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Large-eddy simulations of the unsteady flows around rectangular prisms with
chord-to-depth ratios (B/D) ranging from 3 to 12 are carried out at a Reynolds number
of 1000. A particular focus of the study is the physical mechanisms governing the global
instability of the flow. The coherent structures and velocity spectra reveal that large-scale
leading-edge vortices (L vortices) are formed by the coalescence of Kelvin–Helmholtz
rollers. Based on dynamic mode decomposition, the interactions between the L vortex and
the trailing-edge vortex (T vortex) at different B/D values are revealed. It is found that the
phase difference between the L and T vortices is the critical factor promoting a stepwise
increase in the Strouhal number with increasing B/D. According to the phase analysis,
there are two types of pressure feedback-loop mechanisms maintaining the self-sustained
oscillations. When B/D = 4–5, the feedback loop covers the separation region, and the
global instability is controlled by the impinging shear-layer instability. When B/D = 3 and
6–12, the feedback loop covers the entire chord, and the global instability is controlled by
the impinging leading-edge vortex shedding instability. Self-sustained oscillations of the
shear layer still exist after a splitter plate is placed in the near wake, indicating that the T
vortex shedding is not essential in triggering the global instability. Nevertheless, with the
participation of the T vortex, the primary instability mode may be reselected due to the
upper and lower limits of the shedding frequency imposed by the T vortex.
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1. Introduction

Flow around a flat rectangular prism is characterized by very significant flow separation
at the sharp leading edges, unsteady flow reattachment on the afterbody (typically
refers to the body part downstream of the flow separation points) and trailing-edge
Kármán-type vortex shedding. The Kármán-type vortex shedding is the main source of
the vortex-induced vibrations of structures. Although an afterbody is not essential for
the occurrence of vortex-induced vibration according to Zhao, Hourigan & Thompson
(2018), the unsteady flow reattachment on the afterbody may play an important role in
the vortex-induced vibration. Thus, the global features and underlying mechanisms of the
flows around rectangular prisms have led to extensive investigation.

The prism chord-to-depth ratio (B/D) is a critical parameter that shapes these flow
characteristics, where B and D denote the dimensions parallel and perpendicular to the
incoming flow, respectively. According to Parker & Welsh (1983), the separated shear
layers are intermittently or permanently reattached to the afterbody when B/D> 3.2.
Nakamura, Ohya & Tsuruta (1991) studied the vortex shedding behaviour in the range of
3 ≤ B/D ≤ 16 at a Reynolds number (Re = UD/ν, where U denotes the free-stream velocity,
ν denotes the kinematic viscosity) of 1000. The Strouhal number (St) based on B and
U is nearly constant and is equal to 0.6 for B/D = 3–5. With further increase in B/D, it
increases stepwise to values that are approximately equal to integral multiples of 0.6. With
the aid of a smoke-wire, they found that St was closely related to the number of large-scale
vortices on the prism’s lateral faces, which was later verified in their numerical studies
(Ohya et al. 1992). Nakamura et al. (1991) attributed the formation of the large-scale
vortices to the impingement of the separated shear layers on the sharp trailing-edge
corners and thus called the mechanism the impinging shear-layer (ISL) instability. The
concept of ISL instability is usually used to characterize the self-sustained oscillations of
flow past a cavity. For cavity flows, researchers have found that the global instability is
caused by the upstream propagation of the pressure pulse generated by the impingement
of the large-scale vortices in the shear layer on the trailing edge, as was reviewed by
Rockwell & Naudascher (1978). This pressure pulse in turn enhances the unsteadiness
of the leading-edge shear layer and the large-scale vortex shedding.

However, global instability still exists in large-B/D cases where the separated shear layer
does not directly impinge on the trailing edge. In addition, Stokes & Welsh (1986) found
that no significant change occurred after replacing square trailing-edge corners with a
semi-circle, suggesting that the trailing edge does not need to be sharp to trigger the
instability. Thus, Naudascher & Rockwell (1994) later called the global instability the
impinging leading-edge vortex (ILEV) instability to emphasize that it is the large-scale
vortices shed from the leading-edge shear layer that interact with the trailing edge rather
than the shear layer itself. Nguyen, Hargreaves & Owen (2018) studied the mechanism of
the vortex-induced vibration of a 5:1 rectangular prism and noted that the vortex-induced
vibration is triggered by the motion-induced leading-edge vortex, while the impingement
of this vortex on the trailing edge is responsible for the increase in the structural response
during the lock-in of the vortex shedding and structural vibration frequencies.

Another significant difference between the flows over a rectangular prism and over
a cavity is the participation of the trailing-edge vortex shedding (TEVS) in the former
case. Hourigan et al. (1993) found that interference occurred between the leading-edge
vortices (L vortices) and the trailing-edge vortices (T vortices) by imposing an acoustic
perturbation. Furthermore, Hourigan, Thompson & Tan (2001) noted that the TEVS played
an important role in the self-sustained oscillations and was responsible for the stepwise
progression of the Strouhal number with B/D. This hypothesis of vortex interactions
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between the ILEV and TEVS was further confirmed by Mills, Sheridan & Hourigan (2002,
2003) and Tan, Thompson & Hourigan (2004) in flows with transverse perturbations. In
particular, Tan et al. (2004) pointed out that the narrow-banded instability of the TEVS
controlled the stepwise changes in the Strouhal number.

The unsteadiness of the separated shear layer also depends on the Reynolds number.
For low Re, the separated shear layers are steadily reattached on the prism surface, and
regular Kármán-type vortex shedding is formed in the wake. With an increase in Re, the
shear layers tend to be more unstable and eventually evolve into the ILEV instability in
a wide range of Re. Okajima (1982) pointed out that this critical Re for the transition
of the shear layer is dependent on B/D. Nakamura et al. (1996) studied the Strouhal
number for different B/D values (B/D = 3–16) in the Re range of 200–1000 and concluded
that the critical Re was about 300. By further increasing Re, regular vortex shedding
is weakened by the increasing three-dimensional (3-D) turbulence after reattachment.
Nakamura et al. (1991) found that the stepwise variation of St with B/D disappeared at
Re = 2000. Nevertheless, Mills et al. (2003) showed that it could be reproduced by adding
a small transverse perturbation to the flow, suggesting that the underlying mechanism of
the ILEV instability still exists at higher Reynolds numbers. Recently, Duan et al. (2020)
experimentally investigated the flow over a flat plate with elliptical leading and trailing
edges at Re = 8100. As the 3-D turbulence effect was minimized without sharp edges,
regular vortex shedding was detected in their study.

