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Homotopy type theory may be seen as an internal language for the ∞-category of weak

∞-groupoids. Moreover, weak ∞-groupoids model the univalence axiom. Voevodsky

proposes this (language for) weak ∞-groupoids as a new foundation for Mathematics called

the univalent foundations. It includes the sets as weak ∞-groupoids with contractible

connected components, and thereby it includes (much of) the traditional set theoretical

foundations as a special case. We thus wonder whether those ‘discrete’ groupoids do in fact

form a (predicative) topos. More generally, homotopy type theory is conjectured to be the

internal language of ‘elementary’ of ∞-toposes. We prove that sets in homotopy type theory

form a ΠW-pretopos. This is similar to the fact that the 0-truncation of an ∞-topos is a

topos. We show that both a subobject classifier and a 0-object classifier are available for the

type theoretical universe of sets. However, both of these are large and moreover the 0-object

classifier for sets is a function between 1-types (i.e. groupoids) rather than between sets.

Assuming an impredicative propositional resizing rule we may render the subobject classifier

small and then we actually obtain a topos of sets.

1. Introduction

A preliminary version of this paper was ready when the standard reference book on homotopy

type theory (The Univalent Foundations Program 2013) was produced. In fact, many of the

results of this paper can now also be found in chapter 10 of that book. Conversely, the

collaborative writing of that chapter helped us to clarify the presentation of the present

article. The paper is also meant to give a readable account of some computer proofs which

have meanwhile found their way to https://github.com/HoTT/HoTT/.

Homotopy type theory (Awodey 2012) extends the Curry–Howard correspondence

between simply typed λ-calculus, Cartesian closed categories and minimal logic, via

extensional dependent type theory, locally Cartesian closed categories and predicate

logic (Lambek and Scott 1988; Jacobs 1999) to Martin-Löf type theory with identity

types and certain homotopical models. The univalent foundations program (Kapulkin

2012; Pelayo and Warren 2012; The Univalent Foundations Program 2013) extends

homotopy type theory with the so-called univalence axiom, thus providing a language

for ∞-groupoids. Voevodsky’s insight was that this can serve as a new foundation for

Mathematics. The ∞-groupoids form the prototypical higher topos (Lurie 2009; Rezk

2010). In fact, homotopy type theory and the univalence axiom can be interpreted in
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any such higher topos (Shulman 2013). It is conjectured (Awodey 2012; Shulman 2013)

that homotopy type theory with univalence and so-called higher inductive types can

provide an ‘elementary’ definition of a higher topos. In this way, it extends the previous

program to use toposes (Johnstone 2002; Mac Lane and Moerdijk 1996) as a foundation

of Mathematics.

In the present article, we connect the theory of sets (0-types) in the univalent foundations

with the theory of predicative toposes (Moerdijk and Palmgren 2002; van den Berg 2012).

The prototypical example of a predicative topos is the category of setoids in Martin-Löf

type theory. A setoid (Bishop 1967) is a pair of a type with an equivalence relation on it.

In this respect, homotopy type theory may be seen as a generalization of the rich type

theory which may be modelled in setoids (Altenkirch 1999; Hofmann 1995). A setoid

is also a groupoid in which all hom-sets have at most one inhabitant. Thus groupoids

generalize setoids. Hofmann and Streicher showed that groupoids form a model for

intensional type theory (Hofmann and Streicher 1998). In their article Hofmann and

Streicher propose to investigate whether higher groupoids can also model Martin-Löf

type theory; they moreover suggest a form of the univalence axiom for categories: that

isomorphic objects be equal. The Streicher/Voevodsky’s Kan simplicial set model of type

theory (Kapulkin 2012; Streicher 2014) is such a higher dimensional version of Hofmann

and Streicher’s groupoid model. Moreover, Voevodsky and Streicher recognized that the

univalence property holds for Kan simplicial sets. Voevodsky proposed to investigate

Martin-Löf type theory with the univalence axiom as a new foundation for Mathematics.

Later it was found that the addition of higher inductive types was necessary to model

general homotopy colimits.

Grothendieck conjectured that Kan simplicial sets and weak ∞-groupoids are equivalent,

however, precisely defining this equivalence is the topic of active research around the

‘Grothendieck homotopy hypothesis’. As emphasized by Coquand (Bezem et al. 2014),

both the 0-truncated weak ∞-groupoids and the 0-truncated Kan simplicial sets are similar

to setoids, and constructively so. This is made precise for instance by the fact that the

0-truncation of a model topos is a Grothendieck topos (Rezk 2010, Proposition 9.2) and

every Grothendieck topos arises in this way (Rezk 2010, Proposition 9.4). We prove an

internal version of the former result. An internal version of the latter result may follow

by carrying out the constructive model construction in a (predicative) topos (Bezem et al.

2014).

Predicative topos theory follows the methodology of algebraic set theory (Joyal and

Moerdijk 1995), a categorical treatment of set theory, which in particular captures the

notion of smallness by considering pullbacks of a universally small map. It extends the

ideas from the elementary theory of the category of sets (Lawvere and Rosebrugh 2003;

Palmgren 2012) by including a universe. It thus seems to be an ideal framework to

investigate 0-types. However, there is a catch: under the univalence axiom, the universe

of sets is itself not a set but a 1-groupoid. Thus the existing framework of algebraic set

theory will not be entirely sufficient, and needs to be revised for univalent purposes. The

proper treatment of universes is a main reason for preferring the ∞-groupoid model over

the simpler setoid model. Obviously, the possibility to do synthetic homotopy theory is

another; see The Univalent Foundations Program (2013).
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The paper is organized as follows. In Section 2, we sketch a quick overview of the

relevant notions of homotopy type theory on which we rely and we provide the reader

with background and precise references to the corresponding results and proofs in The

Univalent Foundations Program (2013). We give slight generalizations of definitions and

results where that is just as easy as merely giving the results specifically about sets. In

doing so, we provide the reader with a sense to what part of the theory is specific about

sets and what part is not.

The main body of our article is contained in Section 3. We begin by proving the

principle of unique choice if we admit the (−1)-truncation operation, and we show that

epimorphisms are surjective. We then prove that Set is a regular category. When we add

quotients, Set becomes exact and even a ΠW-pretopos, which is one of the main results of

our paper. By adding the univalence axiom, we show that the groupoid Set is a 0-object

classifier. In fact, we do this by showing that the universe Type is an object classifier,

followed by showing that n-Type is an n-object classifier for every n : N . This is our other

main result.

In Section 4, we discuss the representation axiom, the collection axiom and the axiom

of multiple choice (AMC). These axioms from algebraic set theory are used in stronger

systems for predicative topos theory.

We expect the reader to be familiar with type theory, category theory, algebraic set

theory and basic homotopy theory. All background information can be found in The

Univalent Foundations Program (2013).

1.1. Notations, conventions and assumptions

In this article, we use the notation and conventions developed in The Univalent Found-

ations Program (2013). We mostly use standard categorical definitions; see Johnstone

(2002). There is one difference however: where commuting diagrams in category theory

commute with respect to extensional equality, we only require diagrams in type theory to

commute up to propositional equality.

As in The Univalent Foundations Program (2013), we use Martin-Löf intensional type

theory with a hierarchy of universes á la Russell, universe polymorphism and typical

ambiguity. This means that a definition like Set really gives a definition at each universe

level. There are only a few places where we need to be explicit about universe levels.

The proof that epis are surjective, Theorem 3.10 is one such place where we need

both small sets and a large power set. As is common in homotopy type theory, we

will freely use the axiom of function extensionality. Using this axiom, all limits can be

constructed in type theory (Avigad et al. 2012; Rijke and Spitters 2013a). We use higher

inductive types to implement pushouts (Lumsdaine and Shulman 2015) and truncations.

Although the full details of the computational interpretation of such higher inductive

types are being worked out, these concrete instances indeed do have a computational

interpretation (Barras 2013; Bezem et al. 2014). In our result that Set is a ΠW-pretopos,

we will also use the univalence axiom for propositions: for every two (−1)-types P and

Q, the function (P =Type Q) → (P � Q) is an equivalence. It is also used in Theorem 2.27.
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To show that Type• → Type is an object classifier (Section 3.5) we will use the (full)

univalence axiom.

In the previous paragraph, we have used informal categorical terminology such as

‘pushout’ to refer to what would be interpreted as homotopy pushouts in the ∞-category

of weak ∞-groupoids. We will usually omit the word ‘homotopy’ when we talk about

those categorical concepts and we will continue to use this naive ∞-category style without

any rigorous claims about their interpretation in the model. We can be more precise when

speaking about 1-categories, they will be the pre-categories that are developed in Ahrens

et al. (2013). Assuming the univalence axiom, Set is in fact a (Rezk complete) 1-category.

