
JFP 27, e3, 56 pages, 2017. c© Cambridge University Press 2016

doi:10.1017/S0956796816000216

1

Higher order symbolic execution for contract
verification and refutation�

PHÚC C. NGUY
˜̂
EN

University of Maryland, College Park, Maryland, USA

(e-mail: pcn@cs.umd.edu)

SAM TOBIN-HOCHSTADT

Indiana University, Bloomington, Indiana, USA

(e-mail: samth@cs.indiana.edu)

DAVID VAN HORN

University of Maryland, College Park, Maryland, USA

(e-mail: dvanhorn@cs.umd.edu)

Abstract

We present a new approach to automated reasoning about higher-order programs by endowing

symbolic execution with a notion of higher-order, symbolic values. To validate our approach,

we use it to develop and evaluate a system for verifying and refuting behavioral software

contracts of components in a functional language, which we call soft contract verification. In

doing so, we discover a mutually beneficial relation between behavioral contracts and higher-

order symbolic execution. Contracts aid symbolic execution by providing a rich language

of specifications serving as a basis of symbolic higher-order values; the theory of blame

enables modular verification and leads to the theorem that verified components can’t be

blamed; and the run-time monitoring of contracts enables soft verification whereby verified

and unverified components can safely interact. Conversely, symbolic execution aids contracts

by providing compile-time verification and automated test case generation from counter-

examples to verification. This relation between symbolic exuection and contracts engenders a

virtuous cycle encouraging the gradual use of contracts.

Our approach is able to analyze first-class contracts, recursive data structures, unknown

functions, and control-flow-sensitive refinements of values, which are all idiomatic in dynamic

languages. It makes effective use of off-the-shelf solvers to decide problems without heavy

encodings. Counterexample search is sound and relatively complete with respect to a first-order

solver for base type values and counter-examples are reported as concrete values, including

functions. Therefore, it can form the basis of automated verification and bug-finding tools for

higher-order programs. The approach is competitive with a range of existing tools—including

type systems, flow analyzers, and model checkers—on their own benchmarks. We have built

a prototype to analyze programs written in Racket and report on its effectiveness in verifying

and refuting contracts.

� This material is based on research sponsored by the NSF under award 1218390, the NSA under
the Science of Security program, and DARPA under the programs Automated Program Analysis
for Cybersecurity (FA8750-12-2-0106) and Clean-slate design of Resilient Adaptive Secure Hosts.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

2 P. C. Nguy˜̂en et al.

Prior publications

This paper unifies and expands upon the work presented in the papers “Soft contract

verification,” in Proceedings of the 19th ACM SIGPLAN International Conference on

Functional Programming (Nguy˜̂en et al., 2014) and “Relatively complete counterex-

amples for higher-order programs,” in Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Nguy˜̂en and Van

Horn, 2015). It also subsumes the work in the paper “Higher-order symbolic

execution via contracts,” in Proceedings of the ACM International Conference on

Object Oriented Programming Systems Languages and Applications (Tobin-Hochstadt

and Van Horn, 2012).

1 Static verification for dynamic languages

Contracts (Meyer, 1991; Findler and Felleisen, 2002) have become a prominent

mechanism for specifying and enforcing invariants in dynamic languages (Plosch,

1997; Austin et al., 2011; Strickland et al., 2012; Disney, 2013; Hickey et al., 2013).

They offer the expressivity and flexibility of programming in a dynamic language,

while still giving strong guarantees about the interaction of components. However,

there are two downsides: (1) contract monitoring is expensive, often prohibitively

so, which causes programmers to write more lax specifications, compromising

correctness for efficiency; and (2) contract violations are found only at run-time,

which delays discovery of faulty components with the usual negative engineering

consequences.

Static verification of contracts would empower programmers to state stronger

properties, get immediate feedback on the correctness of their software, and avoid

worries about run-time enforcement cost since, once verified, contracts could be

removed. All-or-nothing approaches to verification of typed functional programs

has seen significant advances in the recent work on static contract checking (Xu

et al., 2009; Xu, 2012; Vytiniotis et al., 2013), refinement type checking (Terauchi,

2010; Vazou et al., 2013; Zhu and Jagannathan, 2013; Vazou et al., 2014), and

model checking (Kobayashi, 2009b; Kobayashi et al., 2010, 2011). However, the

highly dynamic nature of untyped languages makes verification more difficult.

Programs in dynamic languages are often written in idioms that thwart even

simple verification methods such as type inference. Moreover, contracts themselves

are written within the host language in the same idiomatic style. This suggests

that moving beyond all-or-nothing approaches to verification is appropriate with

contracts, because the existing semantics of contract checking provides a straight-

forward mechanism for residualizing unverifiable specifcations without requiring

further work as opposed to type-systems (Knowles and Flanagan, 2010).

Contracts themselves give us the tools to enable these new approaches, by

describing values and by partitioning programs on boundaries. We dub our approach

soft contract verification, enabling piecemeal and modular verification of contracts.

This approach augments a standard reduction semantics for a functional language

with contracts and modules by endowing it with a notion of “unknown” values

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 3

refined by sets of contracts. Verification is carried out by executing programs on

abstract values.

Two crucial ideas from contracts allow us to go from whole-program, first-order

approaches to modular, higher order contract verification.

• First, contracts as abstract values provide a language of specifications that

scales to higher order values and can encompass arbitrary specifications. This

means that whatever guarantees a client needs, they can be specified in the

interface and handled by our approach.

• Second, blame to partition programs makes modular analysis possible. In a

higher order system, behavioral values can flow across module boundaries.

Determining what a modular analysis means in this setting is tricky, but again

contracts provide the answer. By re-using the concept of blame from Findler

and Felleisen (2002), we define the errors that we rule out as exactly those that

blame the portion of the program under consideration. This crucial distinction

will become especially important when considering the behavior of unknown

higher order values.

To demonstrate the first step in applying our approach, consider the following

contrived, but illustrative example. Let positive? and negative? be predicates

for positive and negative integers. Contracts can be arbitrary predicates, so these

functions are also contracts. Consider the following contracted function (written in

Racket (Flatt and PLT, 2010)):

(define/contract (f x)
(positive? . → . negative?) ; contract
(* x -1))

We can verify this program by (symbolically) running it on an “unknown” in-

put. Checking the domain contract refines the input to be an unknown satis-

fying the set of contracts {positive?}. By embedding some basic facts about

positive?, negative?, and -1 into the reduction relation for *, we conclude

(* {positive?} -1) �−→ {negative?}, and voilà, we’ve shown once and for all f

meets its contract obligations and cannot be blamed. We could therefore soundly

eliminate any contract which blames f, in this case negative?. At its core, we rely

on a simple idea: symbolic execution naturally breaks down programs into simpler

components, enabling effective reasoning about seemingly complex features.

This simple approach, building on the two lessons of contracts we have described,

is effective for small examples, but insufficient to scale to realistic programs. In this

paper, we show how the initial approach can handle tricky problems and larger

programs by incorporating several additional techniques.

Solver-aided reasoning: While embedding symbolic arithmetic knowledge for specific,

known contracts works for simple examples, it fails to reason about arithmetic

generally. Contracts often fail to verify because equivalent formulations of contracts

are not hard-coded in the semantics of primitives. Many systems address this issue

by incorporating an SMT solver. However, for a higher order language, solver

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

4 P. C. Nguy˜̂en et al.

integration is often achieved by reasoning in a theory of uninterpreted functions or

semantic embeddings (Rondon et al., 2008; Knowles and Flanagan, 2010; Vytiniotis

et al., 2013).

In this paper, we observe that higher order contracts can be effectively verified

using only a simple first-order solver. The key insight is that contracts delay higher

order checks and failures always occur with a first order witness. By relying on a

(symbolic) semantic approach to carry out higher order contract monitoring, we

can use an SMT solver to reason about integers without the need for sophisticated

encodings. (Examples in Section 2.3.)

Flow sensitive reasoning: Just as our semantic approach decomposes higher order

contracts into first-order properties, first-order contracts naturally decompose into

conditionals. If the verification procedure did not take this into account, even simple

examples would fail to verify:

(g : integer? → negative?)
(define (g x) (if (positive? x) (f x) (f 8)))

This is because the true-branch call to f is (f {integer?}) by substitution, although

we know from the guard that x satisfies positive?.

In this paper, we observe that flow-sensitivity can be achieved by replacing

substitution with heap-allocated values. These heap addresses are then refined as

they flow through predicates and primitive operations, with no need for special

handling of contracts (Section 2.2). As a result, the system is not only effective for

contract verification, but can also handle safety verification for programs with no

contracts at all.

First-class contracts: Pragmatic contract systems enable first-class contracts so new

combinators can be written as functions that consume and produce contracts. But

to the best of our knowledge, no verification system currently supports first-class

contracts (or refinements), and in most approaches, it appears fundamentally difficult

to incorporate such a notion.

Because we handle contracts (and all other features) by execution, first-class

contracts pose no significant technical challenge and our system reasons about them

effectively (Section 2.6).

Refuting contracts with concrete counterexamples Generating inputs that crash first-

order programs is a well-studied problem in the literature on symbolic execu-

tion (Godefroid et al., 2005; Cadar et al., 2006), type systems (Foster et al., 2002),

flow analysis (Xie and Aiken, 2005), and software model checking (Yang et al., 2004).

However, in the setting of higher order languages, those that treat computations

as first-class values, research has largely focused on the verification of programs

without investigating how to effectively report counterexamples as concrete inputs

when verification fails (e.g., Rondon et al. (2008); Xu et al. (2009); Kawaguchi

et al. (2010); Tobin-Hochstadt and Van Horn (2012); Vytiniotis et al. (2013)), or

restricted unknown inputs to first-order (e.g., Kobayashi et al. (2011)). Searching

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 5

for a counterexample witnessing each program bug seems futile in the presence of

higher order unknown inputs: After all, the space of possibilities is huge, and most

SMT solvers do not produce models for higher order unknown values.

Nevertheless, we recognize that even though there are numerous higher order

inputs, they trigger program errors in their contexts following only a few specific

patterns. Therefore, instead of searching through the space of all possible functions

for a counterexample, we only consider a small subset of functions of specific

shapes. The remarkable result is that this method enjoys strong guarantees: Each

counterexample triggers a real contract violation (soundness), and given an SMT

solver that is complete for base data types, our method constructs a counterexample

reproducing each possible contract violation (relative completeness).

Converging for complex recursion: Of course, simply executing programs has a

fundamental drawback—it will fail to terminate in many cases, and when the inputs

are unknown, execution will almost always diverge. Simply detecting cycles in the

state space handles straightforward tail-recursive functions, but not more complex

recursive calls. Without a solution to this problem, even simple programs operating

over inductive data would be impossible to verify.

In this paper, we accelerate the convergence of programs by identifying and

approximating regular accumulation of evaluation contexts, causing common recur-

sive programs to converge on unknown values, while providing precise predictions

(Section 2.5). As with the rest of our approach, this happens during execution and

is therefore robust to complex, higher order control flow.

Combining these techniques yields a system competitive with a diverse range of

existing powerful static checkers, achieving many of their strengths in concert, while

balancing the benefits of static contract verification with the flexibility of dynamic

enforcement.

We have built a prototype soft verification engine, which we dub SCV, based on

these ideas and used it to evaluate the approach (Section 4). Our evaluation demon-

strates that the approach can verify properties typically reserved for approaches

that rely on an underlying type system, while simultaneously accommodating the

dynamism and idioms of untyped programming languages. We take examples from

work on soft typing (Cartwright and Fagan, 1991; Wright and Cartwright, 1997),

type systems for untyped languages (Tobin-Hochstadt and Felleisen, 2010), static

contract checking (Xu et al., 2009; Xu, 2012), refinement type checking (Terauchi,

2010), and model checking of higher order functional languages (Kobayashi, 2009b;

Kobayashi et al., 2010, 2011).

SCV can prove all contract checks redundant for almost all of the examples taken

from this broad array of existing program analysis and type checking work, and

can handle many of the tricky higher order verification problems demonstrated

by other systems. In other words, our approach is competitive with type systems,

model checkers, and soft typing systems on each of their chosen benchmarks—in

contrast, work on higher order model checking does not handle benchmarks aimed

at soft typing or occurrence typing, and vice versa. In the cases where SCV does not

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

6 P. C. Nguy˜̂en et al.

prove the complete absence of contract errors, the vast majority of possible dynamic

errors are ruled out, justifying numerous potential optimizations. Over this corpus

of programs, 99% of the contract and run-time type checks are proved safe, and

could be eliminated.

We also evaluate the verification of three small interactive video games which

use first-class and dependent contracts pervasively. The results show the subsequent

elimination of contract monitoring has a dramatic effect: from a speed up factor of

7 in one case, to three orders of magnitude in the others. In essence, these results

show the games are infeasible without contract verification.

2 Worked examples

We now present the main ideas of our approach through a series of examples taken

from work on other verification techniques, starting from the simplest and working

up to a complex object encoding.

2.1 Higher order symbolic reasoning

Consider the following simple function that transforms functions on even integers

into functions on odd integers. It has been ascribed this specification as a contract,

which can be monitored at run-time.

(e2o : (even? → even?) → (odd? → odd?))
(define (e2o f)

(λ (n) (- (f (+ n 1)) 1)))

A contract monitors the flow of values between components. In this case, the

contract monitors the interaction between the context and the e2o function. It is

easy to confirm that e2o is correct with respect to the contract; e2o holds up its

end of the agreement, and therefore cannot be blamed for any run-time failures that

may arise. The informal reasoning goes like this: First, assume f is an even? →
even? function. When applied, we must ensure the argument is even (otherwise e2o

is at fault), but may assume the result is even (otherwise the context is at fault).

Next, assume n is odd (otherwise the context is at fault) and ensure the result is

odd (otherwise e2o is at fault). Since (+ n 1) is even when n is odd, f is applied

to an even argument, producing an even result. Subtracting one therefore gives an

odd result, as desired.

This kind of reasoning mimics the step-by-step computation of e2o, but rather

than considering some particular inputs, it considers these inputs symbolically to

verify all possible executions of e2o. We systematize this kind of reasoning by

augmenting a standard reduction semantics for contracts with symbolic values that

are refined by sets of contracts. At first approximation, the semantics includes

reductions such as

(+ {odd?} 1) �−→ {even?}, and

({even? → even?} {even?}) �−→ {even?}.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 7

This kind of symbolic reasoning mimics a programmer’s informal intuitions which

employ contracts to refine unknown values and to verify components meet their

specifications. If a component cannot be blamed in the symbolic semantics, we can

safely conclude it cannot be blamed in general.

2.2 Flow sensitive reasoning

Programmers using untyped languages often use a mixture of type-based and flow-

based reasoning to design programs. The analysis naturally takes advantage of type

tests idiomatic in dynamic languages even when the tests are buried in complex

expressions. The following function taken from work on occurrence typing (Tobin-

Hochstadt and Felleisen, 2010) can be proven safe using our symbolic semantics:

(f : (or/c int? str?) cons? → int?)
(define (f x p)

(cond
[(and (int? x) (int? (car p))) (+ x (car p))]
[(int? (car p)) (+ (str-len x) (car p))]
[else 0]))

Here, int?, str?, and cons? are type predicates for integers, strings, and pairs,

respectively. The contract (or/c int? str?) uses the or/c contract combinator to

construct a contract specifying a value is either an integer or a string.

A programmer would convince themselves this program was safe by using the

control dominating predicates to refine the types of x and (car p) in each branch

of the conditional.1 Our symbolic semantics accommodates exactly this kind of

reasoning in order to verify this example. However, there is a technical challenge

here. A straightforward substitution-based semantics would not reflect the flow-

sensitive facts. Focusing just on the first clause, a substitution model would give

(cond
[(and (int? {(or/c int? str?)}) (int? (car {cons?})))
(+ {(or/c int? str?)} (car {cons?}))] ...)