Although it is widely accepted that the flow around a rectangular prism is governed
by the ISL or ILEV instabilities, sometimes accompanied by TEVS, there remain some
significant questions to be answered. For example, the complex interaction behaviour
between ILEV and TEVS, the exact form of the pressure feedback loop controlling
the global instability for different B/D, the range and source of the preferred shedding
frequency of TEVS, the underlying mechanisms of the mode switches at certain B/D
values and the stepwise increase manner of St have not been fully explored.

The particle image velocimetry technique and computational fluid dynamics simulations
greatly facilitate the exploration of the evolution of vortex structures through flow
visualization. To identify the coherent structures in the flow fields from time-resolved
data, a common practice is to perform a modal decomposition. The dynamic mode
decomposition (DMD) method proposed by Schmid (2010) provides a means to
decompose the original flow into a series of modes, with each mode containing a single
characteristic frequency and growth rate. Thus, it is suitable for the identification of the
spatiotemporal coherent structures in periodic flows and has been used in the analyses of
cavity flows (Seena & Sung 2011; Guéniat, Pastur & Lusseyran 2014), backward-facing
step flows (Sampath & Chakravarthy 2014) and flows around cylinders (Thompson et al.
2014; Zhang, Liu & Wang 2014; Stankiewicz et al. 2016; Li et al. 2019) and cantilever
beams (Cesur et al. 2014). More recently, the dynamic pressure field over a finite-height
prism immersed in a boundary layer flow has been examined using DMD (Luo & Kareem
2021).

In the present study, the large-eddy simulation method and the DMD analysis technique
are used to extract coherent structures in the ILEV and TEVS and to uncover the pressure
feedback-loop mechanism of the global instability and the fundamental mechanism for
the stepwise variation of St with B/D. The Reynolds number of this study is 1000, under
which the leading-edge vortices are shed from the unstable shear layer but without being
submerged by the downstream turbulence caused by the 3-D modulations. The B/D ranges
from 3 to 12, covering four stages (0.6–2.4) of the Strouhal number (Nakamura et al. 1991).
In addition, two special cases are included to explore the roles played by the TEVS in the
self-sustained oscillations of the shear layers by separating the ILEV and TEVS.

955 A19-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

93
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.939


Z. Zhang, A. Kareem, F. Xu and H. Jiang

The rest of this paper is organized in the following manner. Section 2 details the
numerical model, simulation cases, mesh arrangement and mesh convergence check.
Section 3 introduces the DMD algorithm and illustrates the two-dimensionality of
the global instability. The sources and evolution of the ILEV and TEVS and their
interaction behaviours are studied in § 4 with B/D = 5 as an example. In § 5, the
pressure feedback-loop mechanisms for the global instability at different B/D values are
investigated. The roles played by the TEVS in the global instability and the stepwise
increase in the Strouhal number are revealed in § 6, followed by the main conclusions
in § 7.

2. Numerical model

2.1. Governing equations of flow
The 3-D incompressible, unsteady flow around the prism is modelled by the filtered
Navier–Stokes equations:

∂ ūi

∂xi
= 0, (2.1)

∂ ūi

∂t
+ ∂ ūiūj

∂xj
= − 1

ρ

∂ p̄
∂xi

+ ∂

∂xj

(
ν
∂ ūi

∂xj
− τij

)
, (2.2)

where the overbar stands for the spatial filter operation; xi denotes the ith Cartesian
coordinate, ui denotes the velocity component in the direction xi, t is time, p is pressure,
ρ is fluid density, ν is kinematic viscosity and τij = uiuj − ūiūj is the subgrid-scale stress
and is modelled by the dynamic k-equation model developed by Yoshizawa (1986).

The governing equations are solved by the open-source finite-volume code OpenFOAM.
The implicit second-order backward differentiation scheme is adopted for temporal
integration. The so-called Gauss limited linear scheme, a second-order-accurate bounded
total variational diminishing scheme, is used for spatial discretization of the convection
term, while the second-order central difference scheme is used for the diffusion term. The
gradient term is evaluated using the least-squares method. The velocity–pressure coupling
is achieved by the pressure-implicit with splitting of operators (PISO) algorithm with two
correctors in each time step. The convergence criterion for p is 1 × 10−6.

2.2. Simulation cases
Figure 1 shows a schematic diagram of the numerical cases simulated in this study. First,
rectangular prisms with B/D values ranging from 3 to 12, with a unit interval, are used
to investigate the variations of the flow characteristics with B/D. In particular, the critical
value of B/D at which the flow pattern jumps from the first mode (St = 0.6) to the second
mode (St = 1.2) is explored. Furthermore, two special configurations are presented to
separate the ILEV and TEVS. Case II is characterized by a splitter plate in the wake to
eliminate the TEVS. In Case III, the leading-edge separated shear layer is removed, and
only TEVS is expected to occur. This is equivalent to a prism of infinite width, where the
interactions between the ILEV and TEVS are negligible and the TEVS can be analysed
separately.

2.3. Computational domain, boundary conditions and mesh arrangement
Figure 2 shows a schematic view of the computational domain and boundary conditions
for the regular prisms (i.e. Case I in figure 1). The distances from the prism centre to
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ILEV+TEVS

Case

I

II

III

Vortex shedding type Sketch map

Splitter (5D)

B/D = 3–12 

B/D = 6

B/D = 20

Inlet

Inlet

ILEV

TEVS

Figure 1. Simulation cases. Case I represents regular rectangular prisms. Case II and Case III are designed to
separate the ILEV and TEVS.

Symmetry

y

B
z

x

D

L = 5D

Symmetry

50D 150D

1
0
0
D

5D

Periodic

Periodic

Inlet Outle
t

Figure 2. Computational domain and boundary conditions for Case I.

the inlet and outlet boundary are 50D and 150D, respectively. The transverse dimension
of the computational domain is 100D, resulting in a blockage ratio of 1%. The spanwise
dimension, i.e. the prism length L, is set as 5D, which is determined based on a comparison
with 10D in § 2.4.

