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The Maximum Number of Points
on a Curve of Genus 4 over F8 is 25

David Savitt

with an Appendix by Kristin Lauter

Abstract. We prove that the maximum number of rational points on a smooth, geometrically irre-

ducible genus 4 curve over the field of 8 elements is 25. The body of the paper shows that 27 points

is not possible by combining techniques from algebraic geometry with a computer verification. The

appendix shows that 26 points is not possible by examining the zeta functions.

1 Introduction

Our aim in this paper is to prove that a smooth geometrically irreducible curve C

of genus 4 over the finite field F8 may have at most 25 F8-points. Our strategy is

as follows: if C has more than 18 F8-points, then C may not be hyperelliptic, and
so the canonical divisor of C yields an embedding of C into P

3
F8

. The image of C

under this embedding is a degree 6 curve which is precisely the intersection of an ir-
reducible cubic hypersurface with an irreducible quadric hypersurface, both defined

over F8. (This is Example IV.5.2.2 in [Har]. Hartshorne works over an algebraically
closed field, but his argument is equally valid over the smaller field. See, for example,
Theorem III.5.1 in [Har] and Theorem A.4.2.1 in [HS] for the necessary tools.)

Consequently, finding the maximum possible number of points on a curve of

genus 4 over F8 is reduced to a finite task: one can write down all cubic hypersur-
faces and all quadric hypersurfaces in P

3
F8

, and count the number of points on their
intersection. As a practical matter, however, one must make significant reductions
before this program becomes computationally feasible. For example, the space of

homogeneous cubics in four variables is already
(

6
3

)

− 1 = 19-dimensional.

We begin in Section 2 by noting that up to isomorphism there are only three ir-
reducible quadric surfaces in P

3
F8

which contain many F8-points. Therefore we may
select representatives of the isomorphism classes and assume that our curve C lies

on one of these three specific quadrics. Next, we recall (see [Lau1] and [GV]) that
it is known that any curve of genus 4 over F8 has no more than 27 points, and that
such curves with 25 points exist. Moreover, using the techniques of [Lau2], K. Lauter
demonstrates in an appendix to this paper that such curves with 26 points do not

exist. We may therefore suppose that the curve C for which we are searching has ex-
actly 27 points. In Section 3, we employ the following strategy to reduce the problem
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further. If Q is one of our three quadrics, then the subgroup Fix(Q) of PGL4(F8)
preserving Q is large. If P is a cubic surface and if σ ∈ Fix(Q), then P ∩ Q and

σ(P) ∩ Q = σ(P ∩ Q) have the same number of points. If the intersection P ∩ Q is
a geometrically irreducible curve of degree 6, then by Bézout’s theorem the intersec-
tion may contain at most three points of any line. We study the action of Fix(Q) on
the points of Q to show that if S ⊂ Q is a subset with 27 points, no four of which are

collinear, then we may find σ ∈ Fix(Q) such that σ(S) contains a particular list of
points of Q (or one of several lists of points of Q).

The problem is therefore reduced to studying cubics P which contain particular
points of Q, cutting down significantly on the dimension of the space of cubics under

consideration. Depending on the cubic, we are able to eliminate between 5 and 7
dimensions in this fashion. The space is cut down further by 4 dimensions by noting
that we may subtract appropriate multiples of our quadric Q. Thus we have reduced
a 19-dimensional search space over F8 to a search space over F8 of no greater than 10

dimensions, which is easily tractable for a computer.
Finally, we note that this search will a priori turn up many cubics and quadrics

whose intersection contains 27 points. This is because we will find many reducible
(or at least geometrically reducible) intersections. These “bad” curves are relatively

straightforward to identify and discard. In Section 5, we give a precise list of the ways
in which bad curves with 27 points can occur.
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thank Jason Starr for several helpful conversations, William Stein for the use of his
computer, and the anonymous referee for his or her comments. Computations were
performed partly by C programs, and partly using the MAGMA package. This prob-

lem came to the author’s attention at the 2000 Arizona Winter School on Arithmetic
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hard work and hospitality.

2 Quadric Surfaces in P
3
F8

Let C be a non-hyperelliptic curve of genus 4 over F8. As we have noted, we may
suppose that C is canonically embedded into P

3
F8

as the intersection of an irreducible

quadric hypersurface Q with an irreducible cubic hypersurface P. It is a classical
result that over a finite field F, there are exactly three reduced and geometrically ir-
reducible quadric surfaces in P

3
F

up to F-isomorphism: the split nonsingular quadric
(isomorphic to P

1
F
× P

1
F
), the nonsplit nonsingular quadric (the quadratic twist of

P
1
F
× P

1
F
), and the singular quadric.

We give an argument, essentially found on p. 206 of [ACGH], explaining for each
C into which of the above categories the quadric Q falls. Note that any linear system
of degree 3 and dimension at least 1 on C defines a ruling of Q. Indeed, if D is a

divisor in such a linear system, then by the geometric version of the Riemann-Roch
theorem, the linear span in P

3 of the support of D is a line. By Bézout’s theorem, this
line is contained in Q.

The F8-scheme W 1
3 (C) defined in [ACGH], whose geometric points correspond
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to the complete linear series of degree 3 and dimension at least 1 on C , is a zero-
dimensional affine scheme, and by the Thom-Porteous formula this scheme has de-

gree 2. Hence there are exactly three possibilities for W 1
3 (C): two reduced F8-points

(so Q is the split nonsingular quadric), two conjugate F64-points (nonsplit nonsin-
gular), and one nonreduced F8-point (singular).

To make our classification of quadrics concrete, we first recall the following result

from [Arf]:

Proposition 2.1 Let F be a field of characteristic 2. Then any quadratic form in n

variables over F is equivalent to one of the form

µ
∑

i=1

xi yi +

µ+ν
∑

j=µ+1

(a jx
2
j + x j y j + b j y2

j ) +

d
∑

k=1

ckz2
k

with 2µ + 2ν + d ≤ n.

This is by no means a classification: two distinct quadratic forms written as above
may still be isomorphic. For example, when the field F is perfect evidently we may
take d = 0 or 1 and c1 = 1. Similarly we may suppose each a j = 1.

When the field F = F2n with n odd, one can check with little difficulty that the

form x2 + xy + by2 is equivalent either to the form xy or to x2 + xy + y2, depending
on whether or not the form nontrivially represents 0 over F. Combining this with the
identity

X2 + XY + Y 2 + Z2
= XY + (X + Y + Z)2

and the fact that

(X2 + XY + Y 2) + (Z2 + ZW + W 2)

is identically equal to

(X + Z + W )(Y + Z + W ) + (X + Y + Z)(X + Y + W ),

we obtain the following version of Proposition 2.1.

Proposition 2.2 Let F2n be the finite field with 2n elements with n an odd integer.

Then any quadratic form over F2n is equivalent over F2n to a form with one of the fol-

lowing shapes:

• ∑µ
i=1 xi yi

•
∑µ

i=1 xi yi + (X2 + XY + Y 2)
•

∑µ
i=1 xi yi + (Z2).

We are interested in particular in the geometrically integral quadric surfaces in
P

3
F8

, which correspond to geometrically irreducible quadratic forms in at most four
variables over F8. Their classification is as follows.
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Proposition 2.3 Up to F8-isomorphism, there are exactly three geometrically irre-

ducible quadratic forms in four variables X,Y, Z,W over F8. They are: XY + ZW

(the split nondegenerate form), X2 + XY +Y 2 + ZW (the nonsplit nondegenerate form),

and XY + Z2 (the degenerate form).