At this point, it’s too late to communicate the refinement of these sets implied by the

test evaluating to true, so the semantics would report the contract on + potentially

being violated because the first argument may be a string, and the second argument

may be anything. We overcome this challenge by modeling symbolic values as heap-

allocated sets of contracts. When predicates and data structure accessors are applied

to heap addresses, we refine the corresponding sets to reflect what must be true. So

the program is modeled as

(cond
[(and (int? L1) (int? (car L2)))

1 The call to str-len is safe because (and (int? x) (int? (car p))) being false and (int? (car
p)) being true implies that (int? x) is false, which in turns implies x is a string as enforced by f’s
contract.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

8 P. C. Nguy˜̂en et al.

(+ L1 (car L2))] ...)
where L1 �→ {(or/c int? string?)}, L2 �→ {cons?}

In the course of evaluating the test, we get to (int? L1), the semantics conceptually

forks the evaluator and refines the heap:

(int? L1) �−→ true, where L1 �→ {int?}
�−→ false, where L1 �→ {string?}

Similar refinements to L2 are communicated through the heap for (int? (car L2)),

thereby making (+ L1 (car L2)) safe. This simple idea is effective in achieving

flow-based refinements. It naturally handles deeply nested and inter-procedural

conditionals.

2.3 Incorporating an SMT solver

The techniques described so far are highly effective for reasoning about functions

and many kinds of recursive data structures. However, effective reasoning about

many kinds of base values, such as integers, requires sophisticated domain-specific

knowledge. Rather than build such a tool ourselves, we defer to existing high-quality

solvers for these domains. Unlike many solver-aided verification tools, however, we

use the solver only for queries on base values, rather than attempting to encode a

rich, higher order language into one that is accepted by the solver (Rondon et al.,

2008; Xu, 2012; Vytiniotis et al., 2013). This obviates the need of a general (and

error-prone) translation of the language. For example, there is no need to embed an

untyped language’s “unityped type system” into the solver’s type system.

To demonstrate our approach, we take an example (intro3) from work on model

checking higher order programs (Kobayashi et al., 2011).

; (>/c n) abbreviates (λ (x) (> x n))

(define (f x g) (g (+ x 1)))

(h : [x : int?] → [y : (and/c int? (>/c x))]
→ (and/c int? (>/c y)))

(define (h x) ...) ; unknown definition

(main : int? → (and/c int? (>/c 0)))
(define (main n) (if (� n 0) (f n (h n)) 1))

In this program, we define a contract combinator (>/c) that creates a check for an

integer from a lower bound; a helper function f, which comes without a contract;

and an unknown function h that given an integer x, returns a function mapping some

number y that is greater than x to an answer greater than y—here h’s specification

is given, but not its implementation. (Note h’s contract is dependent.) We verify

main’s correctness, which means it definitely returns a positive integer and does not

violate h’s contract.

According to its contract, main is passed an integer n. If n is negative, main

returns 1, satisfying the contract. Otherwise, the function applies f to n and (h n).

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 9

Function h, by its contract, returns another function that requires a number greater

than n. Examining f’s definition, we see h (now bound to g) is eventually applied to

(+ n 1). Let n1 be the result of (+ n 1). And by h’s contract, we know the answer

to (h n) is another integer greater than n1. Let us name this answer n2. In order to

verify that main satisfies contract (>/c 0), we need to verify that n2 is a positive

integer.

Once f returns, the heap contains several addresses with contracts:

n �→ {int?, (�/c 0)}
n1 �→ {int?, (=/c (+ n 1))}
n2 �→ {int?, (>/c n1)}

We then translate this information to a query for an external solver:

n, n1, n2: INT;
ASSERT n � 0;
ASSERT n1 = n + 1;
ASSERT n2 > n1;
QUERY n2 > 0;

Solvers such as CVC4 (Barrett et al., 2011) and Z3 (Moura and Bjørner, 2008) easily

verify this implication, proving main’s correctness.

Refinements such as (�/c 0) are generated by primitive applications (� x 0),

and queries are generated from translation of the heap, not arbitrary expressions.

This has a few consequences. First, by the time we have value v satisfying predicate p

on the heap, we know that p terminates successfully on v. Issues such as errors (from

p itself) or divergence are handled elsewhere in other evaluation branches. Second, we

only need to translate a small set of simple, well understood contracts—not arbitrary

expressions. Evaluation naturally breaks down complex expressions, and properties

are discovered even when they are buried in complex, higher order functions. Given

a translation for (>/c 0), the analysis automatically takes advantage of the solver

even when the predicate contains > in a complex way, such as (λ (x) (or (> x

0) E), where E is an arbitrary expression. Predicates that lack translations to SMT

only reduce precision, never soundness.

2.4 Generating higher order counterexamples

Programmers benefit not only from verification of correct programs, but also

refutation of incorrect programs through concrete counterexamples: They minimize

the confusion between a true bug and a false warning, and provide programmers

with insight into their code’s defects.

In the following program, f’s contract promises that if its argument is a function

returning an integer, then f returns an integer. In its body, f performs a division

involving the application of its argument to 42.

(f : (int? → int?) → int?)
(define (f g)

(/ 1 (- 100 (g 42))))

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

10 P. C. Nguy˜̂en et al.

Function f’s definition is unsafe in two ways. First, the division is not protected

against a denumerator of 0. Second, / potentially returns a quotient, causing f to

violate the int? contract in its range.

In this case, the only way function g interacts with the code under verification

(function f) is through its returned value. Because g is applied only to 42 in this

case, it suffices to search for instantiations of g in the space of constant functions

of the form (λ () n) with n being an unknown integer. The system therefore can

produce two counterexamples trigger two potential bugs in the program:

Contract violation: f violates contract with /
Value 0 violates contract (not/c (=/c 0))
An example that triggers this violation:

(f (λ (n) 100))

Contract violation: f violates its own contract
Value -1/2 violates contract int?
An example that triggers this violation:

(f (λ (n) 102))

In more complex programs, an unknown function can interact and trigger errors

in multiple ways: either by returning another value to be consumed by the context, or

by applying a function coming from the context to some values. The counterexample

can be more complex, but in each case, it is only how the unknown function interacts

with its context that is relevant to producing a counterexample. The system needs not

consider instantiations to unknown functions that perform irrelevant work, diverge,

or have their own errors.

2.5 Converging for non-tail recursion

The techniques sketched above provide high precision in the examples considered, but

simply executing programs on abstract values is unlikely to terminate in the presence

of recursion. When an abstract value stands for an infinite set of concrete values,

execution may unfold infinitely, building up an ever-growing evaluation context. To

tackle this problem, we summarize this context to coalesce repeated structures and

enable termination on many recursive programs. Although guaranteed termination

is not our goal, the empirical results (Section 4) demonstrate that the method is

effective in practice.

The following example program is taken from work on model checking of higher

order functional programs (Kobayashi et al., 2011), and demonstrates checking

non-trivial safety properties on recursive functions. Note that no loop invariants

need be provided by the user.

(main : (and/c int? (>=/c 0)) → (and/c int? (>=/c 0)))
(define (main n)

(let ([l (make-list n)])
(if (> n 0) (car (reverse l empty)) 0)))

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 11

(define (reverse l ac)
(if (empty? l) ac

(reverse (cdr l) (cons (car l) ac))))

(define (make-list n)
(if (= n 0) empty

(cons n (make-list (- n 1))))))

Again, we aim to verify both the specified contract for main as well as the

preconditions for primitive operations such as car. Most significantly, we need to

verify that (reverse l empty) produces a non-empty list (so that car succeeds)

and that its first element is a positive integer. The local functions reverse and

make-list do not come with a contract.

This problem is more challenging than the original OCaml version of the same

program, due to the lack of types. This program represents a common idiom in

dynamic languages: not all values are contracted, and there is no type system on

which to piggy-back verification. In addition, programmers often rely on inter-

procedural reasoning to justify their code’s correctness, as here with reverse.

We verify main by applying it to an abstract (unknown) value n1. The contract

ensures that within the body, n1 is a non-negative integer.

The integer n1 is first passed to make-list. The comparison (= n1 0) non-

deterministically returns true or false, updating the information known about n1

to be either 0 or (>/c 0) in each corresponding case. In the first case, make-list

returns empty. In the second case, make-list proceeds to the recursive application

(make-list n2), where n2 is the abstract non-negative integer obtained from

evaluating (- n1 1). However, (make-list n2) is identical to the original call

(make-list n1) up to renaming, since both n1 and n2 are non-negative. Therefore,

we pause here and use a summary of make-list’s result instead of continuing in an

infinite loop.

Since we already know that empty is one possible result of (make-list n1), we

use it as the result of (make-list n2). The application (make-list n1) therefore

produces the pair 〈n1,empty〉, which is another answer for the original application.

We could continue this process and plug this new result into the pending application

(make-list n2). But we instead first approximate 〈n1,empty〉 to a non-empty list

of positive integers. This approximation choice is guided by the observation that

plugging in empty in the recursive call gives rise to 〈n1,empty〉. We then use this

approximate answer as the result of the pending application (make-list n2). This

then induces another result for (make-list n1), a list of two or more positive

integers, but this is subsumed by the previous answer of non-empty integer list. We

have now discovered all possible return values of make-list when applied to a

non-negative integer: It maps 0 to empty, and positive integers to a non-empty list

of positive integers.

Although our explanation made use of the order, the soundness of analyzing

make-list does not depend on the order of exploring non-deterministic branches.

Each recursive application with repeated arguments generates a waiting context, and

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

12 P. C. Nguy˜̂en et al.

each function return generates a new case to resume. There is an implicit work-list

algorithm in the modified semantics (Section 3.8.2).

When make-list returns to main, we have two separate cases: either n1 is 0 and

l is empty, or n1 is positive and l is non-empty. In the first case, (> n1 0) is false

and main returns 0, satisfying the contract. Otherwise, main proceeds to reversing

the list before taking its first element.

Using the same mechanism as with make-list, the analysis infers that reverse

returns a non-empty list when either of its arguments (l or acc) is non-empty. In

addition, reverse only receives arguments of proper lists, so all partial operations

on l such as car and cdr are safe when l is not empty, without needing an explicit

check. The function eventually returns a non-empty list of integers to main, justifying

main’s call to the partial function car, producing a positive integer. Thus, main never

has a run-time error in any context.

While this analysis makes use of the implementation of make-list and reverse,

that does not imply that it is whole-program. Instead, it is modular in its use

of unknown values abstracting arbitrary behavior. For example, make-list could

instead be an abstract value represented by a contract that always produces lists of

integers. The analysis would still succeed in proving all contracts safe except the use

of car in main—This shows the flexibility available in choosing between precision

and modularity. In addition, the analysis does not have to be perfectly precise to

be useful. If it successfully verifies most contracts in a module, that already greatly

improves confidence about the module’s correctness and justifies the elimination of

numerous expensive dynamic checks.

2.6 First-class contracts

In the following, we choose a simple encoding of classes as functions that produce

objects, where objects are again functions that respond to messages named by

symbols. We then verify the correctness of a mixin: A function from classes to

classes. The vec/c contract enforces the interface of a 2D-vector class whose objects

accept messages ’x, ’y, and ’add for extracting components and vector addition.

(define vec/c
([msg : (one-of/c ’x ’y ’add)]

→ (match msg
[(or ’x ’y) real?]
[’add (vec/c → vec/c)])))

This definition demonstrates several powerful contract system features which we are

able to handle:

• contracts are first-class values, as in the definition of vec/c,
• contracts may include arbitrary predicates, such as real?,
• contracts may be recursive, as in the contract for ’add,
• function contracts may express dependent relationships between the domain

and range—the contract of the result of method selection for vec/c depends

on which method is chosen.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 13

Suppose we want to define a mixin that takes any class that satisfies the vec/c

interface and produces another class with added vector operations such as ’len

for computing the vector’s length. The extend function defines this mixin, and

ext-vec/c specifies the new interface. We verify that extend violates no contracts

and returns a class that respects specifications from ext-vec/c.

(extend : (real? real? → vec/c) → (real? real? → ext-vec/c))
(define (extend mk-vec)

(λ (x y)
(let ([vec (mk-vec x y)])

(λ (m)
(match m

[’len
(let ([x (vec ’x)] [y (vec ’y)])

(sqrt (+ (* x x) (* y y))))]
[_ (vec m)])))))

(define ext-vec/c
([msg : (one-of/c ’x ’y ’add ’len)]

→ (match msg
[(or ’x ’y) real?]
[’add (vec/c → vec/c)]
[’len (and/c real? (�/c 0))])))

To verify extend, we provide an arbitrary value, which is guaranteed by its

contract to be a class matching vec/c. The mixin returns a new class whose objects

understand messages ’x, ’y, ’add, and ’len. This new class defines method ’len

and relies on the underlying class to respond to ’x, ’y, and ’add. Because the old

class is constrained by contract vec/c, the new class will not violate its contract

when responding to messages ’x, ’y, and ’add.

For the ’len message, the object in the new vector class extracts its components

as abstract numbers x and y, according to interface vec/c. It then computes their

squares and leaves the following information on the heap:

x2 �→ {real?, (=/c (* x x))}
y2 �→ {real?, (=/c (* y y))}
s �→ {real?, (=/c (+ x2 y2))}

Solvers such as Z3 (Moura and Bjørner, 2008) can handle simple non-linear

arithmetic and verify that the sum s is non-negative; thus, the sqrt operation

is safe. Execution proceeds to take the square root—now called l—and refines the

heap with the following mapping:

l �→ {real?, (=/c (sqrt s))}

When the method returns, its result is checked by contract ext-vec/c to be

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

14 P. C. Nguy˜̂en et al.

a non-negative number. We again rely on the solver to prove that this is the

case.

Therefore, extend is guaranteed to produce a new class that is correct with respect

to interface vec-ext/c, justifying the elimination of expensive run-time checks. In a

Racket program computing the length of 1,00,000 random vectors, eliminating these

contracts results in a 100-fold speed-up. While such dramatic results are unlikely

in full programs, measurements of existing Racket programs suggests that 50%

speed-ups are possible (Strickland et al., 2012).

3 A symbolic language with contracts

In this section, we give a reduction system describing the core of our approach.

Symbolic λC is a model of a pure functional language with first-class contracts

and symbolic values. We first present the semantics, including handling of primitives

and unknown functions, that facilitates finding bugs and constructing test cases

reproducing each reachable contract violation. We then describe how the handling

of primitive values integrates with external solvers. Finally, we show an abstraction

of our system to accelerate convergence, turning the bug-finding semantics into a

practical verification. For each abstraction, we relate concrete and symbolic programs

and prove a soundness theorem.

At a high level, the key idea of our semantics is that abstract values behave non-

deterministically in all possible ways that concrete values might behave. Furthmore,

abstract values can be bounded by specifications in the form of contracts that

limit these behaviors. As a result, an operational semantics for abstract values

explores all the ways that the concrete program under consideration might be

used.

Given this operational semantics, we can then examine the results of evaluation

to see if any results are errors blaming the components we wish to verify. If they do

not, then our soundness theorem implies that there are no ways for the component

to be blamed, regardless of what other parts of the program do. Thus, we have

verified the component against its contract in all contexts. We make this notion

precise in Section 3.6.

3.1 Syntax of symbolic λC

Our initial language models the functional core of many modern dynamic lan-

guages, extended with behavioral, first-class contracts, as well as symbolic val-

ues. The abstract syntax is shown in Figure 1. Syntax needed only for sym-

bolic execution is highlighted in gray; we discuss it after the syntax of concrete

programs.

A program P is a sequence of module definitions followed by a top-level expression

which may reference the modules. Each module M has a name H and exports a single

value V with behavior enforced by contract Vc. (Generalization to multiple-export

modules is straightforward.)

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 15

Fig. 1. Syntax of symbolic λC.

Expressions include standard forms such as values, variable and module references,

applications, and conditionals, as well as those for constructing and monitoring con-

tracts. Contracts are first-class values and can be produced by arbitrary expressions.

For clarity, when an expression plays the role of a contract, we use the metavariable

C , rather than E. A dependent function contract (C → λX.C ′) monitors a function’s

argument with C and its result with the contract produced by applying λX.C ′ to

the argument.

A contract violation at run-time causes blame, an error with information about

who violated the contract. We write blameHH ′′ to mean module H is blamed for

violating the contract from H ′′. The form (monH,H ′

H ′′ (C,E)) monitors expression E

with contract C , with H being the positive party, H ′ the negative party, and H ′′ the

source of the contract. The system blames the positive party if E produces a value

violating C , and the negative one if E is misused by the context of the contract

check. To make context information available at run-time, we annotate references

and applications with labels indicating the module they appear in, or † for the

top-level expression. For example, HH ′
denotes a reference to the name H from

module H ′, and (add1 X)† denotes an addition inside the top level. When a module

H causes a primitive error, such as applying 5, we also write blameHΛ , indicating

that it violates a contract with the language. Monitoring forms, blaming forms, and

labels are not available for programmers to write. We omit labels when they are

irrelevant or can be inferred.