A uniform flow velocity U is specified at the inlet boundary. At the outlet boundary,
the Dirichlet boundary condition (zero value) is used for pressure, while the Neumann
boundary condition (zero gradient) is used for velocity. The top and bottom boundaries are
set as symmetry, while the front and back boundaries are periodic. No-slip wall boundary
is applied to the prism surface. Similar strategies are adopted for Cases II and III and not
given herein for brevity.

The mesh in the x–y plane is hybrid, with 20 layers of structured grids around the prism
and unstructured quadrilateral grids in the rest of the domain, as shown in figure 3 for
B/D = 5. To solve the small-scale vortex structures around the prism, the grids in the
near-wall and near-wake regions are refined. The grid size within the structured region
is 0.02D × 0.02D, leading to a unit grid aspect ratio and an average y+ about 1.0 and a
maximum y+ about 3.0 during simulations. The grid spacing gradually increases away
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1.5

1.0

0.5

0

–0.5

–1.0

–1.5
1.0 1.5 2.0

Structured grid size:

0.02D × 0.02D

Grid spacing: 0.05D

2.5

x/D x/D

y/
D

3.0 3.5 4.0 –7.5 –5.0 –2.5 0 2.5 5.0 7.5 10.0 12.5

5.0

2.5

0

–2.5

–5.0

(b)(a)

Figure 3. Mesh arrangement around the prism with B/D = 5: (a) 20 layers of structured mesh in body
vicinity; (b) unstructured mesh in the rest area.

from the wall. In figure 3(b), the grid size at the perimeter of the white rectangle (7D
downstream of the prism’s rear face and 2D from other faces) is 0.05D.

The 3-D mesh is obtained by extruding the two-dimensional (2-D) mesh in the x–y plane
along the spanwise direction with a uniform step size (δz). In the present study, δ= 0.05D
is adopted following a dependence study on δz (see § 2.4). This leads to 100 layers in
the spanwise direction for the 3-D mesh. The total cell number for regular prisms varies
from 9.6 million (B/D = 3) to 15.1 million (B/D = 12). For Cases II and III, there are 15.7
million and 10.5 million cells, respectively.

2.4. Mesh resolution and spanwise domain size
It is known that mesh resolution, in both the x–y plane and the spanwise direction, and
the spanwise domain size may have significant influences on the simulated flow around a
rectangular prism (Bruno, Coste & Fransos 2012; Zhang & Xu 2020). In the present study,
a mesh dependence study is performed. Based on the reference mesh introduced in § 2.3,
which is labelled as Case (i), three variations are examined:

(ii) The L value is increased from 5D to 10D.
(iii) The δz value is decreased from 0.05D to 0.025D.
(iv) The δx and δy values in the inner zone are decreased from 0.02D to 0.01D.

Detailed mesh arrangements for the four cases are listed in table 1. For Cases (i)–(iii),
the non-dimensional time step size δt* = δt · U/D is set as 0.01, where δt is the physical
time step size. While for Case (iv), δt* is 0.005. The maximum Courant number is below
1.2. Each simulation lasts 600 non-dimensional time units, while the data in the first 300
time units are discarded to exclude the initial undeveloped flow period.

Table 1 lists the Strouhal number, the time-averaged drag coefficient (CD-avg) and the
standard deviation of lift coefficient (CL-std) obtained from different arrangements. The
Strouhal number is defined as

St = fB
U
, (2.3)
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Case L/D δz/D δx/D × δy/D St CD-avg CL-std

Value Deviation from Deviation from
Case (i) Value Case (i)

(i) 5 0.05 0.02 × 0.02 0.576 0.992 0 0.865 0
(ii) 10 0.05 0.02 × 0.02 0.575 0.989 −0.3% 0.846 −2.2%
(iii) 5 0.025 0.02 × 0.02 0.575 0.993 0.1% 0.823 −4.8%
(iv) 5 0.05 0.01 × 0.01 0.576 0.971 −2.1% 0.816 −5.6%

Table 1. Simulated aerodynamic force coefficients and St with different mesh arrangements.

0.50

0.25

0

–0.25Cp

x/D

Cp-avg: Case (i)

Case (ii)

Case (iii)

Case (iv)

Cp-std: Case (i)

Case (ii)

Case (iii)

Case (iv)

–0.50

–0.75

–1.00
–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5

Figure 4. Spanwise- and side-averaged pressure coefficients on the lateral faces with different mesh
arrangements.

where f is the peak frequency of the unsteady lift coefficient and is calculated by the fast
Fourier transform (FFT) technique. The drag and lift coefficients are defined as

CD = FD

0.5ρU2DL
, (2.4a)

CL = FL

0.5ρU2DL
, (2.4b)

where FD and FL are the unsteady drag and lift forces, respectively. It can be found that the
aerodynamic force coefficients calculated from different cases are fairly close. The error
of CL-std is relatively large, while the key parameter of this study, i.e. St, stays almost
constant.

The time-averaged value (Cp-avg) and standard deviation (Cp-std) of the surface
pressure coefficients are plotted in figure 4. Data are averaged along the spanwise direction
and between the top and bottom surfaces. In general, the influences of L and δz are very
limited. For Cp-avg, the four curves almost coincide with each other. For Cp-std, the
deviations of the peak value from Case (i) are within 5%.
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U /U0

1.2 1.5 0.40.2 0.6 0.8 1.0 1.2
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U-std:
Case (i)

Case (ii)

Case (iii)

Case (iv) U-avg:

2.5D

2
.5

D

2.5D D

D

Case (i)

Case (ii)

Case (iii)

Case (iv)

x/D = 0 x/D = 3.5

Probes

(b) (c)

(a)

Figure 5. Midspan velocity profiles with different mesh arrangements: (a) probe locations; (b) x/D = 0;
(c) x/D = 3.5.

To check the mesh convergence of velocity fields around the prism, the time-varying
velocities at two columns of probes at x/D = 0 and 3.5 are monitored, as shown in
figure 5(a). The spanwise location of the probes is z = 0 (midspan). Figures 5(b) and 5(c)
display the time-averaged (U-avg) and standard deviations (U-std) of the velocity profile
along x/D = 0 and 3.5, respectively. For both regions, different mesh arrangements give
close estimates of U-avg and U-std. Thus, it can be concluded that the meshing parameters
for Case(i), i.e. L = 5D and δz = 0.05D, can give a nearly converged estimation of the main
flow features and are therefore adopted for the following simulations.

