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THE MAXIMUM OF A SYMMETRIC
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Abstract

We consider a one-dimensional discrete symmetric random walk with a reflecting
boundary at the origin. Generating functions are found for the two-dimensional
probability distribution P{Sn = x, max1≤j≤n Sn = a} of being at position x after n
steps, while the maximal location that the walker has achieved during these n steps
is a. We also obtain the familiar (marginal) one-dimensional distribution for Sn = x,
but more importantly that for max1≤j≤n Sj = a asymptotically at fixed a2/n. We are
able to compute and compare the expectations and variances of the two one-dimensional
distributions, finding that they have qualitatively similar forms, but differ quantitatively
in the anticipated fashion.
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1. Introduction

Non-Markovian chains constitute a field of increasing activity. A dominant philosophical
motif is that of a hidden Markovian chain [1], a marginal process on a higher dimensional state
space. The analysis of sequences in biopolymers [7, pp. 67–69] as hidden Markov chains is a
primitive version with a small underlying state space.

We were led to consider the problem analyzed in this paper during a study of reinforced
random walks, next neighbor on a one-dimensional half lattice. The aim of this paper is to
find the distribution of An ≡ max1≤i≤n Si , where Si is the location of the walker after i
steps. There are numerous ways to solve this problem, but we intentionally want to choose one
that is extendable to a class of reinforced random walks, namely the hidden Markov viewpoint
mentioned above. Before doing so, however, it is worth asking what sort of qualitative behavior
to expect. Of course, we will have, asymptotically inn, E(Sn) ∝ n1/2, but the maximum sojourn
after n steps must exceed or equal Sn. How much more? But {Ai} rectifies the fluctuation in
{Si}; hence, An might be expected to have a variance, highly reduced from that of Sn. How
much less? The limited objective of this paper is to answer these questions by first computing
the two-dimensional distribution of (Sn,An) as n varies and then the distribution of the random
variable An.
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2. Distribution and moments of Sn

The basic system that we analyze is that of a random walk on the integer lattice x ≥ 0. The
jump Xi at the ith step is next neighbor

Xi = ±1;
the walker starts at the origin, so that its location after n steps is

Sn =
n∑
i=1

Xi.

Let us first review the properties of the distribution function

Pn(x) = P{Sn = x}. (2.1)

We confine our attention to a symmetric walk reflected at the origin, so that

P{Xi = ±1 | Si−1 �= 0} = 1
2 , P{Xi = 1 | Si−1 = 0} = 1. (2.2)

The first jump must be from x = 0 to x = 1, and so we can take the following equation as our
initial condition:

P1(x) = δx,1. (2.3)

The analysis of (2.1) under (2.2) and (2.3) is routine. We have

P{S1 = x} = δx,1,

P{Sn = 0} = 1
2 P{Sn−1 = 1} for n ≥ 2,

P{Sn = 1} = 1
2 P{Sn−1 = 2} + P{Sn−1 = 0},

P{Sn = x} = 1
2 P{Sn−1 = x + 1} + 1

2 P{Sn−1 = x − 1} for x ≥ 2,

which is readily solved (index and argument must have the same parity) as

P2n(0) = 1

22n

(
2n

n

)
,

P2n(2x) = 2

22n

(
2n

n− x

)
for x > 0,

P2n+1(2x + 1) = 1

22n

(
2n+ 1

n− x

)
for x ≥ 0.

(2.4)

Observe that (2.4) can also be obtained directly from a nonreflecting walk from the origin to
±x—a trivial combinatorial problem—by reflecting all subwalks on the negative axis to the
positive axis. This is because the probability of a walker arriving at the origin, then jumping
to ±1, is 1, as in the reflecting case.

