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Abstract

Several studies have shown that blood vitamin levels are lower in alcoholic patients than in control subjects. Acute ethanol exposure

enhances the release of vitamins from liver cells in vitro. The aim of the present study is to confirm the effects of ethanol consumption

on vitamin contents in vivo. We compared the contents of B-group vitamins in the liver, blood and urine between ethanol-fed and control

rats fed a diet containing a sufficient- and low-vitamin mixture. The experimental rats were fed a 15 % ethanol solution freely for 28 d, and

then 24 h urine samples were collected, after which the animals were killed. The B-group vitamin contents in the liver, blood and

urine were measured. No differences in liver, blood and urine contents were observed between the control and ethanol-fed rats fed a

diet containing a sufficient-vitamin mixture. On the contrary, in rats fed a diet containing a low-vitamin mixture, consumption of ethanol

caused a decrease in the contents of vitamins B1, B2 and pantothenic acid in the liver; however, the contents of the other vitamins did not

decrease. In the blood, the contents of vitamins B1, B2, B6 and pantothenic acid were lower in the ethanol-fed rats than in the controls.

Urinary excretion of the B-group vitamins, except for niacin, was lower in the ethanol-fed rats. These results show that ethanol consump-

tion affects the absorption, distribution and excretion of each of the vitamins in rats fed a diet containing a low-vitamin mixture.
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Numerous studies have shown that vitamin status of alcoholic

patients differs from non-drinking subjects(1–7), and the

majority have shown that blood vitamin levels are lower in

alcoholic patients than in controls(8–10). In addition, several

reports have suggested that chronic alcohol feeding may lead

to a significant inhibition of carrier-mediated thiamin(11,12) and

folate(13–19) uptake in the intestine and kidney. This phenom-

enon is observed only in alcoholic patients who drink ethanol

chronically. On the contrary, a reduction in circulating levels

of B-complex vitamins often occurred without clinical evi-

dence of hypovitaminosis(20). Sorrell et al.(21) reported that

the in vitro perfusion of rat liver with ethanol caused the

release of all B-vitamins except biotin from the liver stores.

Israel & Smith(22) reported that acute ethanol feeding to rats

inhibited the conversion of pantothenic acid to CoA. These

studies in animal models suggested that acute ethanol intake

results in an increased hepatic release of vitamins and an

impaired utilisation, which means increased levels of free

forms of vitamins in the liver which can in turn permeate

the cell membranes(21,22). This might lead to increases in

blood vitamin contents and in urinary excretion. Although

there are many reports concerning the effects of ethanol on

the absorption and metabolism of vitamins, the conclusion

concerning the controversy remains elusive. The reason

might be that there is no study regarding the simultaneous

measurement of vitamin contents of liver (as a biomarker of

the storage amount of vitamins), blood (as a biomarker of

the circulation amount of vitamins) and urine (as a biomarker

of the reabsorption ability of kidney and an extra amount of

vitamins).

In the present study, we examined the effects of ethanol

consumption on the contents of B-group vitamins of the

liver, blood and urine in rats fed two kinds of diets containing

either a sufficient- or a low-vitamin mixture.

Materials and methods

Chemicals

Vitamin-free milk casein, sucrose and L-methionine were pur-

chased from Wako Pure Chemical Industries. Maize oil was

purchased from Ajinomoto. Gelatinised maize starch, a min-

eral mixture (AIN-93G mineral mixture)(23) and a vitamin mix-

ture (nicotinic acid-free AIN-93 vitamin mixture containing
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25 % choline bitartrate)(23) were obtained from Oriental Yeast

Company, Limited.