3. Dynamic mode decomposition

3.1. The DMD algorithm
For a linear system, xn+1 = Axn, if the eigenvalues and eigenvectors of the coefficient
matrix A are determined, one can obtain the main evolution characteristics of the system.
In the present study, the DMD method proposed by Schmid (2010) is used for the
eigenvalue decomposition of matrix A.

First, by consecutively sampling the system at an interval of δt, the data can be arranged
into a snapshot matrix:

X = (x(t1), x(t2), . . . , x(tn)), (3.1)
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where each column denotes an instantaneous snapshot of the system. For an unsteady
pressure field, X is expressed as follows:

X =

⎛
⎜⎜⎝

pnode1(t1) pnode1(t2) · · · pnode1(tn)
pnode2(t1) pnode2(t2) · · · pnode2(tn)

...
...

. . .
...

pnodek(t1) pnodek(t2) · · · pnodek(tn)

⎞
⎟⎟⎠ , (3.2)

where node1–nodek denote the spatial dimension of the flow fields, i.e. the number of
degrees of freedom, while t1–tn denote the temporal dimension, i.e. the sampling length.
Similarly, one can construct another matrix:

Y = (x(t2), x(t3), . . . , x(tn+1)), (3.3)

where Y = AX .
Second, the singular value decomposition or the proper orthogonal decomposition

(POD) of X is computed as follows:

X = USV∗, (3.4)

where U contains the POD modes of the system and S represents the energetic importance
of each mode. To reduce the computational cost, only the first r order modes are retained
to approximate the original flow fields: Ur = U(1 : k, 1 : r), Sr = S(1 : r, 1 : r) and
Vr = V (1 : n, 1 : r). In this study, it is found that the first 100 order POD modes contain
more than 95% of the energy of the original flow fields, and the DMD spectra calculated
based on the first 100 and 200 POD modes are very close. Thus, r = 100 is adopted for
computational efficiency.

Third, X = UrSrVr∗ is substituted into Y = AX , and then A can be expressed as follows:

A = YVrSr−1Ur∗. (3.5)

Although matrix A is obtained, it has an order of k × k, which means that a direct
eigenvalue decomposition of A is extremely difficult for large-scale systems. An alternative
approach is to reduce the order by projecting A onto Ur :

Ã = Ur∗AUr = Ur∗(YVrSr−1Ur∗)Ur = Ur∗YVrSr−1. (3.6)

Note that the order of Ã is only r × r, and performing eigenvalue decomposition for Ã is
very efficient:

[W ,Λ] = eig(Ã). (3.7)

Here A and Ã are similar matrices, and thus they share the same eigenvalues: λi = diag(Λ).
The eigenvalues of the DMD modes can then be calculated by ωi = log(λi)/δt. The real
part of ωi denotes the growth rate of the ith mode, while the imaginary part denotes the
oscillating frequency. For the eigenvectors, i.e. the DMD modes, Tu et al. (2013) pointed
out that there are two kinds of definitions. The first is the projected DMD mode:

Φ̂ = UW . (3.8)

The second is the exact DMD mode:

Φ = YVΛ−1W . (3.9)

In this study, the exact DMD mode is adopted for the following analyses. Like
the eigenvalues, the DMD modes are also in complex form. For a specific mode
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ϕi = (x1 + iy1, x2 + iy2, . . . , xk + iyk)
T, the phase angle at each spatial point can be

calculated by

θk
i = arctan

(
yk

xk

)
. (3.10)

Based on the distribution of the phase angle in the entire domain, a more direct
understanding of the fluctuating behaviour of the instability mode can be obtained.

Finally, based on the eigenvalues and eigenvectors, the flow evolution corresponding to
a specific DMD mode can be reconstructed:

xi(t) = ϕT
i x(t1) eωi(t−t1)ϕi = ψi(t)ϕi, (3.11)

where ψi(t) = ϕT
i x(t1) eωi(t−t1) represents the temporal coefficient of mode ϕi.

Although the derivation above is based on a linear system, Rowley et al. (2009), Tu
et al. (2013) and Mezić (2013) pointed out that the DMD algorithm is also applicable
to nonlinear systems by revealing its relationship with the Koopman operator. To obtain
satisfactory results, Schmid (2010) noted that the sampling frequency should be at least
three times the inherent frequency. The DMD algorithm for vector fields, such as the
velocity field, is similar to that for a scalar field, with the only exception that each
component of the vector should be treated as an individual degree of freedom and then
arranged into an integral snapshot matrix.

Unlike the POD approach where the modes are arranged in the order of energy contents,
there is no objective ranking of the eigenvalues in the DMD approach; thus it is difficult
to determine the most physically relevant modes. In this study, the main modes which are
related to the flow global instability are identified through the following guidelines. First,
the global instability is expected to be caused by the self-sustained oscillations of the shear
layer and periodic shedding of the TEVS, and thus the growth rate of concerned modes
should be close to zero, provided that the sampling length is large enough. Second, the
spectrum of the lift force provides a direct reference for the selection of the DMD mode
by comparing the frequencies. Third, the DMD modes directly obtained by (3.9) are first
normalized based on the magnitude, and the time-varying coefficient ψ(t) of each mode
can be calculated, then the modes are reordered by their 2-norm of ψ(t). The mode with
higher ‖ψ(t) ‖ represents higher energy and is more likely to be the dominant mode of the
global instability.

3.2. Two-dimensionality of DMD mode of global instability
The sampling length and frequency play significant roles in the decomposition accuracy.
Thus, a large number of snapshots are usually needed to be stored when constructing
matrix X . If the target is the 3-D flow fields, it will require a large amount of memory
and computational time to perform the DMD analysis, which may be prohibitive in most
cases. The emphasis of this study is to examine the streamwise evolution of the vortices
dominating the global instability. If the 3-D fluctuations can be expressed by a 2-D slice
in the x–y plane, the computational effort will be significantly reduced. Thus, in this
section, the effectiveness of the 2-D DMD for extracting the global instability structures
is examined through the DMD mode of the pressure coefficients on the top surface of the
prism.