Concrete values U include abstractions, integers, and dependent contracts with

domain components evaluated. We use 0 to indicate falsehood and any other value

for truth. Primitive operations over values are standard, including predicates O? for

dynamic testing of data types.

To reason about absent components, we equip λC with unknown, or symbolic

values, which abstract over multiple concrete values exhibiting a range of behavior.

Each address L identifies an arbitrary but fixed and syntactically closed2 value in the

2 For example, L cannot be instantiated by term (λx.y).

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

16 P. C. Nguy˜̂en et al.

program. For soundness, execution must account for all possible concretizations of

unknown values, and reduction becomes non-deterministic. As execution progresses

through tests and contract checks, more assumptions can be made about symbolic

values in each non-deterministic branch. To track refinements of symbolic values,

we use a heap that maps each address to a refinable value, which includes concrete

as well as abstract values of the form •
−→
U and case[

−−−−→
V �→ L]. We omit displaying this

predicate set when it is empty, irrelevant, or can be inferred from context. The form

•
−→
U denotes a value known to satisfy contract set

−→
U but is otherwise unknown. The

form case[
−−−−→
V �→ L] is used internally and denotes a mapping between values, which

we discuss further in Section 3.2.3.

Refined Values U ′ ::= U | •
−→
U | case[−−−−→

V �→ L]

Heaps Σ ::=
−−−−→
〈L, U ′〉.

3.2 Semantics of symbolic λC

We now turn to the reduction semantics for Symbolic λC, which combines standard

rules for untyped languages with behavior for unknown values. Reduction is defined

as a relation on states, parameterized by a module context. We omit the module

context whenever it is irrelevant.

−→
M � ς �−→ ς′

A state is an expression paired with a heap:

States ς ::= 〈E, Σ〉.

3.2.1 Basic rules

The first reduction rule concerns the application of primitive operations, which are

interpreted by a δ relation. The relation maps operations, arguments, and heaps to

results and new heaps.

Apply-Primitive

δ(Σ, O,
−→
V) 	 ς

(O
−→
V),Σ �−→ ς

The use of a δ relation in reduction semantics is standard, but typically it is a

function and is independent of the heap. We make δ dependent on the heap in order

to use and update the current set of invariants; we make it a relation, since it may

behave non-deterministically on unknown values. For example, in interpreting (> L

5) where L �→ •int?, the δ relation will produce two results: 1, with an updated

heap to reflect the unknown value is (>/c 5); the other 0, with a heap reflecting

the opposite. The δ relation is thus the hub of the verification system and a point

of interaction with the SMT solver. It is described in more detail in Section 3.3.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 17

Applications of λ-abstractions follow standard β-reduction; applications of non-

functions result in blame.

Apply-Function

(λX.E V),Σ �−→ [V/X]E,Σ

Apply-Non-Function

δ(Σ, proc?, V) 	 〈0, Σ′〉
(V V ′)

H
,Σ �−→ blameHΛ ,Σ

′

Notice that in rule Apply-Non-Function, the δ relation is employed to determine

whether the value in operator position is a function using the proc? primitive. (Non-

functions include concrete numbers as well as abstract values known to exclude

functions; application of abstract values that may be functions is described in

Section 3.2.3.)

Conditionals treat values other than 0 as true.

If-True

δ(Σ, zero?, V) 	 〈0, Σ′〉
if V E1 E2,Σ �−→ E1,Σ

′

If-False

δ(Σ, zero?, V) 	 〈1, Σ′〉
if V E1 E2,Σ �−→ E2,Σ

′

Just as in the case of Apply-Non-Function, the interpretation of conditionals uses the

δ relation to determine whether zero? holds, which takes into account all of the

knowledge accumulated in Σ and in either branch that is taken, updates the current

knowledge to reflect whether zero? of V holds. This is the mechanism by which

control-flow-based refinements are enabled.

The two rules for module references reflect the approach in which contracts are

treated as boundaries between components (Dimoulas et al., 2011): A module self-

reference incurs no contract check, while cross-module references are protected by

the specified contract.

Module-Self-Reference

(moduleH Vc V) ∈ −→
M

−→
M � HH,Σ �−→ V ,Σ

Module-External-Reference

(moduleH Vc V) ∈ −→
M H �= H ′

−→
M � HH ′

,Σ �−→ monH,H ′

H (Vc, V),Σ

Finally, any state that is stuck with blame inside an evaluation context transitions

to a final blame state that discards the surrounding context.

Halt-Blame
E �= []

E[blame],Σ �−→ blame,Σ

Evaluation contexts are defined as follows:

E ::= [] | E E | V E | O −→
V E−→

E | if E E E | mon(E, E) | mon(V ,E) | E → λX.E

3.2.2 Contract monitoring

Contract monitoring follows existing operational semantics for contracts (Findler

and Felleisen, 2002), with extensions to handle and refine symbolic values.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

18 P. C. Nguy˜̂en et al.

There are several cases for checking a value against a contract. If the contract

is not a function contract, we say it is flat, denoting a first-order property to be

checked immediately. We thus expand the checking expression to a conditional.

Monitor-Flat-Contract
δ(Σ, dep?, Vc) 	 〈0, Σ′〉 Σ′ � V : Vc ?

monH,H ′

H ′′ (Vc, V),Σ �−→ if (Vc V) assume(V , Vc) blame
H
H ′′ ,Σ′

Since contracts are first-class, they can also be abstract values; we rely on δ to

determine whether a value is a flat contract by using (the negation of) the predicate

for dependent contracts, dep?, instead of examining the syntax. This rule is standard

except for the use of assume(V , Vc) and the (· � · : · ?) judgment. The assume(V , Vc)

form, which would normally just be V , dynamically refines address V in the heap

to indicate that V satisfies Vc; assume is discussed further in Section 3.2.3. The

judgment Σ′ � L : V ?, which would normally just be omitted, indicates that the

contract V cannot be statically judged to either pass or fail for L, which is why

the predicate must be applied. This judgment and its closely related counterparts

(· � · : · ✓) and (· � · : · ✗), which statically proves a value must or must not satisfy

a given contract respectively, are discussed in Section 3.4.

If a flat contract can be statically proved or refuted, monitoring can be short-

circuited.

Monitor-Proved
δ(Σ, dep?, Vc) 	 〈0, Σ′〉 Σ′ � V : Vc ✓

mon(Vc, V),Σ �−→ V ,Σ′

Monitor-Refuted

δ(Σ, dep?, Vc) 	 〈0, Σ′〉 Σ′ � V : Vc ✗

mon(Vc, V),Σ �−→ blame,Σ′

Monitoring a function contract against a function is interpreted the standard

η-expansion of contracts, where we swap the blame roles of positive and negative

parties (Findler and Felleisen, 2002). Similar to other values, function contracts can

be either concrete or symbolic. As we later shown in the definitions of δ and helper

metafunction refine, when a symbolic value is assumed a dependent contract, we

decompose it into two other symbolic values identifying its domain and range.

Monitor-Function-Contract
δ(Σ, proc?, V) 	 〈1, Σ′〉

monH,H ′

H ′′ (Vc → λX.C, V),Σ �−→ λX.monH,H ′

H ′′ (C, (V monH
′ ,H

H ′′ (Vc,X))),Σ′

Monitor-Abstract-Function-Contract
δ(Σ, proc?, V) 	 〈1, Σ′〉 δ(Σ′, dep?, L) 	 〈1, Σ′′〉 Σ′′(L) = Vc → λX.C

mon(L, V),Σ �−→ λX.monH,H ′

H ′′ (C, (V monH
′ ,H

H ′′ (Vc,X))),Σ′′

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 19

Fig. 2. Refinement for symbolic λC.

Finally, monitoring a function contract against a non-function results in an error

blaming the party providing the value.

Monitor-Non-Function
δ(Σ, dep?, Vc) 	 〈1, Σ1〉 δ(Σ1, proc?, V) 	 〈0, Σ2〉

monH,H ′

H ′′ (Vc, V),Σ �−→ blameHH ′′ ,Σ2

3.2.3 Handling unknown values

The assume form updates the heap of refinements to take into account the new

information using the refine metafunction; see Figure 2 for the definition of refine.

Assume

assume(V , Vc),Σ �−→ V , refine(Σ, V , Vc)

Refinement is straightforward propagation of known contracts, expanding values

known to be function contracts (via dep?) into function contract values.

Finally, we must handle application of unknown values. Notice that in the presence

of higher order arguments, the obvious solution of using a table to model each

unknown function does not work. First, a higher order function interacts with

its context not only through its returned result, but also the values it supplies

to its functional arguments. Using a table would omit the latter means through

which the unknown function triggers errors in its context. Second, there is no

obvious choice of equality between higher order values for use as table keys. For

example, it is not clear whether (λ (x) x) and (λ (y) y) should be the same

key. Third, there is no direct connection between a higher order keyed table and a

λ-term: A naive construction does not yield the intended function. The following

λ-term indeed would only execute the else clause regardless of its argument,

because a comparison to a function literal in most languages is guaranteed to return

false.

(λ (f)
(cond [(equal? f (λ (x) x)) ...#|dead code|#...]

[(equal? f (λ (y) y)) ...#|dead code|#...]
[else ...]))

Therefore, instead of viewing a higher order function as a mapping, we consider

different ways in which it interacts with the known components of the program.

Even though there are numerous ways to instantiate a λ-term, a function only

interacts with its context in a few specific ways. For example, it is not necessary to

consider unknown components that perform unnecessary computations, have their

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

20 P. C. Nguy˜̂en et al.

own errors, or diverge: For each function with such behavior, there exists another

terminating, error-free function that explores no fewer contract violations in concrete

modules.

We therefore refine each unknown function to have a specific shape shown in

rule Apply-Unknown. The unknown function dynamically inspects its argument’s

datatype to perform an appropriate operation. If the argument is a first-order value,

we model the function as a table using the case[
−−−−→
V �→ L] form discussed next. If

the argument is a function, the unknown function can interact with it in several

ways: (1) apply the function to an unknown value then pass the result to another

unknown “continuation”, (2) delay the exploration of the function’s behavior and

return a value depending on this function, (3) ignore the function and return a

value independent of it. We use addresses Lf, Lg, Lx, La for new symbolic values

that this unknown function decomposes to, and symbolic values L1, L2 to encode

the non-deterministic (but remembered) choices.

Apply-Unknown

δ(Σ, proc?, L) 	 〈1, Σ1〉 Σ1(L) = •
Σ2 = Σ1[L1 �→ •, L2 �→ •, Lf �→ •, Lg �→ •, Lx �→ •, La �→ •, L′ �→ case[], L �→ λX.E]

where E = if (proc? X) (if L1 ((Lf (X Lx)) X) (if L2 λY .((Lg X) Y) La)) (L′ X)

L V ,Σ �−→ [V/X]E,Σ2

Finally, finite maps of the form case[
−−−−→
V �→ L] on first-order values are used

internally by the execution. Application rules are straightforward as shown in rules

Apply-Case-1 and Apply-Case-2 : If the application has been seen before, we reuse

the result address, otherwise we return a fresh address and remember the new result

in the table.

Apply-Case-1

Σ(L) = case[. . . , V ′ �→ L′, . . .] δ(Σ, =, V V ′) 	 〈1, Σ′〉
L V ,Σ �−→ L′,Σ′

Apply-Case-2

Σ(L) = case[V ′ �→ L′ . . .]

δ(Σ, =, Vn V ′
i) 	 〈0, Σ′〉 for all V ′

i ∈ {V ′ . . .} Ln /∈ dom(Σ)

L Vn,Σ �−→ L′,Σ[Lx �→ •, L �→ case[V ′ �→ L′ . . . , Vn �→ Ln]]

3.3 Primitive operations

Primitive operations are the primary place where unknown values in the heap are

refined, in concert with successful contract checks. Figure 3 shows δ’s definition.

The first four rules cover primitive predicate checks. Ambiguity never occurs for

concrete values, and an abstract value may definitely prove or refute the predicate

if the available information is enough for the conclusion. If the proof system

cannot decide a definite result for the predicate check, δ conservatively includes

both answers in the possible results and records assumptions chosen for each

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 21

Fig. 3. Basic operations.

non-deterministic branch in the appropriate heap. Rules for partial functions such

as addition and integer equality, which fail when given non-numeric inputs, reveal

possible refinements when applying. This mechanism, when combined with the SMT-

aided proof system given below, is sufficient to provide the precision necessary to

prove the absence of contract errors.

3.4 SMT-aided proof system

Contract checking and primitive operations rely on a proof system to statically

relate values and contracts. We write Σ � V : Vc ✓ to mean value V satisfies contract

Vc, where all addresses in V are defined in Σ. In other words, under any possible

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

22 P. C. Nguy˜̂en et al.

Fig. 4. Basic proof system.

instantiation of the unknown values in Σ, it would satisfy Vc when checked according

to the semantics. On the other hand, Σ � V : Vc ✗ indicates that V definitely fails

Vc. Finally, Σ � V : Vc ? is a conservative answer when information from the heap

and refinement set is insufficient to draw a definite conclusion. The precision of

our analysis depends on the precision of this provability relation—increasing the

number of contracts that can be related statically to values prunes spurious paths

and eliminates impossible error cases.

3.4.1 Basic proof system

A simple proof system (Figure 4) can be obtained which returns definite answers

for concrete values, uses heap refinements, and handles negation of predicates and

disjointness of data types. We abbreviate λX.(O? X) as O?.

Notice that the proof system only needs to handle a small number of well-

understood contracts. We rely on evaluation to naturally break down complex

contracts into smaller ones and take care of subtle issues such as divergence and

crashing. By the time we have Σ(L) = •
−→
V , we can assume all contracts in

−→
V have

terminated with success on L. With these simple and obvious rules, our system

can already verify a significant number of interesting programs. With SMT solver

integration, as described below, we can handle far more interesting constraints,

including relations between numeric values, without requiring an encoding of the

full language.

3.4.2 Integrating an SMT solver

We extend the simple provability relation by employing an external solver.

We first define the translation {{·}} from heaps, address-value pairs, and address-

contract pairs into formulas in solver S:

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 23

{{−−−→
(L, V)}} = (

∧ −−−−−−→
{{L �→ V }})

{{L �→ n}} = L = n

{{L �→ •
−→
C }} =

∧ −−−−→
{{L:C}}

{{L0 : (>/c V1)}} = L0 > V1

{{L : (=/c (+ V0 V1))}} = L = V0 + V1

The translation of a heap is the conjunction of all formulas generated from

translatable refinements. The function is partial, and there are straightforward rules

for translating specific pairs of (L : C), where C are drawn from a small set of

simple, well-understood contracts.

This mechanism is enough for the system to verify many interesting programs

because the analysis relies on evaluation to break down complex, higher order

predicates. Not having a translation for some contract C only reduces precision and

does not affect soundness.

Next, the extension (�S) is straightforward. The old relation (�) is refined by a

solver S . Whenever the basic relation proves Σ � L : C ?, we call out to the solver

to try to either prove or refute the claim:

{{Σ}} ∧ ¬{{V : Vc}} is unsat

Σ �S V : Vc ✓

{{Σ}} ∧ {{V : Vc}} is unsat

Σ �S V : Vc ✗

The solver-aided relation uses refinements available on the heap to generate premises

{{Σ}}. Unsatisfiability of {{Σ}} ∧ ¬{{V : C}} is equivalent to validity of {{Σ}} ⇒ {{V : C}},
hence value definitely satisfies contract C . Likewise, unsatisfiability of {{Σ}}∧{{V : C}}
means V definitely refutes C . In any other case, we relate the value-contract pair to

the conservative answer.