Our definition of reflection does not correspond to that of Feller [3, p. 436], and Takács [9,
p. 19], where the walker is not allowed to pass a boundary at x = 1

2 . Instead, when the walker
is at x = 1, the next step takes it to x = 2 with probability 1

2 or it stays at x = 1 with
probability 1

2 . However, Kac [5] and Percus [8] treated this walk as a Markov chain with 2 × 2
transition matrix, equivalent to what we do here.
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Mean and variance are the leading properties of a random walk, and by direct summation
we readily find that

E(S2n) = 2n

22n

(
2n

n

)
, var(S2n) = 2n

(
1 − 2n

((
2n

n

)/
22n

)2)
,

with a similar result for S2n+1. In both cases, use of the Stirling approximation shows directly
that

lim
n→∞

E(Sn)

n1/2 =
√

2

π
, lim

n→∞
var(Sn)

n
= 1 − 2

π
∼ 0.36, (2.5)

establishing a standard against which other properties of the walk can be compared—the main
objective of this paper.

3. The joint distribution P{Sn = x, An = a}
Consider a random walk on the integer lattice x ≥ 0, a ≥ 1, with joint distribution defined

by

Pn(x, a) ≡ P{Sn = x,An = a}, where Sk =
k∑
i=1

Xi, Xi = ±1. (3.1)

As in (2.2) we deal with a symmetric random walk reflected at the origin, and the walk starts at
the origin, i.e.

P1(x, a) = δx,1δa,1. (3.2)

Since a has not changed from its prior value when x < a, we have

Pn+1(x, a) = 1
2Pn(x − 1, a)+ 1

2Pn(x + 1, a) for 1 < x < a,

Pn+1(1, a) = Pn(0, a)+ 1
2Pn(2, a)(1 − δa,1),

Pn+1(0, a) = 1
2Pn(1, a).

(3.3)

But a increases from its prior value with probability 1
2 when x = a ≥ 1, and, for a ≥ 2,

Pn+1(a, a) = 1
2Pn(a − 1, a − 1)+ 1

2Pn(a − 1, a). (3.4)

We can now combine (3.1), (3.2), (3.3), and (3.4) on the space defined by

0 ≤ x ≤ a, a ≥ 2,

obtaining, for n ≥ 1,

Pn+1(x, a) = 1
2 (1 + δx,1 − δx,a+1)Pn(x − 1, a)

+ 1
2Pn(x + 1, a)+ 1

2δx,aPn(a − 1, a − 1)(1 − δa,1) (3.5)

and initial condition (3.2). Note that the condition Pn(x, a) = 0 for x > a, satisfied initially,
is automatically satisfied under iteration of (3.5).

Our task now is to solve (3.5), which we do in standard fashion by first introducing the
generating function, convergent for |λ| < 1,

P(λ, x, a) =
∞∑
n=1

λnPn(x, a) = λP1(x, a)+
∞∑
n=1

λn+1Pn+1(x, a).
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It follows at once from (3.5) that

P(λ, x, a) = λP1(x, a)+ λ

2
(1 + δx,1 − δx,a+1)P (λ, x − 1, a)

+ λ

2
P(λ, x + 1, a)+ λ

2
δx,aP (λ, a − 1, a − 1)(1 − δa,1). (3.6)

Further simplification is then achieved by going over to the double generating function

P̃ (λ, u, a) ≡
∞∑
n=1

∞∑
x=0

λnuxPn(x, a) =
a∑
x=0

P(λ, x, a)ux,

where we have used the fact thatPn(x, a) = 0 for x > a, and this also establishes that P̃ (λ, u, a)
is a polynomial in u of degree a, thereby convergent for all u. Summing (3.6) over x, with
weight ux , we find after some minor algebra that(

u2 − 2u

λ
+ 1

)
P̃ (λ, u, a) = −2u2δa,1 + (1 − u2)P (λ, 0, a)+ ua+2P(λ, a, a)

− ua+1P(λ, a − 1, a − 1)(1 − δa,1). (3.7)

Solving (3.7) is fairly straightforward. First, take the special case a = 1, i.e.(
u2 − 2u

λ
+ 1

)
P̃ (λ, u, 1) = −2u2 + (1 − u2)P (λ, 0, 1)+ u3P(λ, 1, 1), (3.8)

and introduce the zeroes of u2 − 2u/λ+ 1 = 0, i.e.

u1 = θ = 1 − √
1 − λ2

λ
, u2 = 1

θ
= 1 + √

1 − λ2

λ
.