Two prisms, i.e. B/D = 5 and 6, are examined, which correspond to scenarios where
one and two vortices exist on each lateral side of the prism, respectively, according to
Nakamura et al. (1991). There are in total 40 000 snapshots for each case, and the time
interval between two consecutive snapshots is 0.01, corresponding to about 46 and 70
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Figure 6. Dynamic mode decomposition spectra of the surface pressure for: (a) B/D = 5 and (b) B/D = 6.
The areas of the circles are related to the energy of the modes.

vortex shedding periods, respectively. The spectra of the DMD eigenvalues are depicted
in figure 6, where the abscissa and ordinate represent the imaginary and real parts of ωi,
respectively. The areas of the circles are scaled by ||ψ(t)||.

From the spectra, the relatively stable (real (ωi) ≈ 0) and high-energetic modes can be
easily identified. The real and imaginary parts of the first mode marked in the figure
are close to zero, representing zero growth and no oscillations. Thus, the first mode
represents the time-averaged pressure field. Apart from the first mode, the second modes
have the second largest area and are closest to the real (ωi) = 0 axis. The values of St
calculated by the eigenvalues of the second modes for the two prisms are 0.571 and 1.062,
respectively. The results calculated using the FFT of CL are 0.576 and 1.064, respectively,
suggesting that the second modes are essentially the global instability modes. For the sake
of brevity, the global instability mode is referred to as the St mode hereafter. The spectra
are symmetric about the imaginary (ωi) = 0, i.e. a pair of conjugate modes exists for each
non-zero frequency. Figure 7 shows the pressure distributions of the first mode and the real
and imaginary parts of the second mode for the two prisms. It should be noted that figure 7
only shows the shape of a specific DMD mode, i.e. ϕi in (3.11). The absolute value of the
pressure fluctuations corresponding to a specific mode ϕi can be obtained by multiplying
its time-varying coefficient ψi(t). The imaginary part has a π/2 phase lag relative to the
real part. Thus, it can be inferred that the global instability mode has a travelling-wave
form, consistent with the physical background of the vortex shedding behaviour associated
with the global instability.

As shown in figure 7, the first and second modes both show strong correlations in the
spanwise direction, suggesting that the surface pressure fluctuations are mainly governed
by the streamwise evolution of the vortices.

In addition, DMD is performed on the 3-D velocity fields to further check the 2-D
features of the global vortex shedding modes. The vortical structures within the velocity
DMD modes are identified based on the iso-surfaces of the Q criteria, as shown in figure 8
for B/D = 5 and 6. Here Q is defined as

Q = 1
2 (‖Ω‖2 − ‖S‖2), (3.12)

where S and 
 are the symmetric and antisymmetric components of the velocity gradient
tensor, respectively. Parameter Q represents the local balance between shear strain rate and
vorticity magnitude. Positive Q corresponds to the rotational motion of the flow, and higher
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Figure 7. Dynamic mode decomposition modes of surface pressure: (a) B/D = 5, first mode; (b) B/D = 5,
second mode, real part; (c) B/D = 5, second mode, imaginary part; (d) B/D = 6, first mode; (e) B/D = 6, second
mode, real part; ( f ) B/D = 6, second mode, imaginary part.

(b)(a)

Figure 8. Global instability modes identified from the 3-D velocity fields: (a) B/D = 5; (b) B/D = 6. Vortical
structures are demonstrated by iso-surfaces of Q = 0.2(U/D)2, blue tubes have a clockwise direction of rotation
and red tubes have an anti-clockwise direction of rotation.

Q means higher vortex intensity. These Q criteria are considered to be more appropriate
than the vorticity criteria for extracting vortex structures, especially in the near-wall region
where the shear effect in the flow is predominant.

From figure 8, several spanwise vortex tubes are observed on the lateral sides of and in
the wake of the prisms, indicating that the global vortex shedding is almost synchronous
along the spanwise direction. This permits us to use the 2-D flow fields in the x–y plane
for the following DMD analyses to avoid high computational efforts. In the present study,
the spanwise-averaged flow is used for the 2-D DMD analysis because it contains more
averaged information than a slice in the 3-D flow. Detailed discussion on the evolution of
the vortical structures of the DMD modes is given in § 4.2.

4. Flow characteristics for B/D = 5

Before exploring the flow characteristics at different B/D values, it is useful to investigate
the flow characteristics at a specific B/D to obtain a preliminary understanding of the
pattern of the global instability. In this section, the main focus is placed on the behaviour of
the unsteady flow around the prism with B/D = 5. First, the instantaneous vortex structure
in the original flow is extracted to study the evolution of leading- and trailing-edge vortices.
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Figure 9. (a–i) Evolution of coherent structures during one vortex shedding cycle for B/D = 5, demonstrated
by iso-surfaces of Q = 1.0(U/D)2, coloured based on the y coordinate.

In particular, the source of the large-scale leading-edge vortex is explored. Then DMD
is applied to the spanwise-averaged velocity field to reveal the interactions between the
ILEV and TEVS. Finally, the phase of the fluctuations is extracted from the pressure DMD
mode to obtain a preliminary understanding of the feedback loop of the self-sustained
oscillations.

4.1. Formation of leading- and trailing-edge vortices
The instantaneous coherent structures of the 3-D flow fields during one vortex shedding
cycle are extracted based on the Q iso-surfaces, as shown in figure 9.

At t = 0, a large-scale leading-edge vortex and a Kármán-like trailing-edge vortex
appear above the top face and behind the leeward face, respectively. For brevity, in
the text below, the leading- and trailing-edge vortices are referred to as the L and T
vortices, respectively. At t = T/8, accompanied by the shedding of the L and T vortices,
a small-scale spanwise vortex structure emerges in the leading-edge shear layer, which
is caused by the Kelvin–Helmholtz (KH) instability. During the whole period, there are
three KH rollers on the upper side, which are shed from the leading-edge shear layer at
t/T = 1/8, 4/8 and 6/8. The downstream convection velocity of the first KH roller gradually
decreases after being shed, promoting its subsequent coalescence with the second and third
KH rollers at t = 5T/8 and T, respectively. The merger of the KH rollers in the leading-edge
separation bubble was also detected by Sasaki & Kiya (1991), Hwang, Sung & Hyun
(2000) and Chaurasia & Thompson (2011) for a blunt flat plate at relatively low Reynolds
numbers (Re< 800). In particular, Sasaki & Kiya (1991) noted that the number of the
merging KH rollers increased with Re. The merged large-scale vortex structure at t = T
is actually the new L vortex and then propagates through the trailing edge over t/T ∼ 1/4
to 3/4 in the next cycle. For the remaining half-cycle from 3T/4 to T + T/4, a relatively
small T vortex is formed near the upper trailing edge without the influence of the large L
vortex. During shedding, convection and coalescence, the KH rollers experience notable
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Figure 10. (a–i) Evolution of coherent structures during one vortex shedding cycle for B/D = 6, demonstrated
by iso-surfaces of Q = 1.0(U/D)2, coloured based on the y coordinate.
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Figure 11. Locations of sampling probe A in the shear layer for (a) B/D = 5 and (b) B/D = 6.

spanwise modulations. Furthermore, the L vortex is stretched to 3-D hairpin-like vortices
when it flows past the trailing edge due to the strong shear effect near the wall.