Proof According to Proposition 2.2, up to isomorphism there are at most six quad-
ratic forms in four variables over any finite field F2n with n odd, namely: XY , XY +
ZW , X2 + XY + Y 2, X2 + XY + Y 2 + ZW , Z2, and Z2 + XY . The forms XY and Z2

are reducible, and X2 + XY + Y 2 is irreducible but geometrically reducible, and so we
eliminate them.

The hypersurface defined by XY + ZW is F8-isomorphic to P
1 ×P

1, and possesses
two F8-rulings. The hypersurface defined by X2 +XY +Y 2 +ZW is F64-isomorphic to

P
1×P

1, and so one sees that it has two Galois-conjugate rulings over F64 but contains
no lines over F8. Finally, the hypersurfaces defined by XY +ZW and X2+XY +Y 2+ZW

are nonsingular, whereas the hypersurface defined by XY +Z2 is singular at [ 0 :0 :0 :1].
These facts together show that these three forms cannot be F8-isomorphic.

Remark We can also see that these forms are not F8-isomorphic by verifying that a
different number of points of P

3
F8

lie on each of the resulting quadric surfaces. In fact
there are 81 points on the surface XY + ZW = 0, there are 73 points on the surface

X2
= Y Z, and there are 65 points on the surface X2 + XY + Y 2

= ZW .

3 Reductions

3.1 Action of PGL4(F8) on Quadrics

In this subsection, we describe the subgroups of PGL4(F8) preserving each of our
quadrics. If we can correctly list these subgroups in their entirety, we will automati-
cally be able to obtain a proof that the description is correct, by counting the size of
the orbits of our quadrics under PGL4(F8).

We begin with the quadric XY + ZW = 0. This quadric is isomorphic to P
1 × P

1,
as can be seen via the map P

1 × P
1 → {XY = ZW} sending ([ x : y ], [z, w]) 7→

[ xz : yw :xw : yz]. The inverse map is defined on coordinate patches, for example
sending [ X :Y :Z :W ] 7→ ([X : W ], [ W :Y ]) on the affine {W 6= 0}. The group

PGL2(F8) × PGL2(F8) × C2 acts on P
1 × P

1, where the cyclic factor C2 is generated
by an automorphism interchanging the two copies of P

1. Evidently each nontriv-
ial one of these automorphisms yields a nontrivial element of PGL4(F8) preserving
XY + ZW = 0.

We turn next to the quadric XY = Z2. One may easily check that the map









X

Y

Z

W









7→









a b 0 0
c d 0 0√
ac

√
bd

√
ad + bc 0

∗ ∗ ∗ e

















X

Y

Z

W









preserves XY = Z2, where
(

a b
c d

)

is an element of GL2(F8), e ∈ F
×
8 , and each ∗ ∈ F8.

These will be all the elements of Fix(XY = Z2).
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Next, we verify that Fix(X2 + XY + Y 2
= ZW ) acts doubly-transitively on F8-

points of the quadric. Indeed, we claim that for any point p on X2 + XY + Y 2
= ZW

other than [ 0 :0 :0 :1], there is an element of Fix(X2 + XY + Y 2
= ZW ) sending

[ 0 :0 :1 :0] to p while fixing [ 0 :0 :0 :1]. Then for any pair of points p1, p2 we may
send p1 to [ 0 :0 :1 :0], then use the automorphism interchanging W and Z to map
p1 to [ 0 :0 :0 :1]. If p2 has now been moved to p3, we finish via a map preserving

[ 0 :0 :0 :1] and sending p3 to [0 : 0 : 1 : 0], so the pair (p1, p2) has been moved to
([ 0 :0 :0 :1], [ 0 :0 :1 :0]), and the group is doubly-transitive.

To see the claim, notice that for an element x ∈ F8, the map sending X 7→ X + xZ,
Y 7→ Y , Z 7→ Z, W 7→ W +xY +x2Z preserves X2 +XY +Y 2

= ZW , sends [ 0 :0 :1 :0]

to [ x :0 :1 :x2], and fixes [ 0 :0 :0 :1]. Now the map sending X 7→ X, Y 7→ Y + yZ,
Z 7→ Z, W 7→ W + yX + y2Z preserves X2 + XY + Y 2

= ZW , sends [ x :0 :1 :x2] to
[ x : y :1 :x2 + xy + y2], and fixes [ 0 :0 :0 :1]. Since [ x : y :1 :x2 + xy + y2] is a general
F8-point on the curve besides [ 0 :0 :0 :1], this proves the claim.

Now an element of GL4(F8) preserving X2 + XY +Y 2
= ZW and fixing [ 0 :0 :0 :1]

and [ 0 :0 :1 :0] will be of the form









a b 0 0
c d 0 0
0 0 z 0

0 0 0 w









where z, w ∈ F
×
8 ,

(

a b
c d

)

is an element of GL2(F8) preserving the form X2 +XY +Y 2
=

0, and a, b, c, d, z determine w. One checks that there are exactly 126 such elements
of GL2(F8). They are the scalar multiples of the following 18 matrices: the identity
matrix, the matrix

(

0 1
1 0

)

, the four matrices with three entries equal to 1 and the other

equal to 0, and, for each of the three roots η of η3 + η + 1 = 0, the four 90-degree

rotations of the matrix
( η η2

η−3 η

)

.

Furthermore, X2 + XY + Y 2
= 0 in P

3 has automorphisms given by completing
those 126 matrices

(

a b
c d

)

to matrices









a b 0 0
c d 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗









where the last two rows are independent of the first two.
We now verify that we have indeed found all of the automorphisms of these

quadrics.

• For XY +ZW , we have found 2·
(

(82−1)(82−8)/7
) 2

= 508032 automorphisms.
This has index 68024320 in PGL4(F8), which is therefore an upper bound on the size
of the orbit of XY + ZW in the space of quadric surfaces.

• For XY = Z2, we have found (82 − 1)(82 − 8) · 83 · 7/7 = 1806336 automor-
phisms, giving an upper bound of 19131840 on the orbit.

• For X2 + XY + Y 2
= ZW , we have found 65 · 64 · 126 · 7/7 = 524160 automor-

phisms, giving an upper bound of 65931264 on the orbit.
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• For X2 + XY + Y 2, we have found 126 ∗ (84 − 82) ∗ (84 − 83)/7 = 260112384
automorphisms, giving an upper bound of 132860 on the orbit.

• It is easy to see that the form X2 has orbit of size (84 − 1)/7 = 585 and XY has
orbit of size (84 − 1)(84 − 8)/(2 · 72) = 170820.

Finally, we note that 68024320 + 19131840 + 65931264 + 132860 + 585 + 170820 =

153391689 = (810 − 1)/7, precisely the number of quadric surfaces, and so we con-

firm that we have indeed found all the automorphisms of these quadrics.

3.2 Reductions for XY + ZW = 0

Observe that {XY + ZW = 0} ∼
= P

1 ×P
1 is a ruled surface, and in particular that the

set of F8-points of P
1 × P

1 may be written as the union of the nine lines {l} × P
1
F8

,
for l ∈ P

1
F8

, and as the union of the nine lines P
1
F8
× {r} for r ∈ P

1
F8

. Each of these
lines on P

1 × P
1 maps to a line on {XY + ZW = 0}.

In the remainder of this subsection, we suppose that a cubic hypersurface P ⊂ P
3
F8

intersects the quadric {XY + ZW = 0} in a smooth geometrically irreducible curve
C with 27 F8-points.