Thiamin hydrochloride (C12H17ClN4OS-HCl; molecular

weight 337·27), riboflavin (C17H20N4O6; 376·37), pyridoxine

hydrochloride (C8H11NO3-HCl; 205·63), cyanocobalamin

(C63H88CoN14O14P; 1355·40), nicotinamide (C6H6N2O;

122·13), calcium pantothenate (C18H32N2O10-Ca; 476·54),

folic acid (C19H19N7O6; 441·40) and D(þ)-biotin (C10H16

N2O3S; 244·31) were purchased from Wako Pure Chemical

Industries. 4-Pyridoxic acid (C8H9NO4 ¼ 183·16) was made

by ICN Pharmaceuticals and obtained through Wako Pure

Chemical Industries.

N 1-Methylnicotinamide chloride (C7H9N2O-HCl; 159·61)

was purchased from Tokyo Kasei Kogyo. N 1-Methyl-2-pyri-

done-5-carboxamide (2-Py, C7H8N2O2 152·15) and N 1-methyl-

4-pyridone-3-carboxamide (4-Py, C7H8N2O2 152·15) were syn-

thesised by the methods of Pullman & Colowick(24) and Shibata

et al.(25), respectively. All other chemicals used were of highest

purity available from commercial sources.

Animals and treatment

The care and treatment of the experimental animals con-

formed to the University of Shiga Prefecture guidelines for

the ethical treatment of laboratory animals. The animals

were maintained under controlled temperature (228C), 60 %

humidity and light conditions (12 h light–12 h dark cycle).

Effects of ethanol feeding on the B-group vitamin contents
of liver, blood and urine in rats fed a diet containing
a sufficient-vitamin mixture (Expt 1)

Male Wistar rats (3 weeks old) obtained from CLEA Japan were

fed freely with a conventional purified diet, consisting of 20 %

vitamin-free milk casein, 0·2 % L-methionine, 46·9 % gelatinised

maize starch, 23·4 % sucrose, 5 % maize oil, 3·5 % AIN-93-G min-

eral mixture(14) and 1 % AIN-93 vitamin mixture(14) containing

chorine bitartrate, but without nicotinic acid, to acclimatise

for 7 d. Nicotinic acid had not been added to this diet because

it is supplied enough from tryptophan in casein(26), and a diet-

ary fibre-free diet was used because it is a tradition not to use

dietary fibre in our laboratory which is not essential for

normal growth(27).

The rats were divided into two groups (n 5 each). Group 1

was fed with a diet containing the 1 % vitamin mixture (a suf-

ficient-vitamin diet) and allowed to drink water for 28 d.

Group 2 was fed with a diet containing the 1 % vitamin

mixture (a sufficient-vitamin diet) and forced to drink a 15 %

ethanol solution instead of water for 28 d. The 24 h urine

samples were collected in amber bottles containing 1 ml of

1 M-HCl at 09.00–09.00 hours of the last day and were

stored at 2258C until required. The rats were killed at about

09.00 hours; blood was collected and tissues were taken to

measure the weights and the contents of B-group vitamins

in the liver, blood and urine. Liver samples were preserved

at 2258C until required.

Effects of ethanol feeding on the B-group vitamin contents
of liver, blood and urine in rats fed a diet containing
a low-vitamin mixture (Expt 2)

A preliminary experiment revealed that the body-weight gain

of young rats was the same when fed a diet containing the 1 %

AIN-93 vitamin mixture and the 0·3 % AIN-93 vitamin mixture,

whereas the body-weight gain was lower in rats fed a diet

containing the 0·2 % AIN-93 vitamin mixture than in those

fed a diet containing the 1 or 0·3 % diets. Thus, we determined

tentatively whether the diet containing the 0·3 % AIN-93

vitamin mixture could supply a minimum amount of vitamins

for the growing rats.

Male Wistar rats (3 weeks old) obtained from CLEA Japan

were fed freely with the conventional purified diet (mentioned

above) to acclimatise for 7 d. The rats were then divided into

two groups (n 5 each). Group 1 was fed a diet containing the

0·3 % vitamin mixture and allowed to drink water for 28 d.

Group 2 was fed a diet containing the 0·3 % vitamin mixture

and forced to drink a 15 % ethanol solution instead of water

for 28 d. The 24 h urine samples and tissues were collected.

