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Abstract

In the classic Dubins–Savage subfair primitive casino gambling problem, the gambler can
stake any amount in his possession, winning (1− r)/r times the stake with probability w

and losing the stake with probability 1 − w, 0 ≤ w ≤ r ≤ 1. The gambler seeks to
maximize the probability of reaching a fixed fortune (the goal) by gambling repeatedly
with suitably chosen stakes. This problem has recently been extended in a unifying
framework to account for limited playing time as well as future discounting, under which
bold play is known to be optimal provided that w ≤ 1

2 ≤ r . This paper is concerned with
a further extension of the Dubins–Savage gambling problem involving time-dependent
parameters, and shows that bold play not only maximizes the probability of reaching the
goal, but also stochastically minimizes the number of plays needed to reach the goal. As
a result, bold play also maximizes the expected utility, where the utility at the goal is only
required to be monotone decreasing with respect to the number of plays needed to reach
the goal. It is further noted that bold play remains optimal even when the time-dependent
parameters are random.
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1. Introduction

In the classic Dubins–Savage primitive casino gambling problem with parameters 0 < r ≤ 1
and 0 ≤ w ≤ 1, the gambler can stake any amount in his possession, winning r̄/r times the stake
with probability w and losing the stake with probability w̄, where r̄ = 1 − r and w̄ = 1 − w.
The gambler seeks to maximize the probability of reaching a fixed fortune (to be normalized
to unity) by gambling repeatedly with suitably chosen stakes. In an ingenious proof, Dubins
and Savage [5, Chapter 6] showed that, for the subfair case, in which w ≤ r , the maximum
probability of reaching fortune 1 (the goal) is attained by the bold strategy ‘staking on each
play as much as possible without risk of overshooting the goal’, i.e. staking min{f, (1−f )r/r̄}
if the current fortune is 0 < f < 1. When the gambler is allowed to play at most n times
(1 ≤ n < ∞), Dvoretzky proved (see [5, pp. 92–95]) that bold play remains optimal provided
that either w ≤ 1

2 = r (the subfair ‘red-and-black’ casino setting) or w = 1
2 ≤ r (the ‘taxed-

coin’ casino setting).
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Chen [2] introduced an inflation-discounted version of the Dubins–Savage gambling problem
in which the gambler’s fortune is discounted after each play by a factor of α, 0 ≤ α ≤ 1, while
the objective remains to maximize the probability of reaching (discounted) fortune 1. Note that
ᾱ/α = (1 − α)/α ≥ 0 may be interpreted as the interest or inflation rate, where 1/0 is defined
as ∞. For this inflation-discounted version, if the gambler stakes an amount s of his fortune f

then his fortune becomes α(f + sr̄/r) with probability w and α(f − s) with probability w̄.
To play boldly is to stake min{f, (α−1 − f )r/r̄} when the current fortune is 0 < f < 1.
Chen [2] proved that the bold strategy is optimal if w ≤ 1

2 = r , which has been improved to
the more general condition w ≤ 1

2 ≤ r by Chen et al. [4]. It was further extended in [15] to
the finite-horizon setting and shown that when the gambler is allowed to play at most n times
(1 ≤ n < ∞), the bold strategy remains optimal provided that w ≤ 1

2 ≤ r . It should be noted
that the bold strategy depends on the inflation-discount factor α, but not on the finite horizon n.

Let τB and τS respectively denote the number of plays needed for the bold strategy and
an arbitrary strategy S to reach the goal. Note that τB and τS are extended-valued stopping
times such that {τB < ∞} and {τS < ∞} are the events that the bold strategy and strategy S,
respectively, eventually reach the goal. While Chen et al. [4] showed that P(τB < ∞) ≥
P(τS < ∞), it follows from [15] that, for each n = 1, 2, . . . , P(τB ≤ n) ≥ P(τS ≤ n),
implying that τB is stochastically smaller than τS . In other words, the bold strategy not only
maximizes the probability of reaching the goal, but also stochastically minimizes the number
of plays needed to reach the goal. (This latter stochastic minimization property of the bold
strategy is not explicitly pointed out in [15].)