If P intersected any of these lines on {XY + ZW = 0} in at least 4 points, then by

Bézout’s theorem the line would be contained in P, and consequently the line would
be contained in the intersection P ∩ {XY + ZW = 0}. Therefore the curve C would
be reducible, which we have assumed is not the case. We may therefore conclude that
P intersects each of these lines in at most 3 points. However, since there are nine lines

in each ruling, P must intersect each of these lines in exactly 3 points. Note that this
argument yields a combinatorial proof that if the canonical embedding of a smooth
curve of genus 4 over F8 lies on {XY + ZW = 0}, then it cannot contain 28 points.

Write the F8-points of P
1 × P

1 as (li , r j) with 0 ≤ i, j ≤ 8. We have seen that

for each i there are exactly three j such that (li , r j) lies on P, and similarly for each j

there are exactly three i. Suppose, after renumbering, that (l0, r0), (l0, r1), and (l0, r2)
all lie on P. We divide into two cases. First, suppose there exists i > 0 such that
two of (li , r0), (li , r1), (li , r2) lie on P. After renumbering, we may assume that (li , r0),

(li , r1) lie on P, and we may select i ′ 6= 0, i so that (li ′ , r2) lies on P. Since PGL2(F8)
acts 3-transitively on P

1
F8

, we may select an automorphism σ of P
1 × P

1 such that
([ 0 :1 ] : [ 0 :1 ]), ([ 0 :1 ] : [ 1 :0 ]), ([ 0 :1 ] : [1, 1]), ([ 1 :0 ], [ 0 :1 ]), ([ 1 :0 ], [ 1 :0 ]),
([ 1 :1 ], [ 1 :1 ]) all lie on σ(P). Therefore, without loss of generality, in this case we

may assume that these six points lie on P. We refer to this as the 3, 2, 1-case.
Second, suppose that no such i exists. Without loss of generality, after renum-

bering we may assume that (l1, r0), (l2, r0), (l3, r1), (l4, r1), (l5, r2), (l6, r2) all lie on P.
Then, by the pigeonhole principle, for some j > 2 there are 1 ≤ i, i ′ ≤ 6 so that

(li , r j) and (li ′ , r j) lie on P. If {i, i ′} = {1, 2}, {3, 4}, or {5, 6}, we may suppose
after renumbering that {i, i ′} = {1, 2}, and we are reduced to the case of the pre-
vious paragraph: namely (l0, r0), (l1, r0), (l2, r0), (l1, r j), (l2, r j), and some (l0, r j ′)
lie on P, so after interchanging the two copies of P

1 and applying an element of

PGL2(F8) × PGL2(F8), we may again assume that ([ 0 :1 ] : [ 0 :1 ]), ([ 0 :1 ] : [ 1 :0 ]),
([ 0 :1 ] : [1, 1]), ([ 1 :0 ], [ 0 :1 ]), ([ 1 :0 ], [ 1 :0 ]), ([ 1 :1 ], [ 1 :1 ]) all lie on P.

On the other hand, if {i, i ′} 6= {1, 2}, {3, 4}, or {5, 6}, we may assume (after
renumbering) that {i, i ′} = {1, 3}. In this case we have (l0, r0), (l0, r1), (l1, r0),
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(l1, r j), (l3, r1), and (l3, r j) all lying on P. Applying an element of PGL2(F8) ×
PGL2(F8) we may assume that ([ 0 :1 ], [ 0 :1 ]), ([ 0 :1 ], [ 1 :0 ]), ([ 1 :0 ], [ 0 :1 ]),

([ 1 :0 ], [ 1 :1 ]), ([ 1 :1 ], [ 1 :0 ]), ([ 1 :1 ], [ 1 :1 ]) all lie on P. We refer to this as the
2, 2, 2-case. Moreover, we may suppose that ([ 1 :0 ], [ 1 :0 ]) is not on P, or else we
would be able to reduce to the 3, 2, 1-case.

Suppose that homogeneous cubic polynomial defining P is written cX3 X3 +

cX2Y X2Y + · · · + cW 3W 3. We can now verify the following proposition.

Proposition 3.1 If there exists a cubic hypersurface P ⊂ P
3
F8

whose intersection with

{XY = ZW} is a smooth geometrically irreducible curve of genus 4 with 27 F8-points,

then there exists such a hypersurface whose coefficients satisfy one or the other of the two

sets of conditions below:

1. • cX3 = cY 3 = cZ3 = cW 3 = cX2Y = cXY 2 = cZ2W = cZW 2 = 0,

• cY 2W = cYW 2 = 1, and

• cX2Z + cX2W + cXY Z + cXYW + cXZ2 + cXZW + cXW 2 + cY 2Z + cY Z2 + cY ZW = 0, or

2. • cX3 = 1,

• cY 3 = cZ3 = cW 3 = cX2Y = cXY 2 = cZ2W = cZW 2 = 0,

• cXZ2 = cX2Z + 1, cXW 2 = cX2W + 1, and

• cXY Z + cXYW + cXZW + cY 2Z + cY 2W + cY Z2 + cY ZW + cYW 2 = 1.

Proof Recall that we map P
1 × P

1 → {XY = ZW} via ([ x : y ], [z, w]) 7→
[ xz : yw :xw : yz]. In the 3, 2, 1-case, we have shown that we may assume
([ 0 :1 ] : [ 0 :1 ]), ([ 0 :1 ] : [ 1 :0 ]), ([ 0 :1 ] : [1, 1]), ([ 1 :0 ], [ 0 :1 ]), ([ 1 :0 ], [ 1 :0 ]),
([ 1 :1 ], [ 1 :1 ]) all lie on P. In P

3-coordinates, these six points are, respectively,

[ 0 :1 :0 :0], [ 0 :0 :0 :1], [ 0 :1 :0 :1], [ 0 :0 :1 :0], [ 1 :0 :0 :0], and [ 1 :1 :1 :1]. For these
points to lie on P, it follows that cX3 = cY 3 = cZ3 = cW 3 = 0, that cY 2W = cYW 2 ,
and that all 20 coefficients sum to zero. If cY 2W = cYW 2 = 0, one easily verifies that
the line [ 0 :Y :0 :W ] is contained in the curve, and so we may suppose without loss

of generality that cY 2W = cYW 2 = 1. Further, by subtracting appropriate multiples of
the quadric XY = ZW , we may suppose that cX2Y = cXY 2 = cZ2W = cZW 2 = 0.

In the 2, 2, 2-case we may assume that ([ 0 :1 ], [ 0 :1 ]), ([ 0 :1 ], [ 1 :0 ]),
([ 1 :0 ], [ 0 :1 ]), ([ 1 :0 ], [ 1 :1 ]), ([ 1 :1 ], [ 1 :0 ]), ([ 1 :1 ], [ 1 :1 ]) all lie on P. In P

3-

coordinates, these six points are, respectively, [ 0 :1 :0 :0], [ 0 :0 :0 :1], [ 0 :0 :1 :0],
[ 1 :0 :1 :0], [ 1 :0 :0 :1], and [ 1 :1 :1 :1]. For these points to lie on P, it follows that
cY 3 = cW 3 = cZ3 = 0, that cX3 + cX2Z + cXZ2 = 0, that cX3 + cX2W + cXW 2 = 0,
and that all the coefficients sum to 0. Moreover, we may assume that ([ 1 :0 ], [1, 0]),

which in P
3-coordinates is [ 1 :0 :0 :0], does not lie on P. This implies that cX3 6= 0,

so we may suppose without loss of generality that cX3 = 1. Once again, by sub-
tracting appropriate multiples of the quadric XY = ZW , we may suppose that
cX2Y = cXY 2 = cZ2W = cZW 2 = 0.
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3.3 Reductions for XY = Z2

Suppose that a cubic hypersurface P ⊂ P
3
F8

intersects the quadric {XY = Z2} in a
smooth geometrically irreducible curve C with 27 F8-points.