Figure 10 shows the instantaneous coherent structures during one shedding cycle for
B/D = 6. In contrast to the case of B/D = 5 shown in figure 9, every two KH rollers merge
together and form the ILEV for B/D = 6, suggesting that the number of shedding KH
rollers in one cycle is related to B/D. In addition, two large-scale vortices appear over the
chord in figure 10, indicating a transition of the global instability from Mode 1 to Mode 2.
However, the Kármán-type vortex shedding from the trailing edge is almost invisible. The
underlying mechanism for such a mode transition is discussed in detail in § 5.2.

To better study the relationship between the KH instability and global instability, we
defined a probe A in the upper shear layer and sampled the fluctuating velocity at that
point. The probe is located at the midspan (z = 0) and is 2D downstream from the leading
edge, as shown in figure 11. The heights of the probe for B/D = 5 and B/D = 6 are 0.55D
and 0.58D, respectively, which correspond to the upper boundary of the mean separation
bubble.

Figure 12 shows the spectra of the normalized transverse velocity Uy/U0 at point A for
B/D = 5 and 6. To facilitate comparison, the frequency is scaled by D rather than B. Several
prominent peaks appear in both cases, including the global instability frequency, fG, its
harmonics, 2fG and 3fG, and the KH instability frequency, fKH . Side-band frequencies of
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Figure 12. Spectra of the transverse velocity at point A in the shear layer for (a) B/D = 5 and (b) B/D = 6.

fKH + fG and fKH + 2fG also appear in the case of B/D = 5, which is expected to be caused
by the nonlinear interactions between the large-scale vortex structures and the KH rollers.
The fKH in the case of B/D = 5 is close to 3fG, in accordance with the coalescence of every
three KH rollers during one shedding cycle of the large-scale vortex observed in figure 9.
In contrast, fKH is closer to 2fG for B/D = 6. Thus, two KH rollers merge together during
one shedding cycle in figure 10. It is worth noting that the fKH values in the two cases are
similar (around 0.4), and the decrease for fKH/fG for B/D = 6 is caused by the increase in
fG as a result of the mode transition of the global instability. In figure 12(b), the transverse
velocity at the frequency of fKH is lower than that in figure 12(a). The reason may be
that the fG value for B/D = 6 is much higher than that for B/D = 5, and the KH rollers are
less developed before their merger into a large-scale leading-edge vortex. Thus, the KH
instability for B/D = 6 is weaker than that for B/D = 5.

Figures 9 and 10 show that the subsequent shedding and merging of a certain number
of KH rollers in the leading-edge shear layer are the source of the ILEV. How the KH
instability, which has a significantly lower fluctuation amplitude in the spectra, forms the
large-scale instability of ILEV remains unclear. To determine this, the time histories of
Uy/U0 at probe A at two spanwise locations and their time-frequency spectra computed
using the Morlet wavelet transform (Kijewski & Kareem 2003) are presented in figure 13.
Several ‘packets’ of high-frequency fluctuations, which correspond to the KH instability,
can be observed. The inset in figure 13(a) shows a close-up view of the first ‘packet’
over t = 500–550. The amplitudes of the high-frequency fluctuations in these ‘packets’
are much larger than those for the primary shedding frequency, indicating that the KH
rollers contain a large amount of energy to be transferred to the ILEV. Nevertheless, the
high-frequency fluctuations appear only intermittently, making them less apparent in the
long-time-averaged velocity spectra and leading to a broad-band peak at fKH in figure 12.
It is worth noting that these large-amplitude ‘packets’ of high-frequency fluctuations exist
for all B/D values. Cimarelli, Leonforte & Angeli (2018) studied the relationship between
the low-frequency unsteadiness of the separation bubble and the small-scale structures
in the shear layer based on direct numerical simulations for a 5:1 rectangular cylinder.
They noted that the low-frequency unsteadiness alternatively promotes and suppresses the
small-scale motions with a relatively long period of inversion, which further leads to the
rising of the ‘packets’ of high-frequency fluctuations.
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Figure 13. Time histories and time–frequency spectra of the transverse velocity of point A at z = 0 (a,b) and
z = −1.5D (c,d) for B/D = 5.

From figures 13(a) and 13(c), it can be noticed that the amplitudes and locations of
the ‘packets’ of high-frequency fluctuations show significant differences between z = 0
and −1.5D, suggesting that the KH instabilities at different locations are not enhanced or
suppressed simultaneously. In addition, it can be directly observed from figures 9 and 10
that the KH rollers are not fully correlated in the spanwise direction. Thus, it is surmised
that the intermittency of KH instability is mainly caused by the 3-D disturbance in the
flow on the KH rollers. For the flows over a circular prism, 3-D streamwise structures can
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be detected in the near wake at a much lower Re, which have been referred to as Mode B
by Williamson (1988). With an increase in Re, Prasad & Williamson (1997) pointed out
that the temporal changes in the 3-D streamwise structures may disrupt ordered formation
of the 2-D shear-layer vortices and thus contribute significantly to the intermittency of
shear-layer fluctuations. In particular, they noted that the intermittency of KH instability
tends to be significant when Re is just above the onset of shear-layer instability, which is
close to 1000. Thus, it is believed that the intermittency of K-H instability for a rectangular
prism appearing in this study shares some similarities with that for a circular prism.
Further studies need to be carried out to explore the behaviour and mechanism of 3-D
streamwise structures for rectangular prisms.