Taking u = θ , and then u = 1/θ in (3.8), we have

0 = −2θ2 + (1 − θ2)P (λ, 0, 1)+ θ3P(λ, 1, 1),

0 = −2θ−2 + (1 − θ−2)P (λ, 0, 1)+ θ−3P(λ, 1, 1),

and, on eliminating P(λ, 0, 1),

P(λ, 1, 1) = 2(θ + θ−1)

θ2 + θ−2 = λ

1 − λ2/2
. (3.9)

The case a > 1 can be treated the same way. Using (3.7), we obtain

0 = (1 − θ2)P (λ, 0, a)+ θa+2P(λ, a, a)− θa+1P(λ, a − 1, a − 1),

0 = (1 − θ−2)P (λ, 0, a)+ θ−a−2P(λ, a, a)− θ−a−1P(λ, a − 1, a − 1),

and, eliminating P(λ, 0, a),

P(λ, a, a) = θa + θ−a

θa+1 + θ−(a+1)
P (λ, a − 1, a − 1). (3.10)
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Starting with (3.9) and iteratively applying (3.10), we conclude that

P(λ, a, a) = 2
θ + θ−1

θa+1 + θ−(a+1)
= 4/λ

θa+1 + θ−(a+1)
, (3.11)

which is also valid for a = 1, and leading via the first equality of (3.9) and the first of (3.11) to

P(λ, 0, a) = 2θ2

1 − θ2 δa,1 + θa+1

1 − θ2P(λ, a − 1, a − 1)(1 − δa,1)− θa+2

1 − θ2P(λ, a, a)

(note the convention that P(λ, 0, 0) = 0). The net effect, substituting back into (3.7), is that

P̃ (λ, u, a)

(
u2 − 2u

λ
+ 1

)

=
(
(1 − u2)

θa+1

1 − θ2 − ua+1
)
(P (λ, a − 1, a − 1)(1 − δa,1)+ 2δa,1)

−
(
(1 − u2)

θa+2

1 − θ2 − ua+2
)
P(λ, a, a)

or

(u− θ)

(
u− 1

θ

)
P̃ (λ, u, a) =

(
(1 − u2)

θa+1

1 − θ2 − ua+1
)

2
θ + θ−1

θa + θ−a

−
(
(1 − u2)

θa+2

1 − θ2 − ua+2
)

2
θ + θ−1

θa+1 + θ−(a+1)
. (3.12)

Note that from (3.12) we conclude

P{An = a} = the coefficient of λn in
1

1 − λ

(
2

θa + θ−a − 2

θa+1 + θ−(a+1)

)

and, since

P{An−1 = a − 1} = the coefficient of λn−1 in
1

1 − λ

(
2

θa−1 + θ−(a−1)
− 2

θa + θ−a

)
,

we also find that

P{An = a for the first time in the nth step}
= the coefficient of λn in

1

1 − λ

(
2

θa + θ−a − 2

θa+1 + θ−(a+1)

)

− the coefficient of λn−1 in
1

1 − λ

(
2

θa−1 + θ−(a−1)
− 2

θa + θ−a

)

(see (4.1)–(4.3) for details).

4. The limiting moments of An

Our objective is to examine the characteristics of the non-Markovian random variable
An ≡ max1≤j≤n Sn, which of course corresponds to obtaining the marginal distribution in
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which P{Sn = x,max1≤i≤n Si = a} is summed over x. The complementary marginal, summed
over a, is just the usual Markovian walk of P{Sn = x}, whose solution was given in Section 2.