2. Preliminaries

2.1. The very basics of the univalent foundations

We denote identity types IdA(x, y) by x =A y or simply by x = y. The concatenation of

p : x =A y with q : y =A z will be denoted by p � q : x =A z. If P : A → Type is a family

of types over A and p : x =A y is a path in A and u : P (x), we denote the transportation

of u along p by p∗(u) : P (y). The type
∑

(x:A)

∏
(y:A) (y =A x) witnessing that a type A is

contractible is written as isContr(A).

A function f : A → B is said to be an equivalence if there is an element of type

isEquiv(f) :≡
(∑

(g:B→A) g ◦ f ∼ idA

)
×

(∑
(h:B→A) f ◦ h ∼ idB

)
.

The homotopy fibre
∑

(a:A) f(a) =B b of f at b is denoted by fibf(b). A function is an

equivalence if and only if all its homotopy fibres are contractible. We write A � B for

the type
∑

(f:A→B) isEquiv(f) and we usually make no notational distinction between an

equivalence e : A � B and the underlying function.

By path induction, there is a canonical function assigning an equivalence A � B to

every path p : A=Type B. The univalence axiom asserts that this function is an equivalence

between the types A =Type B and A � B. The principle of function extensionality is a

consequence of the univalence axiom.

In the rest of this preliminary chapter, we sketch a quick overview of the theory of

homotopy n-types and the (co)completeness of those.

2.2. Introducing the type of sets

We define the notion of being an n-type by recursion on N−2, where N−2 is a version

of the natural numbers which starts at −2. We will be mainly concerned with the type

0-Type of all 0-types, which are the sets, but it is not possible to ignore the other values

entirely. A concrete reason for this is that 0-Type is itself a 1-type; see Lemma 2.9.

Definition 2.1. A type is said to be a (−2)-truncated type if it is contractible. Thus, we

define

is-(−2)-type(A) :≡ isContr(A).
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For n : N−2, we say that A is (n+ 1)-truncated if there is an element of type

is-(n+ 1)-type(A) :≡
∏

(x,y:A) is-n-type(x=A y).

We also say that A is an n-type if A is n-truncated. We define

n-Type :≡
∑

(A:Type) is-n-type(A).

Relying on the interpretation of identity types as path spaces, a useful way of looking

at the n-truncated types is that n-types have no interesting homotopical structure above

truncation level n.

In the hierarchy of truncatedness we just introduced, we find the sets in 0-Type. Those

are the types A with the property that for any two points x, y : A, the identity type

x =A y is contractible once inhabited. From a topological point of view, the 0-truncated

spaces are those with contractible connected components. Such a space is homotopically

equivalent to a discrete space.

Definition 2.2. We introduce the following notations:

Prop :≡ (−1)-Type Set :≡ 0-Type.

When A : Prop, we also say that A is a mere proposition. Although strictly speaking Prop

and Set are dependent pair types, we shall make no notational distinguishment between

terms P : Prop and A : Set and their underlying types.

The following theorem provides a useful way to show that types are sets. In The

Univalent Foundations Program (2013), it is used to prove Hedberg’s theorem and to

prove that the Cauchy-reals are a set.

Theorem 2.3 (see 7.2.2 in The Univalent Foundations Program (2013)). Suppose R is

a reflexive mere relation on a type X implying identity. Then X is a set, and R(x, y) is

equivalent to x= y for all x, y : X.

Proof. Let ρ :
∏

(x:X) R(x, x) be a proof of reflexivity of R, and consider a witness

f :
∏

(x,y:X) R(x, y) → (x= y) of the assumption that R implies identity. Note first that the

two statements in the theorem are equivalent. For on one hand, if X is a set, then x= y is

a mere proposition, and since it is logically equivalent to the mere proposition R(x, y) by

hypothesis, it must also be equivalent to it. On the other hand, if x = y is equivalent to

R(x, y), then like the latter it is a mere proposition for all x, y : X, and hence X is a set.

We show that each f(x, y) : R(x, y) → x= y is an equivalence. By Theorem 4.7.7 in The

Univalent Foundations Program (2013), it suffices to show that f induces an equivalence

of total spaces: (∑
(y:X) R(x, y)

)
�

(∑
(y:X) x= y

)
.

The type on the right is contractible, so it suffices to show that the type on the left is

contractible too. As the centre of contraction we take the pair 〈x, ρ(x)〉. It remains to

show, for every y : X and every H : R(x, y) that

〈x, ρ(x)〉 = 〈y,H〉,
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which is by Theorem 2.7.2 of The Univalent Foundations Program (2013) equivalent to
∑

(p:x=y) p∗(ρ(x)) = H.

But since R(x, y) is a mere proposition, it suffices to show that x= y, which we get from

f(H).

2.3. Closure properties of the n-types

We list some of the basic properties of n-types; for proofs see The Univalent Found-

ations Program (2013). Most of the results we cite and mention were proved by

Voevodsky Voevodsky (2014) when he introduced the notion of homotopy levels. He tried to

rationalize the numbering by starting at 0, we follow The Univalent Foundations Program

(2013) and the homotopical tradition and start at −2. The proof that n-Type is closed

under dependent products requires the function extensionality principle, which is itself a

consequence of the univalence axiom. In fact, one does not need to use univalence to

show that function extensionality is equivalent to the principle that the (−2)-types are

closed under dependent products. The proof that for n � −1, n-Type is also closed under

the W type contstructor is a recent result by Danielsson (2013).

For the present paper, the results in Lemmas 2.4–2.9 are of particular interest in the

case n ≡ 0.

Lemma 2.4 (see Lemma 4.7.3 and Theorems 4.7.4 and 7.1.4 in The Univalent Found-

ations Program (2013)). A retract of an n-truncated type is n-truncated. Consequently,

n-truncated types are closed under equivalence.

Lemma 2.5 (see Theorem 7.1.9 in The Univalent Foundations Program (2013)). Let A be

a type and let P be a family of types over A with n-truncated fibres. Then the dependent

function type
∏

(x:A) P (x) is n-truncated.

Lemma 2.6 (see Theorem 7.1.8 in The Univalent Foundations Program (2013)). Let A

be n-truncated and that P is a family of n-truncated types over A. Then the dependent pair

type
∑

(x:A) P (x) is n-truncated.

Lemma 2.7. Let A be n-truncated, n � −1 and that P : A → Type is any family of types

over A. Then the well-ordered type W(x:A)P (x) is n-truncated.

Lemma 2.8 (see Theorem 7.1.7 in The Univalent Foundations Program (2013)). If A is

n-truncated, then A is (n + 1)-truncated. Hence if A is n-truncated, so is x =A y for each

x, y : A.

The second assertion in the following result requires the univalence axiom.

Lemma 2.9 (see Theorem 7.1.11 in The Univalent Foundations Program (2013)). For any

type A and any n : N−2, the type is-n-type(A) is a mere proposition. The type n-Type is

itself an (n+ 1)-truncated type.

Using higher inductive types, it is possible to implement a left adjoint to the inclusion

n-Type → Type. This left adjoint is called the n-truncation; see The Univalent Founda-

tions Program (2013). For the purpose of this paper, we shall only be concerned with the

universal property for n-truncation.
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Definition 2.10 (a slight extension of Theorem 7.3.2 in The Univalent Foundations Program

(2013), see also Theorem 7.7.7). For any type A and any n : N−2 there is an n-truncated

type ‖A‖n and a function | − |n : A → ‖A‖n such that the function

λs. s ◦ | − |n :
∏

(w:‖A‖n) P (w) →
∏

(a:A) P (|a|n)

is an equivalence for every P : ‖A‖n → n-Type.

The (−2)-truncation of a type A is contractible and the (−1)-truncation identifies all

elements with each other. Since (−1)-truncation is so common, we will often omit the

subscript and write ‖–‖ instead of ‖–‖−1. In general, n-truncation maps to n-Type.

Therefore, we have for any type A and any x, y : A that the type |x|n+1 =‖A‖n+1
|y|n+1 has

all the structure above truncation level n identified. More precisely, we get:

Lemma 2.11 (see Theorem 7.3.12 in The Univalent Foundations Program (2013)). For any

type A, any x, y : A and any n : N−2, there is an equivalence

(|x|n+1 =‖A‖n+1
|y|n+1) � ‖x=A y‖n.

Using the (−1)-truncation ‖–‖, we can fully implement propositions as (−1)-types.

Definition 2.12. For a type A and (dependent) mere propositions P and Q we define


 :≡ 1 P ⇒ Q :≡ P → Q

⊥ :≡ 0 ¬P :≡ P → 0

P ∧ Q :≡ P × Q ∀(x:A) P (x) :≡
∏

(x:A) P (x)

P ∨ Q :≡ ‖P + Q‖ ∃(x:A) P (x) :≡ ‖
∑

(x:A) P (x)‖.

