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ABSTRACT 
The digitalization era has brought about unprecedented challenges for the manufacturing industries, 
pushing them to deliver solutions that encompass both product and service-related dimensions, known 
as Product-service Systems. This paper presents a number of lessons learned in the process of 
integrating the analysis of operational data as decision support in engineering design based on the 
empirical studies from two Swedish manufacturing companies operating in the construction machinery 
sector. The paper highlights the need to consider a five-dimensional perspective when collecting and 
analyzing data, encompassing data from the product, the service, the environment, the infrastructure, 
and the humans involved. Finally, a conceptual framework for data-driven design automation of 
Product-service Systems is proposed by leveraging the use of these data, introducing the concept of a 
Product-Service System Configurator as an enabler of design automation. The implementation of the 
proposed framework on multiple case studies in different industrial contexts shall be considered as the 
next step of the research. 
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1 INTRODUCTION 

It is nowadays widely recognized that the digitalization wave has nurtured an era of unprecedented 

technological innovation and has impacted a large majority of manufacturing industries. The industrial 

pace of innovation is often dependent on the complexity of the supersystem (Kossiakoff and Sweet, 

2003) (i.e. the “machine” or “asset” as a system plus the “infrastructure” as supporting systems) and the 

supply chain architecture. In traditional industries with high capital commitment, long product lifecycle, 

and complex supply chain, such transformation is relatively slower compared to leaner organizations.  

Complex development projects are guided by established systems engineering processes highly relying 

on modeling and simulations to guide design decisions (Kossiakoff and Sweet, 2003). In such a context, 

years of development have delivered increasingly more accurate mechanical simulations, allowing for 

multidisciplinary design optimization (MDO) to support design decisions, counting on the use of 

surrogate modeling and design automation (DA) (Amadori, 2012). However, such established 

engineering design approaches do not completely fulfill the potential of delivering radically new and 

innovative systems, especially in contexts in which digital technologies allow the concurrent design, 

management, and delivery of solutions that encompass both product and service-related dimensions. 

Academic literature often describes such a new scenario as a transition from traditional product 

development (PD) to the development of Product-service Systems (PSS) (Baines et al., 2009). In such 

a context, during the early stages of design, it is extremely difficult to predict how a future PSS will 

behave: there is no availability of a generic platform to digitally represent a PSS as a solution. Thereto, 

running MDO or DA is far from being a possibility. 

The research presented in this paper is based on the identification of the shortcomings of the current 

engineering practices in designing PSS responding to the need for innovation driven by digitalization. 

In particular, the paper focuses on the potential integration of data-driven design support in the context 

of MDO and DA for PSS development in systems engineering projects. 

With such a purpose, the paper builds on previous research on the data-driven design in the construction 

industry (e.g. Bertoni et al., 2017; Chowdhery and Bertoni, 2018) and describes the findings collected 

through a participatory action research approach (Whyte, 1989) in two well-established Swedish 

construction machinery companies. Based on the empirical research the paper has a twofold objective: 

• Firstly, it presents a number of lessons learned on using operational data as decision support for 

early-stage design decisions. Those encompass the process of collecting, organizing, integrating, 

and utilizing machine usage data in the engineering design process. 

• Secondly, it proposes a framework for data-driven DA of PSS, bringing arguments to the need to 

reconsider the concept of “design automation” in the context of a PSS by leveraging the use of 

data from a five-dimensional perspective, that is, considering the product, the services, the 

environment, the infrastructure, and the humans involved. 

The structure of the paper is the following: section 2 briefly describes the research approach based on 

action research, section 3 provides an overview of the relevant literature on the topic, section 4 

describes the lessons learned while section 5 details the proposed conceptual framework. Finally, 

section 6 positions the current work in the existing literature and draw the final conclusions. 

2 RESEARCH APPROACH 

In the frame of the participatory action research effort, data have been gathered during four years by 

means of open-ended and semi-structured interviews, company presentations, and concurrent 

development of demonstrators. The lessons learned described in the paper can be seen as results of the 

first descriptive study in the frame of the Design Research Methodology (Blessing and Chakrabarti, 

2009), while the proposed framework can be seen as the results of an initial prescriptive study.  