We have seen in (3.12) that(
u2 − 2u

λ
+ 1

)
P̃ (λ, u, a) =

(
(1 − u2)

θa+1

1 − θ2 − ua+1
)

2
θ + θ−1

θa + θ−a

−
(
(1 − u2)

θa+2

1 − θ2 − ua+2
)

2
θ + θ−1

θa+1 + θ−(a+1)
. (4.1)

The generating function for the marginal distribution of An is then found by summing over
Sn = x, equivalent to setting u = 1 in (4.1), i.e.(

1 − 1

λ

)
P̃ (λ, 1, a) = θ + θ−1

θa+1 + θ−(a+1)
− θ + θ−1

θa + θ−a (4.2)

or, since θ + θ−1 = 2/λ,

(1 − λ)P̃ (λ, 1, a) = 2

θa + θ−a − 2

θa+1 + θ−(a+1)
. (4.3)

It is then simple to construct the double generating function

Q(λ, z) ≡
∞,∞∑

1,1

λnzaP{An = a}

=
∞∑
1

zaP̃ (λ, 1, a)

= 1

1 − λ

∞∑
1

za
(

2

θa + θ−a − 2

θa+1θ−(a+1)

)

= 1

1 − λ

( ∞∑
1

(za − za−1)
2

θa + θ−a + λ

)

= λ

1 − λ
− 1 − z

1 − λ

∞∑
1

za
2

θa + θ−a .

(4.4)

The factorial moments of {An} are of course obtained by z-differentiations ofQ(λ, z) at z = 1,
or directly in the fashion of (4.4) (using the familiar recurrence relation of binomial coefficients),
i.e. for k ≥ 1, ∑

n

λnE

(
An

k

)
= 1

1 − λ

∞∑
a=1

(
a

k − 1

)
2

θa + θ−a . (4.5)

Our objective is to obtain the asymptotic form of E
(
An
k

)
as n → ∞. Our claim is that this has

the same form as the kth moment of Sn,E(Skn), which we know is proportional to nk/2. In other
words, we want to find the constant Ck in the postulated relation

lim
n→∞ E

(
An

k

)/
nk/2 = Ck. (4.6)
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It is not obvious that this limit exists because (1/nk/2)E
(
An
k

)
may have persistent oscillations

when n → ∞. Therefore, we will instead use a generalized limit in the sense of Abel or Cesaro,
see e.g. [6, p. 583], in which a suitable running average is performed before the limit is taken.
Prototypical is one form of the Abel limit theorem which states that if

lim
n→∞ an = A then lim

λ→1−(1 − λ)

∞∑
n=1

anλ
n = A. (4.7)

This is readily proved by decomposing the sum into two sums, i.e.

(1 − λ)

∞∑
n=1

anλ
n = (1 − λ)

(1−λ)−1/2−1∑
n=1

anλ
n + (1 − λ)

∞∑
n=(1−λ)−1/2

anλ
n, (4.8)

and observing that the first term tends to 0 while the second term tends to A as λ → 1−.
Equation (4.7) can be generalized using the same decomposition of the sum (as in (4.8)) to read
if

lim
n→∞

(
1

/(
n

p

))
an = C then lim

λ→1−(1 − λ)1+p
∞∑
n=1

λn−pan = C.

Since
(
n
p

)
/np tends to 1/p! as n → ∞, we therefore define

lim∗
n→∞

n−pan ≡ lim
λ→1−(1 − λ)1+p

∞∑
n=1

1

p!λ
n−pan. (4.9)

If limn→∞ n−pan exists then lim∗
n→∞ ann

−p has the same value. However, lim∗ may exist
even when lim does not.