This paper is concerned with a further extension of the Dubins–Savage gambling problem
involving time-dependent parameters. Specifically, given the sequences r = (r1, r2, . . .), w =
(w1, w2, . . .), and α = (α1, α2, . . .), if the gambler stakes an amount s of his fortune f on
the kth play then his fortune becomes αk(f + sr̄k/rk) with probability wk and αk(f − s)

with probability w̄k , where r̄k = 1 − rk and w̄k = 1 − wk . The objective is to maximize
the probability of reaching fortune 1 in n plays (1 ≤ n ≤ ∞). (Here n = ∞ refers to
the infinite-horizon setting.) To play boldly on the kth play with fortune 0 < f < 1 is to
stake min{f, (α−1

k − f )rk/r̄k}, which depends on rk and αk . In the next section it is shown
(Theorem 1) that under the condition

0 ≤ · · · ≤ w2 ≤ w1 ≤ 1
2 ≤ r1 ≤ r2 ≤ · · · ≤ 1 and 0 ≤ αk ≤ 1 for all k, (1)

the bold strategy both maximizes the probability of reaching the goal and stochastically min-
imizes the number of plays needed to reach the goal. This result includes [15, Theorem 1]
as a special case. It is also noted (Remark 2) that the bold strategy maximizes the expected
utility, where the utility at the goal is only required to be monotone decreasing with respect to
the number of plays needed to reach the goal. Furthermore, it is observed (Remark 3) that the
bold strategy remains optimal even when the time-dependent parameters are random. Section 3
contains technical proofs. We close this section by mentioning that results on the optimality
of the bold strategy for continuous-time gambling problems can be found in [14] and recent
works on related problems can be found in [1], [6], [9], [10], [11], [13], and [16].

2. Main results

Write H = (r, w, α), which specifies the time-dependent parameter values, and let
Qn(f ; H ), 0 ≤ n ≤ ∞, denote the probability of reaching the goal in n plays under the
bold strategy (with initial fortune f ). Here Q∞(f ; H ) is the probability of attaining the goal
when the gambler uses the bold strategy with unlimited playing time. Note that Q0(f ; H ) =
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1[1,∞)(f ), where 1A denotes the indicator function of a set A, and that Qn(f ; H ) depends on
H = (r, w, α) only through the first n components of each of r , w, and α. By conditioning on
the first play, we have, for 0 < α1 ≤ 1 and n = 0, 1, . . . ,

Qn+1(f ; H ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w1Qn

(
α1f

r1
; H (1)

)
if 0 ≤ f < min{r1/α1, 1},

w̄1Qn

(
f − r1/α1

r̄1/α1
; H (1)

)
+ w1 if min{r1/α1, 1} ≤ f < 1,

1 if f ≥ 1,

(2)

where H (k) = (r(k), w(k), α(k)), r(k) = (rk+1, rk+2, . . .), w(k) = (wk+1, wk+2, . . .), and
α(k) = (αk+1, αk+2, . . .), k = 1, 2, . . . .

To prove (2), suppose that the gambler is allowed to play at most n + 1 times with the time-
dependent parameter vector H = (r, w, α). If his initial fortune is 0 ≤ f < min{r1/α1, 1}
then, under the bold strategy, he would stake all of his fortune on the first play. He either goes
broke (with probability w̄1) or has a fortune of α1f/r1 < 1 (with probability w1). In the latter
case, he can still play up to n times for which the relevant time-dependent parameter values
are (r2, . . . , rn+1), (w2, . . . , wn+1), and (α2, . . . , αn+1). In other words, upon winning the
first bet, the gambler faces a new situation with (current) fortune α1f/r1, horizon n, and time-
dependent parameter vector H (1) replacing, respectively, (original) f , n+ 1, and H . So, given
that the gambler wins the first bet, the conditional probability that the gambler, using the bold
strategy, reaches the goal (in at most n more plays) equals Qn(α1f/r1; H (1)). It follows that
Qn+1(f ; H ) = w1Qn(α1f/r1; H (1)) if 0 ≤ f < min{r1/α1, 1}. If min{r1/α1, 1} ≤ f < 1
(which is not vacuous only when r1/α1 < 1) then, under the bold strategy, the gambler stakes
an amount s = (α−1

1 − f )r1/r̄1 of his fortune f on the first play. He either wins the bet to
reach the goal (with probability w1) or loses the bet with a remaining fortune of (α1f − r1)/r̄1
(with probability w̄1). In the latter case the gambler faces a new situation with (current) fortune
(α1f − r1)/r̄1, horizon n, and time-dependent parameter vector H (1) replacing, respectively,
(original) f , n + 1, and H . So, given that the gambler loses the first bet, the conditional
probability that the gambler, using the bold strategy, reaches the goal (in at most n more plays)
equals Qn((α1f −r1)/r̄1; H (1)). It follows that Qn+1(f ; H ) = w̄1Qn((α1f −r1)/r̄1; H (1))+
w1 if min{r1/α1, 1} ≤ f < 1. This proves (2). Furthermore, it is readily seen that, as n → ∞,
Qn(f ; H ) increases to Q∞(f ; H ).