3.5 Program evaluation

We give a reachable-states semantics to programs: The initial program P is paired

with an initial heap that maps each address in the program to a fully opaque value,

and eval produces all states in the reflexive, transitive closure of the single-step

reduction relation closed under evaluation contexts.

eval : P → P(ς)

eval(
−→
ME) = {ς | −→

M � (E ′;E),Σ0 �−→� ς}
where E ′ = amb({1,−−−−−→

(Lh H)}), (moduleH Vc V) ∈ −→
M

and Σ0 = {L �→ • | L appears in P } ∪ {Lh �→ •}
and amb{E} = E; amb{Ei, E . . .} = if Li Ei (amb{E . . .}), for each fresh address

Li

Modules with unknown definitions, which we call opaque, complicate the definition

of eval, since they may contain references to concrete modules. If only the main

module is considered, an opaque module might misuse a concrete value in ways

not visible to the system. We therefore apply an unknown function to each concrete

module before evaluating the main expression.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

24 P. C. Nguy˜̂en et al.

3.6 Soundness of abstract semantics

A program with unknown components is an abstraction of a fully known program.

Thus, the semantics of the abstracted program should approximate the semantics of

any such concrete version. In particular, any behavior the concrete program exhibits

should also be exhibited by the abstract approximation of that program.

However, we must be precise as to which behaviors are relevant. Suppose we have

a single concrete module that links against a single opaque module. The semantics

of this program should include all of the possible behaviors, both good and bad,

of the known module assuming the opaque module always lives up to its contract.

We exclude from consideration behaviors that cause the unknown module to be

blamed, since it is of course impossible to verify an unknown program. In other

words, we try to verify the parts of the program that are known, assuming arbitrary,

but correct, behavior for the parts of the program that are unknown.3

For this reason, the precise semantic account of blame is crucial. The demonic

context can introduce blame of both the known and unknown modules; since we

can distinguish these parties, it is easy to ignore blame of the unknown context.

In the remainder of this section, we formally define the approximation relation and

show that evaluation preserves this relation, i.e. if program q is an approximation

of program p (p is like q but with no unknown), then the evaluation of q is an

approximation of the evaluation of p.

3.6.1 Approximation

We write ς′ � ς to mean “ς approximates ς′”, or “ς′ instantiates ς”, which intuitively

means ς stands for a set of states including ς′. For example, 〈1, ∅〉 � 〈L, {L �→ •}〉.
Because we restrict the instantiating side to contain no symbolic value, the heap is

irrelevant, we abbreviate 〈E ′, ∅〉 � 〈E, Σ〉 as E ′ � 〈E, Σ〉 and 〈E ′
1, ∅〉 �−→ 〈E ′

2, ∅〉 as

E ′
1 �−→ E ′

2.

The last two rules in Figure 5 defines approximation between heaps. By this

definition, the range of the instantiating heap only contains concrete values.

Consistent instantiation of symbolic values. In order to enforce that each symbolic

value is instantiated by one concrete value, we parameterize the relation with a

fully concrete heap indicating the instantiation of each symbolic value. For example,

expression (+ 1 2) instantiates 〈(+L1L2), {L1 �→ •, L2 �→ •}〉, parameterized by

{L1 �→ 1, L2 �→ 2}. A naive definition of the approximation without this parameter

would admit a weaker approximation relation not preserved by reduction, where

different sub-expressions instantiate symbolic values differently. For example, in

the following, suppose we admitted that E ′ � 〈E, Σ〉 by straightforward structural

induction without enforcing consistent instantiation of labels (because 0, 1, 2 each

refines 〈L, {L �→ •}〉 individually), we would need to prove that their next states

3 Equivalently, we can think of the execution as implicitly blaming each unknown component for each
possible error with a trivially constructed counterexample.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 25

Fig. 5. Approximation.

preserve the relation.

E ′ = (if 0 1 2)

〈E ′, Σ〉 = 〈(if L L L), {L �→ •}〉

The next abstract state, however, does not continue to approximate the concrete

one:

E ′ �−→ 2

〈E, {L �→ •}〉 �−→ 〈L, {L �→ 0}〉
With a parameter enforcing consistent instantiation of symbolic values, we prevent

this “accidental” approximation to establish. In the above example, since there is

no instantiation Σ′ such that Σ′(L) = 0 and Σ′(L) = 2, we cannot derive that

E ′ �Σ′ 〈E, Σ〉 in the first place. Instead, in the following example, E ′ �Σ′
(E,Σ),

where Σ′ = {L0 �→ 0,L1 �→ 1,L2 �→ 2}:

E ′ = (if 0 1 2)

E = (if L0 L1 L2) Σ = {L0 �→ •, L1 �→ •, L2 �→ •}

Omitting behavior from unknown components. Our soundness result does not con-

sider additional errors that blame unknown modules, and therefore we parameterize

the approximation relation �Σ−→
M

with the module definitions
−→
M to select the opaque

modules. We omit these parameters where they are easily inferred to ease notation.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

26 P. C. Nguy˜̂en et al.

Figure 5 shows the definition of �Σ−→
M

. Each concrete value is approximated by a

symbolic value if the heap gives no restriction on the symbolic value’s behavior.

Further, if the concrete value is known to satisfy a contract, adding that contract

to the abstract value preserves the approximation. We write Σ(U) to mean a

straightforward instantiation of all symbolic values in U according to heap Σ.

We extend the relation �Σ−→
M

structurally to evaluation contexts E, point-wise to

sequences, and to sets of program states.

Instantiating unknown components. Finally, we justify our choice of instantiating

unknown functions to only one specific shape, and show that it is sufficient to

approximate all possible interactions between the known and unknown program

components.

Lemma 1 (Canonical counterexample)

If V and V ′ come from different modules, (moduleHVcV
′) ∈ −→

M, and (V V ′) �−→� A,

where A is a value or blameH , there exists λX.E such that (λX.E V ′) �−→� A and

λX.E conforms to Vr in the following grammar:

Vr ::= λX.(if (proc? X) (if n ((Vr (X V)) X) V) (Vm X))

Vm ::= λX.(if (= X n) V (Vm X)) | λX.V

Proof

Without loss of generality, assume V is non-recursive, bug-free, and does not

introduce divergence of its own. (If V is recursive, we unroll it as many time as

needed to reproduce the finite trace when applied to V ′. Further, V ’s own bug or

potential divergence must not have affected the result of its application to V ′, so we

replace the corresponding source code with trivial expressions.)

If the function body E can be decomposed into an evaluation context and a redex

E[E ′], without loss of generality, we only consider cases where E ′ contains X and

depends on an actual value of X to reduce. (Otherwise, because E ′ does not contain

divergence or error of its own, we can safely “partially evaluate” E ′ to eliminate any

redundant redex.)

We therefore translate E for the following cases. Translation {{E}}−→
V

behaves

identically to E up to the finite value set
−→
V that the free variable X in E can have.

The translation terminates by decreasing on E’s size.

• Case E = E[if X E1 E2]:

{{E}} = (if (proc? X) E ′
1 (Vm X)), where

— (if (proc? X) E ′
1 E

′
2) = {{E[E1]}}

— Vm is a table approximating E2 over
−→
V for X. (because E2 does not have

errors and divergence, and X is known to be numbers, the evaluation of

E2 for these particular values of X is guaranteed to terminate.)

• Case E = E[X V]:

{{E}} = (if (proc? X) (((λZ.λX.{{E[Z]}}) (X V)) X) (λX.0 X))
• Case E = E[proc? X]:

Case analysis on E

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 27

— Case E = E′[if [] E1 (Vm X)]:

{{E}} = if (proc? X) E ′
1 E

′
2

where (if (proc? X)E ′
1 E

′′
1) = {{E′[E1]}} and Vm is an approximation of E2

over
−→
V for X.

— Case E = E′[O V ′ . . . [] V ′ . . .]: Because (proc? X) only evaluates to

either 0 or 1, there are three cases:

– (O V ′ . . . [] V ′ . . .) preserves the truth of (proc? X): then

{{E}} = {{E′[proc? X]}}

– (O V ′ . . . [] V ′ . . .) negates the truth of (proc? X): then

{{E}} = (if (proc? X) E ′
1 E

′
2)

where (if (proc? X) E ′
1 E

′′) = {{E′[0]}}
and (if (proc? X) E ′ E ′

2) = {{E′[1]}}
– (O V ′ . . . [] V ′ . . .) has constant truth reguardless of (proc? X): then

{{E}} = {{E′[0]}} or {{E′[1]}} depending on the constant truth.

— Case E = []: {{E}} = (if (proc? X) 1 (λX.0 X))

• Case E = E[int? X]: Similar to the previous case but with the clauses

reversed.

• Case E = E[O V ′ . . . X V ′ . . .] , where V ′ ::= V — X:

Because E is bug-free and divergence-free by assumption, and X is first-order,

{{E}} = (if (proc? X) 0 (Vm X)) , where Vm is constructed as a table mapping

each value Vi in
−→
V to the evaluation of [Vi/X]E (which terminates).

• Case E = X: {{E}} = if (proc? X)X X

• Case E = V : {{E}} = if (proc? X) V V

�

With the definition of approximation in hand, we now state the main soundness

lemma for the system, which is the basis for relative completeness of counterexamples

(3.7) and soundness of contract verification (3.8).

Lemma 2 (Soundness of reduction relation)

If E ′
1 �Σ′

−→
M

〈E1, Σ1〉 and E ′
1 �−→ E ′

2, then 〈E1, Σ1〉 �−→� 〈E2, Σ2〉 such that E ′
2 �Σ′′

−→
M

〈E2, Σ2〉 and Σ′′ is consistent with Σ′, for some E2, Σ2, and Σ′′.

We defer all proofs to the appendix for space.

3.7 Soundness and relative completeness of counterexample generation

The semantics of λC accumulates a first-order path-invariant as standard in first-

order symbolic execution. In addition to this, it also refines the shape of unknown

higher order values. When an evaluation reaches an error state, we query the SMT

solver for a model to all first-order values. Plugging this instantiation of first-order

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

28 P. C. Nguy˜̂en et al.

values into the heap directly gives us an instantiation of all originally omitted values

that reproduces the error. An unknown higher order value with no constraint on it

can be any function, particularly the identify function that can be simplified away.

The remarkable result is that our method of finding counterexamples is both sound

and relatively complete with respect to the underlying first-order SMT solver.

Soundness of counterexamples. Because we refine unknown functions to have specific

shapes in addition to maintaining a complete path condition of first-order values,

the semantics of λC is a sound under-approximation of all valid program runs.

Therefore, any valid instantiation of the path condition for a specific branch will

reproduce the execution following that branch. In particular, an instantiation in an

error branch yields a true counterexample triggering the contract violation of that

branch.

Theorem 1 (Soundness of Counterexamples)

If 〈E1, Σ1〉 �−→� 〈blameHH ′ , Σn〉, Σ′ � Σn, and E ′
1 = Σ′(E1), then E ′

1 �−→� blameHH ′ .

Relative completeness of counterexamples. The abstract reduction semantics of λC

also provides a sound over-approximation of all possible interactions between the

known and unknown program components, discovering every reachable error in the

concrete modules (Lemma 2). Therefore, as long as the SMT solver can construct

a model to the given first-order formula, we can construct a higher order function

that reproduces each discovered error, simply by plugging in the first-order values

given by the solver.

Theorem 2 (Relative Completeness of Counterexamples)

If E ′
1 �−→� blameHH ′ , E ′

1 � 〈E1, Σ1〉, and there is a complete procedure for generating

values satisfying first-order constraints, then 〈E1, Σ1〉 �−→� 〈blameHH ′ , Σn〉 such that

we can derive some Σ′ such that Σ′ � Σn.

3.8 From bug-finding to verification

The semantics of λC not only is helpful for generating test cases that reproduce

contract violations, it also helps verification of contract-correctness. Because the ex-

istence of a counterexample implies the existence of a “canonical” counterexample of

the form in rule Apply-Unknown (Lemma 1), proving the absence of counterexamples

of this form alone is equivalent to verification of the program. Unfortunately, a naive

run of a program in this semantics does not terminate for most programs: Execution

unfolds indefinitely to explore an infinite set of instantiations to abstract values. We

therefore introduce two transformations that approximate the semantics of λC to

accelerate convergence, making it a practical verification for many programs.

3.8.1 Approximating unknown functions

Rule Apply-Unknown shown in Section 3.2.3 unfolds and remembers the shape

of each unknown function as execution progresses. Although this refinement is

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 29

useful for constructing higher order counterexamples, it is a major source of

non-termination: The execution repeatedly generates fresh λ-terms. As a more

approximate execution of opaque function applications, we no longer unfold an

unknown function upon application and replace rule Apply-Unknown with two non-

deterministic rules: Apply-Unknown-Success returns a fresh address approximating

an unknown result, and Apply-Unknown-Havoc passes the argument to a demonic

context whose sole purpose is to find reachable blames in the argument: It repeatedly

applies the argument to an unknown value, then places the value back into the

unknown context. We write hv to denote a blame party distinct from the concrete

modules under verification, allowing execution to ignore errors not responsible for

by the concrete modules. For example, in rule Apply-Unknown-Havoc, the potential

error when V is not a function is ignored because it is not relevant to the verification

of the concrete components. (Even though here we can add an explicit guard that

V is a function, this can be tedious in a scaled up language when execution explores

the behavior of user-defined data structures and functions with different arities.

Giving a distinct module when executing the body of an unknown function is a

convenient way to just perform the partial applications and ignore potential errors

not responsible for by concrete program components.)

Apply-Unknown-Success

Σ(L) = •
−→
U δ(Σ, proc?, L) 	 〈1, Σ′〉

L V ,Σ �−→ L′,Σ′[L′ �→ •]

Apply-Unknown-Havoc

Σ(L) = •
−→
U δ(Σ, proc?, L) 	 〈1, Σ′〉

L V ,Σ �−→ (L (V L′)hv)
hv
,Σ′[L′ �→ •]

This abstraction does not allow easy construction of concrete counterexamples in

case of errors, and may introduce more spurious paths, but does not significantly

affect precision in practice. Below is an example where the abstracted semantics

steps to a division-by-zero even though no instantiation to f can trigger it: In order

to trigger division-by-zero, f needs to apply its argument to 0. But because f is

deterministic, it needs to have triggered the erroneous application (0 1) first (by

applying its argument to any value), which makes the second error unreachable.

(let ([f L]) ;; where {L �→ •}
(f (λ (y) (0 1)))
(f (λ (x) (/ 1 x))))

Lemma 3 (Soundness of unknown function approximation)

If (V1 V2) � 〈(L V), Σ〉 and (V1 V2) �−→ E ′ then 〈(L V), Σ〉 �−→� 〈E, Σ′〉 such

that E ′ � 〈E, Σ′〉.

3.8.2 Summarizing function results

With the abstraction as presented in Section 3.8.1, the semantics still does not

terminate for many common recursive programs. Consider the following example:

(define (fact n)
(if (= n 0) 1 (* n (fact (- n 1)))))

(fact Ln)

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

30 P. C. Nguy˜̂en et al.

Ignoring error cases, it eventually reduces non-deterministically to all of the follow-

ing:

1 if Ln �→ 0

(* Ln 1) if Ln ��→ 0, Ln−1 �→ 0

(* Ln (* Ln−1 (fact Ln−1))) if Ln, Ln−1 ��→ 0

where Ln−1 is a fresh address resulting from subtracting Ln by one. The process

continues with Ln−2, Ln−3, etc. This behavior from the analysis happens because

it attempts to approximate all possible concrete substitutions to abstract values.

Although fact terminates for all concrete naturals, there are an infinite number of

those: Ln can be 0, 1, 2, and so on.

To enforce termination for all programs, we can resort to well-known techniques

such as finite state or pushdown abstractions (Van Horn and Might, 2012). But

often those are overkill at the cost of precision. Consider the following program:

(let* ([id (λ (x) x)]
[y (id 0)]
[z (id 1)])

(< y z))

where a monovariant flow analysis such as 0CFA (Shivers, 1988) thinks y and

z can be both 0 and 1, and pushdown analysis thinks y is 0 and z is either 0

or 1. For a concrete, straight-line program, such imprecision seems unsatisfactory.

We therefore aim for an analysis that provides exact execution for non-recursive

programs and retains enough invariants to verify interesting properties of recursive

ones. The analysis quickly terminates for a majority of programming patterns with

decent precision, although it is not guaranteed to terminate in the general case—see

Section 4 for empirical results.

