit an interesting, complex and
problematic unity, objects that can indeed be given independently and which have in-
ternal composition.

In order to show the importance of this middle ground of mathematical objects, I
need to exhibit the circularity in Resnik's exposition that rules them out ad hoc and to
explain why he doesn't notice the circle. Take the case of geometry. Resnik sees ge-
ometry as a model of a formal theory couched in the language of predicate logic with
some geometrical vocabulary added in the extralogical axioms. The quantifiers of the
formal theory range over geometrical points, which then seem to be the true objects of
geometry, and the model supplies relations among those objects. Geometrical points
have no internal composition; and the logicization of geometry stipulates that points
are the only object of geometry; so geometrical objects have no internal composition.
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Resnik doesn't recognize this circularity (at least not in the papers cited), perhaps
because of certain prejudices he shares with many other contemporary philosophers
who look at mathematics through the lens of logic. The first is the assumption that
mathematical domains are structured like logical theories. The second is Quine's dic-
tum that the objects of a domain are what the quantifiers of such logical theories
quantify over. The third is the logicist misunderstanding of analytic geometry, which
views the domain of geometry as reduced to that of number, the continuous as re-
duced to the (infinitely iterated) discrete. Logicist reduction plays down the difficulty
of establishing correlations between domains, and the opacities that remain in such
correlations once they have been set up.

Descartes in the seventeenth century offered a similar misinterpretation of geome-
try. He wanted to present his mathematics as a relational structure instantiated by
items that would be mere place-holders. These place-holders would have no internal
structure of their own, and so would not impugn the generality of, or threaten to dis-
rupt, the structures in which they stood. He chose straight line segments. This was in
many ways a useful choice, but the place-holders were far from neutral. They :
changed both the geometry and the algebra of the problem-context in which Descartes
worked, and excluded many important objects (areas, volumes, infinitesimals, curves)
from his geometry of ratios and proportions, thus limiting in important ways the kinds
of problems and solutions he could entertain. Moreover, his insistence that his rela-
tional structure was transparent to reason blocked his ability to see that his mathemat-
ics was in fact suspended between two nonequivalent kinds of structures (equations,
and proportions), and that the way these structures worked was the product of histori-
cal debate, and certain decisions on the part of his mathematical antecedents.
(Grosholz 1990/91, ch. 1 and 2)

• Likewise, Resnik doesn't examine the consequences of the debt which his theory
of patterns owes to twentieth century predicate logic and the set theory that arose
alongside it. To suppose that any geometrical item is a logical-relational structure
holding among points depends on two historical projects. The attempt to assimilate
geometry to the realm of number inspired and continues to challenge transfinite set
theory. The attempt to assimilate the realm of number to logic characterized the first
decades of the development of predicate logic, leaving an indelible imprint. The for-
mer gives us the habit of thinking of the continuum as an infinite concatenation of
discrete (number-like) points, and the latter of supposing that numbers behave like
well-formed formulae.

Though in his discussion of congruences between patterns, Resnik rejects strict re-
ductionism for the good reason that there is no master pattern in terms of which con-
gruences might be established univocally, still he does not escape the influence of
these venerable logicist projects of reduction. Predicate logic pretends to be a trans-
parent structure, but actually logicians have chosen its characteristic place-holders,
certain well-formed formulae, and that choice has consequences. It affects the shape
of other structures to which predicate logic is applied both by amplification and sup-
pression. Domains, objects and problems which do not lend themselves to the combi-
natorial, boolean shape of predicate logic tend to fade away in the eyes of logicians
working under its insistent light. (Grosholz 1982)

I have argued, however, that the true objects of a mathematical domain are those
entities about which problems arise, the foci of mathematical investigations. The ob-
jects that inspire mathematical research programs are profoundly interesting; their re-
calcitrance and mystery are as challenging as their revelations. No geometer would
waste his or her time investigating dots. Moreover, the relations among mathematical
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domains like logic and geometry, geometry and number theory, or set theory and anal-
ysis, are not relations of reduction in any simple sense. The objects, problems and
methods of these domains are too heterogeneous to be captured by a single morphism;

. indeed, part of the mystery that inspires mathematical research is the investigation of
what happens at the indeterminate overlap of mathematical domains. Resnik himself
makes this point, though expressed in terms of positions, patterns and the congruences
that hold between patterns. He claims, "there is no fact of the matter whether an oc-
currence of a pattern is or is not the same as another except when they are both sub-
patterns of the same pattern," to explain the phenomena of multiple reductions be-
tween domains. (Resnik 1981, p. 546)

Resnik connects the indeterminacy of reference between patterns with the absence
of any single master pattern, and of any true individuals in mathematics, with respect
to which some absolute reference might be fixed. Both points are well taken. But I
would observe that citing the absence of a master pattern also indicates the multiplicity
of mathematical domains, though in a very abstract and general way. Also, the absence
of true individuals (noninstantiables) (Gracia 1988) in mathematics is consistent with
my claim that among mathematical instantiates are unities that have interesting inter-
nal complexity and can be given independently. A large part of mathematics is about
these unities, which are purely formal and yet isolable and complex. I would add that
such formal unities, because they are isolable and complex, can thus sometimes func-
tion especially well as schemata for individuals encountered in the natural world.