Several reasons have led to the identification of the construction machinery context as the most 

suitable for the investigation of data-driven DA for PSS. Such industry has engaged a long journey 

toward the transformation to fully electrical and autonomous vehicles (Frank, 2019). Examples of 

machine prototypes running fully electrical and in autonomy have been presented by major providers of 

construction machinery worldwide. A key challenge in such transition is the capability to design and 

developed a new, effective, and efficient system based on autonomy and electromobility in an industrial 

sector that has traditionally been conservative, with a high focus on pure mechanical performances. In 

such a context, the transition toward PSS, thus toward ownership retainment, has opened possibilities to 
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collect data that are higher than before, thus making it possible to formulate stronger data-driven 

inferences. Additionally, the working environment for construction machinery is more controlled, 

restricted, and predictable with less possibility of unexpected events (compared, for instance, to 

autonomous cars driving in an urban environment), making it more suitable for data collection from 

machines and the surroundings. These characteristics made the construction machinery context to be 

identified as a suitable research environment and potentially a good testbed for the research. 

3 RELEVANT LITERATURE 

3.1 Design automation and product-service systems development 

Computer-aided Design (CAD) tools are widely accepted in many industries today with their extended 

support to the PD process as enablers of model-based engineering. With several activities in 

developing a CAD model identified as routine-like (Stokes and MOKA Consortium, 2001), 

researchers have increasingly acknowledged design automation (DA) as a method to reduce this 

repetitiveness by automating the mundane design tasks. In the context of product and CAD, one of the 

prominent methods is geometry-based DA (Amadori, 2012) essentially utilizing  CAD templates 

(Tarkian et al., 2012) to configure different variants of designs. Amadori (2012) shows how geometry-

based DA has enabled CAD tools to serve as framework integrators for multi-disciplinary analysis in 

complex product or system development projects, highlighting that geometry-based DA needs external 

decision support to choose a design configuration. The work in this paper refers to DA in line with 

Amadori (2012) as a means to automate (partially or fully) the design tasks, essentially configuring a 

PSS concept to expedite the PSS development process. In the context of service and CAD, literature 

highlights service CAD (Arai and Shimomura, 2004) as one of the popular tools to represent services. 

Researchers (e.g. Nemoto et al., 2012) have also proposed a knowledge base comprising of different 

service modules that can potentially enable DA. Knowledge-based engineering (KBE) is identified as 

one of the methods to enable DA utilizing existing knowledge in the engineering design process. As 

Rocca (2012) states, KBE is a technology based on KBE systems that capture, store, and formalize 

design knowledge that emerges in a design process for its systematic reuse to enable DA and MDO. 

Van der Velden et al. (2012) state that KBE enables automation of processes in a PD lifecycle, 

resulting in a reduction in time and cost, and capture and retain knowledge for later use. Several 

researchers have applied DA frameworks in their respective fields. Amadori et al. (2012) applied CAD 

templates to design transport aircraft, industrial robots, and micro air vehicles by enabling MDO. 

Frank et al. (2014) applied DA for customer-specific goods via a product configurator. Their work was 

demonstrated by two case studies, arguing that such configurators are generic and can be applied in 

other fields too. More recently, Poot et al. (2020) integrated sales and design via DA frameworks, 

where they demonstrated that all the PD phases from a customer need to production preparation can be 

automated via KBE systems. Thereto, DA has been rigorously explored for product design, but sparse 

evidence exists in literature when the development is an integrated outlook (Isaksson et al., 2009), i.e. 

a combination of product and service. Johansson et al. (2017) highlighted a possibility to incorporate 

PSS-based business models in their DA framework. They envisaged the co-creation of solutions with 

customers, but no evidence of the existence of such a framework is provided. Certainly, for the 

integrated outlook, KBE systems need to be dynamic, i.e. more flexible and adaptive to incorporate 

‘servitization’ of products and ‘productization’ of services. 

Concerning the development process of a PSS, literature highlights several PSS design methodologies 

that could be adapted and extended for DA. One such framework was illustrated by Song and Sakao 

(2017), where the PSS design comprises four phases: requirement identification, conflict resolution, 

modularization, and configuration. Requirement identification refers to deriving functional 

requirements (Isaksson et al., 2009) from customer needs. Conflict resolution implies arriving at a 

consensus for contrasting design variables and constraints. Modularization is a known term in the PD 

process, broadly as the creation of specific modules relatively independent of each other to achieve the 

desired function (Ulrich and Eppinger, 2012). Finally, configuration implies the selection of proper 

modules for the given functional requirements. 