4.2. Interactions between ILEV and TEVS
To investigate the interactions between the ILEV and TEVS, DMD is performed based
on the unsteady spanwise-averaged velocity field. Then, the Q field is calculated based
on the velocity field corresponding to a specific velocity DMD mode. To perform DMD,
1000 snapshots with a time interval of 0.1 are recorded, corresponding to about 12 vortex
shedding periods. The sampling frequency is about 87 times the inherent frequency of
global instability, much higher than the minimum requirement proposed in Schmid (2010).
Figure 14 shows the evolution of the St mode during one vortex shedding period. The L and
T vortices are labelled by their shedding sequences from the trailing edge. The background
is coloured by the Q-criterion values to demonstrate the vortex intensity distribution for
this mode.

It is worth emphasizing that the vortices in the DMD mode are different from the vortex
structures of the original flow in figure 9. The two adjacent L or T vortices in this St
mode are counter-rotating. The red letters denote clockwise vortices, and the black letters
denote anti-clockwise vortices. In addition, the L vortices are antisymmetric about the
horizontal axis. To illustrate the relationship between the L vortices in the original flow and
the decomposed flow that correspond to the St mode, the original velocity field is divided
into the mean field and the fluctuating field, as shown in figure 15. It can be noted that the
St mode is very similar to the pure fluctuating field for this Re. Thus, the fluctuating field
is used to illustrate the relationship of the L vortices between the original and decomposed
flows.

Taking the lower side of the prism as an example, only an anti-clockwise L vortex
is observed in the original and mean flows, while a pair of counter-rotating vortices
are noticed in the fluctuating flow. Supposing that the mean flow is superposed on the
fluctuating flow, the clockwise-rotating vortex in the fluctuating flow will be masked (or
negated) by the anti-clockwise separation bubble or the near-wall shear effect (in the region
downstream the separation bubble) in the mean flow. As a result, only an anti-clockwise
vortex is observed on the lower side. Similar conclusions can be drawn for the upper side of
the cylinder. Thus, the L vortex shedding in the original flow is equivalent to the alternative
shedding of the counter-rotating vortex pairs in the St mode.

The ILEV, TEVS and their interaction process are recognized through the DMD mode.
The process is as follows. (1) At t = 0, L1 advected from the upstream location arrives
at the trailing edge. Meanwhile, T1 is formed and begins to shed from the trailing edge.
(2) At t = T/8, L1 and T1 begin to merge during their shedding process from the trailing
edge. (3) At t = T/4, T1 is advected away, and a new T2 emerges in the near wake. In
addition, a new L3 appears near the leading edge of each lateral side. (4) Vortex L3 moves
downstream, and T2 continues growing until t = T/2, when L2 arrives at the trailing edge
and T2 begins to shed. The above processes form the first half-cycle of the St mode,
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Figure 14. (a–h) Streamlines and Q contours of the DMD mode at St = 0.571 during one shedding cycle for
B/D = 5.
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Figure 15. Comparisons of the (a) original, (b) mean and (c) fluctuating velocity fields for B/D = 5.

corresponding to the complete shedding and interaction of L1 and T1. The evolution of
the vortices in the second half-cycle is similar to that of the first half-cycle, except that the
rotation direction of the shed vortices (L2 and T2) is opposite to that of the first half-cycle.
This shedding and merging behaviours of the L and T vortices at the trailing edge provide
direct supporting evidence for the vortex interaction hypothesis suggested by Hourigan
et al. (1993).

The Q contours mark well the locations of the leading-edge and trailing-edge vortices,
while the KH rollers are not present in the St mode. This is due to the frequency-based
nature of the DMD technique and the fact that the shedding frequency of the KH rollers is
higher than that of the ILEV.
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Figure 16. Phase of pressure fluctuations relative to the upper leading edge in the St mode for B/D = 5.

4.3. Pressure phase
To better understand the relationship between the fluctuations in different regions, the
phase angle of the pressure fluctuations at each point in the St mode are calculated from
the pressure DMD mode using (3.10). For convenience of analysis, the point near the upper
leading edge is selected as the reference point. The phase lags of the pressure fluctuations
at other points relative to the leading edge are calculated and presented in figure 16. The
time-averaged streamlines are also presented in the figure.

Since the St mode is antisymmetric, a 180° phase difference between the upper and
lower fields exists, and only the upper phase field is discussed here. In the region of
x =−2.5D to −0.5D, the phase decreases slowly, indicating that the fluctuations in this
region are nearly synchronous. A rapid decrease in the phase along the shear layer occurs
around x = 0, which is considered to be related to the formation of the ILEV. Since
the direction perpendicular to the contour lines denotes the propagation direction of
the pressure fluctuations, the arc-shaped contour lines around x = 0 denote the growth
of the L vortex in size. Interestingly, there are some special points, denoted by P1 and
P2, corresponding to the endpoints of the phase contour lines. Surrounding each point,
there exists a counter-clockwise propagation of the pressure fluctuations. However, the
pressure fluctuations at these points are always zero, representing stagnation points in the
pressure field. The distance between the adjacent stagnation points roughly represents the
wavelength of the fluctuations.

For the shear-layer instability to be self-sustained, the downstream generating point and
upstream receiving point of the pressure pulse in the feedback loop should be in phase.
Unexpectedly, the downstream zero-phase point is not at the sharp trailing edge but is at the
slightly further upstream point P0. This means that the pressure feedback-loop mechanism
between the leading and trailing edges in the cavity flow is not applicable herein, i.e.
the feedback loop does not cover the entire chord length. In addition, the phase of the
near-wake region is significantly higher than those at the leading and trailing edges on the
same side, suggesting that the TEVS does not directly participate in the feedback-loop
mechanism. Therefore, the exact feedback-loop mechanism driving the self-sustained
oscillations of the shear layer and the role played by the TEVS in the global instability
warrant more in-depth investigation based on a larger range of B/D values.
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5. Effect of B/D on flow characteristics

5.1. Strouhal number
The unsteady flow fields around rectangular prisms with B/D values ranging from 3 to 12
are simulated. The Strouhal number based on B calculated from the spectra of CL is plotted
in figure 17, along with the experimental results from Nakamura et al. (1991) and the
numerical results from Yu et al. (2013). The predominant frequency component (referred
to as the main St mode below) at a specific B/D is marked by a filled circle, while the other
frequencies are marked by open circles. Note that only the frequency components whose
amplitudes are higher than 10% of the predominant frequency component are plotted. The
simulation results show good agreement with the existing results. The results from Yu et al.
(2013) are slightly higher because Re in that study was around 105, and Nakamura et al.
(1991) showed that higher Re usually lead to higher shedding frequencies. The stepwise
increasing behaviour of the main St with B/D is captured. Mode 1 to Mode 5 represent the
five St modes as the St value increases from 0.6 to 3.0, with a step size of 0.6.