Euclid certainly did not take points as the basic objects of geometry. Euclidean ge-
ometry studies a variety of objects which, he is quite careful to point out, are very dif-
ferent from each other: points, lines (which are bounded by but not composed of
points), and plane figures (which are bounded by but not composed of lines). (Heath
1956, pp. 153-232) In Euclid's view, the more complex entities could not be reduced
to the simpler; indeed, their heterogeneity is to him so important that he bans the yok-
ing together of points, lines and plane figures in ratios and proportions. His treatment
of the objects of geometry reveals that the unity of points is trivial; the unity of lines
is somewhat more interesting, since lines can be measured by lines; and the unity of
plane figures, like triangles and circles, is so rich and various that it constitutes a re-
search program of which the Pythagorean Theorem is the signpost and flag. (Heath
1956, pp. 349-368)

Euclidean plane figures like the right triangle are objects about which an impor-
tant set of problems can be posed; these problems are not problems about points.
They concern the endlessly interesting internal composition of the triangle, as a whole
greater than the sum of its parts, the points or vertices that bound its sides, the lines
that join its vertices, the angles that exist between those lines. That whole has the
unity of shape that allows it to be given in a diagram, in isolation from all the other
possible objects of geometrical study. (Susan Hale, in arguing for a distinction be-
tween the relational and intrinsic properties of geometrical entities, underscores my
point here. Some mathematical entities such as curves, she concludes, do have proper-
ties which are not merely extrinsic and relational. (Hale forthcoming))

Thus, I claim that Resnik cannot explain the research program of Euclidean geom-
etry simply by reference to structures as he defines them. Nor can his account of con-
gruence between patterns explain the synthesis of geometry and algebra in the work
of Descartes, of geometry and mechanics in Newton's Principia. or the synthesis of
geometry, algebra, number theory and mechanics in the late seventeenth century writ-
ings of Leibniz, for those partial unifications were posed and elaborated in terms of
isolable, internally complex mathematical objects. Descartes' Cartesian parabola,
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Leibniz' tractrix and Newton's planetary ellipse were not treated as congruences in
which the positions or points of one pattern are mapped onto or occur within the posi-
tions or points of another pattern. They were hypotheses about certain possible rela-
tions among domains made treatable as problems, that is, made into a research pro-
gram, by the problematic unity of shape exhibited by higher algebraic and transcen-
dental curves.

The realm of number, the hierarchy of sets, the formulae of logic will never give
rise to the peculiar unity of geometrical shape. (Though one might argue that they
have interesting, nontrivial unities of their own.) And points augmented by logically
specified relations will never yield lines or figures. A triangle is not a position or a
pattern in Resnik's sense, and it is not even a subpattem, since a subpattern is only a
collection of points or positions united by logically specified relations. The founding
of research programs in mathematics, and the partial unification of mathematical do-
mains, indeed the very possibility of mathematical knowledge, requires the existence
of objects that, while not individuals (noninstantiables) are yet isolable, internally ar-
ticulated unities.

3. Structuralism and Space

In Euclid's geometry, space as a whole is not itself an object of study. One might
say something about its properties: it has no boundaries, no regions, no parts, no sepa-
rable components, no holes: it is isometric, isotropic, homogeneous, infinite, continu-
ous, dense, non-separable. (But note how anachronistic it sounds to say most of that.)
However, space as a whole does not intervene in problems: Euclid's problems have to
do with points, lines and bounded plane figures. I have been urging that it makes
sense to think of the objects of Euclidean geometry as heterogeneous, as many-sorted;
now I want to urge the difference between the objects which articulate Euclidean
space, and the space itself. The former are finite and bounded; they have parts and
discernible regions apropos those parts. In the case of plane figures, they have the
problematic unity of shape. Though we might want to say that they reveal the proper-
ties of space as a whole through the way they articulate that space, in almost every
important respect they are unlike it.