Levels of alanine aminotransferase, aspartate aminotransferase

and g-glutamyltranspeptidase were measured at Mitsubishi

Chemical Medience (Tokyo, Japan).

Measurement of B-group vitamins in urine and blood

Preparation and measurement of the extracts of the B-group

vitamins from the urine and blood are described as follows(28).

Vitamin B1

Frozen liver samples, about 0·5 g, were thawed, minced, and

then added to ten volumes of 5 % ice-cold TCA and homogen-

ised with a Digital Homogenizer Hom (Iuchi). The acidified

homogenate was centrifuged at 10 000 g for 10 min at 48C,

and the supernatant was retained and used for the measure-

ment of vitamin B1
(29).

Vitamin B2

Frozen liver samples, about 0·5 g, were thawed, minced, and

then added to ten volumes of 50 mM-KH2PO4–K2HPO4

buffer (pH 7·0) and homogenised with a Teflon/glass

homogeniser (Nikko Hansen). To 0·1 ml of the homogenate,

0·44 ml of water and 0·26 ml of 0·5 M-H2SO4 were added and

then kept at 808C for 15 min. After cooling, 0·2 ml of 10 %

TCA were added and centrifuged at 10 000g for 3 min at

48C. From the supernatant obtained, 0·2 ml was withdrawn

and added to 0·2 ml of 1 M-NaOH. The alkalised mixture was

irradiated with a fluorescent lamp for 30 min and then

0·02 ml of glacial acetic acid were added to the mixture. The

neutralised mixture was passed though a 0·45mm microfilter

and the filtrate was directly injected into the HPLC system

for measuring lumiflavin(30).

B-group vitamin contents in ethanol-fed rats 1035
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Vitamin B6

Frozen liver samples, about 0·5 g, were thawed, minced, and

then added to 90 ml of 55 mM-HCl and homogenised with a

Waring blender. The homogenate was autoclaved at 1218C

for 3 h. After cooling, the mixture was adjusted to pH 5·0

with 1 M-NaOH and then made up to 100 ml with water. The

solution was filtered with qualitative filter no. 2 (ADVANTEC

MFS, Inc.). The filtrate was used for measuring vitamin B6 as

described previously(31).

Vitamin B12

Frozen liver samples, about 0·5 g, were thawed, minced, and

then added to 2·5 ml of 0·57 M-acetic acid–sodium acetate

buffer (pH 4·5) plus 5 ml of water and 0·1 ml of 0·05 % potas-

sium cyanide (KCN). The suspension was homogenised with a

Teflon/glass homogeniser. The homogenate was then put into

a boiling water-bath for 5 min. After cooling, 0·15 ml of 10 %

metaphosphoric acid were added and made up to 10 ml

with water. The solution was filtered with qualitative filter

no. 2 (ADVANTEC MFS, Inc.). The filtrate was used for

measuring vitamin B12 as described previously(32).

Nicotinamide

Frozen liver samples, about 0·6 g, were thawed, minced, and

then added to five volumes of 0·1 g/ml isonicotinamide. The

suspension was homogenised with a Teflon/glass homogen-

iser. The homogenate (1 ml) was withdrawn and added to

4 ml of water, and then autoclaved at 1218C for 10 min. After

cooling, the mixture was centrifuged at 10 000g for 10 min

at 48C. The supernatant was retained and the precipitated

materials were extracted again with 5 ml of water, and the

supernatant was retained. Both the retained supernatants

were combined, and the extract was used for measuring

nicotinamide as described previously(25).

Pantothenic acid

Frozen liver samples, about 0·2 g, were thawed, minced, and

then added to ten volumes of 50 mM-KH2PO4–K2HPO4

buffer (pH 7·0). The suspension was homogenised with a

Teflon/glass homogeniser. The homogenate was incubated

at 378C overnight to convert free pantothenic acid from the

bound type of pantothenate compounds. The reaction was

stopped by putting it into a boiling water-bath for 5 min.