One technical difficulty is that the semantics of contracts prevents us from using a

recursive function’s contract directly as a loop invariant, because contracts are only

boundary-level enforcement. It is unsound to assume returned values of internal

calls can be approximated by contracts, as in f below:

(f : (and/c int? (�/c 0)) → (and/c int? (�/c 0)))
(define (f n)

(if (= n 0) ‘‘’’ (string-length (f (- n 1)))))

If we assume the expression (f (- n 1)) returns a number as specified in the

contract, we will conclude f never returns, and is blamed either for violating its

own contract by returning a string, or for applying string-length to a number.

However, f returns 0 when applied to 1. Failure to over-approximate f’s successful

return on 1 can in turn miss a potential blame in f’s caller. To soundly and precisely

approximate this semantics in the absence of types, we recover data type invariants

by execution.

We modify the application rules as follows. At each application, we decide whether

execution should step to the function’s body or wait for known results from other

branches. When an application (f v) reduces to a similar application, we plug

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 31

in known results instead of executing f’s body again, avoiding the infinite loop.

Correspondingly, when (f v) returns, we plug the new-found answer into contexts

that need the result of (f v). The execution continues until it has a set soundly

describing the results of (f v).

To track information about application results and waiting contexts, we augment

the execution with two global tables M and Ξ as shown in Figure 8. We borrow the

choice of metavariable names from work on concrete summaries (Johnson and Van

Horn, 2014).

A value memo table M maps each application to known results and corresponding

refinements. Intuitively, if M(Σ, Vf, Vx) 	 (V ,Σ′), then in some execution branch,

there is an application (Vf Vx),Σ �−→� (V ,Σ′).

A context memo table Ξ maps each application to contexts waiting for its result.

Intuitively, Ξ(Σ, Vf, Vx) 	 〈F,Σ′,E1,Ek〉 means during evaluation, some expression

E1[(rt〈Σ,Vf ,Vx〉 [Ek[(Vf Vz)]])]

with heap Σ′ is paused because applying (Vf Vz) under assumptions in Σ′ is the

same as applying (Vf Vx) under assumptions in Σ up to consistent address renaming

specified by function F .

To keep track of function applications seen so far, we extend the language with

the expression (rt〈Σ,V ,V ′〉 E), which marks E as being evaluated as the result of

applying V to V ′, but otherwise behaves like E. The expression (blur〈F,Σ,V 〉 E),

whose detailed role is discussed below, approximates E under guidance from a

“previous” value V .

A state in the approximating semantics with summarization consists of global

tables Ξ, M, and a set S of explored states −→ς .

Reduction now relates tables Ξ, M, and a set of states −→ς to new tables Ξ′, M ′,

and a new set of states −→ς ′. We define a relation 〈Ξ,M, ς〉 �−→ 〈Ξ,M, ς〉, and then

lift this relation point-wise to sets of states. Figure 7 only shows rules that use the

global tables or new expression forms.

In the first rule, if an application ((λX.E) V) is not previously seen, execution

proceeds as usual, evaluating expression E with X bound to V , but marking this

expression using rt.

Second, if a previous application of ((λX.E) V0) results in application of the

same function to a new argument V , we approximate the new argument before

continuing. Relation ≈F , straightforwardly defined in Figure 9, determines whether

two states are equivalent to each other up to renaming F . Taking advantage of

knowledge of the previous argument, we guess the transition from the V0 to V

and heuristically emulate an arbitrary amount of such transformation using the ⊕
operator.

Third, when an application results in a similar one, we avoid stepping into the

function body and use known results from table M instead. In addition, we refine

the current heap to make better use of assumptions about the particular “base

case”. We also remember the current context as one waiting for the result of such

application. To speed up convergence, apart from feeding a new answer Va to the

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

32 P. C. Nguy˜̂en et al.

Fig. 6. Approximation.

context, we wrap the entire expression inside (blur〈F,Σ,V 〉 []) to approximate the

future result.

The fourth rule in Figure 7 shows reduction for returning from an application.

Apart from the current context, the value is also returned to any known context

waiting on the same application. Besides, the value is also remembered in table M.

The resumption and refinement are analogous to the previous rule.

Finally, expression (blur〈F,Σ,V0〉 V) approximates value V under guidance from

the previous value V0 and also approximates values on the heap from observation

of the previous case. Overall, the approximating operator ⊕ occurs in three places:

arguments of recursive applications, result of recursive applications, and abstract

values on the heap when recursive applications return.

Figure 6 shows an implementation of operator ⊕ in an extended language with

pairs. The operator approximates the right operand with guidance from the left

operand. We also extend the syntax of values to represent inductively defined sets of

values. For example, μX.{empty, 〈•int?, !X〉} denotes a proper list of integers. We

approximate a concrete integer to an abstract one if a previous integer has been seen.

(A more sophisticated implementation can use more fine-grained approximations

such as positive and negative integers.) Approximation of a pair distributes to each

component if the left operand is also a pair. If the left operand is an inductively

defined set, the new value is “merged” into the set with appropriate renaming or

folding. If the left operand syntactically appears in the right one, we emulate an

arbitrary number of transitions from the former to the latter with an appropriate

inductive set. As a small precision optimization, we unroll the set once, emulating

one or more (instead of zero or more) transitions. Finally, we return the value itself

as a safe approximation. Notice that it is unsound to approximate an arbitrary value

to •. In particular, we cannot approximate a concrete function to •, discarding code

with potential errors to find.4 A good implementation of ⊕ should allow convergence

in common cases. Empirical results for our tool are presented in Section 4.

4 In an implementation using environment instead of substitution, we can distribute the approximation
to each closure’s environment’s range, obtaining approximations such as an inductive set of closures
representing an arbitrary number of wrappings around a function.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 33

Fig. 7. Summarizing semantics.

Fig. 8. Syntax extensions for approximation.

Fig. 9. State equivalence up to renaming.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

34 P. C. Nguy˜̂en et al.

Fig. 10. Approximation of summarizing semantics.

Soundness of summarization: A system 〈Ξ,M, S〉 approximates a concrete state E

if we can recover E from the system through approximation rules (Figure 10). The

first rule states that if any state in S approximates E, the system approximates it.

The second rule states that if the system knows that an instantiation of (V Vx)

results in a waiting context E′
k , and E ′ is reachable from a (possibly different)

instantiation of (V Vx), then the system also approximates E′
k[E

′]. Context E′
0

is an irrelevant outermost context waiting for the application’s result, and context

frames (rt〈·,·,·〉 []) mark the application history.

As a consequence, summarization properly handles repetition of waiting contexts,

and gives results that approximate any number of recursive applications.

With this definition in hand, we can state the central lemma to establish the

soundness of the revised semantics that uses summarization.

Lemma 4 (Soundness of summarization)

If E ′
1 � 〈Ξ1,M1, S1〉 and E ′

1 �−→ E ′
2, then 〈Ξ1,M1, S1〉 �−→� 〈Ξ2,M2, S2〉 such that

E ′
2 � 〈Ξ2,M2, S2〉.

The proof is given in the appendix. With this lemma in place, it is straightforward

to define verification as a simple corollary of soundness and prove a blame theorem.

First, we defined when a module is verified by our approach.

Definition 1 (Verified module)

A module (moduleH Vc V) ∈ P is verified in P if V �= L and eval (P) �	 blameH.

Now, by soundness, H is always safe.

Theorem 3 (Verified modules can’t be blamed)

If a module named H is verified in P , then for any concrete program Q for which

P is an abstraction, eval (Q) �	 blameH.

4 Implementation and evaluation

To validate our approach, we implemented a static contract checking tool, SCV, based

on the semantics presented in Section 3. The system refutes incorrect programs with

concrete test cases by running the semantics in Section 3.2 and verifies the absence of

run-time errors in correct programs using the abstracted semantics in Section 3.8.2.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 35

In addition, there are a number of implementation extensions for increased precision

and performance. We then applied SCV to a wide selection of programs drawn from

the literature on verification of higher order programs, and report on the results.

The source code for SCV and all benchmarks are available along with instructions

on reproducing the results we report.5 Apart from being implemented as a command

line tool, our prototype is also available as a public web REPL.6

4.1 Implementation extensions

SCV supports an extended language beyond that presented in Section 3 in order

to handle realistic programs. First, more base values and primitive operations are

supported, such as strings and symbols (and their operations), although we do not

yet use a solver to reason about values other than integers. We support Racket’s

numeric tower, which introduces more error sources and interesting counterexamples.

Second, data structure definitions are allowed at the top-level. Each new data

definition induces a corresponding (automatic) extension to the refinement of

unknown functions to deal with the new class of data. The unknown function

now also non-deterministically decomposes its argument if the argument is a user-

defined struct, in addition to applying functions and mapping first-order values as

in rule Apply-Unknown. We also extend the widening operator ⊕ to heuristically

approximate values of user-defined structs to inductively defined data, which gives

good precision in common programs. Third, modules have multiple named exports,

to handle the examples presented in Section 2, and can include local, non-exported,

definitions. Fourth, functions can accept multiple arguments and can be defined

to have variable-arity, as with +, which accepts arbitrarily many arguments. This

introduces new possibilities of errors from arity mismatches. Fifth, a much more

expressive contract language is implemented with and/c, or/c, struct/c, μ/c for

conjunctive, disjunctive, data type, and recursive contracts, respectively. Sixth, we

provide solver back-ends for both CVC4 (Barrett et al., 2011) and Z3 (Moura and

Bjørner, 2008).

4.2 Evaluating on existing benchmarsks

To evaluate the applicability of SCV to a wide variety of challenging higher

order contract checking problems, we collect examples from the following sources:

programs that make use of control-flow-based typing from work on occurrence

typing (Tobin-Hochstadt and Felleisen, 2010), programs from work on soft typing,

which uses flow analysis to check the preconditions of operations (Cartwright

and Fagan, 1991), programs with sophisticated specifications from work on model

checking higher order recursion schemes (HORS) (Kobayashi et al., 2011), programs

from work on inference of dependent refinement types (Terauchi, 2010), and programs

5 github.com/philnguyen/soft-contract
6 scv.umiacs.umd.edu

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

36 P. C. Nguy˜̂en et al.

Table 1. Summary benchmark results (See the appendix for detailed results)

Correct Incorrect

Corpus Lines Checks variant (ms) variant (ms)

Occurrence typing 116 141 98.7 502.8

Soft typing 134 177 12747.0 331.0

Higher order recursion schemes 527 859 14190.7 (8) 8172.3

Dependent refinement types 69 116 576.7 2270.7

Higher order symbolic execution 223 308 9532.0 (1) 633.8

Correct anonymous programs (22) 158 213 268.6 –

Incorrect anonymous programs (110) 778 1,336 – 14126.9 (5)

Student video games

Snake 164 246 38602.3 3034.2

Tetris 267 338 12303.5 2255.0

Zombie 249 476 21276.2 1152.0

with rich contracts from our prior work on higher order symbolic execution (Tobin-

Hochstadt and Van Horn, 2012). We also evaluate SCV on three interactive student

video games built for a first-year programming course: Snake, Tetris, and Zombie.

These programs were all originally written as sample solutions, following the style

expected of students in the course. Of these, Zombie is the most interesting: It

was originally an object-oriented program, translated using the encoding seen in

Section 2.6. Finally, we collect programs submitted anonymously by the users of our

web service.

In order to evaluate our counterexample generation, we modify many correct

programs to introduce errors. To do so, we weakened preconditions, (wrongly)

strengthened pos-conditions, or omitted checks before performing partial operations.

For example, a resulting program may deconstruct a potentially empty list, compare

potentially non-real numbers, or promise strict inequality where equality may happen

in an edge case. We believe these changes are representative of common mistakes.

We present our results in summary form in Table 1, grouping each of the above

sets of benchmark programs; expanded forms of the tables are provided in the

appendix. The table shows total line count (excluding blank lines and comments)

and the number of static occurrences of contracts and primitives requiring dynamic

checks such as function applications and primitive operations. These checks can

be eliminated if we can show that they never fail; this has proven to produce

significant speedups in practice, even without eliminating more expensive contract

checks (Tobin-Hochstadt et al., 2011).

The tables report the time verifying correct programs and refuting their incorrect

variants. Execution times are in milliseconds and measured on a Core i7 2.7 GHz

laptop with 8 GB of RAM. When the tool fails to fully verify a program in the

“Correct Variant” column, we report the number of false positives next to verification

time. Similarly, when the tool fails to generate a concrete counterexample for a

program in the “Incorrect Variant” column, we display the number of warnings

(without concrete inputs) next to refutation time.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 37

4.3 Discussion

First, SCV works on benchmarks for a range of previous static analyzers, from type

systems to model checking to program analysis.

Second, most programs are analyzed in a reasonable amount of time; the longest

remaining analysis time is under 60 seconds. This demonstrates that although the

termination acceleration method of Section 3.8.2 is not fully general, it is effective

for many programming patterns. For example, SCV terminates with good precision

on last from Wright and Cartwright (1997), which hides recursion behind the Y

combinator.

Third, across all benchmarks, over 99% (4201/4210) of the contract checks are

statically verified, enabling the elimination both of small checks for primitive oper-

ations and expensive contracts; see below for timing results. This result emphasizes

the value of static contract checking: gaining confidence about correctness from

expensive contracts without actually incurring their cost. In practice, problems such

as false positives and failure to construct a concrete counterexample do not render

the tool useless for the corresponding programs. False positives reduce confidence

about the program’s correctness and disable contract optimization, but programmers

can still run the programs with safety guaranteed by the familiar contract monitoring

semantics. On the other hand, even though SCV cannot construct a counterexample

for some programs in practice, it always soundly reports potential contract violation.

We discuss current difficulties in Section 4.5.

Fourth, there are specific examples where our prototype proves to be a good

complement to random testing in discovering contract violations. For example, SCV

finds a counterexample to the following program quickly and automatically:

(define (f n) (/ 1 (- 100 n)))

Be default, QuickCheck does not find this error as it only considers integers from

-99 to 99. Because QuickCheck treats a program as a black box, this conservative

choice is reasonable for fear that the integer may be a loop variable causing the test

case to run for a long time (Hughes, 2015, Personal communication). In contrast,

SCV explores the program’s semantics symbolically and discovers 100 as a good test

case.

Fifth, the resulting higher order counterexamples suggest that SCV can produce

useful feedback. For example, it is easy for programmers to forget that Racket

supports the full numeric tower (St-Amour et al., 2012) and that the predicate

number? accepts complex numbers. In the following program, argmin’s contract is

in fact too weak to protect the function. SCV proves argmin unsafe by applying it

to a specific combination of arguments. First, f is given a function that produces a

non-real number. Second, xs is given a list of length 2, which is the minimum length

to trigger a use of <.

(f : (any/c → number?) (and/c pair? list?) → any/c)
(define (argmin f xs)

(argmin/acc f (car xs) (f (car xs)) (cdr xs)))

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

38 P. C. Nguy˜̂en et al.

(define (argmin/acc f b a xs)
(cond
[(null? xs) a]
[(< b (f (car xs))) (argmin/acc f a b (cdr xs))]
[else (argmin/acc f (car xs) (f (car xs)) (cdr xs))]))

Contract violation: argmin violates contract with <
Value 0+1i violates contract real?
An example that triggers this violation:

(argmin (λ (x) 0+1i) (list 0 0))

Finally, SCV analyzes the functional encoding of object-oriented programs effectively.

Zombie is one such example with extensive use of higher order functions to encode

objects and classes, and the tool can reveal errors buried in delayed function calls.

We believe this is a promising first step for generating classes and objects as

counterexamples. In the example below, we define interface posn/c that accepts two

messages x and y, and function first-quadrant? that tests whether a position is

in the first quadrant. The counterexample reveals one conforming implementation

to interface posn/c that causes error in the module.

(define posn/c
([msg : (one-of/c ’x ’y)]

→ (match msg [’x number?] [’y number?])))

; posn/c → boolean?
(define (first-quadrant? p)

(and (� (p ’x) 0) (� (p ’y) 0)))

Contract violation: first-quadrant? violates contract with <
Value 0+1i violates contract real?
An example that triggers this violation:

(first-quadrant? (λ (msg) (case msg [(x) 0+1i] [(y) 0])))

Overall, our experiments show that our approach is able to discover and use

invariants implied by conditional flows of control and contract checks. Obfuscations

such as multiple layers of abstractions or complex chains of aliases do not impact

precision (a common shortcoming of flow analysis).