The F8-points of the surface {XY = Z2} are ruled by the pencil of nine lines

[ 1 :z2 :z :W ], [ 0 :1 :0 :W ] parametrized by the variable W , all passing through the
point [ 0 :0 :0 :1]. By an argument essentially the same as the pigeonhole argument
in the previous subsection, we see that [ 0 :0 :0 :1] cannot lie on P, while each of the
nine lines intersects C in exactly 3 other F8-points. Note that once again we obtain

an elementary proof that there cannot be 28 points on such a curve C lying on this
quadric.

We remark that the collection of affine transformations of F8, i.e., the set of maps

x 7→ ex + f with f ∈ F8, e ∈ F
×
8 , acts transitively on the set of 3-element subsets of

F8. Notice that there are 56 affine transformations of F8 and 56 3-element subsets of
F8, so it suffices to prove that the stabilizer of the 3-element subset {0, 1, η} is trivial.
(Recall that η is a chosen root of η3 + η + 1 = 0.) This is easy to check. For example,

the affine transformation swapping 0 and 1 is x 7→ 1 − x, which does not fix η; and
the affine transformation sending 0 to 1 and 1 to η is x 7→ (η − 1)x + 1, which does
not send η to 0.

Now, for each line lz = {[ 1 :z2 :z :W ]}, let Sz = {W | [ 1 :z2 :z :W ] ∈ C}. Ob-

serve that each Sz has size 3, and so there is a unique transformation x 7→ ezx + fz

mapping Sz to {0, 1, η}. Since there are eight Sz’s, by the pigeonhole principle some
element e ∈ F

×
8 occurs twice in the list of ez’s. Suppose e = ez1

= ez2
. Choose any

element
(

a b
c d

)

of GL2(F8) sending the vectors (1, z2
1), (1, z2

2) to (0, 1), (1, 0) respec-

tively. Suppose that this matrix maps the line [ 1 :z2
3 ] to the line [ 1 :1 ]. (What we say

below will work equally well in the case that the transformation maps the line [ 0 :1 ]
to the line [1 : 1], which we omit for ease of notation.) Select any point of the form
[ 1:z2

3 :z3 :w3] on C . Then we can solve the system of equations

gX + gY z2
1 + gZz1 = fz1

gX + gY z2
2 + gZz2 = fz2

gX + gY z2
3 + gZz3 = ew3

for the variables gX , gY , gZ . Let σ be the transformation








X

Y

Z

W









7→









a b 0 0
c d 0 0√
ac

√
bd

√
ad + bc 0

gX gY gZ e

















X

Y

Z

W









.

Then σ preserves XY = Z2, and we have constructed σ so that σ(P) contains the
seven points [ 0 :1 :0 :0], [ 0 :1 :0 :1], [ 0 :1 :0 :η], [ 1 :0 :0 :0], [ 1 :0 :0 :1], [ 1 :0 :0 :η],

[ 1 :1 :1 :0]. Then the following proposition holds.

Proposition 3.2 If there exists a cubic hypersurface P ⊂ P
3
F8

whose intersection with

{XY = Z2} is a smooth geometrically irreducible curve of genus 4 with 27 F8-points,

then there exists such a hypersurface whose coefficients satisfy the following conditions:
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• cX3 = cX2Y = cXY 2 = cY 3 = cZ3 = cZ2W = 0.

• cW 3 = 1, cX2W = cY 2W = η, cXW 2 = cYW 2 = η3.

• cX2Z + cXY Z + cXZ2 + cY 2Z + cY Z2 = 0.

Proof We have seen that the under the hypothesis of the proposition, there exists
such a hypersurface P containing the above seven points and not containing the point

[ 0 :0 :0 :1]. From the latter, we may assume without loss of generality that cW 3 = 1.
Subtracting appropriate multiples of the quadric XY = Z2, we may assume cX2Y =

cXY 2 = cZ3 = cZ2W = 0. Since [ 0 :1 :0 :0] and [ 1 :0 :0 :0] are on the cubic P, we get
cX3 = cY 3 = 0. From the presence of [ 0 :1 :0 :1] on the cubic P, we get cY 2W + cYW 2 +

1 = 0. From the presence of [ 0 :1 :0 :η] on the cubic P, we get cY 2W η+cYW 2η2+η3
= 0.

It follows that cY 2W = η and cYW 2 = η3. Similarly cX2W = η, cXW 2 = η2. The last
condition follows from previous deductions and the presence of [ 1 :1 :1 :0] on the
cubic P.

3.4 Reductions for X2 + XY + Y 2
= ZW

Suppose that a cubic hypersurface P ⊂ P
3
F8

intersects the quadric {X2 + XY + Y 2
=

ZW} in a smooth geometrically irreducible curve C with 27 F8-points.

Since Fix(X2 +XY +Y 2
= ZW ) acts 2-transitively on the points of X2 +XY +Y 2

=

ZW , we may assume without loss of generality that [ 0 :0 :1 :0] and [ 0 :0 :0 :1] lie on P.
Recall that the elements of PGL4(F8) preserving X2 +XY +Y 2

= ZW and fixing those

two points are of the form








a b 0 0
c d 0 0
0 0 z 0

0 0 0 w









where
(

a b
c d

)

preserves the form X2 + XY +Y 2, and so such elements of PGL4(F8) per-
mute the nine conics C y = [ 1 : y :Z :(1 + y + y2)Z−1], y ∈ F8, and C∞ =

[ 0 :1 :Z :Z−1], each conic parametrized by the variable Z, and each conic passing
through the two points [ 0 :0 :1 :0] and [ 0 :0 :0 :1]. Unfortunately our previous pi-
geonhole arguments do not seem to be of value here, because we now would need
seven points of one of these conics to lie on the curve C to induce a contradiction.

One checks, using our explicit list of the 18 elements of PGL2(F8) preserving X2 +
XY +Y 2

= 0, that the action of Fix(X2 +XY +Y 2
= ZW ) on the set of nine conics is as

follows: the subsets {C0,C1,C∞}, {Cη,Cη2 ,Cη−3}, and {Cη−1 ,Cη−2 ,Cη3} are always
permuted as blocks, and the action on the set of three blocks is the cyclic group of

order 3. The stabilizer of each of each block induces the full symmetric group of
order 6 on the three elements of the block.

By the pigeonhole principle, since there are 25 points of C (besides [ 0 :0 :0 :1] and
[ 0 :0 :1 :0]) on the nine curves, it follows that the conics in at least one of the blocks

contain a total of at least 9 points of C . Permuting the blocks, we may assume that this
block is {C0,C1,C∞}. Permuting the conics within the block, we may also assume
that

#(C∞ ∩ P) ≥ #(C0 ∩ P) ≥ #(C1 ∩ P).
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Certainly we now have #(C∞ ∩ P) ≥ 3. Applying transformations of the form
X 7→ X, Y 7→ Y , Z 7→ αZ, W 7→ α−1W and transformations of the form X 7→ X,

Y 7→ Y , Z 7→ αW , W 7→ α−1Z, as well as by applying the Frobenius automorphism
of F8 to the coefficients of P, we may suppose that #(C∞∩P) contains the two points
[ 0 :1 :1 :1] and [ 0 :1 :η :η−1], and at least one of the two points [ 0 :1 :η2 :η−2] and
[ 0 :1 :η3 :η−3]. We obtain the following proposition.