After cooling, the mixture was centrifuged at 10 000 g for

10 min at 48C. The supernatant was retained and the precipi-

tated materials were extracted again with 2 ml of water, and

the supernatant was retained. Both the retained supernatants

were combined, and the extract was used for measuring

pantothenic acid as described previously(33).

Folate

Frozen liver samples, about 0·5 g, were thawed, minced, and

then added to ten volumes of 0·1 M-KH2PO4–K2HPO4 buffer

(pH 6·1). The suspension was homogenised with a Teflon/

glass homogeniser. The homogenate was autoclaved at

1218C for 5 min. After cooling, 2·5 ml of pronase (5 mg/ml;

Pronase MS; Kaken Pharmaceutical Company, Limited) were

added and then incubated at 378C for 3 h. The reaction was

stopped by putting it into a boiling water-bath for 10 min.

After cooling, 0·5 ml of conjugase (extract from porcine kidney

acetone powder, Type II; Sigma-Aldrich) were added and incu-

bated at 378C overnight. The reaction was stopped by putting it

into a boiling water-bath for 10 min. After cooling, the mixture

was centrifuged at 10 000g for 10 min at 48C. The supernatant

was retained, and the precipitated materials were extracted

again with 3 ml of water, and the supernatant was retained.

Both the retained supernatants were combined, and the extract

was used for measuring folate as described previously(34). The

conjugase solution was made as follows: 60 ml of 50 mM-

KH2PO4–K2HPO4 buffer (pH 7·0) were added to 20 g porcine

kidney acetone powder and stirred for 30 min at 48C. The sus-

pension was centrifuged at 10 000 g for 10 min at 48C. The super-

natant was dialysed against a large amount of 50 mM-KH2PO4–

K2HPO4 buffer (pH 7·0) to remove endogenous folate of the

kidney acetone powder. The dialysed conjugase solution was

used.

Biotin

Frozen liver samples, about 0·5 g, were thawed, minced,

and then added to two volumes of 2·25 M-H2SO4 and then

homogenised with a Waring blender. The suspension was

hydrolysed by autoclaving for 1 h at 1218C. After cooling, the

suspension was centrifuged at 10 000g for 10 min at 48C,

and the supernatant was used for measuring biotin(35).

Analyses

The measurements of the B-group vitamins except for vitamin

B6 were described previously(19). The urinary excretion of

4-pyridoxic acid, a catabolite of vitamin B6, was measured

according to the method of Gregory & Kirk(36).

Statistical analysis

Mean values between the treatment groups were compared

using the Mann–Whitney U two-tailed t test. P,0·05 was

considered to be statistically significant. All statistical analyses

were performed using GraphPad Prism version 5.0 (GraphPad

Software).

Results

Effects of ethanol feeding on the B-group vitamin contents
of liver, blood and urine in rats fed a diet containing
a sufficient-vitamin mixture (Expt 1)

There were no differences in body-weight gain and liver

weights between the groups. No differences in the levels of

vitamin B1, vitamin B2, vitamin B6, vitamin B12, nicotinamide,

pantothenic acid, folate and biotin were observed in the liver

A. Miyazaki et al.1036
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and blood. Although the 24 h urinary excretion of some of the

vitamins was slightly lower in the ethanol-treated group than

in the control, the differences were not significant (data

not shown). Thus, ethanol consumption did not affect the

B-group vitamin contents in the liver, blood and urine when

the rats were fed a diet containing sufficient amounts of

the vitamins.

Effects of ethanol feeding on the B-group vitamin contents
of liver, blood and urine in rats fed a diet containing
a low-vitamin mixture (Expt 2)

As shown in Table 1, body-weight gain, food intake and liver

weights were lower in the ethanol-fed group than in the

controls. The overall food intake was lower in the ethanol-

fed group than in the controls, but energy intake was almost

the same because of ethanol intake.

The effects of ethanol consumption on the activities of

alanine aminotransferase, aspartate aminotransferase and

g-glutamyltranspeptidase in plasma are shown in Table 2.