Recall that bi-imlplication of (−1)-types implies equivalence of those (−1)-types, which

is equivalent by univalence to identity. Notice also that although the product of mere

propositions is again a mere proposition, this is not the case for dependent sums. This is the

reason why we needed (−1)-truncations to implement propositions as mere propositions.

2.4. Surjective and injective functions

The n-truncations are examples of a more general phenomenon called modalities and a

large part of the theory of truncations generalizes to arbitrary modalities, as we will show

in a forthcoming paper. A very first approximation is available at Rijke and Spitters

(2013b).

Definition 2.13. A function f : A → B is said to be n-connected if there is a term of type

∏
(b:B) isContr(‖fibf(B)‖n)

Definition 2.14. A function f : A → B is said to be n-truncated if there is a term of type

∏
(b:B) is-n-type(fibf(b)).
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The main result about the classes n-connected and n-truncated functions is that they

describe a stable orthogonal factorization system. Every function factors uniquely as

an n-connected function followed by an n-truncated function, see Theorem 7.6.6 in The

Univalent Foundations Program (2013) for the precise statement. The unique factorization

goes through the n-image:

Definition 2.15. Let f : A → B be a function. We define the n-image of f to be the type

imn(f) :≡
∑

(b:B) ‖fibf(b)‖n.

In the present article, we are mostly interested in the (−1)-connected and the (−1)-

truncated maps, which give factorization of functions through their (−1)-image. We

will denote the (−1)-image of a function f simply by im(f) and call it the image of

f. Also, it is more customary to talk about surjective and injective functions instead

of (−1)-connected and (−1)-truncated functions. We make the following definitions of

surjectivity and injectivity, which are equivalent to the definitions of (−1)-connectedness

and (−1)-truncatedness respectively.

Definition 2.16. A function f : A → B is said to be surjective if there is a term of type

surj(f) :≡
∏

(b:B) ‖fibf(b)‖.

Definition 2.17. A function f : A → B is said to be injective if there is a term of type

inj(f) :≡
∏

(a:A) isContr(fibf(f(a))).

Below, we give the factorization of any function, but we do not go into the details of

the uniqueness of such a factorization.

Definition 2.18. Let f : A → B be a function. Define the functions f̃ : A → im(f) and

if : im(f) → B by

f̃ :≡ λa. 〈f(a), |(a, reflf(a))|〉
if :≡ pr1.

Lemma 2.19. Let f : A → B be a function. Then f̃ is surjective and if is injective.

The injective functions are the monomorphisms of Set, which we can also define via a

pullback diagram.

Definition 2.20. Let f : A → X and g : B → X be functions. We define the homotopy

pullback of f and g to be

A×X B :≡
∑

(a:A)

∑
(b:B) (f(a) =X g(b))

and we define π1 : A×X B → A and π2 : A×X B → B to be the projections.

We have the following characterization of (n+ 1)-truncated functions which appears in

Rezk (2010) in the setting of model toposes, but not in The Univalent Foundations Pro-

gram (2013).

Lemma 2.21. A function f : A → B is (n+ 1)-truncated if and only if the function

λa. 〈a, a, reflf(a)〉 : A → A×B A
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is n-truncated.

Proof. Let 〈x, y, p〉 :
∑

(x,y:A) f(x) = f(y). Then we have a the equivalences

fibλa. 〈a,a,reflf(a)〉(〈x, y, p〉) �
∑

(a:A) 〈a, a, reflf(a)〉 = 〈x, y, p〉

�
∑

(a:A)

∑
(α:a=x)

∑
(β:a=y) f(α)

−1 � f(β) = p

�
∑

(β:x=y) f(β) = p

�
∑

(β:x=y) f(β)−1 � reflf(x) = p−1

�
∑

(β:x=y) β∗
(
reflf(x)

)
= p−1

� 〈x, reflf(x)〉 =fibf (f(x)) 〈y, p−1〉.

The latter type is an n-type if and only if fibf(f(x)) is an (n+ 1)-type. Thus, we see that

λa. 〈a, a, reflf(a)〉 is n-truncated if and only if fibf(f(x)) is an (n + 1)-type for each x : A.

Note that each fibf(f(x)) is an (n+1)-type if and only if each fibf(b) is an (n+1)-type.

In particular, a function is injective if and only if the function A → A ×B A is an

equivalence. In other words, a function is injective precisely when it is a monomorphism,

i.e. when the diagram

A A

A B

idA

idA f

f

is a pullback diagram.

Let us make the verifications of two of the ingredients of a predicative topos. The first

is that sums are disjoint.

Lemma 2.22 (see Theorem 2.12.5 in The Univalent Foundations Program (2013)). For any

two types X and Y we have the equivalences

(inl(x) =X+Y inl(x′)) � (x=X x
′)

(inl(x) =X+Y inr(y)) � 0

(inr(y) =X+Y inr(y′)) � (y =Y y
′).

Consequently, the inclusions inl : X → X + Y and inr : Y → X + Y are monomorphisms

and the diagram

0 X

Y X + Y

inl

inr

is a pullback diagram.

We also have the following general result, which has the consequence that Set is

lextensive.
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Theorem 2.23. Let P : A → Type be a family of types and let f : (
∑

(a:A) P (a)) → B and

g : X → B be functions. Then there is an equivalence
(∑

(a:A) (P (a) ×B X)
)

�
(∑

(a:A) P (a)
)

×B X.

In particular, there is an equivalence

(A0 ×B X) + (A1 ×B X) � (A0 + A1) ×B X

for any three functions f0 : A0 → B and f1 : A1 → B and g : X → B.

Proof. Note that we have the equivalences
(∑

(a:A) (P (a) ×B X)
)

≡
∑

(a:A)

∑
(u:P (a))

∑
(x:X) (f(a, u) =B g(x))

�
∑

(w:
∑

(a:A) P (a))

∑
(x:X) (f(w) =B g(x))

≡ (
∑

(a:A) P (a)) ×B X.

2.5. Homotopy colimits

In contrast with limits, general colimits such as quotients are not provided by Martin-Löf

type theory. Thus the category of setoids – the left exact completion of the category of

types – was considered to work around this deficit. In the univalent foundations, quotients

can be introduced as higher inductive types. We present only the results that are essential

in the context of sets, a more thorough discussion about higher inductive types can be

found either in chapter 6 of The Univalent Foundations Program (2013) or in Rijke and

Spitters (2013a).

Definition 2.24. A (directed) graph Γ is a pair 〈Γ0,Γ1〉 consisting of a type Γ0 of points

and a binary relation Γ1 of edges.

Definition 2.25. Let Γ be a graph. We define colim(Γ) to be the higher inductive type

with basic constructors

α0 : Γ0 → colim(Γ)

α1 :
∏

(i,j:Γ0)
Γ1(i, j) → α0(i) = α0(j).

The induction principle for colim(Γ) is that for any family P : colim(Γ) → Type, if there

are

H0 :
∏

(i:Γ0)
P (α0(i))

H1 :
∏

(i,j:Γ0)

∏
(q:Γ1(i,j))

α1(q)∗(H0(i)) = H0(j)

then there is a dependent function f :
∏

(w:colim(Γ)) P (w) with

f(α0(i)) :≡ H0(i) for i : Γ0

apdf(α1(q)) := H1(q) for i, j : Γ0 and q : Γ1(i, j).

These colimits are higher inductive types of the kind that are presented in Section 6.12

in The Univalent Foundations Program (2013), using a binary relation over the type Γ0

rather than a pair of functions into Γ0.
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Using these higher inductive types, all the homotopy colimits that appear in The

Univalent Foundations Program (2013) can be constructed. In particular, we have the

pushout of f : A → B and g : A → C by considering the graph Γ with

Γ0 :≡ B + C

Γ1(i, j) :≡ fibϕ(〈i, j〉)

where we take

ϕ :≡ λa. 〈inl(f(a)), inr(g(a))〉 : A → (B + C)2.

To see what fibϕ(–) is, note that

fibϕ(〈inl(b), inr(c)〉) �
∑

(a:A) (f(a) = b) × (g(a) = c)

and that fibϕ(–) is empty for other combinations of inl and inr. The pushout is equivalently

described with the basic constructors

inl : B → B +A C

inr : C → B +A C

glue :
∏

(a:A) inl(f(a)) = inr(g(a)).

We note that using higher inductive types and univalence for propositions, it is possible

to give a new proof of the fact that the axiom of choice, see Equation 3.8.1 in The Univalent

Foundations Program (2013), implies the law of excluded middle, see Equation 3.4.1 in

The Univalent Foundations Program (2013). Although we will not use this fact in the

proof that Set forms a predicative topos, the higher inductive type is an instance of the

construction of quotients.

Definition 2.26. Suppose P is a mere proposition. We define the auxiliary binary relation

RP : 2 → 2 → Type by RP (02, 12) :≡ P and RP (b, b′) :≡ 0 otherwise. Define 2/P to be the

type

colim(〈2, RP 〉).