Proposition 3.3 If there exists a cubic hypersurface P ⊂ P
3
F8

whose intersection with

{X2 + XY + Y 2
= ZW} is a smooth geometrically irreducible curve of genus 4 with 27

F8-points, then there exists such a hypersurface satisfying the following conditions:

• cX3 = cX2Y = cX2Z = cX2W = cZ3 = cW 3 = 0,

• cY 2Z = η−1cY 2W + η3cY Z2 + ηcYW 2 + cZ2W + η−1cZW 2 ,

• cY 3 = cY 2Z + cY 2W + cY Z2 + cY ZW + cYW 2 + cZ2W + cZW 2 ,

• at least one of [ 0 :1 :η2 :η−2] and [ 0 :1 :η3 :η−3] lies on P,

• #(C∞ ∩ P) ≥ #(C0 ∩ P) ≥ #(C1 ∩P) and #(C∞ ∩ P) + #(C0 ∩ P) + #(C1 ∩ P) ≥ 9.

Proof Subtracting appropriate multiples of the quadric, we may assume that cX3 =

cX2Y = cX2Z = cX2W = 0. Since we may assume that [ 0 :0 :0 :1] and [ 0 :0 :1 :0] lie on
the cubic P, it follows that we may suppose cZ3 = cW 3 = 0. The two long sums ensure
that [ 0 :1 :1 :1] and [ 0 :1 :η :η−1] lie on P. That we may suppose the remainder of the
conditions follows from our reductions preceding the proposition.

4 Computations

4.1 Publicly Available Data

The programs we use, the data they produce, and documentation, are available on

the web at http://www.math.mcgill.ca/∼dsavitt/curves/ and the longest of our compu-
tations took under two days to run.

4.2 Listing Cubics

The computations we perform are straightforward. We write a C program to perform

arithmetic in F8, and then for each of our three quadrics, we simply cycle through all
possibilities for the coefficients of homogeneous cubics in four variables subject to
the conditions we are able to impose from Propositions 3.1, 3.2, and 3.3. For each
possible vector of coefficients, we count how many points of the quadric under con-

sideration lie on the cubic. Each time the intersection contains exactly 27 points, the
program prints the cubic polynomial in a format which is readable by the MAGMA
computation package [BCP]. In order to speed this up significantly, we store in ad-
vance the value of each cubic monomial evaluated at each F8-point of the quadric, so

that to determine whether a point of the quadric lies on the cubic is simply a mat-
ter of evaluating a predetermined linear form in the coefficients. For the quadric
X2 + XY + Y 2

= ZW , we also add routines to check the final two conditions of
Proposition 3.3 and discard those cubics in violation of them.
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In order to build redundancy into our computations, we write MAGMA routines
which given a cubic will count the number of points of our quadric which lie on

that cubic. Using these routines, we can confirm that our C programs are correctly
counting the points on our cubics; indeed we can list the points on the cubic and
check that the points we wish to force to lie on the cubic are really there. However,
the streamlined C programs will be faster than the MAGMA routines, which is why

we use the C program and not MAGMA for the computations.

4.3 Discarding Cubics

From the above computations, we obtain a long list of cubics whose F8-intersection

with a particular quadric has size 27. If it is true that there are no smooth geomet-
rically irreducible curves of genus 4 over F8 with exactly 27 points, we expect that
each of these intersections will be (geometrically) reducible. In order to test this, for
each of these cubic-quadric pairs we use MAGMA to count the number of F64-points

on their intersection. If the original curve were actually smooth and geometrically
irreducible, then the number of F64-points will be one of the possibilities admitted
by the Weil conjectures. If the original curve is reducible, then we expect the number
of F64-points will be too large.

Explicitly, the methods of Section 2 of [Lau2] leave only two possibilities for
the list of eigenvalues of Frobenius on a smooth geometrically irreducible curve of
genus 4 over F8 with 27 F8-points. If the eigenvalues are αi , αi , i = 1, 2, 3, 4, the

possibilities are: (−αi − αi)i = (5, 5, 5, 3) and (−αi − αi)i = ( 9±
√

5
2

, 9±
√

5
2

). Using

that αiαi = 8, we compute that
∑

i(α
2
i + αi

2) = 20 or 22, and so the total number
of F64-points must be either 1 + 64 − 20 = 45 or 1 + 64 − 22 = 43.

In fact, our computations in MAGMA show that every one of the cubics we have
listed intersects the associated quadric in at least 119 points. This establishes:

Theorem 4.1 There is no smooth, geometrically irreducible curve of genus 4 over F8

with 27 points.

Combined with what was already known, we obtain:

Corollary 4.2 The maximal number of points on a curve of genus 4 over F8 is 25.

Remark It would be of interest to know whether the combinatorial arguments we

have given which eliminate the possibility of 28 points on an irreducible curve of
genus 4 over F8 lying on XY = Z2 or XY = ZW can be improved to eliminate the
possibility of 27 points, or can be extended to curves lying on X2 + XY + Y 2

= ZW .

5 Bad Curves With 27 Points

As explained above, in our computer search we find numerous examples where our
cubic and our quadric intersect in exactly 27 F8-points. However, when we count the
number of F64-points on the intersection, we find that the answer is always in the
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following list: 119, 181, 189, 191, 195, 197, 199, or 205. Moreover, on the degenerate
and the nonsplit nondegenerate quadrics, we only find examples with 189 and 191

F64-points. In this section, we explain why these are the only possibilities, and we
list (along with examples) precisely the ways in which they can occur. This provides
significant reassurance that our computer calculations are correct.

5.1 Preliminary Lemmas

For ease of reference, we note the following facts:

Lemma 5.1 If K/k is any nontrivial field extension, then a curve of degree d over K

which is not definable over k may have at most d2 k-points under any embedding into

P
3
K .

Proof By Bézout’s theorem, two plane curves of degree d intersect in d2 points. As
a consequence, two different curves of degree d in projective space may intersect in
at most d2 points: otherwise, they coincide under every projection to the plane, and
so they must coincide. As a result, there is at most one curve of degree d through

any d2 + 1 points in projective space. However, if there is only one curve of degree
d through a set of k-points, then by linear algebra that curve is defined over k. The
lemma follows.

Lemma 5.2 If the intersection of a cubic and a quadric in P
3
F8

has a component defined

over F8 and of degree 3, 4, or 5, then that component has at most 9, 14, or 18 F8-points

respectively.

Proof Any component of our intersection which is a plane curve lies on a quadric,
and so has degree at most 2. Therefore any cubic component has genus 0, any quartic
component has genus at most 1, and any quintic component has genus at most 2.
(See Figure 18 on page 354 of [Har].) The Serre-Weil bounds on the number of

points on curves of genus 0, 1, and 2 over F8 are 9, 14, and 19 respectively. The first
two of these bounds are met. The maximum number of points on a curve of genus 2
over Fq was determined for all q by Serre (this is Théorème 4 in [Se2], and may also
be found as Proposition 1 in [GV]). When q = 8, this bound is 18.

Lemma 5.3 If the intersection C of a cubic and a quadric in P
3
F8

has 27 F8-points

but is not a smooth, geometrically irreducible curve of genus 4, then the intersection is

geometrically reducible.