We now apply (4.9) to (4.5) to obtain the lim∗ version of (4.6) as follows:

lim∗
n→∞

1

nk/2
E

(
An

k

)
= lim
λ→1−(1 − λ)1+k/2

∞∑
n=1

1

(k/2)!λ
n−k/2

E

(
An

k

)

= lim
λ→1−

(
1 − λ

λ

)k/2 ∑
a=1

(
a

k − 1

)
2

θa + θ−a
1

(k/2)! .
(4.10)

Set θ = e−t ; therefore,

2

θa + θ−a = 1

cosh at
,

1 − λ

λ
= cosh t − 1,

and (4.10) can be written as

lim∗
n→∞

1

nk/2
E

(
An

k

)
= lim
t→0+(cosh t − 1)k/2

1

(k/2)!
∑
a=1

(
a

k − 1

)
1

cosh at
. (4.11)

Since (cosh t − 1)k/2/(t2/2)k/2→1 as t → 0 for k ≥ 1, (4.11) becomes

lim∗
n→∞

1

nk/2
E

(
An

k

)
= lim
t→0+

tk

2k/2(k/2)!
∑
a=1

(
a

k − 1

)
1

cosh at

= lim
t−→0+

(
t√
2

)k 1

(k/2)!
∑
a=k−1

(
a

k − 1

)
1

cosh at
.

(4.12)
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But,

lim
t→0

(
t√
2

)k 1

(k/2)!
∑
a=k−1

(
a

k − 1

)
1

cosh at

= lim
t→0

tk2−k/2

(k/2)!
( α/t−1∑
a=k−1

+
β/t−1∑
a=α/t

+
∞∑

a=β/t

)(
a

k − 1

)
1

cosh at
.

It can be verified that the contribution of the third sum is a function of β and t which tends to 0
as β → ∞ for any t , and the contribution of the first sum tends to 0 as α → 0 for any t . Now,
the contribution of the second sum involves a Riemann sum which converges to a Riemann
integral, i.e.

1

2k/2(k/2)! (k − 1)!
∫ β

α

bk−1

cosh b
db → 1

2k/2(k/2)! (k − 1)!
∫ ∞

0

bk−1

cosh b
db (4.13)

as α → 0 and β → ∞. From (4.12) and (4.13) we conclude that

lim∗
n→∞

n−k/2
E

(
An

k

)
= 1

2k/2(k/2)! (k − 1)!
∫ ∞

0

bk−1

cosh b
db (4.14)

or, equally well for k ≥ 1,

lim∗
n→∞

n−k/2
E(Akn) = k

2k/2(k/2)!
∫ ∞

0

bk−1

cosh b
db. (4.15)

The most important examples will be (see [2] for evaluation of the integrals)

lim∗
n→∞

n−1/2
E(An) = 1√

2 1
2

√
π

∫ ∞

0

db

cosh b
=

√
π

2
(k = 1),

lim∗
n→∞

1

n
E(A2

n) =
∫ ∞

0

b db

cosh b
= 2G = 1.831 93 (k = 2),

where G is the Catalan constant (see [4]), from which we obtain

lim∗
n→∞

1

n
var(An) = 0.261 13 . . . .

Including the results of (2.5), we have

lim
1√
n

E(Sn) ≡
√

2

π
= 0.797 9, lim∗ 1√

n
E(An) =

√
π

2
= 1.253 3,

lim
1√
n

var(Sn) = 0.36, lim∗ 1

n
var(An) = 0.261 13.

From the definitions of An and Sn, the mean of An might have been much larger than the mean
of Sn; it is not. Also, the variance ofAn might have been much smaller than the variance of Sn;
it is not.
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A heuristic version of the process used in obtaining (4.14) can be carried out for (4.4),
resulting in

Q(λ, z) = 1

1 − λ

(
λ+ 1

2
(1 − z)

)

− 1 − z

1 − λ

1

2sech−1λ

((
ψ

(
1

4

log z

sech−1λ

)
+ 3

4

)
− ψ

(
1

4

log z

sech−1λ
+ 1

4

))
,

where ψ is the dilogarithm function.

5. The limiting distribution of An

The moments supply crucial information as to the nature of the distribution of the random
variation An. But can we find this distribution, i.e.