Does space taken as a whole have a unity? As far as I know, no one in classical
antiquity ever asked that question. We might say in retrospect that it has the unity of
being without parts, separable components, boundaries, regions, etc. But that's a triv-
ial unity, a unity without internal composition, a unity due to sheer indeterminateness
or structurelessness. While it allows the objects of Euclidean geometry, and their con-
gruences and similarities, to appear, in itself it has none of the features that makes • • •.
them objects of study.

Perhaps I am being unduly enigmatic; I may make it seem like a mystery how de-,
terminate geometrical objects could "emerge" from indeterminate geometrical space. \
Historically, though, it was space as a whole that "emerged" as an object of study
from the study of geometrical objects like points, lines and plane figures. And this
process did not take place within geometry, but only after geometry had been com-
bined with the domain of number in the seventeenth, eighteenth and nineteenth cen-
turies, and then combined with set theory at the turn of the twentieth century. For
once a continuum is seen in analogy with the discrete realm of number, and the dis-
crete realm of number is reorganized to mimic the continuum, space itself becomes a
hybrid, novel object which for certain purposes of problem-solving may be decom-
posed to point-numbers. And once set theory has been introduced, these infinitary col-
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lections of points can be seen as (geometric-numerical) sets, thus as bearers of inter-
nal structure and objects of study.

In twentieth century mathematics, we are used to talking about spaces as objects
of study, not only Euclidean spaces, but non-Euclidean spaces and a variety of topo-
logical spaces whose properties are very different from Euclidean spaces (they may
have separable components, holes, bumps, etc.), as well as highly infinitary function
spaces whose points or positions are functions. Yet it is well to remember two things.
First, these spaces are not objects of set theory per se, for set theory taken in itself
would never have discovered them as objects, nor the problems in which they inter-
vene. Rather, they are hybrids hovering ambiguously between analysis and set theory.
To call them merely sets of points is to forget their origins.

Second, the difference between Euclidean space and for example Hilbert space
brings to the fore an important tension in the modern framework between the demand
for reduction and the demand for hierarchy. (Once again I would point out that while
Resnik's structuralism is not reductionist, it includes and masks some reductionist as-
sumptions.) We say that the points or positions in Hilbert space are functions; this
make them look anomalous on Resnik's account, since points or positions aren't sup-
posed to have any internal composition. The obvious response is that functions them-
selves are just sets of points. But then the difference between Euclidean space and
Hilbert space is obscured, for they have both become just sets of points. Set theory
alone (and, I would add, Resnik's structuralism) cannot reinstate the distinction, that
is, the middle ground in which functions have a unity different from the unity of
points and from the unity of space.

Resnik wants to talk about Hilbert spaces as structures with peculiar points or posi-
tions, Euclidean space as a structure of points, and the ordinary objects of Euclidean ge-
ometry as substructures of points. I have just argued that the kinds of unity in question
are very different, as are the problems in which they figure, and that therefore some-
thing very important is lost in this account But returning to Resnik's way of talking
raises a further question: what kind of unity do structures have? For Resnik certainly
thinks that we study structures as well as points or positions in mathematics; indeed, the
fact that they intervene in structures is what makes points or positions susceptible of
study. And if we study structures, they must exhibit some kind of unity or bring mathe-
matical reality into some kind of unity, for nothing is knowable that isn't unified.

When Resnik talks about structures as models of formal theories in predicate
logic, as he often does, the unity invoked is the unity of an axiomatized set of state-
ments formulated in the language of predicate logic. For the pervasive, almost invisi-
ble logicism that runs through contemporary philosophy of mathematics imposes the
attributes of logic on everything it touches. Now the unity of deductive systems is an
extremely interesting kind of unity; even Euclid was interested in it. It has been stud-
ied in the twentieth century with the help of Boolean algebra and recursion theory.
But it is not the kind of unity a geometric space has; and it is not the kind of unity a
triangle or a function has.

Resnik's choice of the words "structure" or "pattern" reminds us that the objects
of mathematics are not individuals (noninstantiables). All the objects of mathematics
are instantiables and so look like universals; this explains in part their transcendence.
But the objects of mathematics also exhibit kinds of formal unity which occupy a
middle ground between the trivial unity of a point, unit or the empty set, and the im-
perfectly understood transfinitudes of set theory. Recognizing this aspect of mathe-
matical reality helps to explain how mathematical domains are constituted as collec-
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tions of related problems about certain kinds of objects; and how they are partially
unified around hybrid objects, a synthesis that contributes to the growth of mathemat-
ical knowledge in important ways. It also helps to explain how mathematics can be
instantiated by physical reality, in virtue of a process that gradually (though never
completely) unifies mathematics and physics, despite the many ways in which physi-
cal objects differ from mathematical objects.
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