No significant effects of ethanol consumption were observed

for these indices of liver function.

The effects of ethanol consumption on the B-group vitamin

contents of the liver are shown in Table 3. The contents of the

vitamins in liver are measured as storage amounts of the vita-

mins, thus are expressed as mol/liver. The contents of vitamin

B1, vitamin B2 and pantothenic acid were lower in the etha-

nol-fed group than in the controls, whereas the contents of

vitamin B6, vitamin B12, nicotinamide, folate and biotin were

not significantly different.

The effects of ethanol consumption on the B-group vitamin

contents of the blood are shown in Table 4. The contents of

vitamin B1, vitamin B2, vitamin B6 and pantothenic acid

were lower in the ethanol-fed group than in the controls,

whereas the contents of vitamin B12, nicotinamide, folate

and biotin were not significantly different.

The effects of ethanol consumption on the 24 h urinary

excretion of the B-group vitamins are shown in Table 5. The

excretion of vitamin B1, vitamin B2, 4-pyridoxic acid (a catabo-

lite of vitamin B6), vitamin B12, pantothenic acid, folate and

biotin was lower in the ethanol-fed group than in the controls,

whereas the contents of nicotinamide (sum of the contents of

nicotinamide and its catabolites such as N 1-methylnicotina-

mide, 2-Py and 4-Py) were not significantly different.

Food intake was different in the two groups, so that urinary

excretion ratios of the vitamins were calculated. As shown in

Table 5, the excretion ratios of all vitamins except for vitamin

B12 were lower in the ethanol-fed group.

Discussion

An ordinary diet for rats generally contains sufficient amounts

of nutrients including vitamins(23). Under well-nourished

conditions, rats are generally little affected by factors such as

ethanol consumption. In fact, the present study proves that

ethanol consumption did not affect the body-weight gain or

the vitamin contents in the liver and blood when rats were

fed a diet containing sufficient amounts of vitamins. On the

other hand, when rats were fed a diet low in vitamins,

body-weight gain was lower in the ethanol-fed group than

in the control group and some vitamin contents of the

liver and blood, and urinary excretion were decreased.

These results show that chronic ethanol consumption affects

Table 1. Effects of ethanol consumption on rat body-weight gain, food
intake, ethanol intake, water intake, energy intake, food efficiency ratio
and liver weight (Expt 2)

(Mean values with their standard errors for five rats per group)

Control 15 % Ethanol

Mean SEM Mean SEM

Initial body weight (g) 36 1 36 1
Final body weight (g) 204 7 164* 8
Body-weight gain (g/28 d) 168 7 128* 3
Food intake (g/28 d) 363 14 258* 6
Ethanol intake† (g/28 d) – 45 3
Water intake (ml/28 d) 396 26 –
Energy intake‡ (kcal/28 d) 1488 58 1396 56
Energy intake‡ (kJ/28 d) 6230 242 5845 234
Food efficiency ratio§ 0·46 0·01 0·50 0·00
Energy efficiency ratiok 0·113 0·020 0·092 0·006
Liver weight (g) 9·70 0·55 8·47 0·36

* Mean values were significantly different from those of the control group (P,0·05;
Mann–Whitney U two-tailed t test).

† The value is expressed in g of pure ethanol and not as the volume of 15 %
ethanol.

‡ Energy of 1 g ethanol was calculated as 29·3 kJ (7 kcal)/g.
§ ( Body-weight gain/food intake) £ 100.
k (Body-weight gain/energy intake) £ 100.