Qn(a) ≡ P{An = a},
in an explicit—and usable—form? We have seen, and used, the generating function rela-
tion (4.3) with the consequence that

Qn(a)−Qn−1(a) = the coefficient of λn in
2

θa + θ−a − 2

θa+1 + θ−(a+1)
. (5.1)

Our first task will be to find the coefficient of λn in 1/(θa + θ−a). It is easy to see that

2

θa + θ−a = 1

Ta(1/λ)
,

where Ta is the ath Chebyshev polynomial, but this is not very helpful. However, a simple
partial fraction decomposition is completely effective. We have

1

θ−a + θa
= θa

θ2a + 1

=
2a∑
j=1

θaj

2aθ2a−1
j

(
1

θ − θj

)

= 1

2a

2a∑
j=1

θa+1
j

θ − θj
,

(5.2)

where θj = e(iπ/2a)(2j−1). Replacing θj by 1/θj does not change the set {θj }, and so we can
replace (5.2) by its average over the two forms, i.e.

1

θ−a + θa
= − 1

4a

2a∑
1

θa+1
j

θ − θj
+ θ

−(a+1)
j

θ − θ−1
j

= 1

4a

2a∑
1

θaj (θ
−1
j − θj )

θ + θ−1 − (θj + θ−1
j )

= iλ

8a

2a∑
1

(−1)j (θ−1
j − θj )

1 − (λ/2)(θ−1
j + θj )

,
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where we have used θj = exp(iπ/2a)(2j − 1), θaj = −i(−1)j , and θ+θ−1 = 2/λ. It follows
at once that the coefficient of λn in 1/(θa + θ−a) is equal to

1

4a

2a−1∑
0

(−1)j sin
π

2a
(2j + 1) cosn−1 π

2a
(2j + 1). (5.3)

Note that if we replace the summation index term j in (5.3) by 2a − 1 − j , this leaves
every term in (5.3) unchanged. Thus, we can replace the summation range by its lower half
and multiply by 2. Therefore, the coefficient of λn in 1/(θa + θ−a) is equal to

1

2a

a−1∑
j=0

(−1)j sin
π

2a
(2j + 1) cosn−1 π

2a
(2j + 1). (5.4)

But then, if we replace the summation index term j in (5.4) by a − 1 − j , this multiplies each
term in (5.4) by (−1)n+a , with the following four consequences.

(i) The coefficient of λn in 1/(θa + θ−a) is not equal to 0 only if a ≡ n (mod 2).

(ii) If a ≡ n(mod 2) then (5.4) can be reduced to its lower half-range (for odd a, the summand
vanishes at both (a − 1)/2 and (a + 1)/2), i.e. the coefficient of λn in 1/(θa + θ−a) is
equal to

1

a

a/2−1∑
j=0

(−1)j sin
π

2a
(2j + 1) cosn−1 π

2a
(2j + 1). (5.5)

(iii) The sum (5.5) is strictly alternating in sign, since 0 < (π/2a)(2j + 1) ≤ π/2.

(iv) It also follows from (i) that

Qn(a)−Qn−1(a) = δa,1δn,1 + 2(−1)n+a
(

the coefficient of λn in
1

θb + θ−b

)
,

where

b =
{
a for a ≡ n(mod 2),

a + 1 for a ≡ (n+ 1)(mod 2).
(5.6)

We can apply (5.6) at once to (5.1) by making use of the fact that lima→∞ P{An = a} = 0. It
then follows from (5.5) on summing over n that

QN(a) = −
∞∑

n=N+1

(Qn(a)−Qn−1(a))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a + 1

∑
j

(−1)j
cosN(π(2j + 1)/2(a + 1))

sin(π(2j + 1)/2(a + 1))

−1

a

∑
j

(−1)j
cosN+1(π(2j + 1)/2a)

sin(π(2j + 1)/a)
if N ≡ a(mod 2),

1

a + 1

∑
j

(−1)j
cosN+1(π(2j + 1)/2(a + 1))

sin(π(2j + 1)/2(a + 1))

−1

a

∑
j

(−1)j
cosN(π(2j + 1)/2a)

sin(π(2j + 1)/2a)
if N ≡ (a + 1)(mod 2),

(5.7)
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which although rather complex has the necessary property of vanishing when N < a. Note
that the sum over n required to obtain (5.7) starts atN+1 orN+2 depending upon the relative
parity of N and a, and goes up in steps of 2.