Using Theorem 2.3 it is not hard to see that 2/P is a set, see Lemma 10.1.13 in The

Univalent Foundations Program (2013). The basic constructor 2 → 2/P is a surjective

function, so we may use the axiom of choice to obtain a section and use the decidability

of equality in 2 to decide whether P or ¬P holds:

Theorem 2.27 (see Theorem 10.1.14 in The Univalent Foundations Program (2013)). If all

surjections between sets merely split, then the law of excluded middle follows.

Because truncations are left-adjoints, we note that when Γ is a graph, then ‖colim(Γ)‖0

is the set-colimit of Γ. To see this, note that the truncation ‖–‖0 restricts the universal

property of colim(Γ) to only those cases where a family of sets over colim(Γ) is considered.

We end the preliminaries with a discussion on how to take the coequalizer of two

functions f, g : A → B in the univalent category of sets. Its definition as a higher

inductive type is straightforward:

Definition 2.28. Let f, g : A → B be functions between sets. We define the set-coequalizer

of f and g to be the type B/f,g :≡ ‖colim(〈B, eqf,g〉)‖0, where eqf,g is the family defined

https://doi.org/10.1017/S0960129514000553 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000553


Sets in homotopy type theory 1183

by

eqf,g(b, b
′) :≡

∑
(a:A) (f(a) = b) × (g(a) = b′).

We denote the composite function B → colim(〈B, eqf,g〉) → B/f,g by cf,g . A regular

epimorphism is a function between sets which is (homotopic to) a set-coequalizer.

The following lemma explains that the coequalizer of f and g has indeed the right

universal property. This is a general phenomenon; truncated colimits behave as expected.

Lemma 2.29 (see Lemma 10.1.4 in The Univalent Foundations Program (2013)). Let

f, g : A → B be functions between sets A and B. The set-coequalizer cf,g : B → B/f,g
satisfies the universal property

∏
(C:Set)

∏
(h:B→C)

∏
(H:h◦f∼h◦g) isContr(

∑
(k:B/f,g→C) k ◦ cf,g ∼ h).

3. Set is a ΠW-pretopos

In this section, we begin by verifying the principle of unique choice. The importance

of this result is not in the complication of its proof, but in the absence of the result

in some other type theories. In these type theories one introduces a separate sort of

‘propositions’, which, however, are not necessarily identified with mere propositions. Such

an approach may be more general, but less powerful. The principle of unique choice fails

in the calculus of constructions (Streicher 1992), in logic enriched type theory (Aczel and

Gambino 2002), and in minimal type theory (Maietti and Sambin 2005), the category of

prop-valued setoids in Coq (Spiwack 2011). This principle does hold the model of total

setoids using a propositions as types interpretation (Hofmann 1995).

We will show that in the presence of (−1)-truncation, Set becomes a regular category.

The natural candidate for coequalizer of the kernel pair of a function is the image of

the function. Our proof that the image is indeed the coequalizer is an application of

the principle of unique choice. This work is reminiscent of the connections between [ ]-

types (Awodey and Bauer 2004), or mono-types (Maietti 2005), and regular categories in

an extensional setting.

To show that Set is exact provided that we have quotients, we need to show in addition

that every equivalence relation is effective. In other words, given an equivalence relation

R : A → A → Prop, there is a coequalizer cR of the pair π1, π2 : (
∑

(x,y:A) R(x, y)) → A

and, moreover, the π1 and π2 for the kernel pair of cR .

We consider the pre-category EqRel, which becomes a 1-category by univalence. The

pre-category EqRel shares many properties of the pre-category Std of setoids, which is the

exact completion of Set. Using higher inductive types and univalence, we will show that

we have a quotient functor EqRel → Set which is moreover left adjoint to the inclusion

Set → EqRel. This adjunction is in general not an equivalence, that would follow from

the axiom of choice. With Set being exact, we will be ready to show that Set forms a

ΠW-pretopos.

After having shown that Set is exact, we will show that Type has an object classifier.

From this we will derive that Set has a subobject classifier. This also shows that if we

assume the resizing rule that Prop is equivalent to a type in Set, then Set actually becomes

a topos.
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3.1. Regularity of the category of sets

Definition 3.1. Suppose P : A → Type is a family of types over A. We define

atMostOne(P ) :≡
∏

(x,y:A) P (x) → P (y) → (x= y)

∃!(x:A) P (x) :≡ (∃(x:A) P (x)) × atMostOne(P ).

Lemma 3.2. Suppose that P : A → Prop. If there is an element H : atMostOne(P ), then

the type
∑

(x:A) P (x) is a mere proposition.

Proof. Suppose that 〈x, u〉 and 〈x′, u′〉 are elements of
∑

(x:A) P (x). Then we have the path

p :≡ H(u, u′) : x= x′. Moreover, there is a path from p∗(u) = u′ since P (x′) is assumed to

be a mere proposition.

Lemma 3.3. For any family P : A → Prop of mere propositions there is a function of type

(∃!(x:A) P (x)) →
∑

(x:A) P (x).

Proof. Suppose we have H : atMostOne(P ) and K : ∃(x:A) P (x). From H it follows

that
∑

(x:A) P (x) is a mere proposition, and therefore it follows that
( ∑

(x:A) P (x)
)

�
(∃(x:A) P (x)).

Theorem 3.4 (the principle of unique choice). Suppose that A is a type, that P : A → Type

is a family of types over A and that R :
∏

(x:A) (P (x) → Prop) is a family of mere propositions

over P . Then there is a function
( ∏

(x:A) ∃!(u:P (x)) R(x, u)
)

→
∑

(f:
∏

(x:A) P (x))

∏
(x:A) R(x, f(x)).

Proof. Suppose that H :
∏

(x:A) (∃!(u:P (x)) R(x)). By Lemma 3.3 we can find an element of

type
∑

(u:P (x)) R(x, u) for every x : A. A function

(
∏

(x:A)

∑
(u:P (x)) R(x, u)) → (

∑
(f:

∏
(x:A) P (x))

∏
(x:A) R(x, f(x)))

is obtained from the usual AC∞.

The following seemingly stronger variant of atMostOne(P ) helps us showing that

atMostOne(P ) is a mere proposition for every P : A → Prop.

Definition 3.5. Let P : A → Type be a family of types over a type A. We define

baseLevel(−1, P ) :≡
∏

(x,y:A) P (x) → P (y) → isContr(x= y).

Notice that we could replace isContr in the definition of baseLevel(−1) by is-(−2)-type

and see that we can easily generalize the notion of baseLevel(−1) to baseLevel(n) for

n � −1.

Lemma 3.6. For any P : A → Prop, there is a function of type

atMostOne(P ) → baseLevel(−1, P ).
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Proof. We will show that there is a function of type

atMostOne(P ) →
∏

(x,y:A) P (x) → P (y) → isContr(x= y).

Let H be an element of type atMostOne(P ) and let x, y : A, u : P (x) and v : P (y). Then

we have the terms 〈x, u〉 and 〈y, v〉 in
∑

(x:A) P (x). Since
∑

(x:A) P (x) is a proposition, the

path space 〈x, u〉 = 〈y, v〉 is contractible. Since P is assumed to be a proposition, there is

an equivalence (x= y) � (〈x, u〉 = 〈y, v〉). Hence it follows that x= y is contractible.

Corollary 3.7. For any family P : A → Prop of types, the type atMostOne(P ) is equivalent

to baseLevel(−1, P ). In particular, atMostOne(P ) is a mere proposition.

As an application of unique choice, we show that surjective functions between sets are

regular epimorphisms.

Definition 3.8. Let f : A → B be a function between sets. Define

epi(f) :≡
∏

(X:Set)

∏
(g,h:B→X) (g ◦ f ∼ h ◦ f) → (g ∼ h).

Since we have restricted the condition of being an epimorphism to the category of sets,

the type epi(f) is a mere proposition.

Lemma 3.9. Let f be a function between sets. The following are equivalent:

i. f is an epimorphism.

ii. Consider the pushout diagram.

A B

1 Cf

f

ι

t

defining the mapping cone of f. The type ‖Cf‖0 is contractible.

iii. f is surjective.

Proof. To show that epi(f) → isContr(‖Cf‖0), suppose that H : epi(f). The basic

constructor t of Cf gives us the element |t(	)|0 : ‖Cf‖0. We have to show that

∏
(x:‖Cf‖0)

x= |t(	)|0.

Note that the type x = |t(	)|0 is a mere proposition because ‖Cf‖0 is a set, hence it is

equivalent to show that ∏
(w:Cf ) |w|0 = |t(	)|0

which is by Lemma 2.11 equivalent to

∏
(w:Cf ) ‖w = t(	)‖.