3.2 Data-driven design 

Data is increasingly considered as a resource in many industries and data mining has emerged as a 

discipline for discovering previously unseen knowledge in datasets. This practice of using data-driven 
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models to improve products, services, and systems, has found its application in many industrial 

sectors, right from creating transparency to innovating the next generation of solutions (Manyika et al., 

2011). Kusiak (2006) highlighted the importance of a data-driven paradigm in manufacturing and 

service industries emphasizing that the quality of decision support depends on the quality of 

knowledge extraction from datasets. Kulin et al. (2016) recognized two uses of such data-driven 

models, one is to better understand the inferred system to gain deep and valuable insights about it and 

the other is to generate extrapolated data that mimic the inferred system. 

With advancements in data mining techniques, data-driven models have found their position in 

predicting outcomes and support engineering design beyond human cognition where decisions are 

usually based on experience. Translating customer needs has been one of the major focuses of data-

driven design (e.g. Barnes and Lillford, 2009; Chaklader and Parkinson, 2017), although some authors 

have demonstrated the use of product or system usage data to aid engineering design. Shin et al. (2015) 

supported design modification by fixing design parameters based on the identified suspicious field data 

from the working status of the product. Bertoni et al. (2017) demonstrated the use of operational data to 

complement experience-based decisions. Ma et al. (2017) proposed a design improvement approach 

based on the time-dependent product usage data, where they improved design parameters in three steps: 

creating a function model, assessing the function degradation, and identifying the design parameters to 

be modified. However, in all these studies, no reference to automating the design solution was found. 

Sakao and Neramballi (2020), in their literature review, highlight that big data analytics, enabled by 

exploiting the product and service usage data, has a tremendous potential to assist the concept 

development stage of a PSS, right from functional unit definition to a viable solution selection. However, 

Bertoni (2020) highlighted that the application of data analytics in the concept development stage has 

been dominantly based on data from customer’s perception of use rather than the actual product, service, 

or system usage data, the latter being largely unexplored. Thus, data-driven design automation from an 

operational data viewpoint in the concept development stage is largely unexplored and the opportunities 

are two-fold, one is to extend the current research by leveraging the use of operational data in the 

concept development stage and the other is automating the repetitive design tasks by formalizing this 

knowledge in a decision support system.  

4 LESSONS LEARNED FROM THE CONSTRUCTION MACHINERY 

INDUSTRY 

The aforementioned construction machinery industries are facing distinct challenges in their quest of 

providing “functions” instead of “products”, rendering a situation for these industries to offer PSS as a 

solution. To envisage the complete picture (referred to as “operational frame") of such a system 

operating in its surroundings, it is crucial to first define the “boundary” of the inferred system. 

Systems engineering proposes development control (Kossiakoff and Sweet, 2003) as one of the criteria 

to qualify within this boundary. From this viewpoint, all the entities (natural or man-made), that the 

system interacts with, that are beyond the scope of the development project fall outside the boundary 

of the system. A similar analogy is made by Haberfellner et al. (2019) referring to the inferred system 

as the “system of interest” with “interior” and “exterior” boundaries. From this viewpoint, humans, 

though considered to be an essential aspect for the operation of a system are external. Thus, an 

operational frame consists of three key elements (Kossiakoff and Sweet, 2003): the system, the 

externalities, and their interactions. The influence of the externalities on the system has been 

considered by many researchers, such as (Belk, 1975) emphasizing “situational characteristics” and 

(Green et al., 2005) considering “usage context”. From their work, the externalities can be mainly 

categorized into the environment, infrastructure, and human.  

Operational data is a virtual manifestation of the interactions between the system and the externalities. 

Mining this data to create data-driven models and learning from those models can support the early 

design trade-offs, bring consensus between different stakeholders, and facilitate the transition of these 

industries towards autonomy and electrification. But several challenges emerged during the empirical 

studies that need to be addressed before any meaningful inferences can be made from this data. These 

challenges and the lessons learned are summarized below and also illustrated in Figure 1: 

• Data collection: Empirical studies highlighted an evident need to plan the collection of operational 

data to avoid the following problems. Firstly, data in manufacturing industries is often collected 

without a specific purpose, leading to a plethora of unnecessary data. A purposeful collection of 
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data would aid in trimming the non-contextual data. Secondly, manufacturing industries often have 

lesser competence in information technology and prefer outsourcing data collection to a third party. 