Proof Assume that C is geometrically irreducible but singular. We will show that it
cannot have 27 points. Since the intersection is not planar, the arithmetic genus is at
most 4. (Again, see Figure 18 in [Har].) Let C ′ be the normalization of C . Then by

the discussion in Section IV.7 of [Se1], the arithmetic genus of C ′ is 4 − a where a is
an integer between 1 and 4, and moreover the number of F8-points of C ′ differs from
the number of F8 points by at most a. By the Weil conjectures, C may have at most
9 + 5 · (4 − a) + a = 29 − 4a ≤ 25 points.
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Similarly, suppose C is a singular curve over F8 of arithmetic genus 1. Then the
normalization C ′ has arithmetic genus 0, so has exactly 9 F8-points. The singularity

of C must be an ordinary double-point, and the number of F8-points of C must be
either 8 or 10, depending on whether the points of C ′ lying over the singularity are
defined over F8 or F64 respectively. In either case, the number of points of C over F64

will be 64.

Finally, we note that the components of a geometrically reducible curve are per-
muted by Galois. In particular, if there is only one component of a curve over F8 of a
given degree, that component must be defined over F8.

5.2 Analysis of Cases

We saw in the previous section that any “bad” curve with 27 points must be geomet-
rically reducible. We therefore organize our discussion around the possible lists of

degrees for the geometric components of our bad curve.
At the outset, we remark that the quadric surface X2 +XY +Y 2 +ZW = 0 contains

no F8-lines. Moreover, every F8-line on the cone XY + Z2
= 0 passes through the

vertex of the cone, and in our computations we have specifically excluded the cubic

surfaces which contain the vertex of the cone. Therefore, every case in which the bad
curve contains an F8-line can arise only when the quadric surface under considera-
tion is XY + ZW = 0, which is isomorphic to P

1 × P
1. We recall that a curve of

bidegree (a, b) in P
1 × P

1 has arithmetic genus (a − 1)(b − 1) and intersects a curve

of bidegree (c, d) exactly ad + bc times.

Degrees (5, 1) By the note at the end of the preceding subsection, both components
are defined over F8, and so this case can only be found on XY + ZW = 0. By the

argument in 5.3, if the component of degree 5 is singular, it has at most 15 points;
and since the component of degree 1 has only 9 points, this is too few points. Thus
the component of degree 5 is nonsingular. By Lemma 5.2, the component of degree
5 has at most 18 points, so to get a total of 27 F8-points must have exactly 18 points.

A genus 2 curve of degree 5 over F8 with 18 points has “defect 1” in the terminol-
ogy of [Lau2], and the negatives of the Frobenius traces are either 5, 4 or 9/2±

√
5/2.

By criterion (2.3) of [Lau2], the former cannot occur. In the second case, one checks
from the Weil conjectures that the number of F64-points of the curve is exactly 54.

An F8-line has 9 points, so the linear component and the component of degree
5 do not meet over F8. Since the components have bidegrees (3, 2) and (0, 1), and
therefore intersect exactly 3 times over the algebraic closure, the two components
cannot intersect over F64 either. Consequently, in this case we should find exactly

65 + 54 = 119 F64-points on the bad curve.

Degrees (4, 2) By Lemma 5.2, there could be at most 14 + 9 = 23 points on these
components, so this case does not occur.

Degrees (3, 3) If the two components are defined over F8, they have at most 9 F8-
points by Lemma 5.2; if they are not defined over F8, we draw the same conclusion
from Lemma 5.1. Either way, there are at most 18 points on these components, and
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so this case does not occur.

Degrees (4, 1, 1) The two lines must be defined over F8, or else there are at most
14 + 1 + 1 points, so we may restrict attention to the quadric XY + ZW = 0. We note

that the list of bidegrees must either be (3, 1), (0, 1), (0, 1), or (2, 2), (0, 1), (1, 0).

In the former case, all three components have arithmetic genus 0, so have 9 F8-
points and must not intersect over F8. The components of bidegree (3, 1) and (0, 1)

intersect three times over the algebraic closure, so if they do not intersect over F8 then
they cannot intersect over F64. Since two lines of bidegree (0, 1) never intersect, there
must be a total of 3 · 65 = 195 points of intersection over F64.

In the latter case, the component of bidegree (2, 2) has arithmetic genus 1. The
lines of bidegree (0, 1) and (1, 0) intersect once, and so have exactly 17 F8-points
between them. Thus the curve of genus 1 must have at least 10 F8-points. We consider

each possibility in turn, recalling that a singular curve of arithmetic genus 1 has at
most 10 F8-points. Note that by Honda-Tate theory, a curve of genus 1 over F8 does
not have 11 points. (See Theorem 4.1 of [Wat].)

• If the curve of genus 1 has 10 points and is nonsingular, then it has 80 points
over F64. It does not meet either line over F8, but must meet them each in a pair of
conjugate points over F64. These intersection points are different for each line, as the

two lines are distinct. Since the lines intersect once, the total number of F64-points
must be 65 + 65 + 80 − 5 = 205.

• If the curve of genus 1 has 10 points and is singular, then it has 64 points over

F64. The rest of our analysis in the previous case remains the same, and so the total
number of F64-points must be 65 + 65 + 64 − 5 = 189.

• If the curve of genus 1 has 12 points, then it has 72 points over F64. The curve of
genus 1 must have two points of intersection with the lines over F8, and so depending
on the intersection geometry may have either 2 or 4 points of intersection with the
lines over F64. The total number of F64 points is either 129+72−2 = 199 (if the curve

of genus 1 intersects each line at a double-point, or else has a double-point with one
line at the intersection of the two lines and meets the other line singly there and at
one other point) or 129 + 72 − 4 = 197 (if the curve of genus 1 intersects both lines
in two distinct points).

• If the curve of genus 1 has 13 points, then it has 65 points over F64 and must
intersect the two lines in three points over F8. The only way this is possible is to pass

through the point of intersection of the two lines, and to meet each line once more
over F8. Then the total number of points over F64 is 129 + 65 − 3 = 191.

• If the curve of genus 1 has 14 points, then it has 56 points over F64 and has four
distinct points of F8-intersection with the lines. The total number of points over F64

is then 129 + 56 − 4 = 181.

Degrees (3, 2, 1) All must be defined over F8, and so can occur only in the XY +
ZW = 0 case. Each component would have 9 points, but the component of bidegree
(1, 1) must meet the linear component, so we cannot reach as many as 27 F8-points.
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Degrees (2, 2, 2) All must be defined over F8, or else we have at most 9 + 4 + 4 < 27
F8-points. Each component has 9 points, and is the intersection of a plane with our

quadric. Hence any two of the components intersect in 2 points over F64, and so have
128 F64-points between them. The third component has either 65−2 or 65−4 points
not on either of the first two, and so there are either 189 or 191 F64-points in total.
Note that this is the only case in which we are not limited to the split nondegenerate

quadric.

Degrees (3, 1, 1, 1) If the lines are not all defined over F8, then there are at most

9 + 9 + 1 + 1 < 27 points. The bidegrees must be (1, 2), (1, 0), (1, 0), (0, 1) and so
there are at most 7 points of intersection between the components. Then there are at
least 36 − 7 > 27 F8-points, which is too many, and so this case cannot occur.

Degrees (2, 2, 1, 1) Again every component must be defined over F8, and the bide-
grees are (1, 1), (1, 1), (0, 1), (1, 0). Once again there are too many points.