Next, let Un(f ; H ) denote the maximum probability of attaining the goal with initial
fortune f when the gambler is allowed to play at most n times (n = 0, 1, 2, . . . ), and let
U∞(f ; H ) be the maximum probability of attaining the goal with initial fortune f when there
is unlimited playing time. Then U0(f ; H ) = 1[1,∞)(f ), f ≥ 0. By conditioning on the first
play, we have, for n = 0, 1, . . . ,

Un+1(f ; H ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup

{
w̄1Un(α1(f − y); H (1))

+ w1Un

(
α1

(
f + yr̄1

r1

)
; H (1)

)
: 0 ≤ y ≤ f

}
if 0 ≤ f < 1,

1 if f ≥ 1.

(3)

To prove (3), note that, for each y with 0 ≤ y ≤ f < 1, w̄1Un(α1(f −y); H (1))+w1Un(α1(f +
yr̄1/r1); H (1)) is the probability of reaching the goal when the gambler stakes the amount y
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out of his fortune f on the first play and then plays optimally in the next (up to) n plays. It
follows that the maximum value of this probability over 0 ≤ y ≤ f must equal Un+1(f ; H ),
the maximum probability of reaching the goal in n + 1 plays. This proves (3). Furthermore, as
n → ∞, Un(f ; H ) increases to U∞(f ; H ) (cf. [5, Section 2.15] and [8, Section 3.6]).

Theorem 1. If H = (r, w, α) satisfies condition (1) then the maximum probability of reaching
the goal in n plays (1 ≤ n ≤ ∞) is attained by the bold strategy, i.e. Qn(f ; H ) = Un(f ; H )

for f ≥ 0 and n = 0, 1, . . . ,∞.

Proof. It follows from (2) and Proposition 1, below, that, for n = 0, 1, . . . ,

Qn+1(f ; H ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup

{
w̄1Qn(α1(f − y); H (1))

+ w1Qn

(
α1

(
f + yr̄1

r1

)
; H (1)

)
: 0 ≤ y ≤ f

}
if 0 ≤ f < 1,

1 if f ≥ 1.

In view of (3), the two sequences of functions {Qn(f ; H ), n = 0, 1, . . . } and {Un(f ; H ),

n = 0, 1, . . . } satisfy the same recursion equation with the same initial condition Q0(f ; H ) =
U0(f ; H ) = 1[1,∞](f ). Note that if H satisfies condition (1), so does H (1). By induction, for
all H satisfying condition (1) and all f ≥ 0, we have Qn(f ; H ) = Un(f ; H ) for n = 0, 1, . . .

and Q∞(f ; H ) = limn→∞ Qn(f ; H ) = limn→∞ Un(f ; H ) = U∞(f ; H ). The proof is
complete.

Proposition 1. Assume that H = (r, w, α) satisfies condition (1). Then, for n = 0, 1, . . . and
0 ≤ y ≤ f < 1,

Qn+1(f ; H ) ≥ w̄1Qn(α1(f − y); H (1)) + w1Qn

(
α1

(
f + yr̄1

r1

)
; H (1)

)
. (4)

The proof of Proposition 1 is given in Section 3. A few remarks are in order.

Remark 1. Condition (1) requires the pair (rk, wk) to be less favorable to the gambler for
larger k. However, the ‘inflation-discount’ sequence α is not required to be monotone.

Remark 2. Suppose that H = (r, w, α) satisfies (1). Let τB and τS respectively denote the
number of plays needed for the bold strategy and an arbitrary strategy S to reach the goal. It
follows from Theorem 1 that

P(τB ≤ n) ≥ P(τS ≤ n), n = 1, 2, . . . , and P(τB < ∞) ≥ P(τS < ∞),

implying that τB is stochastically smaller than τS (i.e. the bold strategy stochastically minimizes
the number of plays needed to reach the goal). By a standard result on stochastic ordering
(see, e.g. [12, p. 4]), we have E β(τB) ≥ E β(τS) for any monotone decreasing sequence
β(1) ≥ β(2) ≥ · · · ≥ β(∞) > −∞. Here β(k), k = 1, 2, . . . , may be interpreted as
the utility received by the gambler if the goal is reached on the kth play, and the sequence
{β(k), k = 1, 2, . . . ,∞} is referred to as a utility-discount sequence. Hence, the bold strategy
maximizes the expected utility with respect to any utility-discount sequence which is monotone
decreasing. Note that the sequence β(k) = 1 for 1 ≤ k ≤ n and β(k) = 0 for n + 1 ≤ k ≤ ∞
corresponds to the finite-horizon setting, where the gambler is allowed to play at most n times,
and that the sequence β(k) = ρk, 1 ≤ k ≤ ∞, for some 0 < ρ < 1 is the geometric discount
setting which was first studied by Klugman [7] and later by Chen and Zame [3].
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Remark 3. To execute the kth play under the bold strategy, all the gambler needs to know is the
current fortune and the values of rk and αk . No knowledge of the later values of the parameters
is needed. So the bold strategy is in fact optimal in the more general stochastic setting where
H = (r, w, α) is random, satisfying condition (1) with probability 1, and (rk, αk) is unavailable
to the gambler until the kth play.