Finally, soft contract verification is more broadly applicable than the systems

from which our benchmarks are drawn, which typically are successful only on their

own benchmarks. For example, type systems such as occurrence typing (Tobin-

Hochstadt and Felleisen, 2010) cannot verify any non-trivial contracts, and most

soft typing systems do not consider contracts at all. Systems based on higher order

model-checking (Kobayashi et al., 2011), and dependent refinement types (Terauchi,

2010) assume a typed language; encoding our programs using large disjoint unions

produces unverifiable results.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 39

This broad applicability is why we are not able to directly compare SCV to

these other systems across all benchmarks. Instead, the Simple system serves as a

benchmark for a system which does not contain our primary contributions.

4.4 Contract optimization

We also report speed-up results for the three most complex programs in our

evaluation, which are interactive games designed for first-year programming courses

(Snake, Tetris, and Zombie). For each, we recorded a trace of input and timer events

while playing the game, and then used that trace to re-run the game (omitting all

graphical rendering) both with the contracts that we verified, and with the contracts

manually removed. Each game was run 100 times in both modes; the total time is

presented below:

Program Contracts On (ms) Contracts Off (ms)

snake 475,799 59

tetris 1,127,591 186

zombie 12,413 1,721

The timing results are quite striking—speed-up ranges from over 5x to over 5000x.

This does not indicate, of course, that speed-ups of these magnitudes are achievable

for real programs. Instead, it shows that programmers avoid the rich contracts we

are able to verify, because of their unacceptable performance overhead. Soft contract

verification therefore enables programmers to write these specifications without the

run-time cost.

The difference in timing between Zombie and the other two games is intriguing

because Zombie uses higher order dependent contracts extensively, along the lines of

vec/c from Section 2.6, which intuitively should be more expensive. An investigation

reveals that most of the cost comes from monitoring flat contracts, especially those

that apply to data structures. For example, in Snake, disabling posn/c, a simple

contract that checks for a posn struct with two numeric fields, cuts the run-time by

a factor of 4. This contract is repeatedly applied to every such object in the game.

In contrast, higher order contracts, as in the object encodings used in Zombie, delay

contracts and avoid this repeated checking.

4.5 Limitations and challenges

We discuss current limitations of our approach and solutions in mitigating them.

First, our approach does not yet give a way to verify deep structural properties

expressed as dependent contracts such as “map over a list preserves the length”

or “all elements in the result of filter satisfy the predicate”, resulting in the false

positives seen in Table 1. However, it can already be used to verify many interesting

programs because often safety questions depend only on knowledge of top-level

constructors. Examples of these patterns appear in programs from Kobayashi et al.

(2011) for programs such as reverse (see also Section 2.5), nil, and mem.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

40 P. C. Nguy˜̂en et al.

Second, the analysis is prone to combinatorial explosion as inherent in symbolic

execution. In practice, most conditionals come from case analyses instead of

independent alternatives, and we rely on a precise proof system to eliminate spurious

paths. In addition, we avoid excessive state explosion as in rules Apply-Case-1 and

Apply-Case-2 and defer state splitting until necessary by encoding the constraint of

equal inputs implying equal outputs during translation. Finally, modularity mitigates

the problem further, as modules tend to be small, and contracts at boundaries help

recovering necessary precision.

Third, the search for counterexamples can be significantly hindered by complex

preconditions, where the input is guarded against a deep, inductively defined

property. Execution follows different branches before begin able to generate a

valid input to continue verifying the module. A naive breadth-first search is bogged

down by a large frontier resulting from different attempts to generate input, most of

which are eventually found invalid. To mitigate this slow-down, we identify a class

of expressions as likely to led to counterexamples and prioritize their execution.

Specifically, an expression whose innermost contract monitoring is of a first-order

property on a concrete module is likely to reveal a bug.7 In contrast, expressions

in the middle of input generation do not have this form, because the inner-most

contract monitoring isi on the opaque input source. Once the system successfully

instantiates a concrete input and turns the program into this “suspect” form, it

focuses on exploring this branch with that input instead of trying numerous other

inputs in parallel. Using this simple heuristic, we are able to cut the execution time

of a module violating the “braun-tree” invariant from non-terminating after 1 hour

down to 2 seconds.

Finally, there is a mismatch in the data-types between the solver’s data-type and

Racket’s rich numeric tower. In particular, Racket supports mixed arithmetic between

different types of numbers up to complex numbers (St-Amour et al., 2012), while

Z3’s treatment of numbers resembles that from most statically typed languages,

and the solver does not perform well in generating models involving a dynamic

restriction of a number’s type. Below is an example where SCV fails to generate a

counterexample:

(f : integer? → integer?)
(define (f n) (/ 1 (+ 1 (* n n))))

In Racket, division is defined on the full numeric tower, and the result of (/ 1

(+ 1 (* n n))) may not be an integer. In the generated query, this result is an

unknown number L of type Real, and the solver cannot give a model to a constraint

set asserting “(not (is int L))”. In addition, Racket distinguishes between exact

and inexact numbers, where inexact numbers are floating point approximations.

Because Z3 does not reason about floating points, we currently do not soundly

model inexact arithmetic.

7 In a symbolic program, the monitored value in this position is usually abstract and covers all values
the module produces.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 41

5 Related work

In this section, we relate our work to related strands of research: symbolic execution,

random-testing, soft-typing, static contract verification, refinement types, and model

checking of recursion schemes.

Symbolic execution: Symbolic execution is the idea of running programs with

abstract inputs. Symbolic execution on first-order programs is mature and has been

used to find bugs in real-world programs (Cadar et al., 2006, 2008). Cadar et al.

(2006) presents a symbolic execution engine for C that generates counterexamples

of the form of mappings from addresses to bit-vectors. Later work extends the

technique to generate comprehensive test cases that discover bugs in large programs

interacting with the environment (Cadar et al., 2008).

Random Testing: Random testing is a lightweight technique for finding counterex-

amples to program specifications through randomly generated inputs. QuickCheck

for Haskell (Claessen and Hughes, 2000) proves the approach highly practical in

finding bugs for functional programs. Later works extend random testing to improve

code coverage and scale the technique to more language features such as states and

class systems. Heidegger and Thiemann (2010) use contracts to guide random testing

for Javascript, allowing users to annotate inputs to combine different analyses for

increasing the probability of hitting branches with highly constrained preconditions.

Klein et al. (2010) also extend random testing to work on higher order stateful

programs, discovering many bugs in object-oriented programs in Racket. Seidel

et al. (2015) use refinement types as generators for tests, significantly improving

code coverage.

Our approach is a complement to random testing. By combining symbolic

execution with an SMT solver, the method takes advantage of conditions generated

by ordinary program code and not just user-annotated contracts. In addition, the

approach works well with highly constrained preconditions without further help

from users. In contrast, random testing systems typically require programmers to

implement custom generators (Claessen and Hughes, 2000) or require user annota-

tions to incorporate a specific analysis collecting all literals in the program to guide

input construction (Heidegger and Thiemann, 2010). Type-targeted testing (Seidel

et al., 2015) is more lightweight and does not necessitate an extension to the existing

semantics, but gives no guarantee about completeness, as inherent in random testing.

Even though the tool rules out test cases that fail the pre-conditions, regular code,

and post-conditions do not help the test generation process. Our system makes use

of both contracts and regular code to guide the execution to seek inputs that both

satisfy pre-conditions and fail post-conditions. Exploring possible combination of

symbolic execution and random testing for more efficient bug-finding in higher order

programs is our future work.

Soft typing: Verifying the preconditions of primitive operations can be seen as a

weak form of contract verification and soft typing is a well-studied approach to this

kind of verification (Cartwright and Felleisen, 1996). There are two predominant

approaches to soft-typing: one is based on a generalization of Hindley–Milner

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

42 P. C. Nguy˜̂en et al.

type inference (Cartwright and Fagan, 1991; Aiken et al., 1994; Wright and

Cartwright, 1997), which views an untyped program as being embedded in a

typed one and attempts to safely eliminate coercions (Henglein, 1994). The other

is founded on set-based abstract interpretation of programs (Flanagan et al., 1996;

Flanagan and Felleisen, 1999). Both approaches have proved effective for statically

checking preconditions of primitive operations, but the approach does not scale

to checking pre- and post-conditions of arbitrary contracts. For example, Soft

Scheme (Cartwright and Fagan, 1991) is not path-sensitive and does not reason

about arithmetic; thus, it is unable to verify many of the occurrence-typing or

HORS examples considered in the evaluation.

Contract verification: Following in the set-based analysis tradition of soft-typing,

there has been work extending set-based analysis to languages with contracts (Meu-

nier et al., 2006). This work shares the overarching goal of this paper: To develop a

static contract checking approach for components written in untyped languages with

contracts. However, the work fails to capture the control-flow-based type reasoning

essential to analyzing untyped programs and is unsound (as discussed by Tobin-

Hochstadt and Van Horn (2012)). Moreover, the set-based formulation is complex

and difficult to extend to features considered here.

Our prior work (Tobin-Hochstadt and Van Horn, 2012), as discussed in the

introduction, also performs soft contract verification, but with far less sophistication

and success. As our empirical results show, the contributions of this paper are

required to tackle the arithmetic relations, flow-sensitive reasoning, and complex

recursion found in our benchmarks.

An alternative approach has been applied to statically checking contracts in

Haskell and OCaml (Xu et al., 2009; Xu, 2012), which is to inline monitors into

a program following a transformation by Findler and Felleisen (2002) and then

simplify the program, either using the compiler, or a specialized symbolic engine

equipped with an SMT solver. The approach would be applicable to untyped

languages except for the final step dubbed logicization, a type-based transformation

of program expressions into first-order logic. A related approach used for Haskell is

to use a denotational semantics that can be mapped into first-order logic, which is

then model checked (Vytiniotis et al., 2013), but this approach is highly dependent

on the type structure of a program. In contrast, our approach does not assume a

type system to guide the verification process, and therefore verifies run-time type-

safety in addition to richer contracts. Further, these approaches assume a different

semantics for contract checking that monitors recursive calls. This allows the use of

contracts as inductive hypotheses in recursive calls. In contrast, our approach can

naturally take advantage of this stricter semantics of contract checking and type

systems, but can also accommodate the more common and flexible checking policy.

Additionally, our approach does not rely on type information, the lack of which

makes these approaches inapplicable to many of our benchmarks.

Contract verification in the setting of typed, first-order contracts is much more

mature. A prominent example is the work on verifying C# contracts as part of the

Code Contracts project (Fähndrich and Logozzo, 2011).

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 43

Refinement type checking: Refinement types are an alternative approach to statically

verifying pre- and post-conditions in a higher order functional language. One differ-

ence between type-checking and symbolic execution is that the former reasons about

programs lexically (with an environment), allowing a compositional verification,

while the latter uses a heap to keep track of invariants, potentially gaining more

precision without heavy reliance on programmer annotations. There are several

approaches to checking type refinements; one is to restrict the computational power

of refinements so that checking is decidable at type-checking time (Freeman and

Pfenning, 1991); another is to allow unrestricted refinements as in contracts, but

to use a solver to attempt to discharge refinements (Rondon et al., 2008; Knowles

and Flanagan, 2010; Vazou et al., 2013). In the latter approach, when a refinement

cannot be discharged, some systems opt to reject the program (Rondon et al., 2008;

Vazou et al., 2013), while others such as hybrid type-checking residualize a run-time

check to enforce the refinement (Knowles and Flanagan, 2010), similar to the way

soft-typing residualizes primitive pre-condition checks. Although the end result of

our approach closely resembles that of hybrid type checking, we differ in a few

important respects. First, we do not rely on an existing type system. Second, the

method scales straightforwardly to first-class contracts, whereas existing refinement

type systems allow user-defined predicates only for base types and no mechanism for

a dynamically computed mix of flat and higher order specifications. While contracts

can crash and diverge, refinements are usually more restricted and special care need

to be taken for what it means when a refinement type contains potentially failing

type-casts (Greenberg et al., 2010; Knowles and Flanagan, 2010). Third, symbolic

execution ignores unreachable errors such as those under unreachable lambdas

while type checking eagerly checks all code. Finally, handling unknown functions

on the semantics side instead of relying on the theory of uninterpreted functions

introduces potentially fewer difficulties in scaling to effectful contracts, and allows

straightforward generation of higher order counterexamples.8

DJS (Chugh et al. 2012a; Chugh et al. 2012b) supports expressive refinement

specification and verification for stateful JavaScript programs, including sophisti-

cated dependent specifications which SCV cannot verify. However, most dependent

properties require heavy annotations. Moreover, null inhabits every object type.

Thus, the approach cannot give the same guarantees about programs such as

reverse (Section 2.5) without significantly more annotation burden. Additionally,

it relies on whole program annotation, type-checking, and analysis.

Model checking higher order recursion schemes: Much of the recent work on model

checking of higher order programs relies on the decidability of model checking

trees generated by HORS (Ong, 2006). A HORS is essentially a program in the

simply typed λ-calculus with recursion and finitely inhabited base types that gen-

erates (potentially infinite) trees. Program verification is accomplished by compiling

a program to a HORS in which the generated tree represents program event

8 Solvers such as Z3 and CVC4 do not support model generation for higher order functions.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

44 P. C. Nguy˜̂en et al.

sequences (Kobayashi, 2009b; Kobayashi et al., 2010). This method is sound and

complete for the simply typed λ-calculus with recursion and finite base types, but

the gap between this language and realistic languages is significant. Subsequently,

an untyped variant of HORS has been developed (Tsukada and Kobayashi, 2010),

which has applications to languages with more advanced type systems, but despite

the name it does not led to a model checking procedure for the untyped λ-calculus. A

subclass of untyped HORS is the class of recursively typed recursion schemes, which

has applications to typed object-oriented programs (Kobayashi and Igarashi, 2013).

In this setting, model checking is undecidable, but relatively complete with a certain

recursive intersection type system (anything typeable in this system can be verified).

To cope with infinite data domains such as integers or algebraic datatypes and

pattern matching, counter-example guided abstraction refinement techniques have

been developed (Kobayashi et al., 2011; Ong and Ramsay, 2011). The complexity

of model checking even for the simply typed case is n-EXPTIME hard (where n is

the rank of the recursion scheme), but progress on decision procedures (Kobayashi

and Ong, 2009; Kobayashi, 2009a) has led to verification engines that can verify a

number of “small but tricky higher-order functional programs in less than a second”.

In comparison, the HORS approach can verify some specifications which SCV

cannot, but in a simpler (typed) setting, whereas our lightweight method applies

to richer languages. Our approach handles untyped higher order programs with

sophisticated language features and infinite data domains. Higher order program

invariants may be stated as behavioral contracts, while the HORS-based systems only

support assertions on first-order data. Our work is also able to verify programs with

unknown external functions, not just unknown integer values, which is important

for modular program verification, and we are able to verify many of the small but

tricky programs considered in the HORS work.

6 Conclusions and perspective

We have presented a lightweight method and prototype implememtation for static

contract checking using a non-standard reduction semantics that is capable of

verifying and falsifying higher order modular programs with arbitrarily omitted

components. Our tool, SCV, scales to realistic language features such as recursive

data structures and modular programs, and verifies programs written in the idiomatic

style of dynamic languages. The analysis proves the presence and absence of run-time

errors without excessive reliance on programmer help. With zero annotation, SCV

already helps programmers find unjustified usage of partial functions by showing

concrete inputs that trigger those errors. With explicit contracts, programmers can

enforce rich specifications to their programs and have the correct ones optimized

away without incurring the significant run-time overhead and incorrect ones quickly

falsified with concrete test cases.

While in this paper, we have addressed the problem of soft contract verification,

the technical tools we have introduced apply beyond this application. For example,

a run of SCV can be seen as a modular program analysis—it soundly predicts which

functions are called at any call site. Moreover, it can be composed with whole-

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 45

program analysis techniques to derive modular analyses (Van Horn and Might,

2010). Adding temporal contracts (Disney et al., 2011) to our system would produce

a model checker for higher order languages. This breadth of application follows

directly from the semantics-based nature of our approach.