Degrees (2, 1, 1, 1, 1) At least two of the lines must be defined over F8. So, if not
all of the lines are defined over F8, then precisely two are not. The two lines not de-
fined over F8 would either both have bidegree (1, 0) or both have bidegree (0, 1), and
so would not meet; therefore they could not contain any F8-points, as the lines are

Galois-conjugate and any F8-points on them would lie in their intersection. There-
fore, since the curve of bidegree (1, 1) intersects the two F8-lines, the configuration
could contain at most 27 − 2 = 25 F8-points. On the other hand, if all the lines are
defined over F8, there are far too many F8-points. So this case cannot occur.

Degrees (1, 1, 1, 1, 1, 1) If four of the lines are defined over F8, then there are too
many points; and if there are only two, then there are too few points. However, it is
possible that the three lines of (say) bidegree (1, 0) could be defined over F8, while the

three lines of bidegree (0, 1) could be defined over F512. Then over F64 there would
be exactly 3 · 65 = 195 points.

To summarize: on any of the quadrics, our bad curve may decompose into three

plane quadric curves over F8. In this case there are either 189 or 191 F64-points on
the bad curve. This is the only possibility on the degenerate and nonsplit nonde-
generate quadrics. In the split nondegenerate case, we have the following additional
possibilities:

• The bad curve has two components, both defined over F8, one of bidegree (3, 2)
and one of bidegree (0, 1). In this case there are 119 F64-points.

• The bad curve has three components, all defined over F8, one of bidegree (3, 1)

and two lines of bidegree (0, 1). In this case there are 195 F64-points.

• The bad curve has three components, all defined over F8, one of bidegree (2, 2)
and lines of bidegree (0, 1) and (1, 0). In this case, there are 189, 205, 199, 197, 191,

or 181 F64-points, depending on whether the curve of bidegree (2, 2) is singular with
10 F8-points, or nonsingular with 10, 12, 12, 13, or 14 F8-points respectively.

• The bad curve has six linear components, three defined over F8 and three de-
fined over F512. In this case there are 195 F64-points.
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5.3 Examples

Scouring our computer calculations, we have found an example of each of the possi-
bilities for bad curves enumerated in the previous section, and so all of these possibil-

ities do indeed occur. We give a few of these examples here; the interested reader may
refer to math.NT/0201226 at http://arXiv.org or to http://www.math.mcgill.ca/

∼dsavitt/curves/examples.dvi for the full list. (This file is also available in .ps and
.pdf format.)

Recall that η ∈ F8 is a chosen root of η3 + η + 1 = 0. Let β be a generator of F
×
64

such that β9
= η. Each intersection described below has exactly 27 points over F8.

• The intersection of XY + ZW = 0 with the cubic X2W + ηXYW + η−1XZW +

η−3XW 2+ηY 2Z+Y 2W +η−2Y Z2+η−1Y ZW +YW 2
= 0 contains the line [ X :0 :Z :0]

and a component of degree 5, and has 119 points over F64.

• The intersection of XY + ZW = 0 with the cubic

(ηY + Z)(Y Z + XZ + ηXW + η−1W 2 + ηZW + η−1YW )

contains the lines [ ηW :Y :ηY :W ] and [ X :0 :0 :W ]. The intersection of XY + ZW =

0 with Y Z +XZ +ηXW +η−1W 2 +ηZW +η−1YW = 0 is an elliptic curve with 12 F8-
points and 72 F64-points. It meets the line [ X :0 :0 :W ] at the two points [ 1 :0 :0 :0]

and [ 1 :0 :0 :η2], and meets the line [ ηW :Y :ηY :W ] at the two Galois-conjugate
points [ β59 :1 :β9 :β50] and [ β31 :1 :β9 :β22]. The intersection of the quadric and the
cubic has 197 points over F64.

• The intersection of XY + ZW = 0 with the cubic η−2X2Z + η3XY Z + η3XYW +
η−2XZ2 + η3XZW + Y 2W + η3Y ZW + YW 2

= 0 contains the three non-intersecting
lines [ 0 :Y :Z :0], [ X :0 :0 :W ], and [ X :Y :X :Y ] and three lines defined over F512. The
intersection has 195 points over F64.
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Appendix

Kristin Lauter

A.1. Introduction

The purpose of this appendix is to give a list of the possible zeta functions for curves
with defect 3. As a special case, we will show that there is no genus 4 curve over F8

with 26 rational points.

A.2. Definitions

By a curve over Fq, we mean a smooth, projective, absolutely irreducible curve. For
a curve, C , let g = g(C) denote the genus, and N(C) denote the number of rational
points over Fq. A curve C has defect k if it fails to meet the Serre-Weil bound by
exactly k:

N(C) = q + 1 + gm − k,

where

m = [2
√

q].

The zeta function of a curve over Fq is defined as a power series, but it is known that

it is a rational function, and can be written in the form

h(t)

(1 − t)(1 − qt)
,

where

h(t) =

g
∏

i=1

(1 − αit)(1 − ᾱit)

is a polynomial with coefficients in Z, and αi and ᾱi are algebraic integers with com-
plex absolute value

√
q. We say that a curve has zeta function of type (x1, . . . , xg) if
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xi = −(αi + ᾱi), i = 1, . . . , g. Define the polynomial P(t):

P(t) =

g
∏

i=1

(

t − (m + 1 − xi)
)

,

and the set Fk:

Fk = {td + a1td−1 + · · · + ad ∈ Z[t] | −a1 = d + k, all roots positive reals}.

The m + 1 − xi are totally positive algebraic integers, so if

g
∑

i=1

xi = gm − k,

then P(t) ∈ Fk, since deg P = g, and −a1 = g + k. We say P(t) is a polynomial of

defect k.

A.3. Defect 3

Using the method of Smyth as explained in [3] or Section 2 of [2], we restrict the

possibilities for the type of the zeta function for defect 3 curves by making a list of
the possibilities for the irreducible factors of the polynomials P(t).

The possibilities are divided into four types given in the following four tables.

Type 1 is an irreducible polynomial of defect 3 and the rest of the factors are made
up of defect 0 polynomials. For k = 0, the defect 0 polynomial is P(t) = (t − 1), so
the xi corresponding to this factor is xi = m.

Type 2 is an irreducible polynomial of defect 2 combined with the defect 1 polyno-
mial (t − 2) and copies of the defect 0 polynomial (t − 1).

Type 3 is an irreducible polynomial of defect 2 combined with the defect 1 polyno-

mial (t2 − 3t + 1) and copies of the defect 0 polynomial (t − 1).

Type 4 consists of the four possible combinations of the two defect 1 polynomials
with the rest of the factors equal to the defect 0 polynomial (t − 1).

For each pair (q, g),there could be a number of reasons why an entry in the above
tables does not correspond to the zeta function of a curve.

Using the following three reasons from Section 2 of [2] we can eliminate many of
the entries from the tables.

(2.1) The absolute value of each xi must be less than 2
√

q.
(2.2) The number of places of degree d on a curve is nonnegative.
(2.3) The numerator of the zeta function of a curve is not decomposable.
The last column in each table indicates the restriction that comes from reason

(2.1): {2
√

q} ≥ 1 − x, where x is the smallest root of P(t).

Proposition A.1 The following entries from the tables do not correspond to the zeta

function of a curve for reason (2.3).
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# deg coefficients (x1, . . . , xg) g ≥ ? {2
√

q} ≥ ?

1. 4 1 −7 14 −8 1 g ≥ 4 0.827. . .

2. 4 1 −7 13 −7 1 g ≥ 4 0.772. . .