3. Proofs of Proposition 1 and some auxiliary lemmas

The following lemmas are needed in order to prove Proposition 1. Both Lemmas 1 and 2
follow from (2) easily.

Lemma 1. For n = 0, 1, . . . , Qn(f ; H ) is nondecreasing in f .

Lemma 2. For given H = (r, w, α), let Ĥ = (r, w, α̂), where α̂ = (α̂1, α2, α3, . . . ) with
0 < α1 ≤ α̂1 ≤ 1. Then we have

Qn(f ; H ) = Qn

(
α1f

α̂1
; Ĥ

)

for n = 0, 1, . . . and 0 ≤ f < 1.

Lemma 3. Assume that 0 < α1 ≤ 1 and r1 < 1. Then (4) holds for (α−1
1 − f )r1/r̄1 ≤ y ≤

f < 1.

Proof. The lemma holds trivially (vacuously) if (α−1
1 − f )r1/r̄1 > f (i.e. f < r1/α1).

Consider the case in which (α−1
1 − f )r1/r̄1 ≤ f < 1 (i.e. 1 > f ≥ r1/α1), and let

B(f ) := min

{
f,

(α−1
1 − f )r1

r̄1

}
= (α−1

1 − f )r1

r̄1
.

Then, for B(f ) ≤ y ≤ f , we have

Qn+1(f ; H ) = w̄1Qn(α1(f − B(f )); H (1)) + w1

≥ w̄1Qn(α1(f − y); H (1)) + w1Qn

(
α1

(
f + yr̄1

r1

)
; H (1)

)
,

by (2), Lemma 1, and the fact that Qn(x; H (1)) = 1 for x ≥ 1, completing the proof.

Lemma 4. Fix m ≥ 1, and let H1 = (r, w, α) be fixed and satisfy (1), where 0 < α1 ≤ 1,
0 < α2 ≤ 1, 0 < w2 ≤ w1, and r1 ≤ r2 < 1. Consider the following statements.

(S1) Inequality (4) holds for n = m, H = H1, and all 0 ≤ y ≤ f < 1.

(S2) Inequality (4) holds for n = m, H = H2 := (r, w, ᾱ), and all 0 ≤ y ≤ f < 1, where
ᾱ = (1, α2, α3, . . . ).

(S3) Inequality (4) holds for n = m, H = H3 := (r, w, α̃), and all 0 ≤ y ≤ f < 1, where
α̃ = (1, 1, α3, α4, . . . ).

(S4) Inequality (4) holds for n = m, H = H4 := (r, w̃, α̃), and all 0 ≤ y ≤ f < 1, where
w̃ = (w2, w2, w3, w4, . . . ).

(S5) Inequality (4) holds for n = m, H = H5 := (̃r, w̃, α̃), and all 0 ≤ y ≤ f < 1, where
r̃ = (r2, r2, r3, r4, . . . ).
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Then (S5) ⇒ (S4) ⇒ (S3) ⇒ (S2) ⇒ (S1), where A ⇒ B signifies that statement A implies
statement B.

Proof. (i) (S2) ⇒ (S1): For any 0 ≤ y ≤ f < 1, we have

Qm+1(f ; H1) = Qm+1(α1f ; H2)

≥ w̄1Qm(α1f − α1y; H
(1)
2 ) + w1Qm

(
α1f + α1yr̄1

r1
; H

(1)
2

)

= w̄1Qm(α1(f − y); H
(1)
1 ) + w1Qm

(
α1

(
f + yr̄1

r1

)
; H

(1)
1

)
,

where the first equality follows from Lemma 2, the inequality follows from statement (S2), and
the last equality follows from H

(1)
1 = H

(1)
2 .