Table 2. Effects of ethanol consumption on the activities of alanine
aminotransferase, aspartate aminotransferase and g-glutamyltranspepti-
dase in plasma

(Mean values with their standard errors for five rats per group)

Control 15 % Ethanol

Mean SEM Mean SEM

Alanine aminotransferase (IU/l) 22·4 1·9 24·8 2·0
Aspartate aminotransferase (IU/l) 157 11 136 10
g-Glutamyltranspeptidase (IU/l) 3·2 0·9 3·2 0·9

Table 3. Effect of ethanol consumption on liver B-group vitamin
contents (Expt 2)

(Mean values with their standard errors for five rats per group)

Control 15 % Ethanol

Mean SEM Mean SEM

Vitamin B1 (nmol/liver) 127 6 100* 4
Vitamin B2 (nmol/liver) 686 62 422* 16
Vitamin B6 (nmol/liver) 229 16 281 23
Vitamin B12 (nmol/liver) 0·39 0·03 0·38 0·02
Niacin (mmol/liver) 18·2 1·8 16·6 1·3
Pantothenic acid (mmol/liver) 3·16 0·19 2·42* 0·18
Folate (nmol/liver) 70·0 9·7 73·6 9·3
Biotin (nmol/liver) 9·31 1·10 9·65 0·46

* Mean values were significantly different from those of the control group (P,0·05;
Mann–Whitney U two-tailed t test).
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absorption, distribution and excretion of vitamins, as reported

previously(1–19). The present findings are not consistent with

the in vitro perfusion of rat liver with ethanol, which caused

the release of all B-vitamins except biotin from the liver

stores(23). This phenomenon was not observed in the present

whole-body experiment, because the vitamin contents of

the blood were not increased by ethanol consumption. In the

present in vivo experiment, any vitamins released from the

liver were quickly absorbed by non-hepatic tissues. In humans,

the typical dietary vitamin intakes are generally around the

minimum requirements. Thus, the nutritional status of rats

fed a diet low in vitamins was similar to that of humans. Etha-

nol consumption was 45 g over 28 d, so that daily average

ethanol consumption was about 1·6 g/d, which corresponds

to an energy intake of 46·9 kJ (11·2 kcal)/d. The energy

intake in the ethanol-fed group, including ethanol energy,

was 5845 kJ (1396 kcal) over 28 d (about 209 kJ (50 kcal)/d).

Thus, ethanol accounted for 20 % of dietary energy. Under

these conditions, liver functions in rats were not injured.

If humans were to consume 10 467 kJ (2500 kcal)/d, the equiv-

alent ethanol consumption would be about 70 g/d, which

corresponds to 1 litre of typical beer.

Vitamin depletion, common in malnourished alcoholic

patients(10), can occur despite vitamin supplementation.

Vitamin malabsorption(37), exacerbated by malnutrition, con-

tributes to this depletion(38). Also, in alcoholic patients, the

impaired ability of the liver to bind and store vitamins might

contribute to this depletion. This may probably be due to

the hepatotoxicity of ethanol, which impairs not only the vita-

min-binding capacity but also the vitamin storage of the liver.

In the present study, a diet containing 20 % casein sup-

plemented with methionine was used, which is an excellent

protein source from a nutritional standpoint. This suggest

the reasons why ethanol consumption did not cause any

severe damage, such as an extremely low food intake and

body-weight gain and roughness of fur for the rats, even

when they were fed a low-vitamin diet.

Sorrell et al.(21) reported that the in vitro perfusion of rat

liver with ethanol caused the release of all vitamins from the

liver stores, especially thiamin. It is generally considered

that this phenomenon causes increased urinary excretion

of vitamins, but in the present in vivo experiments, ethanol

consumption did not cause increased urinary excretion, but

rather decreased it. This discrepancy between the expected

and the actual findings may be attributed to the difference

between the in vitro and in vivo experiments. Moreover,

there are differences in short-term and long-term adjustment

mechanisms for ethanol toxicity. The protein nutritional

status was high in the present study because the diet used

20 % casein supplemented with methionine. Protein plays a

pivotal role in vitamin absorption and storage in hepatocytes.

Protein malnutrition causes malabsorption, reduced storage

and impaired utilisation of vitamins. Thus, an adequate

intake of vitamins, and also protein, is essential for preventing

ethanol toxicity.