Acknowledgments

We thank Carl Friedrich Bolz, Christos Dimoulas, Jeffrey S. Foster, Michael Hicks,

Dionna Glaze, Robby Findler, Lindsey Kuper, Aseem Rastogi, and Matthew Wilson

for comments. We thank John Hughes, Suresh Jagannathan, and Phillipe Meunier

for detailed discussion of their respective prior work. We thank Casey Klein for

help with Redex, Clayton Menzer for help building the web REPL, and Andrew

Ruef for help building a reproducible artifact for PLDI. We thank the anonymous

reviewers of OOPSLA 2012, ICFP 2014, and PLDI 2015 for their detailed reviews,

which helped to improve the presentation and technical content of the paper. We

benefited from discussing preliminary results at the “Dagstuhl Seminar on Scripting

Languages and Frameworks: Analysis and Verification” and the “NII Workshop

on Software Contracts for Communication, Monitoring, and Security”.

References

Aiken, A., Wimmers, E. L. & Lakshman, T. K. (1994) Soft typing with conditional types.

In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM - New York, New York, USA, pp. 163–173.
Austin, T. H., Disney, T. & Flanagan, C. (2011, October) Virtual values for language

extension. In Proceedings of the 2011 ACM International Conference on Object Oriented

Programming Systems Languages and Applications. ACM, pp. 921–938.
Barrett, C., Conway, C., Deters, Hadarean, L., Jovanović, D., King, T., Reynolds, A. & Tinelli,

C. (2011) Cvc4. In International Conference on Computer-Aided Verification. Springer, pp.

171–177.
Cadar, C., Dunbar, D. & Engler, D. (2008) KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation. USENIX Association, pp.

209–224.
Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L. & Engler, D. R. (2006) EXE: Automatically

generating inputs of death. In Proceedings of the 13th ACM Conference on Computer and

Communications Security. ACM, pp. 322–335.
Cartwright, R. & Fagan, M. (1991) Soft typing. In Proceedings of the ACM SIGPLAN 1991

Conference on Programming Language Design and Implementation. ACM, pp. 278–292.
Cartwright, R. & Felleisen, M. (1996, June) Program verification through soft typing. ACM

Comput. Surv. 28(2) 349–351.
Chugh, R., Herman, D. & Jhala, R. (2012a, October) Dependent types for JavaScript.

In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications. ACM, pp. 587–606.
Chugh, R., Rondon, P. M. & Jhala, R. (2012b, January) Nested refinements: A logic for

duck typing. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. ACM, pp. 231–244.
Claessen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of

Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference

on Functional Programming. ACM, pp. 268–279.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

46 P. C. Nguy˜̂en et al.

Dimoulas, C., Findler, R. B., Flanagan, C. & Felleisen, M. (2011, January) Correct blame for

contracts: No more scapegoating. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. ACM, pp. 215–226.

Disney, T. (2013, July) contracts.coffee.

Disney, T., Flanagan, C. & McCarthy, J. (2011, September) Temporal higher-order contracts.

In ICFP ’11 Proceeding of the 16th ACM SIGPLAN International Conference on

Functional Programming. ACM, pp. 176–188.

Fähndrich, M. & Logozzo, F. (2011) Static contract checking with abstract interpretation.

In Proceedings of the 2010 International Conference on Formal Verification of Object-

Oriented Software. Springer, pp. 10–30.

Findler, R. B. & Felleisen, M. (2002, September) Contracts for higher-order functions. In ICFP

’02: Proceedings of the seventh ACM SIGPLAN International Conference on Functional

Programming. ACM, pp. 48–59.

Flanagan, C. & Felleisen, M. (1999, March) Componential set-based analysis. ACM Trans.

Program. Lang. Syst. 21(2) 370–416.

Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S. & Felleisen, M. (1996, May) Catching

bugs in the web of program invariants. In PLDI ’96: Proceedings of the ACM SIGPLAN

1996 Conference on Programming Language Design and Implementation. ACM, pp. 23–32.

Flatt, M. & PLT (2010) Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.

Foster, J. S., Terauchi, T. & Aiken, A. (2002, May) Flow-sensitive type qualifiers. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM, pp. 1–12.

Freeman, T. & Pfenning, F. (1991, June) Refinement types for ML. In Proceedings of the

ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation.

ACM, pp. 268–277.

Godefroid, P., Klarlund, N. & Sen, K. (2005, June) DART: Directed automated random

testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation. ACM, pp. 213–223.

Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts made manifest. In POPL ’10:

Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM, pp. 353–364.

Heidegger, P. & Thiemann, P. (2010) Contract-Driven testing of JavaScript code. In Objects,

Models, Components, Patterns. Berlin Heidelberg: Springer, pp. 154–172.

Henglein, F. (1994, June) Dynamic typing: Syntax and proof theory. Sci. Comput.

Program. 22(3) 197–230. Elsevier, Amsterdam, Netherlands.

Hickey, R., Fogus, M. & contributors (2013, July). core.contracts.

Johnson, J. I. & Van Horn, D. (2014, October) Abstracting abstract control. In Proceedings

of the 10th ACM Symposium on Dynamic Languages. ACM, pp. 11–22.

Kawaguchi, M., Rondon, P. & Jhala, R. (2010) Dsolve: Safety verification via liquid types. In

Computer Aided Verification. Berlin Heidelberg: Springer, pp. 123–126.

Klein, C., Flatt, M. & Findler, R. B. (2010) Random testing for higher-order, stateful programs.

In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications. ACM, pp. 555–566.

Knowles, K. & Flanagan, C. (2010, February) Hybrid type checking. ACM Trans. Program.

Lang. Syst. 32(2) article 6.

Kobayashi, N. (2009a) Model-checking higher-order functions. In Proceedings of the 11th

ACM SIGPLAN Conference on Principles and Practice of Declarative Programming.

ACM, pp. 25–36.

Kobayashi, N. (2009b, January) Types and higher-order recursion schemes for verification

of higher-order programs. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, pp. 416–428.

Kobayashi, N. & Igarashi, A. (2013) Model-Checking Higher-Order programs with recursive

types. In European Symposium on Programming. Berlin Heidelberg: Springer, pp. 431–450.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 47

Kobayashi, N. & Ong, C. H. L. (2009, August) A type system equivalent to the modal Mu-

Calculus model checking of Higher-Order recursion schemes. In Proceedings of the 24th

Annual IEEE Symposium on Logic In Computer Science. IEEE, pp. 179–188.
Kobayashi, N., Sato, R. & Unno, H. (2011, June) Predicate abstraction and CEGAR for

higher-order model checking. In Proceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, pp. 222–233.
Kobayashi, N., Tabuchi, N. & Unno, H. (2010, January) Higher-order multi-parameter tree

transducers and recursion schemes for program verification. In Proceedings of the 37th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

ACM, pp. 495–508.
Meunier, P., Findler, R. B. & Felleisen, M. (2006, January) Modular set-based analysis

from contracts. In POPL ’06: Conference Record of the 33rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, pp. 218–231.
Meyer, B. (1991, October) Eiffel: The Language. Prentice Hall.
Moura, L. D. & Bjørner, N. (2008) Z3: An efficient SMT solver. In Proceedings of the Theory

and Practice of Software, 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer-Verlag, pp. 337–340.
Nguy˜̂en, P. C., Tobin-Hochstadt, S. & Van Horn, D. (2014) Soft contract verification.

In Proceedings of the 19th ACM SIGPLAN International Conference on Functional

Programming. ACM, pp. 139–152.
Nguy˜̂en, P. C. & Van Horn, D. (2015) Relatively complete counterexamples for higher-

order programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation. ACM, pp. 446–456.
Ong, C. H. L. (2006) On Model-Checking trees generated by Higher-Order recursion schemes.

In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06). IEEE, pp.

81–90.
Ong, C. H. L. & Ramsay, S. J. (2011, January) Verifying higher-order functional programs

with pattern-matching algebraic data types. In Proceedings of the 38th annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, pp.

587–598.
Plosch, R. (1997, December) Design by contract for Python. In Proceedings of the Joint Asia

Pacific Software Engineering Conference. IEEE, pp. 213–219.
Rondon, P. M., Kawaguci, M. & Jhala, R. (2008) Liquid types. In Proceedings of the 2008

ACM SIGPLAN Conference on Programming Language Design and Implementation.

ACM, pp. 159–169.
Seidel, E., Vazou, N. & Jhala, R. (2015) Type targeted testing. In Programming Languages

and Systems. Berlin Heidelberg: Springer, pp. 812–836.
Shivers, O. (1988) Control flow analysis in Scheme. In PLDI ’88: Proceedings of the ACM

SIGPLAN 1988 Conference on Programming Language Design and Implementation.

ACM, pp. 164–174.
St-Amour, V., Tobin-Hochstadt, S., Flatt, M. & Felleisen, M. (2012) Typing the numeric tower.

In Practical Aspects of Declarative Languages. Berlin Heidelberg, Springer, pp. 289–303.
Strickland, T. S., Tobin-Hochstadt, S., Findler, R. B. & Flatt, M. (2012, October) Chaperones

and impersonators: Run-time support for reasonable interposition. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages and

Applications. ACM, pp. 943–962.
Terauchi, T. (2010) Dependent types from counterexamples. In Proceedings of the 37th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,

pp. 119–130.
Tobin-Hochstadt, S. & Felleisen, M. (2010, September) Logical types for untyped languages.

In ICFP ’10: International Conference on Functional Programming. ACM, pp. 117–128.
Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M. & Felleisen, M. (2011, June)

Languages as libraries. In Proceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, pp. 132–141.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

48 P. C. Nguy˜̂en et al.

Tobin-Hochstadt, S. & Van Horn, D. (2012) Higher-order symbolic execution via contracts.

In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications. ACM, pp. 537–554.

Tsukada, T. & Kobayashi, N. (2010) Untyped recursion schemes and infinite intersection

types. In Proceedings of the 13th International Conference on Foundations of Software

Science and Computational Structures. Springer-Verlag, pp. 343–357.

Van Horn, D. & Might, M. (2010, September) Abstracting abstract machines. In Proceedings

of the 15th ACM SIGPLAN International Conference on Functional Programming. ACM,

pp. 51–62.

Van Horn, D. & Might, M. (2012) Systematic abstraction of abstract machines. Journal of

Functional Programming 22(Special Issue 4–5) Cambridge University Press, 705–746.

Vazou, N., Rondon, P. & Jhala, R. (2013) Abstract refinement types. In European Symposium

on Programming. Berlin Heidelberg: Springer, pp. 209–228.

Vazou, N., Seidel, E. L., Jhala, R., Vytiniotis, D. & Jones, S. P. (2014, August) Refinement

types for Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference

on Functional Programming. ACM, pp. 269–282.

Vytiniotis, D., Jones, S. P., Claessen, K. & Rosén, D. (2013) Halo: Haskell to logic through

denotational semantics. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, pp. 431–442.

Wright, A. K. & Cartwright, R. (1997, January) A practical soft type system for Scheme.

ACM Trans. Program. Lang. Syst. 19(1) ACM, 87–152.

Xie, Y. & Aiken, A. (2005, January) Scalable error detection using boolean satisfiability.

In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM, pp. 351–363.

Xu, D. N. (2012) Hybrid contract checking via symbolic simplification. In Proceedings of

the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation.

ACM, pp. 107–116.

Xu, D. N., Peyton Jones, S. & Claessen, S. (2009) Static contract checking for Haskell. In

POPL ’09: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. ACM, pp. 41–52.

Yang, J., Twohey, P., Engler, D. & Musuvathi, M. (2004) Using model checking to find serious

file system errors. In Proceedings of the 6th Symposium on Operating Systems Design and

Implementation. USENIX, pp. 273–287.

Zhu, H. & Jagannathan, S. (2013) Compositional and lightweight dependent type inference for

ML. In Conference on Verification, Model-Checking and Abstract Interpretation Springer,

295–314.

Appendix A. Proofs

This section presents proofs for theorems in the paper. Lemmas 2 and 4 prove

theorems 3. Other lemmas support these main ones.

Theorem 1 (Soundness of Counterexamples)

If 〈E1, Σ1〉 �−→� 〈blameHH ′ , Σn〉, Σ′ � Σn, and E ′
1 = Σ′(E1), then E ′

1 �−→� blameHH ′ .

Proof

First, Σ′ � Σi for any heap Σi on the trace 〈E1, Σ1〉 �−→� 〈blameHH ′′ , Σn〉 (by

lemma 6). Next, if 〈Ei, Σi〉 �−→ 〈Ei+1, Σi+1〉, and E ′
i � 〈Ei, Σ

′〉, then E ′
i �−→ E ′

i+1 such

that E ′
i+1 � 〈Ei+1, Σ′〉 (by lemma 7). Therefore, any fully concrete instantiation of

the final heap leds the program through the same execution trace. �

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 49

Theorem 2 (Relative Completeness of Counterexamples)

If E ′
1 �−→� blameHH ′ , E ′

1 � 〈E1, Σ1〉, and there is a complete procedure for generating

values satisfying first-order constraints, then 〈E1, Σ1〉 �−→� 〈blameHH ′ , Σn〉 such that

we can derive some Σ′ such that Σ′ � Σn.

Proof

The discovery of the error follows from soundness of reduction relation (lemma 2).

We show that the instantiation of the final heap is relatively complete with respect

to the underlying solver by induction on the size of Σn.

• If Σn = ∅: There is Σ′ = ∅ such that ∅ � ∅.

• If Σn = Σn−1[L �→ V]: 9 Assume there is Σ′
n−1 such that Σ′

n−1 � Σn−1.

— If V = •
−→
C : All constraints in

−→
C are first-order by construction, which we

can produce a model for by assumption. (In particular, if
−→
C , any concrete

first-order value can instantiate the unknown value).

— If V = λX.E: Then, Σ′
n = Σ′

n−1[L �→ λX.E]. By induction hypothesis, for

each address L in E, Σ′
n−1(L) properly instantiates Σ(L).

— If V = n: The case is trivial.

�

Theorem 3 (Verified modules can’t be blamed)

If a module named H is verified in P , then for any concrete program Q for which

P is an abstraction, eval (Q) �	 blameH.

Lemma 1 (Soundness of abstract reduction relation)

If E ′
1 �Σ′

1−→
M

〈E1, Σ1〉 and E ′
1 �−→ E ′

2, then 〈E1, Σ1〉 �−→� 〈E2, Σ2〉 such that E ′
2 �Σ′

2−→
M

〈E2, Σ2〉 for some Σ′
2 ⊇ Σ′

1.

Proof

By case analysis on the derivation of E ′
1 �−→ E ′

2 and E ′
1 � 〈E1, Σ1〉.

• Case E ′
1 = (O

−→
V ′

1), E1 = (O
−→
V1) and E ′

2 = A′
1 because δ(∅, O,

−→
V ′

1) 	 〈A′
1, ∅〉:

By soundness of δ (lemma 3), 〈E1, Σ1〉 �−→ 〈E2, Σ2〉 � E ′
2.

• Case E ′
1 = if V ′ E ′

2 E
′
f , E1 = if V E2 Ef and E ′

1 �−→ E ′
2 because δ(∅, zero?, V ′) 	

〈0, ∅〉
By soundness of δ (lemma 3), δ(Σ1, zero?, V) 	 〈0, Σ2〉, so 〈E1, Σ1〉 �−→
〈E2, Σ2〉 � E ′

2.

The other case of conditional is similar.

• Case E ′
1 = (λX.E ′ V ′

x) , E ′
2 = [V ′

x/X]E ′ , E1 = (Vf Vx):

— Case Vf = λX.E: then 〈E2, Σ2〉 = 〈[Vx/X]E, Σ1〉 � E ′
2.

— Case Vf = L, where Σ1(L) = •: then Σ2 = Σ1[L �→ λX.E] as in rule

Apply-Unknown, and E ′ is of the restricted form approximated by E, so

〈E2, [Vx/X]E〉 � E ′
2.

9 It is straightforward to see that the heap does not contain cycle, by case analysis on the last step of
updating the heap in the reduction relation.

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

50 P. C. Nguy˜̂en et al.

— Case Vf = L, where Σ1(L) = λX.E: then 〈E2, Σ2〉 = 〈[Vx/X]E, Σ1〉 � E ′
2.