We can use induction on Cf: it suffices to find

I0 :
∏

(b:B) ‖ι(b) = t(	)‖
I1 :

∏
(a:A) glue(a)∗(I0(f(a))) = |reflt(	)|.
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where glue :
∏

(a:A) ι(f(a)) = t(	) is a basic constructor of Cf . Since the type of I1 is the

type of sections of a family of identity types of propositions – which are thus contractible

– we get I1 for free. Since f is epi and since we have glue : ι ◦ f ∼ (λb. t(	)) ◦ f, we get a

homotopy ι ∼ λb. t(	), which gives us I0.

To show that isContr(‖Cf‖0) → surj(f), let H : isContr(‖Cf‖0). Using the univalence

axiom, we construct a family P : ‖Cf‖0 → Prop of mere propositions. Note that Prop is a

set, so it suffices to define the family P (‖–‖0) : Cf → Prop. For this we can use induction

on Cf: we define

P (|t(x)|0) :≡ 1 for x : 1

P (|ι(b)|0) :≡ ‖fibf(b)‖ for b : B.

For a : A the type ‖fibf(f(a))‖ is canonically equivalent to 1, which finishes the construction

of P . Since ‖Cf‖0 is assumed to be contractible it follows that P (x) is equivalent to

P (|t(	)|0) for any x : ‖Cf‖0. In particular, we find that ‖fibf(b)‖ is contractible for each

b : B, showing that f is surjective.

To show that surj(f) → epi(f), let f : A → B be a surjective function and consider a

set C and two functions g, h : B → C with the property that g ◦ f ∼ h ◦ f. Since f is

assumed to be surjective, we have an equivalence B � im(f). Since identity types in sets

are propositions, we get

∏
(b:B) g(b) = h(b) �

∏
(w:im(f)) g(pr1w) = h(pr1(w))

�
∏

(b:B)

∏
(a:A)

∏
(p:f(a)=b) g(b) = h(b)

�
∏

(a:A) g(f(a)) = h(f(a)).

By assumption, there is an element of the latter type.

The proof that epis are surjective in Mines et al. (1988) uses the power set operation.

This proof can be made predicative by using a large power set and typical ambiguity. A

predicative proof for setoids was given by Wilander (2010). The proof above is similar,

but avoids setoids by using the pushout and the univalence axiom.

Theorem 3.10. Surjective functions between sets are regular epimorphisms.

Proof. Note that it suffices to show that for any function f : A → B, the diagram

∑
(x,y:A) f(x) = f(y) A im(f)

π1

π2

f̃

is a coequalizer diagram.

We first construct a homotopy H : f̃ ◦ π1 ∼ f̃ ◦ π2. Let 〈x, y, p〉 be an element of∑
(x,y:A) f(x) = f(y). Then we have f̃(π1(〈x, y, p〉)) = 〈f(x), u〉, where u is an element of the

contractible type ‖fibf(f(x))‖. Similarly, we have a path f̃(π2(〈x, y, p〉)) = 〈f(y), v〉, where

v is an element of the contractible type ‖fibf(f(y))‖. Since we have p : f(x) = f(y) and

since ‖fibf(f(y))‖ is contractible, it follows that we get a path from f̃(π1(〈x, y, p〉)) to

f̃(π2(〈x, y, p〉)), which gives us our homotopy H .
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Now suppose that g : A → X is a function for which there is a homotopy K : g ◦ π1 ∼
g ◦ π2. We have to show that the type

∑
(h:im(f)→X) h ◦ f̃ ∼ g

is contractible. We will apply unique choice to define a function from im(f) to X. Let

R : im(f) → X → Prop be the relation defined by

R(w, x) :≡
∏

(a:A) (f̃(a) = w) → (g(a) = x).

There is an element of atMostOne(R(w)) for every w : im(f). To see this, note that the

type atMostOne(R(w)) is a mere proposition. Therefore, there is an equivalence
(∏

(w:im(f)) atMostOne(R(w))
)

�
∏

(a:A) atMostOne(R(f̃(a))).

Let a : A, x, x′ : X, u : R(f̃(a), x) and u′ : R(f̃(a), x′). Then there are the paths u(a, reflf̃(a)) :

g(a) = x and u′(a, reflf̃(a)) : g(a) = x′, showing that x= x′.

Also, there is an element of ∃(x:X) R(w, x) for every w : im(f). Indeed, the type

∏
(w:im(f)) ∃(x:X) R(w, x)

is equivalent to the type ∏
(a:A) ∃(x:X) R(f̃(a), x).

The type
∏

(a:A)

∑
(x:X) R(f̃(a), x) is inhabited by the element

λa. 〈g(a), (λa′. λp.K(〈a′, a, p−1〉))〉.

This shows that the hypotheses of the principle of unique choice are satisfied, so we get

an element of type ∑
(h:im(f)→X)

∏
(w:im(f)) R(w, h(w)).

An immediate consequence of the way we constructed our function h : im(f) → X is that

h ◦ f̃ ∼ g. The result follows now from the observation that the type

∑
(h′:im(f)→X) h

′ ◦ f̃ ∼ h ◦ f̃

is contractible because f̃ is an epimorphism.

Lemma 3.11. Pullbacks of surjective functions are surjective. Consequently, pullbacks of

coequalizers are coequalizers.

Proof. Consider a pullback diagram

A B

C D

f g

h

and assume that g is surjective. Applying the pasting lemma of pullbacks with the

morphism c : 1 → C , we obtain an equivalence fibf(c) � fibg(h(c)) for any c : C . This

equivalence gives that f is surjective.
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Theorem 3.12. The category Set is regular.

Proof. Set has all limits, so it is finitely complete. Theorem 3.10 gives that the kernel pair

of each function has a coequalizer. Lemma 3.11 gives that coequalizers are stable under

pullbacks.

3.2. The 1-category of equivalence relations

Setoids were introduced by Bishop (1967) to model extensional functions in an unspecified

effective framework. Hofmann (1995) developed this theory to build a model of extensional

type theory in an intensional type theory. For our purpose the drawback of this generality

is that we do not obtain a 1-category of setoids out of such a model of setoids. Hence,

we shall restrict to mere propositional relations to obtain the pre-category of setoids and

we will end up with a category of equivalence relations and respectful functions on their

carriers as morphisms.

Due to the restriction we have to put on the ‘setoids’ to form a 1-category, Set becomes

a reflective subcategory of the category EqRel of setoids with respectful functions; see

Section 3.3. In the presence of the axiom of choice (The Univalent Foundations Program

2013, Equation 3.8.1) the categories are even equivalent.

The construction in Section 3.3 is reminiscent of the ex/lex completion. It uses setoids

with respectful functions. Instead of functions one could also consider total functional

relations. Since Set is a regular 1-category, these choices are equivalent. The construction

in Section 3.4 uses a Yoneda construction also reminiscent of the ex/lex completion;

see Maietti and Rosolini (2012) for an overview.

Objects of EqRel consist of types accompanied with an equivalence relation. Since we

want to end up with a 1-category, we shall have to require that the underlying type of

a setoid is always 0-truncated, i.e. a set. In the proof relevant definition of setoids, an

equivalence relation over a type A is a family R : A → A → Type which is reflexive,

symmetric and transitive. Also here we have to compromise: we will take proposition-

valued equivalence relations instead.

Definition 3.13. An equivalence relation over a type A consists of a mere relation R : A →
A → Prop which is reflexive, symmetric and transitive, i.e. there are elements

ρ :
∏

(x:A) R(x, x)

σ :
∏

(x,y:A) R(x, y) → R(y, x)

τ :
∏

(x,y,z:A) R(y, z) → R(x, y) → R(x, z).

We also write isEqRel(R) for the type witnessing that R is an equivalence relation.

Definition 3.14. We define

ob(EqRel) :≡
∑

(A:Set)

∑
(R:A→A→Prop) isEqRel(R).

Usually we shall slightly abuse notation and speak of 〈A,R〉 as an object of EqRel, leaving

the witness of isEqRel(R) implicit.
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Definition 3.15. Let Γ :≡ 〈A,R〉 and Δ :≡ 〈B, S〉 be objects of EqRel. A morphism f from

Δ to Γ is a pair 〈f0, f1〉 consisting of

f0 : B → A

f1 :
∏

(x,y:B) S(x, y) → R(f0(x), f0(y)).

Thus, we define

hom(Δ,Γ) :≡
∑

(f0:B→A)

∏
(x,y:B) S(x, y) → R(f0(x), f0(y)).

Which is a subset of the function set. We will usually denote the type hom(Δ,Γ) by

Δ → Γ. The identity morphisms idΓ and the composite morphisms g ◦ f are defined in

the obvious way.

In the following theorem, we use the univalence axiom to deduce that we get a 1-

category of equivalence relations. However, in our result that Set is a ΠW-pretopos we

will not use univalence and hence we will not use the fact that EqRel is a 1-category.

Lemma 3.16. For any two setoids Γ and Δ, the type of isomorphisms from Δ to Γ is equivalent

to the type Δ = Γ in ob(EqRel).