In the present study on the low-vitamin diet, vitamin B1,

vitamin B2 and pantothenic acid contents in the liver and

blood were lower in the ethanol-fed group than in the con-

trols, even when rats were fed a high-protein diet. Further-

more, the total urinary excretion and excretion ratios of all

three vitamins were also lower in the ethanol-fed group.

Thus, ethanol consumption reduced the intestinal absorption

of these vitamins, as reported by Subramanya et al.(12),

Hamid et al.(13,14,16,17) and Wani & Kaur(19). Vitamins such as

Table 4. Effect of ethanol consumption on blood B-group vitamin
contents (Expt 2)

(Mean values with their standard errors for five rats per group)

Control 15 % Ethanol

Mean SEM Mean SEM

Vitamin B1 (pmol/ml) 159 4 139* 6
Vitamin B2 (pmol/ml) 177 5 142* 4
Vitamin B6 (nmol/ml) 0·49 0·04 0·34* 0·02
Vitamin B12 (pmol/ml) 1·55 0·03 1·41 0·01
Niacin (nmol/ml) 127 6 117 2
Pantothenic acid (nmol/ml) 1·13 0·04 0·89* 0·04
Folate (pmol/ml) 149 4 138 10
Biotin (pmol/ml) 30·4 3·4 25·9 1·0

* Mean values were significantly different from those of the control group (P,0·05;
Mann–Whitney U two-tailed t test).

Table 5. Effect of ethanol consumption on urinary B-group vitamin
excretion (upper row) and urinary excretion ratio (lower row) for each of
the vitamins (Expt 2)†

(Mean values with their standard errors for five rats per group)

Control 15 % Ethanol

Mean SEM Mean SEM

Vitamin B1

nmol/d 3·5 0·1 1·8* 0·1
% 3·4 0·2 2·7* 0·2

Vitamin B2

nmol/d 3·6 0·3 0·15* 0·04
% 3·8 0·2 0·24* 0·05

4-PIC‡
nmol/d 29·4 1·9 7·3* 0·5
% 15·6 0·5 4·5* 0·3

Vitamin B12

pmol/d 9·1 0·4 6·7* 0·2
% 8·9 0·3 9·1 0·2

Niacin§
mmol/d 2·00 0·16 1·82 0·24
% –k –k

Pantothenic acid
nmol/d 24·3 2·4 6·3* 0·3
% 6·5 0·5 2·4* 0·2

Folate
nmol/d 1·85 0·19 0·77* 0·11
% 7·3 0·7 4·4* 0·6

Biotin
nmol/d 0·21 0·02 0·09* 0·01
% 5·0 0·4 3·0* 0·25

4-PIC, 4-pyridoxic acid.
* Mean values were significantly different from those of the control group (P,0·05;

Mann–Whitney U two-tailed t test).
† Percentage urinary excretion ratio was calculated using the following equation:

(24 h urinary excretion (mol/d)/intake of the vitamin during urine collection
(mol/d)) £ 100.

‡ A catabolite of vitamin B6.
§ Niacin content was calculated as the sum of the nicotinamide content and its

catabolites such as N 1-methylnicotinamide, N 1-methyl-2-pyridone-5-carboxamide
and N 1-methyl-4-pyridone-3-carboxamide.

kUrinary excretion ratio was not calculated as niacin was derived from tryptophan.
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vitamin B1, vitamin B2 and pantothenic acid might be directly

and/or indirectly involved in the metabolism of ethanol, indi-

cating that the vitamin catabolites increased and were excreted

into the urine. Of these three vitamins, only the catabolic fate

of vitamin B1 is relatively well known. It has been reported

that the excretion of vitamin B1 metabolites usually exceeds

by far the excretion of intact vitamin B1 using radioactive

tracer experiments(39). The major metabolites of vitamin B1 in

rat urine are 2-methyl-4-amino-5-pyridinecarboxylic acid(40),

4-methylthiazole-5-acetic acid(41) and thiamine acetic acid(42).