(ii) (S3) ⇒ (S2): By (2) and Lemma 2, we have, for 0 ≤ f < r1,

Qm+1(f ; H2) = w1Qm

(
f

r1
; H

(1)
2

)
= w1Qm

(
α2f

r1
; H

(1)
3

)
, (5)

and, for r1 ≤ f < 1,

Qm+1(f ; H2) = w̄1Qm

(
f − r1

r̄1
; H

(1)
2

)
+ w1 = w̄1Qm

(
α2(f − r1)

r̄1
; H

(1)
3

)
+ w1. (6)

We claim that, for 0 ≤ f < 1,

Qm+1(f ; H2) ≥ Qm+1(α2f ; H3). (7)

If f < min{1, r1/α2} (implying that α2f < r1 ≤ 1), we have, by (2),

Qm+1(α2f ; H3) = w1Qm

(
α2f

r1
; H

(1)
3

)
,

which either equals Qm+1(f ; H2) if f < r1 ≤ min{1, r1/α2} (by (5)) or is bounded from above
by w1 and, hence, by Qm+1(f ; H2) if r1 ≤ f < min{1, r1/α2} (by (6)). If r1/α2 ≤ f < 1
(which is not vacuous only when r1/α2 < 1) then we have

Qm+1(α2f ; H3) = w̄1Qm

(
α2f − r1

r̄1
; H

(1)
3

)
+ w1

≤ w̄1Qm

(
α2(f − r1)

r̄1
; H

(1)
3

)
+ w1

= Qm+1(f ; H2),

where the inequality follows from the monotonicity of Qm (Lemma 1) and the last equality
follows from (6). This proves (7), which together with statement (S3) and Lemma 2 yields, for
0 ≤ y ≤ f < 1 and f + yr̄1/r1 < 1,

Qm+1(f ; H2) ≥ Qm+1(α2f ; H3)

≥ w̄1Qm(α2f − α2y; H
(1)
3 ) + w1Qm

(
α2f + α2yr̄1

r1
; H

(1)
3

)

= w̄1Qm(f − y; H
(1)
2 ) + w1Qm

(
f + yr̄1

r1
; H

(1)
2

)
.
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By Lemma 3, for 0 ≤ y ≤ f < 1 and f + yr̄1/r1 ≥ 1 (implying that (1 − f )r1/r̄1 ≤ y ≤
f < 1),

Qm+1(f ; H2) ≥ w̄1Qm(f − y; H
(1)
2 ) + w1Qm

(
f + yr̄1

r1
; H

(1)
2

)
.

This proves that (4) holds for n = m, H = H2, and all 0 ≤ y ≤ f < 1.

(iii) (S4) ⇒ (S3): To prove that (4) holds for 0 ≤ y ≤ f < 1, n = m, and H = H3, it suffices
(by Lemma 3) to consider 0 ≤ y < (1 − f )r1/r̄1. We now assume that 0 ≤ y < B(f ) :=
min{f, (1 − f )r1/r̄1} (the ‘bold stake’ on the first play with respect to both H3 and H4). We
have, by (2), H

(1)
3 = H

(1)
4 , w1 ≥ w2, Lemma 1, and y < B(f ),

Qm+1(f ; H3) − Qm+1(f ; H4)

=
(

w̄1Qm(f − B(f ); H
(1)
3 ) + w1Qm

(
f + B(f )r̄1

r1
; H

(1)
3

))

−
(

w̄2Qm(f − B(f ); H
(1)
4 ) + w2Qm

(
f + B(f )r̄1

r1
; H

(1)
4

))

= (w1 − w2)

(
Qm

(
f + B(f )r̄1

r1
; H

(1)
3

)
− Qm(f − B(f ); H

(1)
3 )

)

≥ (w1 − w2)

(
Qm

(
f + yr̄1

r1
; H

(1)
3

)
− Qm(f − y; H

(1)
3 )

)
.

Then it follows from statement (S4) and H
(1)
3 = H

(1)
4 that

Qm+1(f ; H3) −
(

w̄1Qm(f − y; H
(1)
3 ) + w1Qm

(
f + yr̄1

r1
; H

(1)
3

))

≥ Qm+1(f ; H4) −
(

w̄2Qm(f − y; H
(1)
3 ) + w2Qm

(
f + yr̄1

r1
; H

(1)
3

))
≥ 0,

proving (4) for 0 ≤ y < B(f ), n = m, and H = H3.