Proof. First observe that we have an equivalence

(Δ = Γ) �
(∑

(e:B�A)

∏
(x,y:A) S(e−1(x), e−1(y)) � R(x, y)

)
.

As for the type of isomorphisms from Δ to Γ, note that we have an equivalence

(Δ ∼= Γ) �
(∑

(〈f0 ,g0 ,η0 ,ε0〉:B∼=A)(∏
(x,y:B) S(x, y) → R(f0(x), f0(y)

))

×
(∏

(x,y:A) R(x, y) → S(g0(x), g0(y)))
)
.

Since B and A are assumed to be sets, we have that (B ∼= A) � (B � A) and therefore it

suffices to show that the type
( ∏

(x,y:B) S(x, y) → R(f0(x), f0(y))
)

×
( ∏

(x,y:A) R(x, y) → S(g0(x), g0(y))
)

is equivalent to the type
∏

(x,y:A) (S(g0(x), g0(y)) � R(x, y)) for every isomorphism

〈f0, g0, η0, ε0〉 : B ∼= A. Note that both types are mere propositions, so we only have

to find implications in both directions. These can be found by using η0 : g0 ◦ f0 ∼ idB and

ε0 : f0 ◦ g0 ∼ idA.

We already mentioned the inclusion of Set into EqRel. We define it on objects by

A �→ 〈A, IdA〉. Recall that for each function f : A → B there is a function apf :∏
(x,y:A) (x= y) → (f(x) = f(y)), and hence defines a map between the setoids 〈A, IdA〉 and

〈B, IdB〉. It comes as no surprise that this determines a functor R.

Lemma 3.17. The inclusion of Set into EqRel is full and faithful.

Proof. We have to show that for any two sets A and B, the inclusion determines an

equivalence (A → B) � (〈A, IdA〉 → 〈B, IdB〉). Naturally, we choose the inverse to be the

first projection. Since the identity types on sets are mere propositions, it is immediate that

the first projection is a section for the inclusion.
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3.3. Quotients

Given an object 〈A,R〉 of EqRel, we wish to define a set Q(A,R) together with a morphism

f : 〈A,R〉 → 〈Q(A,R), IdQ(A,R)〉 in EqRel with the universal property that precomposition

with f0 gives an equivalence

(Q(A,R) → Y ) � homEqRel(〈A,R〉, 〈Y , IdY 〉)

for every set Y . In other words, we are looking for a left adjoint to the inclusion

X �→ 〈X, IdX〉 of Set into EqRel. Such a left adjoint is mapping the setoid 〈A,R〉 to the

quotient A/R.

There are several solutions to this problem, of which we present two. The first solution

uses higher inductive types of the kind presented in Definition 2.25.

Definition 3.18. Let A be a set and let R : A → A → Prop be a binary mere relation over A

(not necessarily an equivalence relation). We define A/R to be the type ‖colim(〈A,R〉)‖0.

Since a binary relation R : A → A → Type is equivalently described as a pair of

functions by the two projections π1, π2 :
( ∑

(x,y:A) R(x, y)
)

→ A, we get the following

lemma from Lemma 2.29:

Lemma 3.19. Let A be a set and let R : A → A → Prop be a binary mere relation over A.

Then A/R is the (set-)coequalizer of the two projections π1, π2 :
( ∑

(x,y:A) R(x, y)
)

→ A.

Using the induction principle of each A/R, we can extend the function λ〈A,R〉. A/R to

a functor Q from EqRel to Set in a canonical way.

We check that quotients have the expected universal properties.

Theorem 3.20. The functor Q is left adjoint to the inclusion i : Set → EqRel. Thus, Set is

a reflective subcategory of EqRel.

Proof. We have to show that there are

i. a unit η : 1 → i ◦ Q.

ii. and a counit ε : Q ◦ i → 1

iii. satisfying the triangle identities

εA/R ◦ Q(η(A,R)) = reflA/R and i(εA) ◦ η〈A,IdA〉 = refl〈A,IdA〉.

For the unit we take η(A,R), 0 :≡ cR and η(A,R), 1 :≡ pR , where cR is the coequalizer of the

pair π1, π2 : (
∑

(x,y:A) R(x, y)) → A and where

pR :
∏

(x,y:A) R(x, y) → (cR(x) = cR(y))

is also a basic constructor of A/R.

For the counit note that the canonical constructor cIdA : A �→ A/IdA of A/IdA is an

equivalence. Hence we define εA : A/IdA → A to be c−1
IdA

.
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Note that Q(η(A,R)) : A/R → (A/R)/IdA/R is the unique map with the the property that

the square

A A/R

A/R (A/R)/IdA/R

cR

cR cIdA/R

Q(η(A,R))

and therefore we have a homotopy Q(η(A,R)) ∼ cIdA/R . By definition we have εA/R :≡ c−1
IdA/R

,

hence the triangle identity εA/R ◦ Q(η(A,R)) = reflA/R follows.

For the other triangle equality, note that the pair i(εA) consists of the function i(εA)0 :≡
c−1
IdA

and the function i(εA)1 which is the canonical proof that equivalences preserve

path relations. We also have η(A,IdA) given by the function η(A,IdA), 0 :≡ cIdA and the basic

constructor η(A,IdA), 1 :≡ pIdA witnessing that η(A,R), 0 preserves the path relation. Since A/IdA
is a set, it follows that η(A,IdA) is just the canonical proof that η(A,IdA) preserves the path

relation and hence we get the other triangle equality.

To prove that this is an equivalence of categories we would need to show that

〈A/R, IdA/R〉 and 〈A,R〉 are isomorphic setoids. It requires AC−1 to obtain a section

for the surjective map A → A/R.

Definition 3.21. A mere relation R : A → A → Prop is said to be effective if the square

∑
(x,y:A) R(x, y) A

A A/R

π1

π2
cR

cR

is a pullback square.

The following proposition uses univalence for mere propositions.

Theorem 3.22. Suppose 〈A,R〉 is an object of EqRel. Then there is an equivalence

(cR(x) = cR(y)) � R(x, y)

for any x, y : A. In other words, equivalence relations are effective.

Proof. We begin by extending R to a mere relation R̃ : A/R → A/R → Prop. After

the construction of R̃ we will show that R̃ is equivalent to the identity type on A/R.

We define R̃ by double induction on A/R (note that Prop is a set by univalence for

mere propositions). We define R̃(cR(x), cR(y)) :≡ R(x, y). For r : R(x, x′) and s : R(y, y′),

the transitivity and symmetry of R gives an equivalence from R(x, y) to R(x′, y′). This

completes the definition of R̃. To finish the proof of the proposition, we need to show

that R̃(w,w′) � (w = w′) for every w,w′ : A/R. We can do this by showing that the type∑
(w′:A/R) R̃(w,w′) is contractible for each w : A/R. We do this by induction. Let x : A.

We have the element 〈cR(x), ρ(x)〉 :
∑

(w′:A/R) R̃(cR(x), w′), where ρ is the reflexivity term

of R, hence we only have to show that
∏

(w′:A/R)

∏
(r:R̃(cR (x),w′)) 〈w′, r〉 = 〈cR(x), ρ(x)〉,
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which we do by induction on w′. Let y : A and let r : R(x, y). Then we have the path

pR(r)−1 : cR(y) = cR(x). We automatically get a path from pR(r)−1
∗(r) = ρ(x), finishing the

proof.

3.4. Voevodsky’s impredicative quotients

A second construction of quotients is due to Voevodsky (Pelayo et al. 2013). He defined

the quotient A/R as the type of equivalence classes of R, i.e. as the image of R in

A → Prop. This gives a direct construction of quotients, but it requires a resizing rule. In

this section we treat Voevodsky’s construction of quotients, but we note up front that our

result that Set is a ΠW-pretopos does not rely on the material presented here. Throughout

this section, we assume that 〈A,R〉 is an object of EqRel.

Definition 3.23. A predicate P : A → Prop is said to be an equivalence class with respect

to R if there is an element of type

isEqClass(R, P ) :≡
∑

(x:A)

∏
(y:A) R(x, y) � P (y).

Definition 3.24. We define

A//R :≡
∑

(P :A→Prop) ‖isEqClass(R, P )‖.

Using univalence for mere propositions, the following is a consequence of the definition:

Lemma 3.25. The type A//R is equivalent to im(R), the image of R : A → (A → Prop).

In Theorem 3.10, we have shown that images are coequalizers. In particular, we

immediately get the coequalizer diagram

∑
(x,y:A) R(x) = R(y) A A//R

π1

π2

We can use this to show that any equivalence relation is effective.

Theorem 3.26. Let f : A → B between any two sets. Then the relation ker(f) : A → A →
Type given by ker(f, x, y) :≡ f(x) = f(y) is effective.