As a result, companies might not own complete rights to the collected data. Thus, the ownership of 

the data must be planned, where the level of accessibility to the collected data from the third parties 

is on the higher side. Thirdly, the right timeframe and format need to be planned as well for the 

collection of data. The right timeframe has two aspects, one is the right period and the other is the 

right sampling rate, chosen cautiously to avoid information overload. Right format implies using 

the formats that can be easily accessed and manipulated by the user. Choosing the right timeframe 

and format are subjective matters, much dependent on the competencies of the people in the 

industry, tools available at hand, the time scale over which data-driven inferences need to be made, 

and again, the purpose of collecting data. 

• Data organization: Data organization relates to the right practice of annotating and storing the 

collected data. The collected data must be archived such that the origin of data can be traced, 

essentially by utilizing annotations. Functional teams in the manufacturing industries usually 

have their own terminologies to annotate entities. Thus, a common basis for annotations must be 

established if there is a likelihood that other teams might access this data in the future. Also, it is 

worth highlighting that the annotation does not necessarily mean comprehensibility. To illustrate 

with a simple example, one of the common practices to denote time in sampled data is to use 

Unix Epoch Time (Matthew and Stones, 2008), i.e. counting total seconds elapsed from 1st 

January 1970, to avoid confusion in time zones. Such an arbitrary 10-digit number (as of today) 

is impractical to indicate the time to humans, even though it is annotated as “time”. Thus, 

measures need to be taken to denote one-to-one correspondence between Unix Epoch Time and 

the current zonal time, leading to a recommendation of having measures taken to make data more 

understandable to humans. With these practices, the unknown meaning of the data is inherently 

documented, and interpreting it does not become a challenge, especially when key people in the 

industry leave. 

• Data integration: In a complex system, the challenge in developing a new solution is the 

identification of how the design variables at the component-level (or the bottommost level) affect 

the performance at the system-level (or the topmost level), mainly because of the long 

hierarchical supply chain architecture. Deriving a correlation between these component-level 

design variables (or design variables) to the system-level performance (or performance) needs a 

comprehensive understanding of the overall behavior of the system in its surrounding, identifying 

the implications at each level. Thereto, a purposefully collected well-organized operational data 

is the first step towards creating a virtual representation of the operational frame to understand it 

better. It is important to acknowledge that operational data encompasses a multidimensional 

viewpoint, comprising of data segregated into five dimensions: product, service, environment, 

infrastructure, and human (refer to Figure 2). As mentioned previously, operational data is a 

result of the interactions between the system and the externalities, and thus, the categories may 

not have any substantial significance independently. The above segregation comes for the design 

team’s interpretation convenience. The way to knowledge from operational data is long and 

complex, and the challenge for the design team is to integrate operational data as data-driven 

models to form the links between the design variables and the performance. 

• Data utilization: Often, manufacturing industries struggle in the proper utilization of data, the 

root cause can be attributed to prediction accuracy and reliability of data-driven models. 

Prediction accuracy has two loose ends, one is the input data and the other is the performance 

measure of the learning algorithm used to develop the data-driven model. The performance 

measure of learning algorithms is well addressed in the literature (Sokolova and Lapalme, 2009), 

and there has been a notable improvement over the years in this domain. The challenge lies in 

providing the right data, averting the design team from misinterpreting precision as accuracy. 

Assuming that the integration of purposefully collected, well-organized, five dimensions of 

operational data solve the accuracy problem by eliminating noise and redundancy, the reliability 

problem is still unsolved. The challenges in this context are more related to human cognition. Data-

driven models are often perceived as a “black box”, to what Freitas (2014) elaborates that 

predicting accuracy has been the major criterion to evaluate the performance of a model, and 

interpretability is largely ignored. Data-driven models need to be well-understood by the design 

team and provide some level of confidence in the design team, in cases of high uncertainty. The 
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level of confidence, in this context, implies that the inferences made from data-driven models need 

to be clearly expressed in terms of completeness and maturity of data, thus laying a firm grounding 

to the inferences. Such an approach enables the design team to rely lesser and lesser on experience-

based decisions, refraining them from “extremeness aversion”, as highlighted by Bertoni (2018). 