(iv) (S5) ⇒ (S4): To prove that (4) holds for 0 ≤ y ≤ f < 1, n = m, and H = H4, it suffices
(by Lemma 3) to consider 0 ≤ y < (1 − f )r1/r̄1, implying that

f + yr̄1

r1
< 1. (8)

Let y′ = r2y/r1 and f ′ = f + (r2 − r1)y/r1. It is easily checked that

0 ≤ y′ ≤ f ′, f ′ − y′ = f − y, f ′ + y′r̄2

r2
= f + yr̄1

r1
. (9)

Note that, by (8), f ′ ≤ f + (1 − r1)y/r1 < 1. Then, by statement (S5), (9), and H
(1)
4 = H

(1)
5 ,

Qm+1(f
′; H5) ≥ w̄2Qm(f ′ − y′; H

(1)
5 ) + w2Qm

(
f ′ + y′r̄2

r2
; H

(1)
5

)

= w̄2Qm(f − y; H
(1)
4 ) + w2Qm

(
f + yr̄1

r1
; H

(1)
4

)
.
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It now suffices to show that

Qm+1(f
′; H5) ≤ Qm+1(f ; H4). (10)

For 0 ≤ f < r1, we have

f ′ ≤ f + (r2 − r1)f

r1
= r2f

r1
< r2,

so by (2), Lemma 1, and H
(1)
4 = H

(1)
5 ,

Qm+1(f ; H4) = w2Qm

(
f

r1
; H

(1)
4

)
≥ w2Qm

(
f ′

r2
; H

(1)
4

)
= Qm+1(f

′; H5),

proving (10). For r1 ≤ f < 1, we have, by (2),

Qm+1(f ; H4) = w̄2Qm

(
f − r1

r̄1
; H

(1)
4

)
+ w2. (11)

If f ′ < r2 then, by (2) and (11), Qm+1(f
′; H5) ≤ w2 ≤ Qm+1(f ; H4), proving (10). If

r2 ≤ f ′ < 1 then

Qm+1(f
′; H5) = w̄2Qm

(
f ′ − r2

r̄2
; H

(1)
5

)
+ w2

≤ w̄2Qm

(
f − r1

r̄1
; H

(1)
5

)
+ w2

= Qm+1(f ; H4),

proving (10), where the inequality follows from Lemma 1 and the fact that

f − r1

r̄1
− f ′ − r2

r̄2
= r2 − r1

r̄1r̄2

(
1 −

(
f + y

r̄1

r1

))
≥ 0

(by (8)). The proof is complete.

Proof of Proposition 1. We proceed by induction on n. Clearly, (4) holds for n = 0, all
0 ≤ y ≤ f < 1, and all H = (r, w, α) satisfying (1). Suppose that (4) holds for all n < m

(m ≥ 1), all 0 ≤ y ≤ f < 1, and all H = (r, w, α) satisfying (1). We now prove that, for
0 ≤ y ≤ f < 1 and H satisfying (1),

Qm+1(f ; H ) ≥ w̄1Qm(α1(f − y); H (1)) + w1Qm

(
α1

(
f + yr̄1

r1

)
; H (1)

)
. (12)

If (1 − r1)w1α1 = 0 then Qk(f ; H ) = 0 for 0 ≤ f < 1 and k ≥ 1, so (12) holds trivially.
If (1 − r2)w2α2 = 0 then Qm+1(f ; H ) = Q1(f ; H ) and Qm(f ; H (1)) = Q0(f ; H (1)) =
1[1,∞)(f ), so (12) reduces to (4) with n = 0, which holds trivially. Hence, it remains to
consider those H satisfying (1) and 0 < α1 ≤ 1, 0 < α2 ≤ 1, 0 < w2 ≤ w1, and r1 ≤ r2 < 1.
In view of Lemma 4, it suffices to prove (12) for 0 ≤ y ≤ f < 1 and H satisfying (1) and
α1 = α2 = 1, 0 < w1 = w2 =: w, and 1 > r1 = r2 =: r , i.e. α = (1, 1, α3, α4, . . . ), w =
(w, w, w3, w4, . . . ), and r = (r, r, r3, r4, . . . ).
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We now establish (12) for 0 = y < f < 1, i.e. Qm+1(f ; H ) ≥ Qm(f ; H (1)), noting that
H satisfies α1 = α2 = 1, 0 < w1 = w2 = w ≤ 1

2 , and 1
2 ≤ r1 = r2 = r < 1. For 0 < f < r ,

we have, by (2) and the induction hypothesis,

Qm+1(f ; H ) = wQm

(
f

r
; H (1)

)

≥ w

(
w̄Qm−1

(
f

r
− 0; H (2)

)
+ wQm−1

(
f

r
+ 0 · r̄

r
; H (2)

))

= wQm−1

(
f

r
; H (2)

)
= Qm(f ; H (1)),

and, for r ≤ f < 1,

Qm+1(f ; H ) = w̄Qm

(
f − r

r̄
; H (1)

)
+ w

≥ w̄

(
w̄Qm−1

(
f − r

r̄
− 0; H (2)

)
+ wQm−1

(
f − r

r̄
+ 0 · r̄

r
; H (2)

))
+ w

= w̄Qm−1

(
f − r

r̄
; H (2)

)
+ w

= Qm(f ; H (1)),

proving (12) for 0 = y < f < 1. In view of Lemma 3, it remains to prove (12) for

0 < y < min

{
f,

(1 − f )r

r̄

}
=: B(f ). (13)

Since (13) implies that

0 < f − y < f < f + yr̄

r
< 1, (14)

it suffices to consider the following four cases separately. (The rest of the proof follows the one
in [15, Lemma 1] closely.)