Proof. We will use that im(f) is the coequalizer of π1, π2 : (
∑

(x,y:A) f(x) = f(y)) → A;

we get this equivalence from Theorem 3.10. Note that the canonical kernel pair of the

function Cf :≡ λa. 〈f(a), τ1(〈a, reflf(a)〉)〉 consists of the two projections

π1, π2 :
(∑

(x,y:A) Cf(x) = Cf(y)
)

→ A.

For any x, y : A, we have equivalences

Cf(x) = Cf(y) �
∑

(p:f(x)=f(y)) p∗
(
τ1(〈x, reflf(x)〉)

)
= � τ1(〈y, reflf(x)〉)

� f(x) = f(y),

where the last equivalence holds because ‖fibf(b)‖ is a mere proposition for any b : B.

Therefore, we get that
(∑

(x,y:A) Cf(x) = Cf(y)
)

�
(∑

(x,y:A) f(x) = f(y)
)
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and hence we may conclude that ker f is an effective relation.

Theorem 3.26 show again that equivalence relations are effective.

Theorem 3.27. Equivalence relations are effective and A/R � A//R.

Proof. We need to analyse the coequalizer diagram

∑
(x,y:A) R(x) = R(y) A A//R

π1

π2

By the univalence axiom, the type R(x) = R(y) is equivalent to the type of homotopies

from R(x) to R(y), which is equivalent to
∏

(z:A) R(x, z) � R(y, z). Since R is an equivalence

relation, the latter type is equivalent to R(x, y). To summarize, we get that (R(x)=R(y)) �
R(x, y), so R is effective since it is equivalent to an effective relation. Also, the diagram

∑
(x,y:A) R(x, y) A A//R

π1

π2

is a coequalizer diagram. Since coequalizers are unique up to equivalence, it follows that

A/R � A//R.

One may wonder about the predicative interpretation of the quotient constructions

above. One could argue that the construction using higher inductive types is predicative by

considering the interpretation of this quotient in the setoid model (Altenkirch 1999; Barras

2013). In this model, the quotient does not raise the universe level. A similar observation

holds for constructions that can be carried out in the groupoid model (Hofmann and

Streicher 1998). These observations should suffice for the set-level higher inductive types

we use in the present paper.

We have an inclusion PropTypei
→ PropTypei+1

. The assumption that this map is an equi-

valence is called the propositional resizing axiom; see The Univalent Foundations Program

(2013). This form of impredicativity would make Voevodsky’s quotient small.

The following replacement axiom is derivable from the propositional resizing axiom;

see Voevodsky (2012).

Lemma 3.28. Let Type be a universe and X : Type, if f : X � Y is a surjection, Y is a

set then there exists a Z : Type which is equivalent to Y .

Proof. Define Z :≡ X// ker f using a map to the small mere propositions in Definition 3.24.

Then Z : Type and Z :≡ X/ ker f � imf � Y .

3.5. The object classifier

One of the reasons that the definition of predicative topos in van den Berg (2012) contains

such a long list of requirements is the absence of a small subobject classifier. Nevertheless,

in Martin-Löf type theory we have the possibility of considering a tall hierarchy of

universes nested in one another according to the ordering of the hierarchy. While a

universe with a subobject classifier would be impredicative, there is no problem with

subobject classifiers at higher universe levels, or simply large subobject classifiers.
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In higher topos theory one considers not only subobject classifiers, which classify the

monomorphisms, but also object classifiers which classify more general classes of maps.

In this section, we will establish the existence of an internal analogue of such large object

classifiers. They will always sit a higher universe. Moreover, we will find an n-object

classifier for every n : Z�−2, where the n-object classifier will classify the functions with

n-truncated homotopy fibres. In Section 2, we saw that the monomorphisms are exactly

the (−1)-truncated functions. Therefore, the (−1)-object classifier will correspond to a

(large) subobject classifier.

In addition to the size issue of the object classifiers, we will see that the n-object classifier

will generally not be n-Type, but an n+ 1-Type. This observation should be regarded in

contrast to the theory of predicative toposes, where a universal small map is required to

exist. Such a universal small map is suggested to be a map between sets, but it seems

that within the current setting of homotopy type theory we cannot expect such a map to

exist. The main reason is that the universal small map of sets will in general be a map of

groupoids; a universal small map of groupoids will in general be a map of 2-groupoids,

etc.

Theorem 3.29. For any type B there is an equivalence

χ :
(∑

(A:Type) A → B
)

� B → Type.

Likewise, there is an equivalence

χn :
(∑

(A:Type)

∑
(f:A→B)

∏
(b:B) is-n-type(fibf(b))

)
� (B → n-Type)

for every n : Z�−2.

Proof. We begin by constructing the first equivalence, i.e. we have to construct functions

χ :
(∑

(A:Type) A → B
)

→ B → Type

ψ :
(
B → Type

)
→

(∑
(A:Type) A → B

)
.

The function χ is defined by χ(〈A, f〉, b) :≡ fibf(b). The function ψ is defined by ψ(P ) :≡
〈(

∑
(b:B) P (b)), pr1〉. Now we have to verify that χ ◦ ψ ∼ id and that ψ ◦ χ ∼ id:

i. Let P be a family of types over B. It is a basic fact (The Univalent Foundations Pro-

gram 2013) that fibpr1
(b) � P (b) and therefore it follows immediately that P ∼ χ(ψ(P )).

ii. Let f : A → B be a function. We have to find a path

〈(
∑

(b:B) fibf(b)), pr1〉 = 〈A, f〉

First note that we have the basic equivalence e :
( ∑

(b:B) fibf(b)
)

� A with e(b, a, p) :≡
a and e−1(a) :≡ 〈f(a), a, reflf(a)〉. It also follows that e∗(pr1) = pr1 ◦ e−1. From this, we

immediately read off that (e∗(pr1))(a) = f(a) for each a : A. This completes the proof

of the first of the asserted equivalences.

To find the second set of equivalences, note that if we restrict χ to functions with n-

truncated homotopy fibres we get a family of n-truncated types. Likewise, if we restrict

ψ to a family of n-truncated types we get a function with n-truncated homotopy fibres.

To finish the proof we observe that truncatedness is a mere proposition, hence adding it
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as a restriction on both sides does not disturb the fact that the two functions are inverse

equivalences.

Definition 3.30. Define

Type• :≡
∑

(A:Type) A and (n-Type)• :≡
∑

(A:n-Type) A.

Thus, Type• stands for the pointed types (by analogy with the pointed spaces) and

(n-Type)• stands for the pointed n-types.

The following theorem states that we have an object classifier.

Theorem 3.31. Let f : A → B be a function. Then the diagram

A Type•

B Type

ϑf

f pr1

χf

is a pullback diagram. Here, the function ϑf is defined by

λa. 〈fibf(f(a)), 〈a, reflf(a)〉〉.

A similar statement holds when we replace Type by n-Type.

Proof. Note that we have the equivalences

A �
∑

(b:B) fibf(b)

�
∑

(b:B)

∑
(X:Type)

∑
(p:fibf (b)=X)X

�
∑

(b:B)

∑
(X:Type)

∑
(x:X) fibf(b) = X

≡ B ×Type Type•.

which gives us a composite equivalence e : A � B×Type Type•. We may display the action

of this composite equivalence step by step by

a �→ 〈f(a), 〈a, reflf(a)〉〉
�→ 〈f(a),fibf(f(a)), reflfibf (f(a)), 〈a, reflf(a)〉〉
�→ 〈f(a),fibf(f(a)), 〈a, reflf(a)〉, reflfibf (f(a))〉

Therefore, we get homotopies f ∼ π1 ◦ e and ϑf ∼ π2 ◦ e.

Lemma 3.32. The type Prop• is contractible.

Proof. Suppose that 〈P , u〉 is an element of
∑

(P :Prop) P . Then we have u : P and hence

there is an element of type isContr(P ). It follows that P � 1 and therefore we get from

the univalence axiom that there is a path 〈P , u〉 = 〈1, 	〉.

If we use the resizing rules we can replace the large type
∑

(P :Prop) P with the small type

1. Moreover, resizing makes Prop small, so in this way we would obtain the usual notion

of a small subobject classifier. Without the resizing rules we do obtain a large subobject

classifier.
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3.6. Set is a ΠW-pretopos

We assume the existence of the higher inductive types for truncation and quotients. The

univalence axiom is used in Lemma 3.9, but not to prove that surjections are epimorphisms.

We do use propositional univalence in Theorem 3.10.

Theorem 3.33. The category Set is a ΠW-pretopos.

Proof. We have an initial object, disjoint finite sums Lemma 2.22, and finite limits

(Definition 2.20). Sums are stable under pullback; see Theorem 2.23. So, Set is lextensive.