 

Figure 1. Lessons learned in using operational data as design supports 

5 A FRAMEWORK FOR THE TRANSITION TO DATA-DRIVEN DESIGN 

AUTOMATION IN PSS 

A representative framework to automate a PSS solution is demonstrated in Figure 2. The need to develop 

a PSS arises from identifying the customer needs that are translated into functional requirements. 

Notably, as Figure 2 illustrates, the loop from identifying the customer needs to deliver the solution in 

the form of products and/or services to the customer can indeed be completed without any external 

decision support, certainly for much simpler products. However, for complex systems, the translation of 

customer needs into functional requirements may not be interpreted as the development of a physical 

entity, mainly because the physical entity is only a part of the complete solution. The development of a 

solution for such functional requirements encourages the industries to develop a PSS, where the 

challenge lies in the essence of critically weighted hybrids of products and services that create value for 

the customer. Thus, aligning with Isaksson et al. (2009), the solution provided to the customer, in the 

context of a PSS, can be in the form of a product but be purely service-oriented. 

When such a PSS is based around an established product architecture, many inferences can be made 

about the system by analyzing the behavior of the system in its surrounding. The growing availability 

of data creates an opportunity to evaluate the performance of the system against the objective and 

learn about the system early in the design phase. The five dimensions of data emerging as a 

consequence of interactions between the system and the externalities have been briefly described in 

section 4, and are visualized on the left-hand side of Figure 2. These data, stored in the database (at the 

center of Figure 2), is retrieved for the development of a new PSS by populating data-driven models. 

The key to formulating meaningful data-driven models lies in the “isolated integration” of selected 

datasets. Here, isolated integration refers to the notion of creating a boundary between relevant data 

sets and noise to depict a specific characteristic of the inferred system/subsystem. Simply put, isolation 

refers to eliminating the redundant data and integration refers to combining all the relevant data to 

improve prediction accuracy. Thereto, Lützenberger et al. (2016) highlight that statistical functions 

have a crucial potential role in such filtration. Such data-driven models, that can mimic the inferred 

system, are necessary to understand the behavior of the system at all subsystem-levels. Adaptive 

control is one of the known applications of operational data usage, where data is analyzed in real-time 

to take corrective actions. The inferred application operational data here is different, in the sense that 

the timeframe of learning could be days, months, or even years instead of mere seconds. To illustrate, 

a “vibratory” drum is a crucial design aspect of the road compaction machine. The vibration frequency 

setting that must be ideally used at a particular instance is an application of adaptive control, while the 
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settings of vibration frequencies that should be present in a machine is an application of inferences 

made from the data-driven models. Towards this end, data-driven models may not be the sole and self-

sufficient choice for decision-making. Researchers (e.g. Wright and Davidson, 2020) have argued that 

data-driven models are reliable strictly in the frame of references, and their generalizability is often 

questionable. However, when the timeframe for making decisions is longer, there is the possibility to 

complement the decision-making activity with other assessment models, as shown in the bottom right 

corner of Figure 2. The nature of such models is context-dependent; they can be experience-based 

models and/or physics-based models. Often, the choice of which models to consider in decision 

making is dependent by the desired level of data reliability, or knowledge maturity as defined by 

Johansson et al. (2011) needed at the different stages of the PD process. 

 

Figure 2. A framework for data-driven design automation of product-service systems 

From a PSS viewpoint, inside the boundaries of the PSS configurator in Figure 2, the amalgam of 

data-driven models and other assessment models creates the needed link between the design variables 

and the performance for the PSS design. These design variables comprise of the tangible product-

related variables and the intangible service-related variables. The product-related variables influence 

the PSS design by leveraging knowledge about the collaborative functionality of mechanical entities 

as well as electrical, electronic, and software entities to achieve the desired performance requirements. 

The service-related variables influence the PSS design by adding dimensions like repairability, 

replaceability, upgradability, circularity, etc. at the provider’s ends and dimensions like software 

updates, training, personalization, etc. at the consumer’s end. A similar mapping of performance to 

design variables, enabled by operational data, was demonstrated by Lützenberger et al. (2016) where 

they envisage co-designing the PSS from product and service-related variables. 