Case (i): f − y < f < f + yr̄/r ≤ r . In this case B(f ) = f . By (2) and the induction
hypothesis,

Qm+1(f ; H ) = wQm

(
f

r
; H (1)

)

≥ w

(
w̄Qm−1

(
f

r
− y

r
; H (2)

)
+ wQm−1

(
f

r
+ y

r

r̄

r
; H (2)

))

= w̄

(
wQm−1

(
f − y

r
; H (2)

))
+ w

(
wQm−1

(
f + yr̄/r

r
; H (2)

))

= w̄Qm(f − y; H (1)) + wQm

(
f + yr̄

r
; H (1)

)
,

proving (12).
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Case (ii): r ≤ f − y < f < f + yr̄/r . Let f ′ = (f − r)/r̄ and y′ = y/r̄ . Note that
0 < y′ ≤ f ′ < 1 (since r ≤ f − y implies that y′ ≤ f ′) and that f − B(f ) = f ′ (since
B(f ) = (1 − f )r/r̄). By (2) and the induction hypothesis,

Qm+1(f ; H ) = w̄Qm(f ′; H (1)) + w

≥ w̄

(
w̄Qm−1(f

′ − y′; H (2)) + wQm−1

(
f ′ + y′r̄

r
; H (2)

))
+ w

= w̄(w̄Qm−1(f
′ − y′; H (2)) + w)

+ w

(
w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
+ w

)

= w̄Qm(f − y; H (1)) + wQm

(
f + yr̄

r
; H (1)

)
,

proving (12), where the second equality follows from the fact that

f ′ + y′r̄
r

= f + y r̄/r − r

r̄

and the last equality follows from (2) and the fact that

f ′ − y′ = f − y − r

r̄
.

Case (iii): f − y < f < r < f + yr̄/r . Since y < f = B(f ), we have

r < f + yr̄

r
<

f

r
< 1.

So, by (2),

Qm+1(f ; H ) = wQm

(
f

r
; H (1)

)

= w

(
w̄Qm−1

(
f/r − r

r̄
; H (2)

)
+ w

)

= w̄

(
wQm−1

(
f/r̄ − r2/r̄

r
; H (2)

))
+ w2

= w̄Qm

(
f

r̄
− r2

r̄
; H (1)

)
+ w2,

Qm(f − y; H (1)) = wQm−1

(
f − y

r
; H (2)

)
,

Qm

(
f + y

r̄

r
; H (1)

)
= w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
+ w.

It follows that (12) is equivalent to

Qm

(
f

r̄
− r2

r̄
; H (1)

)
≥ wQm−1

(
f − y

r
; H (2)

)
+ wQm−1

(
f + yr̄/r − r

r̄
; H (2)

)
. (15)

https://doi.org/10.1239/jap/1214950356 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950356


Strong optimality of bold play 413

Note that here f/r̄ − r2/r̄ , (f −y)/r , and (f +y r̄/r − r)/r̄ , the arguments in Qm and Qm−1,
all lie in the set [0, 1). It suffices to consider the following two subcases.

Subcase (iii.1):

f − y

r
≥ f + yr̄/r − r

r̄
≥ 0.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in [15, Lemma 4] (with α = 1). Then
0 ≤ y′ ≤ f ′. Since r ≥ 1

2 and f + yr̄/r > r , we have

f

r̄
− r2

r̄
− f ′ =

(
r

r̄
− 1

)(
f + yr̄

r
− r

)
≥ 0.

It follows from Lemma 1, [15, Lemma 4], the induction hypothesis, and w ≤ 1
2 that

Qm

(
f

r̄
− r2

r̄
; H (1)

)
≥ Qm(f ′; H (1))

≥ w̄Qm−1(f
′ − y′; H (2)) + wQm−1

(
f ′ + y′r̄

r
; H (2)

)

≥ wQm−1

(
f + yr̄/r − r

r̄
; H (2)

)
+ wQm−1

(
f − y

r
; H (2)

)
,

proving (15) and, hence, (12).