• Case E ′
1 = monH,H ′

H ′′ (V ′
c, V

′), E1 = monH,H ′

H ′′ (Vc, V):

— Case δ(∅, dep?, V ′
c) 	 〈0, ∅〉: By soundness of δ (lemma 3), δ(Σ1, dep?, Vc) 	

〈0, Σ2〉. In addition, by soundness of the provability relation (lemma 4),

either both E ′
1 and E1 take shortcuts to the result, or both step to

the contract checking form, or E ′
1 takes shortcuts and E1 steps to the

contract-checking form, which by lemma 5 eventually steps to the result

approximating E ′
2.

Other cases are straightforward. �

Lemma 2 (Soundness of summarization)

The semantics with summarization using tables Ξ and M is sound with respect to

an extension to the original semantics without these tables with trivial rules for rt

and blur frames:

(rt〈 , , 〉 V) �−→ V

(blur〈 , , 〉 V) �−→ V

If E ′
1 � 〈Ξ1,M1, S1〉 and E ′

1 �−→ E ′
2, then 〈Ξ1,M1, S1〉 �−→� 〈Ξ2,M2, S2〉 such that

E ′
2 � 〈Ξ2,M2, S2〉.

Proof

By induction on the derivation of E ′
1 � 〈Ξ1,M1, S1〉 and case analysis on the

reduction E ′
1 �−→ E ′

2.

• Case E ′
1 � 〈Ξ1,M1, S1〉 because E ′

1 � 〈E1, Σ1〉 and 〈E1, Σ1〉 ∈ S1:

Case analysis on E ′
1 �−→ E ′

2:

— Sub-case: E ′
1 = E′[λX.E ′ V ′] , E ′

2 �−→ E′[(rt〈∅,λX.E′ ,V ′〉 [V ′/X]E ′)] , and E1

= E[λX.E V]:

– If application (λX.E V) is new: 〈E1, Σ1〉 β-reduces to 〈E2, Σ2〉, and

〈Ξ1,M1, S1 ∪ {〈E2, Σ2〉}〉

straightforwardly approximates E ′
2.

– If application (λX.E V) is a recursive call with a new argument:

〈Ξ1,M1, ς1〉 β-reduces with a widened argument, which also straight-

forwardly approximates E ′
2.

– If application (λX.E V) is a repeated recursive call:

〈Ξ1,M1, S1〉 �−→ 〈Ξ2,M1, S2〉

where Ξ2 = Ξ1 � [〈Σ0, λX.E, V0〉 �→ 〈F,Σ1,E0,Ek〉], and some S2 ⊇ S1.

Moreover, we have E = E0[(rt〈Σ0 ,λX.E,V0〉 Ek)], and

E′ = E′
0[(rt〈∅,λX.E′ ,V ′

0〉 E′
k)]

so E ′
2 = E′

0[(rt〈∅,λX.E′ ,V ′
0〉 E′

k[(rt〈∅,λX.E′ ,V ′〉 [V ′/X]E ′)])].

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 51

Because 〈E0[(rt〈Σ0 ,λX.E,V0〉 Ek[λX.E V])], Σ1〉 ∈ S2, it follows from

lemma 9 that

E0[(rt〈Σ0 ,λX.E,V0〉 [V0/X]E)] ∈ S2.

Thus, E′
0[(rt〈∅,λX.E′ ,V ′〉 [V ′/X]E ′)] � 〈Ξ2,M1, S2〉.

Hence, E′
0[(rt〈∅,λX.E′ ,V ′

0〉 E′
k[(rt〈∅,λX.E′ ,V ′〉 [V ′/X]E ′)])] � 〈Ξ2,M1, S2〉.

— Other sub-cases are straightforward

• Case E ′
1 � (Ξ1,M1, S1) because:

— E ′
1 = E′

0[(rt〈∅,V ′ ,V ′
0〉 Ek[(rt〈∅,V ′ ,V1〉 E

′)])]

— E0[(rt〈∅,V ′ ,V ′
1〉 E

′)] � 〈Ξ1,M1, S1〉
— Ξ1(Σ0, V , Vx) 	 〈F,Σ1,E0,Ek〉
— V ′ � 〈V , Σ1〉
— V ′

0 � 〈Vx, Σ1〉; V ′
1 � 〈Vx, Σ1〉

— E′
0 � 〈E0, Σ1〉; E′

k � 〈Ek, Σ1〉
There are two subcases, whether E ′ is a value or can be decomposed into a

context and redex.

— If E ′ is a value V ′
a:

This means

E ′
1 = E′

0[(rt〈∅,V ′ ,V ′
0〉 E′

k[(rt〈∅,V ′ ,V ′
1〉 V

′
a)])]

E ′
2 = E′

0[(rt〈∅,V ′ ,V0〉 E′
k[V

′
a])].

By lemma 10, there exists 〈E0[(rt〈Σ0 ,V ,Vx〉 Va)], Σ1〉 ∈ S1 such that

E′
0[(rt〈∅,V ′ ,V ′

0〉 V
′
a)] � 〈E0[(rt〈Σ0 ,V ,Vx〉 Va)], Σ1〉.

Then, 〈Ξ1,M1, S1〉 �−→ 〈Ξ2,M2, S2〉 such that S2 	 〈E0[(rt〈Σ0 ,V ,Vx〉
)Ek[Va]], Σ1〉, which approximates E ′

2.

— If E ′
1 = E′

1[E
′′
1]:

We have E′
0[(rt〈∅,V ′ ,V ′

1〉 E′
1[E

′′
1])] �−→ E′

0[(rt〈∅,V ′ ,V ′
1〉 E1[E

′′
2])].

By induction hypothesis, 〈Ξ1,M1, S1〉 �−→� 〈Ξ2,M2, S2〉, such that

E′
0[(rt〈∅,V ′ ,V ′

1〉 E′
1[E

′′
2])] � 〈Ξ2,M2, S2〉.

Because Ξ2 ⊇ Ξ1, E′
0[(rt〈∅,V ′ ,V0〉 E′

kE′
1[E

′′
2])] � 〈Ξ2,M2, S2〉 follows.

�

Lemma 3 (Soundness of primitive operations)

If E ′ �Σ′
1 〈E, Σ1〉,

−→
V ′ �Σ′

1 〈−→
V , Σ1〉 and δ(∅, O,

−→
V ′

1) 	 〈A′, ∅〉 then δ(Σ1, O,
−→
V1) 	 〈A, Σ2〉

such that A �Σ′
2 〈A, Σ2〉 and E ′ �Σ′

2 〈E, Σ2〉 for some Σ′
2 ⊇ Σ1.

Proof

By inspection of cases of O and
−→
V ′ � 〈−→

V , Σ1〉 and consistency of the provability

relation (lemma 4). �

Lemma 4 (Consistency of provability relation)

If V ′ � 〈V , Σ〉 and V ′
c � 〈Vc, Σ〉 then:

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

52 P. C. Nguy˜̂en et al.

• If ∅ � V ′ : V ′
c ✓, then either Σ � V : Vc ✓ or Σ � V : Vc ?

• If ∅ � V ′ : V ′
c ✗, then either Σ � V : Vc ✗ or Σ � V : Vc ?

• If ∅ � V ′ : V ′
c ?, then Σ � V : Vc ?

Proof

By inspection of cases of V ′ � 〈V , Σ〉 and V ′
c � 〈Vc, Σ〉. �

Lemma 5 (Soundness of provability relation)

If V ′ � 〈V , Σ1〉, V ′
c � 〈Vc, Σ1〉, ∅ � V ′ : V ′

c ✓ and Σ1 � V : Vc ?, then 〈(Vc V), Σ1〉
�−→� 〈Va, Σ2〉 such that δ(Σ2, zero?, Va) 	 〈0, Σ3〉.

Proof

By cases of ∅ � V ′ : V ′
c ✓ (where V ′ is concrete) and V ′

c � 〈Vc, Σ1〉. �

Lemma 6

If Σ′ � Σ2 and 〈E1, Σ1〉 �−→ 〈E2, Σ2〉, then Σ′ � Σ1.

Proof

By case analysis of 〈E1, Σ1〉 �−→ 〈E2, Σ2〉. The prior heap is either a restriction of

Σ2, or has the same domain, mapping some addresses to more abstract values than

Σ2. �

Lemma 7 (Completeness of refinement)

If 〈E1, Σ1〉 �−→ 〈E2, Σ2〉, Σ′ � Σ1, Σ′ � Σ2, and E ′
1 � 〈E1, Σ′〉, then E ′

1 �−→ E ′
2 such

that E ′
2 � 〈E2, Σ′〉.

Proof

By case analysis on the reduction step. For each case, the reduction leaves enough

refinement on the heap to steer all instantiations to the same path. The case on

primitive operations is deferred to lemma 8 �

Lemma 8 (Completeness of primitive operations)

If δ(Σ1, O,
−→
V) 	 〈A, Σ2〉, Σ′ � Σ1, Σ′ � Σ2, and

−→
V ′ � 〈−→

V , Σ′〉, then δ(∅, O,
−→
V ′) 	

〈A′, ∅〉 such that A′ � 〈A, Σ2〉.

Proof

By inspection of cases of δ. �

Lemma 9

If 〈∅, ∅, {〈E, ∅〉}〉 �−→� 〈Ξ,M, S〉 and E[(rt〈Σ,Vf ,Vx〉 E
′)] ∈ S , then E[(Vf Vx)] ∈ S .

Proof

By induction on 〈∅, ∅, {〈E, ∅〉}〉 �−→� 〈Ξ,M, S〉.

• Case 〈∅, ∅, {〈E, ∅〉}〉 = 〈Ξ,M, S〉: We assume programmers cannot write

expressions of the form (rt〈Σ,V ,V 〉 E). The case holds trivally.

• Case 〈∅, ∅, {〈E, ∅〉}〉 �−→� 〈Ξ′,M ′, S ′〉 and 〈Ξ′,M ′, S ′〉 �−→ 〈Ξ,M, S〉: Case

analysis on the reduction 〈Ξ′,M ′, S ′〉. If the reduction introduces a new frame

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 53

(rt〈Σ,Vf ,Vx〉 E) in S , it must have resulted from the application (Vf Vx)

in S ′.

�

Lemma 10

If 〈E[(rt〈Σ0 ,Vf ,Vx〉 V)], Σ〉 � 〈Ξ,M, S〉, where E �= E1[(rt〈 ,Vf , 〉 E2)] for any E1, E2,

then there is ς ∈ S such that 〈E[(rt〈Σ0 ,Vf ,Vx〉 V)], Σ〉 � ς

Proof

By case analysis on the derivation

〈E[(rt〈Σ0 ,Vf ,Vx〉 V)], Σ〉 � 〈Ξ,M, S〉

(only the base case of · � 〈·, ·, ·〉 is applicable). �

Appendix B. Detailed evaluation results

This section shows detailed evaluation results for benchmarks collected from different

verification papers. All are done on a Core i7 @ 2.70GHz laptop running Ubuntu

13.10 64bit. Analysis times are averaged over 10 runs.

Table B. 1. Logical types for untyped languages benchmarks

Program Lines Checks Correct variant (ms) Incorrect variant (ms)

O
cc

u
rr

en
ce

ty
p
in

g
ex

a
m

p
le

s

ex-01 6 4 3.3 32.4

ex-02 6 8 3.9 29.4

ex-03 10 12 22.0 57.8

ex-04 11 12 7.8 41.4

ex-05 6 6 4.7 31.4

ex-06 8 11 5.1 32.5

ex-07 8 7 4.7 34.5

ex-08 6 11 7.0 47.2

ex-09 14 12 8.6 32.1

ex-10 6 8 3.5 30.5

ex-11 9 8 6.7 33.3

ex-12 5 11 5.7 31.3

ex-13 9 11 7.5 34.6

ex-14 12 20 8.2 34.4

Total 116 141 98.7 502.8

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

54 P. C. Nguy˜̂en et al.

Table B. 2. Soft typing benchmarks

Program Lines Checks Correct variant (ms) Incorrect variant (ms)

S
o
ft

T
y
p
in

g
ex

a
m

p
le

s
append 8 15 22.7 6.4

cpstak 23 15 12,449.6 46.0

flatten 12 24 27.2 37.5

last-pair 7 9 21.1 30.6

last 17 21 35.7 19.0

length-acc 10 14 26.6 8.0

length 8 13 22.7 6.7

member 8 15 23.3 34.9

rec-div2 9 17 22.5 36.1

subst* 11 12 23.1 34.1

tak 12 14 22.7 36.8

taut 9 8 22.2 34.9

Total 134 177 12719.4 331.0

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

Higher order symbolic execution 55

Table B. 3. Higher order model checking benchmarks

Program Lines Checks Correct variant (ms) Incorrect variant (ms)
H

ig
h
er

-o
rd

er
re

cu
rs

io
n

sc
h
em

e
ex

a
m

p
le

s

intro1 13 11 26.6 208.5

intro2 13 11 27.7 210.2

intro3 13 12 30.6 48.0

sum 9 12 100.4 200.4

mult 9 20 188.6 221.2

max 14 11 35.7 220.2

mc91 8 15 169.6 (1) 115.5

ack 9 16 15.8 205.5

repeat 11 11 10.1 39.7

fhnhn 18 15 38.6 64.4

fold-div 18 34 289.0 250.2

hrec 9 13 21.8 214.1

neg 20 15 95.4 255.4

l-zipmap 16 31 483.0 (1) 152.9

hors 25 17 56.8 58.4

r-lock 17 19 75.3 90.1

r-file 50 62 84.3 118.7

reverse 11 28 20.6 288.5

isnil 9 17 14.9 9.6

mem 12 28 28.2 545.0

nth0 15 27 24.2 806.6

zip 14 42 268.1 688.2

a-max 18 33 528 294.1

fold-fun-list 20 32 70.5 543.2

fold-left 14 27 2028.4 (1) 145.5

fold-right 14 27 2468.5 (1) 184.1

forall-leq 13 23 21 335

harmonic 14 26 381.6 101.2

length 13 24 14.5 (1) 104.4

map-filter 21 51 2083.1 (1) 399.3

risers 26 61 38.9 267.3

search 14 26 2386.5 (1) 28.1

zip-unzip 27 62 2064.4 (1) 758.8

Total 527 859 14190.7 (8) 8172.3

Table B. 4. Dependent type checking benchmarks

Program Lines Checks Correct variant Incorrect variant

D
ep

.
ty

p
e

in
f.

boolflip 10 17 10.5 38.8

mult-all 10 18 9.2 532.8

mult-cps 12 20 348.1 52.3

mult 10 17 102.9 36.9

sum-acm 10 15 41.1 1132.3

sum-all 9 15 8.9 442.1

sum 8 14 9.0 35.5

Total 69 116 529.7 2270.7

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

56 P. C. Nguy˜̂en et al.

Table B. 5. Higher order symbolic execution benchmarks

Program Lines Checks Correct variant Incorrect variant

S
y
m

b
o
li
c

ex
ec

u
ti
o
n

ex
a
m

p
le

s

all 9 16 23.0 23.2

even-odd 10 11 102.7 20.3

factorial-acc 10 9 16.3 7.0

factorial 7 8 13.1 5.9

fibonacci 7 11 1,345.7 97.3

filter-sat-all 11 18 2053.3 (1) 23.1

filter 11 17 24.5 37.6

foldl1 9 17 22.0 22.2

foldl 8 10 22.6 22.4

foldr1 9 11 22.3 21.1

foldr 8 10 27.0 23.1

ho-opaque 10 14 19.1 19.9

id-dependent 8 3 4.5 17.6

insertion-sort 14 30 57.6 54.9

map-foldr 11 20 24.2 24

mappend 11 31 29.7 26.9

map 10 13 23.9 23.7

recip-contract 7 9 4.4 4.1

recip 8 15 5.7 5.5

rsa 14 5 17.7 25.1

sat-7 20 12 5647.7 101.8

sum-filter 11 18 25.0 27.1

web (22) 158 213 268.6 –

web (110) 778 1,336 – 14126.9 (5)

Total 1,159 1,857 9800.6 (1) 14760.7 (5)

G
a
m

es snake 164 246 38602.3 3034.2

tetris 267 338 12303.5 2255.0

zombie 249 476 21276.2 1152.0

Total 680 1,060 72182.0 6441.2

https://doi.org/10.1017/S0956796816000216 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000216