We will find the limit of QN(a) as a → ∞ and N → ∞ at fixed γ , where

a2

N
= γ

π

2
+O

(
1

a

)
.

Consider the case N ≡ a(mod 2) in (5.7) (the case N ≡ (a + 1)(mod 2) proceeds similarly).
After a certain amount of algebra, we obtain

lim
a,N→∞

a2/N=γπ/2+O(1/N)

(
a

a + 1

cosN(π(2j + 1)/2(a + 1))

sin(π(2j + 1)/2(a + 1))
− cosN+1(π(2j + 1)/2a)

sin(π(2j + 1)/2a)

)

= (2j + 1)

γ
e−π(2j+1)2/4γ .

It therefore follows that, for fixed γ ,

lim
a→∞ aQN(a) =

∞∑
j=0

(−1)j
(2j + 1)

γ
e−π(2j+1)2/4γ . (5.8)

For γ < 1, (5.8) is an alternating series with a decreasing absolute value of the j th term. The
absolute ratio of the j th term to the (j − 1)th term is given by ((2j + 1)/(2j − 1))e−2πj/γ ;
hence,

(1 − α)
1

γ
e−π/4γ ≤ lim

a→∞ aQN(a) ≤ 1

γ
e−π/4γ , (5.9)

where α = 3e−2π/γ ≤ 0.005 6 for γ ≤ 1. For γ > 1 the rapid convergence of the series (5.8)
quickly deteriorates as does the information supplied by the first term in the series. However,
(5.8) does exist and absolutely converges for all γ ; it is therefore necessary to replace (5.8) by
a more rapidly convergent representation. This is supplied by a modification of the familiar
Poisson resummation:

∞∑
−∞

g(j) =
∞∑

k=−∞
g̃(k), where g̃(k) ≡

∫ ∞

−∞
g(x)e2πikx dx. (5.10)

As a special case, define g(j) ≡ sin(πj/2)f (j) so that
∑∞
j=−∞ g(j) = ∑∞

n=−∞(−1)nf (2n+
1). It then follows directly from (5.10) that

∞∑
n=−∞

(−1)nf (2n+ 1) = 1

2i

∞∑
k=−∞

(−1)kf̃

(
1

4
(2k + 1)

)
.

As an example, we find at once that

γ 3/2
∞∑

n=−∞
(−1)n(n+ 1

2 )e
−πγ (n+1/2)2 =

∞∑
k=−∞

(−1)k(k + 1
2 )e

−π(k+1/2)2/γ .
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Hence, (5.8) is equivalent to

lim aQn(a) = √
γ

∞∑
j=0

(−1)j (2j + 1)e−πγ (2j+1)2/4. (5.11)

Equation (5.11) now converges very rapidly, as did (5.8), and we similarly conclude that

(1 − α)
√
γ e−πγ/4 ≤ lim

a→∞ aQn(a) ≤ √
γ e−πγ/4 (5.12)

for α = 3e−2πγ ≤ 0.005 6 when γ ≥ 1.
The general summation device we have used is not unknown in our particular case; it stems

from the fact that (5.8) is recognized as a derivative of the Jacobi theta function, which under
the Jacobi imaginary transformation is converted to (5.11).

6. Concluding remarks

We conclude (see (5.8) and (5.11)) that the asymptotic (a → ∞ at constant γ = 2a2/πn+
O(1/a)) value of the pointwise distribution aQn(a) = aP{An = a} of the maximum of our
random walk has been found over the full range of γ . Furthermore, very simple estimates, (5.9)
and (5.12), were obtained with a uniform maximum relative error of α = 0.005 6. Coupled
with the asymptotic (n → ∞) Abel-smoothed moments we presented in (4.14) and (4.15), a
quite complete characterization of this process has become available.
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