3. 3 1 −6 5 −1 g ≥ 3 0.692. . .

4. 3 1 −6 7 −1 g ≥ 3 0.834. . .

5. 3 1 −6 8 −1 g ≥ 3 0.860. . .

6. 3 1 −6 8 −2 g ≥ 3 0.675. . .

7. 3 1 −6 9 −1 g ≥ 3 0.879. . .

8. 3 1 −6 9 −3 g ≥ 3 0.532. . .

9. 2 1 −5 5 (m, . . . , m − 3±
√

5
2

) g ≥ 2

10. 2 1 −5 3 (m, . . . , m − 3±
√

13
2

) g ≥ 2 0.302. . .

11. 2 1 −5 2 (m, . . . , m − 3±
√

17
2

) g ≥ 2 0.561. . .

12. 2 1 −5 1 (m, . . . , m − 3±
√

21
2

) g ≥ 2 0.791. . .

13. 1 1 −4 (m, . . . , m − 3) g ≥ 1 0

Table 1: Possibilities for P(t) and (x1, . . . , xg) for defect 3: Type 1

# deg coefficients (x1, . . . , xg) g ≥ ? {2
√

q} ≥ ?

14. 3 1 −5 6 -1 g ≥ 4 0.8019. . .

15. 2 1 −4 2
(

m − (1 ±
√

2), m − 1, m, . . .
)

g ≥ 3 0.414. . .

16. 2 1 −4 1
(

m − (1 ±
√

3), m − 1, m, . . .
)

g ≥ 3 0.732. . .

17. 1 1 −3 (m − 2, m − 1, m, . . . ) g ≥ 2 0

Table 2: Possibilities for P(t) and (x1, . . . , xg) for defect 3: Type 2

• #17 for genus g ≥ 2,

• #9, 10, 21 for genus g ≥ 3,

• #3, 4, 6, 8, 14, 15, 19, 20, 22, 23 for genus g ≥ 4,

• #1, 2, 18, 24 for genus g ≥ 5,

• #25 for genus g ≥ 7.

Proof For each entry, it suffices to factor the corresponding polynomial

F(T) =

g
∏

i=1

(

T − (αi + ᾱi)
)

=

g
∏

i=1

(T + xi)

into two factors, f (T) and g(T) such that the resultant of f and g is ±1 (see
Lemma 4.1, [1]). For example, for entry #8, the resultant of

T3 + (3m − 3)T2 + (3m2 − 6m)T + m3 − 3m2 + 1 and (T + m)

is −1, so entry #8 is not possible for g ≥ 4. For entry #19,

resultant
(

T2 + (2m − 2)T + m2 − 2m − 1, T2 + (2m − 1)T + m2 − m − 1
)

= −1,
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# deg coefficients (x1, . . . , xg) g ≥ ? {2
√

q} ≥ ?

18. 3 1 −5 6 −1 g ≥ 5 0.8019. . .

19. 2 1 −4 2 (m − (1 ±
√

2), m − 1±
√

5
2

, m, . . . ) g ≥ 4 0.618. . .

20. 2 1 −4 1 (m − (1 ±
√

3), m − 1±
√

5
2

, m, . . . ) g ≥ 4 0.732. . .

21. 1 1 −3 (m − 2, m − 1±
√

5
2

, m, . . . ) g ≥ 3 0.618. . .

Table 3: Possibilities for P(t) and (x1, . . . , xg) for defect 3: Type 3

# (x1, . . . , xg) g ≥ ? {2
√

q} ≥ ?

22. (m − 1, m − 1, m − 1, m, . . . ) g ≥ 3 0

23. (m − 1±
√

5
2

, m − 1, m − 1, m . . . ) g ≥ 4 0.618. . .

24. (m − 1±
√

5
2

, m − 1±
√

5
2

, m − 1, m, . . . ) g ≥ 5 0.618. . .

25. (m − 1±
√

5
2

, m − 1±
√

5
2

, m − 1±
√

5
2

, m, . . . ) g ≥ 6 0.618. . .

Table 4: Possibilities (x1, . . . , xg) for defect 3: Type 4

so this entry is not possible for g = 4, and

resultant
(

(

T2 +(2m−2)T +m2−2m−1
)

(T +m), T2 +(2m−1)T +m2−m−1
)

= 1,

so it is not possible for g > 4 either. The decomposition of other entries is similar.

Proposition A.2 Entry #11 does not correspond to the zeta function of a curve for

g >
q2 − q + 8m2 − 10m − 16

5m2 − 7m − 2q

for reason (2.2).

Proof The proof is similar to the proof of Proposition 1 in [2]. The coefficients of
the polynomial

(

T + m − 3 +
√

17

2

)(

T + m − 3 −
√

17

2

)

(T + m)g−2

can be computed in two ways: as binomial coefficients or via Newton’s relations be-
tween the elementary symmetric functions, {bn}, and the power functions,

sn =

g
∑

i=1

(αi + ᾱi)
n.
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Using the identity

b2 =

1

2
(s2

1 − s2),

and equating the coefficients of the g − 2 term computed in the two ways yields:

(g − 2)(g − 3)

2
m2 + (g − 2)m + (m2 − 3m − 2)

=

1

2

(

(gm − 3)2 −
(

q2 + 1 − (q + 1 + gm − 3 + 2a2) + 2gq
)

)

,

where a2 is the number of places of degree 2 on the curve. By reason (2.2), we must
have a2 ≥ 0, so rearranging yields the desired inequality.

Proposition A.3 Entry #13 does not correspond to the zeta function of a curve for

g >
q2 − q + 6m − 6

m2 + m − 2q

for reason (2.2). In general, (m, m, . . . , m − k) does not correspond to the zeta function

of a defect k curve for

g >
q2 − q + 2km + k − k2

m2 + m − 2q
.

Proof The proof is similar to the proof of Proposition A.2 above.

Remark Similar bounds on the genus can be obtained for entries #5, 7, 12, 16.

Proposition A.4 If q is an even power of a prime, then the only defect 3 curves with

genus g > 3 have zeta function of type (m, . . . , m, m − 3). For g = 3, (m − 1,
m − 1, m − 1) is possible in some cases. For

g >
q2 − q + 6m − 6

m2 + m − 2q
,

defect 3 is not possible.

Proof This follows from reason (2.1) and the fact that entries #17 and #22 are im-
possible by reason (2.3) for g ≥ 2 and g ≥ 4 respectively. The last statement then
follows from Proposition A.3.

Theorem A.5 There does not exist a genus 4 curve over F8 with 26 F8-points.

Proof When q = 8,
{2
√

q} ≈ 0.6568,

so using the above tables, we see that the only zeta function types possible after ap-
plying Proposition A.1 are: #11 and #13. By Proposition A.2, #11 is not possible since
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g = 4 > 95
37

. For #13, the bound on g from Proposition A.3 is 40
7

> 4, but #13 is not
possible for a different reason in this case. Here q = 23 and m = 5, so m − 3 = 2. By

Honda-Tate theory, when q = pe is an odd power of a prime, the only possible values
for the trace of an elliptic curve which are divisible by the characteristic are: (see [5],
p. 536)

0, for all p, or p
e+1

2 , for p = 2 or p = 3.

Since an elliptic curve with trace 2 does not exist over F8, an abelian variety over F8

of type (5, 5, 5, 2) does not exist either.

Theorem A.5 was presented at the Journées Arithmétiques in Rome in July, 1999,

and at the Arizona Winter School in March, 2000.
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