Subcase (iii.2):

f + yr̄/r − r

r̄
≥ f − y

r
≥ 0.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in [15, Lemma 5] (with α = 1). Then
0 ≤ y′ ≤ f ′. Since r ≥ 1

2 and f > y, we have

f

r̄
− r2

r̄
− f ′ = (r − r̄)(f − y)

r
≥ 0.

By Lemma 1, [15, Lemma 5], the induction hypothesis, and w ≤ 1
2 ,

Qm

(
f

r̄
− r2

r̄
; H (1)

)
≥ Qm(f ′; H (1))

≥ w̄Qm−1(f
′ − y′; H (2)) + wQm−1

(
f ′ + y′r̄

r
; H (2)

)

≥ wQm−1

(
f − y

r
; H (2)

)
+ wQm−1

(
f + yr̄/r − r

r̄
; H (2)

)
,

proving (15) and, hence, (12).
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Case (iv): f − y < r ≤ f < f + yr̄/r . In this case, by (13), y < B(f ) = (1 − f )r/r̄ , so

r > f − y > f − B(f ) = f − r

r̄
.

Then, by (2),

Qm+1(f ; H ) = w̄Qm

(
f − r

r̄
; H (1)

)
+ w

= w̄wQm−1

(
f − r

r̄

1

r
; H (2)

)
+ w,

Qm(f − y; H (1)) = wQm−1

(
f − y

r
; H (2)

)
,

Qm

(
f + y

r̄

r
; H (1)

)
= w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
+ w.

It follows that (12) is equivalent to

w̄ + w̄Qm−1

(
f − r

r̄

1

r
; H (2)

)

≥ w̄Qm−1

(
f − y

r
; H (2)

)
+ w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
. (16)

Note that (f/r − 1)/r̄ , (f − y)/r , and (f + yr̄/r − r)/r̄ , the arguments in Qm−1, all lie in
the set [0, 1). Since r ≤ f/r − 1 + r < 1, we have, by (2),

Qm

(
f

r
− 1 + r; H (1)

)
= w̄Qm−1

(
f/r − 1

r̄
; H (2)

)
+ w.

Thus, (16) is equivalent to

1 − 2w + Qm

(
f

r
− 1 + r; H (1)

)

≥ w̄Qm−1

(
f − y

r
; H (2)

)
+ w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
. (17)

It remains to prove (17) for the following two subcases.

Subcase (iv.1):

f − y

r
≥ f + yr̄/r − r

r̄
≥ 0.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in [15, Lemma 4] (with α = 1). Then
0 ≤ y′ ≤ f ′. Since r ≥ 1

2 and f − y < r ,

f

r
− 1 + r − f ′ = (2r − 1)(r − (f − y))

r
≥ 0.
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By Lemma 1, [15, Lemma 4], the induction hypothesis, and w ≤ 1
2 ,

Qm

(
f

r
− 1 + r; H (1)

)
≥ Qm(f ′; H (1))

≥ w̄Qm−1(f
′ − y′; H (2)) + wQm−1

(
f ′ + y′r̄

r
; H (2)

)

= w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
+ wQm−1

(
f − y

r
; H (2)

)

≥ w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
+ w̄Qm−1

(
f − y

r
; H (2)

)
− (1 − 2w),

from which (17) (and, hence, (12) and (16)) follows.

Subcase (iv.2):

f + yr̄/r − r

r̄
≥ f − y

r
≥ 0.

Let f ′ = f ′(f, y) and y′ = y′(f, y) be as defined in [15, Lemma 5] (with α = 1). Then
0 ≤ y′ ≤ f ′. Since 1

2 ≤ r < 1 and f + yr̄/r < 1 (by (14)),

f

r
− 1 + r − f ′ = (2r − 1)(1 − (f + yr̄/r))

1 − r
≥ 0.

By Lemma 1, [15, Lemma 5] , the induction hypothesis, and w ≤ 1
2 ,

Qm

(
f

r
− 1 + r; H (1)

)
≥ Qm(f ′; H (1))

≥ w̄Qm−1(f
′ − y′; H (2)) + wQm−1

(
f ′ + y′r̄

r
; H (2)

)

= w̄Qm−1

(
f − y

r
; H (2)

)
+ wQm−1

(
f + yr̄/r − r

r̄
; H (2)

)

≥ w̄Qm−1

(
f − y

r
; H (2)

)
+ w̄Qm−1

(
f + yr̄/r − r

r̄
; H (2)

)
− (1 − 2w),

from which (17) (and, hence, (12) and (16)) follows. This completes the proof.
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