Once a satisfactory mapping of performance to design variables is achieved, KBE systems serve as a 

kernel to formalize this knowledge to reuse it in the design process. Referring to the framework 

illustrated by Song and Sakao (2017), PSS design, in this context, consists of three phases: conflict 

resolution, modularization, and configuration, and the modules essentially comprise of product and 

service attributes. Constrained exploration and optimization are often important to achieve better and 

reliable results, analyzing different modules and their integration to achieve the objective. Towards this 

end, the KBE system enables DA of various potential configurations of the PSS to allow exploration and 

optimization. Although, one must not perceive exploration and optimization as the sole purpose of KBE-

enabled DA. A PSS concept (to the right of Figure 2) quickly realized from previous learnings and 

brought to the discussion forum between various stakeholders also falls within the application of KBE 

enabled DA. Principally speaking, the role of such a system is not to substitute the design team in 

making decisions and generate a “one-click” solution for a design problem, rather support them by 
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increasing awareness and helping in making conscious decisions. Nonetheless, the design team must 

confide in the models and their collaboration to predict an outcome, and that is when a potential 

opportunity is truly utilized, and a meaningful concept is generated. Furthermore, the PSS concept may 

not be interpreted as the final solution. The dotted lines in Figure 2 denote the fact that there are certainly 

further steps before the solution is delivered to the customer such as detailed engineering, testing, 

production, etc. depending on the application. In the context of a PSS, implementation, and monitoring 

also become vital elements of solution delivery, as highlighted by Sala et al. (2020). 

The significance of the “PSS configurator” in Figure 2 is that the interface representing a PSS solution 

digitally needs to account for many more aspects than traditional CAD geometry. Typically, a PSS 

configurator: 1) needs to represent the data from the five dimensions, that is the product, the services, 

the environments, the infrastructures, and the humans involved, 2) allows the collaboration of other 

assessment models to enhance the decision support, 3) is able to represent the PSS right from the 

component-level up to the system-level, 4) enables the establishment of the vital links between the 

performance and the design variables, 5) can formalize and use this knowledge to explore the design 

space, 6) is capable of presenting an optimized solution in the design space with indications on level of 

confidence, and 7) is able to autonomously configure the designs based on the inputs. Here, the 

opportunity to design the product-service hybrid as a system extends beyond mechanical products to 

include sensors, actuators, networks, interfaces, software, programming languages, and ultimately 

consider the “human aspect” in a dynamic environment. 

6 CONCLUDING REMARKS 

The paper has presented some lessons learned in the construction machinery industry concerning the use 

of operational data as decision supports in engineering design. The lessons learned have been divided 

into four categories, namely collection, organization, integration, and utilization of data. Based on the 

lessons learned and the challenges identified during the empirical studies, the paper has illustrated the 

first version of a conceptual framework for the Data-driven Design Automation of Product-service 

Systems. The findings are based on the results of empirical studies in collaboration with two companies 

operating in a similar business in the construction machinery sector. Many unknowns still need to be 

discovered to allow the generalization of the findings to other industrial sectors. 

The lessons learned in data collection, organization, integration, and utilization have been observed and 

formalized in the process of building meaningful data-driven models to support engineering design 

decision-making. An analogy in terms of data-driven decision making has been made by (Miller and 

Mork, 2013) providing a framework illustrating the important steps from collecting raw data to making 

informed data-driven decisions, identifying data sharing as one of the major obstacles in data-driven 

decision making. The proposed framework stressed the need to consider the five-dimensional 

perspectives of operational data to design solutions for functional requirements, encompassing the 

product, the services, the environments, the infrastructure, and the humans involved. Furthermore, it 

stresses the need for a PSS configurator as an enabler of design automation, a topic that was not 

addressed by previous frameworks to integrate products and services (e.g. Sundin et al., 2009; Sakao et 

al., 2020). Positioning the proposed framework in respect to the literature on PSS methodology, the work 

aligns with part of the 4DPSS methodology for PSS design and delivery proposed by Sala et al. (2020) 

and can be seen as a complementary step towards a more detailed definition of a data-driven concept 

generation and design phase encompassing the possibility of design automation.  

In conclusion, the presented work contributes to the engineering design practices by sharing the lessons 

learned during the transition to data-driven design in complex systems, and to the academic discussion of 

Design Automation in the context of Product-service Systems. Although the empirical data collection 

being performed only in the construction machinery industry, literature shows that the underlining 

challenges are not unique to such industry but are shared in other industrial sectors as well, giving 

promising insights for the future generalization of the findings in different industrial contexts. 

The implementation of the proposed framework on multiple case studies in different industrial 

contexts in the frame of systems engineering projects shall be considered as the next research step. 
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