Pearson(39) reported that the sum of the metabolites accounted

for about 50 % of the total urinary excretion of vitamin B1 and

its catabolites from radioactive tracer experiments. Although

we cannot measure the catabolites of vitamin B1, these metab-

olites might increase in the urine of the ethanol-fed rats. It is

likely that a similar phenomenon would apply for the fates

of vitamin B2 and pantothenic acid.

The content of vitamin B6 in the blood was lower in

the ethanol-fed group, but the content of vitamin B6 in the

liver was slightly higher in the ethanol-fed group than in the

control. The urinary excretion of vitamin B6, determined

from its catabolite 4-pyridoxic acid, was much lower in

the ethanol-fed group than in the control. Probably ethanol

consumption resulted in an increased storage of vitamin B6

in the liver.

Other B-group vitamin contents in the liver and blood, such

as vitamin B12, nicotinamide, folate and biotin, were not

affected by ethanol consumption. The lack of any effect of

ethanol consumption on the niacin content in this experiment

was probably because nicotinamide was synthesised from

tryptophan, which was present in the diet as casein and was

supplied adequately(43). For rats, NAD precursors such as nic-

otinic acid and nicotinamide are not essential. In fact, the urin-

ary excretion of nicotinamide did not differ between the two

groups. Concerning the effect of ethanol consumption on

biotin, Sorrell et al.(21) reported that the in vitro perfusion of

rat liver with ethanol did not cause the release of biotin, but

caused the release of vitamin B12 first. In the present exper-

iment, a similar phenomenon was observed for biotin, but

not for vitamin B12. Frank et al.(44) reported that the first vita-

min released into the circulation during hepatic insult by etha-

nol is vitamin B12. This disparity between the reported and the

present findings might also arise from the difference in protein

nutritional status.

There are many reports concerning how ethanol consump-

tion affects folate absorption and metabolism(13–18,45–53).

Some studies have reported that ethanol consumption

increased the urinary excretion of folates(46,47,50–53) and

caused decreased serum folate levels. Romanoff et al.(53)

reported that acute ethanol exposure inhibits the apical trans-

port of 5-methyltetrahydrofolate in cultured human proximal

tubule cells, and in subchronic ethanol studies, increasing

concentrations of ethanol resulted in an up-regulation of

folate transporters. Furthermore, Romanoff et al.(53) reported

that both the folate receptor and reduced folate carrier trans-

porter proteins were up-regulated in rats receiving an ethanol

diet. On the contrary, Hamid et al.(13,14,16,17) and Wani &

Kaur(19) reported that ethanol reduced the intestinal uptake

of folate by altering the binding and transport kinetics of the

folate transport system and also the expression of folate trans-

porters in the intestine. In addition, Hamid & Kaur(15) reported

that ethanol consumption reduces folate re-uptake in the renal

absorption system by the decreased expression of transpor-

ters. The present data for folate are not consistent with

previous reports(13–18,45–53); the contents of folate in the

liver and blood were not affected by ethanol consumption,

and the urinary excretion of folate and the excretion ratio

were decreased markedly. A study(52) reported that urinary

folate excretion increased in ethanol-fed rats consuming

folate-containing diets, but not in rats fed folate-deficient

diets. In the present study, the urinary excretion of folate

did not increase, but decreased. This was because the diet

was low in folate. In the present study, the urinary excretion

of folate was lower in the ethanol-fed group than in the

non-ethanol group, suggesting that ethanol consumption

and the feeding of a low-folate diet up-regulated the folate

receptor and reduced folate carrier transporter proteins. This

up-regulation was probably a compensatory response to

counteract the effects of ethanol in inhibiting the reabsorption

of folate. Therefore, the effects of ethanol would depend on

the dose and duration of treatment.

In summary, these results show that ethanol consumption

affects the absorption, distribution and excretion of each of

the vitamins in rats fed a diet containing a low-vitamin

mixture. On the other hand, when rats were fed a 20 %

casein diet containing a sufficient amount of vitamins, ethanol

consumption did not affect any factors that we measured.
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