Set is locally Cartesian closed. This follows from the preparations we made in Section

2, using the fact that the existence of Π-types (and functional extensionality) gives

local Cartesian closure e.g. Jacobs (1999, Proposition 1.9.8). The category Set is regular

(Theorem 3.12) and quotients are effective (Theorem 3.22). We thus have an exact category,

since it is also lextensive, we have a pretopos. It has Π-types (Lemma 2.5) and W-types

(Lemma 2.7), so we have a ΠW-pretopos.

One wonders what prevents Set from being a topos. We lack the impredicativity to

define the subobject classifier. If we assume the resizing rules from Section 3.4, then Prop

becomes small. We have seen in Theorem 3.31 that it satisfies the properties of a subobject

classifier and hence we actually obtain a topos: Set is also (locally) Cartesian closed and

has all finite limits and colimits.

4. Choice and collection axioms

In this section we study two axioms, the axiom of collection and the AMC, that extend

beyond the basic set theory. It seems that these axioms are not provable in homotopy

type theory, but we investigate their relationship with the other axioms. As a first attempt,

we would try to investigate these axioms in the framework for algebraic set theory.

However, in homotopy type theory the universe of sets is a groupoid and hence none of

the 1-categorical frameworks quite satisfy our needs. Thus we follow algebraic set theory

only loosely. We will work in the naive ‘∞-category’ of types, but observe that most of

the constructions either deal with sets or with maps that have set-fibres. In these cases,

the constructions align with the constructions in the 1-category Set. In particular, we

use (−1)-connected map for cover and use (homotopy) pullbacks. We note that such a

pullback between sets reduces to the 1-pullback in the 1-category Set.

In algebraic set theory, one considers a category of classes and isolates the sets within

them. In the present paper, next to this size issue, we are mostly concerned with the

dimension, the complexity of the equality. Although the results in this section may not be

spectacular, we record to what extent the seemingly natural framework of algebraic set

theory works and where it breaks down.

4.1. Class of stable maps

Definition 4.1. A class S :
∏

(X,Y :Type) (X → Y ) → Prop is stable (Moerdijk and Palmgren

2002, Definition 3.1) if it satisfies:
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Pullback stability. In a pullback diagram as below, we have S(f) → S(g).

X A

Y B

g f

h

Descent. If h in the above diagram is surjective, then S(g) → S(f).

Sum. If S(f) and S(g), then S(f + g). A class of stable maps is locally full (Moerdijk and

Palmgren 2002, 3.2) if for all g : X → Y and f : Y → Z such that S(f): S(g) iff S(fg).

A class of maps S is called a class of small maps if it is stable, locally full and for each

X, SX – the small maps over X – forms a ΠW-pretopos see Moerdijk and Palmgren (2002,

3.3).

Theorem 4.2. The class of set-fibred maps is a class of small maps.

Proof. The class of maps with set-fibres is stable. It even has dependent sums.

We claim that it is locally full: if g has set-fibres, then f ◦ g has set-fibres, as sets are

closed under Σ-types. Conversely, fix y ∈ Y , then fibg(y) is the pullback

∑
(x:fibf◦g(f(y)))

(g(x) = y).

By the use of the object classifier, Theorem 3.31, we see that the type SX is equivalent

to the sets in context X. Now, sets in any context form a ΠW-pretopos; see Section 3.

4.2. Representable classes of small maps

Definition 4.3. A commuting diagram of the form

X A

Y B

g f

p

is said to be a quasi-pullback if the corresponding map from X to Y ×B A is surjective. A

quasi-pullback square in which p is surjective is said to be a covering square. In this case,

we say that f is covered by g.

Definition 4.4. A class S of stable maps is said to be representable if there exists a function

π : E → U for which S(π) holds and such that every function f : A → B satisfying S(f)

is covered by a pullback of π. More explicitly, the latter condition means that we can fit

f in a diagram of the form

A X ×U E E

B X U

f

p1

π1 π

p0 χ

(4.5)

where the left hand square is covering and the square on the right is a pullback.
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By Theorem 3.31, the class of set-fibred maps (in a universe Type) is representable (by

a function from a larger universe). Moreover, we can take the left hand square to be the

identity.

4.3. The collection axiom

Definition 4.6. A covering square

D B

C A

q

g f

p

is said to be a collection square if for any a : A, E : Type and any surjective function

e : E � fibf(a),

∃(c:fibp(a)) ∃(t:fibg(c)→E) e ◦ t ∼ qc;

where qc is the restriction of q to fibg(a).

Definition 4.7. Let S be a class of small maps. The collection axiom is the statement CA(S)

that for any small map f : A → X and any surjection p : C → A from a set C there is a

quasi-pullback diagram of the form

B C A

Y X

g

p

f

in which g is a small map and the bottom map is surjective.

Since we have an object classifier, we can replace maps with types in a context. After

this transformation, the collection axiom becomes:

(∀(a:A) ∃(c:C) R(a, c)) → ∃(B:S) ∃(f:B→C) ∀(a:A) ∃(b:B) R(a, f(b))

where C is a set, A : S and R : A → C → Prop.

This axiom is often included in the axioms for algebraic set theory and hence in

predicative topos theory. It seems unlikely that this axiom is provable in homotopy type

theory, simply because none of its axioms seem applicable. In the constructive set theory

CZF (Aczel and Rathjen 2001), unlike in classical Zermelo set theory, the collection axiom

is stronger than the replacement axiom. The replacement axiom is derivable from the

resizing rules; see Section 3.4. In line with Voevodsky’s proposal to add resizing rules to

homotopy type theory, one could also consider its extension with the collection axiom.

An cumulative hierarchy of sets may be defined using higher inductive types (see The

Univalent Foundations Program 2013). The induced set theory does satisfy the replacement

axiom.
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4.4. The axiom of multiple choice

Definition 4.8. The AMC is the statement that any function f fits on the right in a

collection square.

The AMC implies the collection axiom (Moerdijk and Palmgren 2002, Proposition 4.3).

Conversely, by the existence of the object classifier, the collection axiom implies AMC.

This follows from a small adaptation of van den Berg (2012, Theorem 4.3).

It seems difficult to derive AMC, or equivalently the collection axiom, in a univalent

type theory, even when we add resizing rules. One possible route towards a counter model

would be to construct the Kan simplicial set model in ZF (without choice) and use the

fact that ZF does not prove AMC (van den Berg 2012). However, this is beyond the scope

of this article.

4.5. Projective covers

The 0-truncated types in the cubical set model are precisely the setoids. Hence, using an

extensional type theory with a propositions-as-types interpretation as meta-theory, every

set has a projective cover (Van Den Berg 2009). The same holds if we have the axiom of

choice in the meta-theory. Both the collection axiom (Joyal and Moerdijk 1995, 5.2) and

AMC follow from this axiom (Moerdijk and Palmgren 2002). On the other hand (Rezk

2010, Proposition 11.2), the 0-truncation of a model topos of simplicial sheaves on a site is

the topos of sheaves on that site. Hence, if we start with a topos without countable choice,

we cannot have projective covers in the cubical sets model. This suggests investigating

homotopy type theory with and without this axiom. It is argued in van den Berg (2012)

that we need AMC to obtain a model theory for predicative toposes with good closure

properties, e.g. closure under sheaf models. Concretely, AMC is used to show that W-types

are small in sheaf models, but also to show that every internal site is presentable. It would

be interesting to reconsider these issues in the presence of higher inductive types and the

univalence axiom.

5. Conclusion and outlook

Our work is a contribution to the program of providing an elementary (first order)

definition of an ∞-topos as conjectured models of univalent homotopy type theory with

higher inductive types (Shulman 2013). One would hope that many of the constructions

that apply to predicative toposes (sheaves, realizability, gluing, . . . ) can be extended to

homotopy type theory. By showing that Sets form a predicative topos, we make a small

step in this direction. Our result may be compared to e.g. Proposition 11.2 in Rezk (2010):

the 0-truncation of a model topos of simplicial sheaves on a site is the topos of sheaves

on that site. Shulman (2013) shows that univalence is stable under gluing.

Moreover, this research program should contribute to a better understanding of the

model theory of type theory based proof assistants such as Coq (Coq Development Team

2012) and agda (Norell 2007) improving the set theoretical models; e.g. Werner (1997).

These proof assistants currently lack subset types, quotient types, functional extensionality,
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proof irrelevance for mere propositions, etc. In univalent homotopy type theory, we have

all these features: Set forms a predicative topos with Prop as a (large) subobject classifier

and the universe acts as an object classifier. This should facilitate the formalization of

Mathematics in a univalent type theory, especially now that a computational interpretation

of the univalent axiom has been verified in a model (Barras 2013; Bezem et al. 2014).

These models extend the known setoid models which already model some of the features

above. The semantics of small induction-recursion (Hancock et al. 2013) depends on

the set theoretic equivalence of the functor category and the slice category. The object

classifier in Section 3.5 internalizes this. Moreover, it captures a similar kind of smallness;

e.g. Theorem 4.2.
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