The experimental results by Nakamura et al. (1991) show that when B/D = 8 and 11,
near the main St jump from Mode 2 to Mode 3 and from Mode 3 to Mode 4, respectively,
two modes coexist in the system. A similar phenomenon can be observed in the simulation
results of this study, but multiple frequencies occur in wider ranges of B/D, including the
first St jump from Mode 1 to Mode 2 within B/D = 5.4–5.5 and all the cases with B/D ≥ 8.
This indicates that the flow near a St jump is unstable and the vortex shedding cannot be
completely controlled by a specific mode. Thus, the mode jump is more like a process in
which lower-order modes gradually disappear while higher-order modes gradually surface,
rather than a sudden switch between the two. This can be better understood from the
spectra of CL in figure 18. For example, Mode 3 becomes the primary instability mode
when B/D ≥ 9 but has already manifested itself in the system when B/D = 8.

In general, a larger B/D corresponds to more unstable modes and more complicated
and distributed frequency contents. In particular, up to four St modes are found to
coexist in the system (relative amplitude >10%) when B/D = 12. It is worth pointing
out that the amplitudes of CL for high-B/D cases are significantly smaller than those
of low-B/D cases. To make figure 18 clearer, the relative amplitude is used for the
ordinate, i.e. the amplitudes are scaled by the maximum amplitude for each B/D case.
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Figure 18. Amplitude spectra of CL for different B/D values. The amplitudes are scaled by the maximum

amplitude for each B/D.

Although low-frequency components seem to be more remarkable for high-B/D cases,
their absolute values are still much lower than those of the low-B/D cases.

In figure 17, the modes are classified as the predominant mode and other modes.
However, this does not mean that flow is always governed by the predominant mode.
Taking B/D = 9 as an example, figure 19 shows the time–frequency spectrum of CL. Mode
3 governs the system most of the time. Within the short periods of t ∼ 900–1050 and
1700–1900, however, Mode 3 almost disappears, Mode 2 and Mode 4 become the more
important modes. Similarly, Mode 4 emerges within t ∼ 800–1100 and 1500–1900, while
it disappears within t ∼ 500–800 and 1100–1500. This switching behaviour of the primary
mode with time can be viewed as a mode competition process, during which each mode
is intermittently amplified and suppressed. The DMD modes of Modes 2–4 at B/D = 9 are
identified and compared in § 5.2.

Similar mode competition phenomena were also detected in Kegerise et al. (2004),
Murray & Ukeiley (2007), Pastur et al. (2008), Lusseyran, Pastur & Letellier (2008) and
Guéniat et al. (2014) for a cavity flow. It is generally accepted that mode competition
or mode switching is a result of the amplitude-modulation effect of the low-frequency
fluctuations in the flow fields on the shear-layer oscillation modes (Rossiter modes). The
modulation of the low-frequency fluctuations induces two side-band frequencies around
the carrier frequency (the mode frequency), making the oscillations exhibit a beating
process (Yalla & Kareem 2001). With regard to the physical explanation behind the
modulation, Bres & Colonius (2008) claimed that the modulation was caused by the
nonlinear interactions between the 3-D centrifugal instability inside the cavity and the
oscillating shear layer. Basley et al. (2013) found that the 2-D vortex-edge interactions
at the impingement and the low-frequency dynamics in the 2-D recirculating flow over
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Figure 19. Time–frequency spectrum of CL at B/D = 9.

a very restricted range of width-to-depth ratios were also responsible for the amplitude
modulation.

As shown in figure 18, some low-frequency components are evident for B/D ≥ 8,
and each St mode is accompanied by a series of side-band frequencies, indicating that
amplitude modulation may also occur in the flow around rectangular prisms. A band-pass
filter is further applied to the simulated CL for B/D = 9 to extract the main and side-band
frequencies of each mode, i.e. the modulated signal of each mode. The results are shown
in figure 20. Under the modulation effect, each mode exhibits strong beating, and the
amplification and suppression time intervals are in agreement with figure 19. Although
the centrifugal instability in the cavity flow is not observed herein for the separated and
reattached flow, the three-dimensionality of the flow is more prominent, especially after
reattachment and inside the main separation bubble. Thus, multiple modulations of the St
modes may exist concurrently as well as coupling, making the mechanism complicated.
As a result, there is no distinct regularity in the beats of the modulated signals.

5.2. The DMD mode of global instability
To determine the underlying mechanism that controls which instability modes are selected
and enhanced at a specific B/D, the main St mode at each B/D is extracted from the
spanwise-averaged velocity field. Figure 21 shows the instantaneous streamlines of the
main St mode for different B/D values, and the mode orders are indicated in the top-left
corners. Note that for each B/D, figure 21 only shows the mode pattern at the specific
instant when a clockwise L vortex just arrives at the trailing edge, i.e. t = 0 in figure 14,
instead of the entire evolution process during one shedding cycle. Some key findings are
summarized as follows:

(1) For B/D = 3–5, 6–8, 9–11 and 12, there are two, four, six and eight L vortices on
each side of the prism, respectively. Since a pair of counter-rotating L vortices in the
DMD mode correspond to one L vortex in the original flow, the number of L vortices
for each B/D value predicted in the present study is consistent with the experimental
observations of Nakamura et al. (1991). Every mode jump brings about an additional
pair of L vortices on each side and the total number of pairs is consistent with the
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Figure 20. (a–d) Band-pass filter for CL with B/D = 9.

mode order. This proportional relationship between the vortex number and the mode
order (mode frequency) is highly similar to the Rossiter modes in the cavity flow.
Within each mode, the number of L vortices is a constant. Therefore, a larger B/D
means a larger vortex size and wavelength.

(2) In general, the shade of the contour becomes lighter when B/D increases from 3
to 9. This is anticipated because the large-scale vortices that are shed from the
leading edge break up into more intermittent structures after reattachment. A wider
chord means more developed turbulence at the trailing edge, leading to a decrease
in the intensity of vortex shedding. Although the number of leading-edge vortices
on the lateral sides of the prism increases stepwise with B/D, the standard deviation
of CL in figure 22 still shows a decreasing trend as B/D increases. This suggests
that the intensity of each leading-edge vortex decreases superlinearly with B/D.
Nevertheless, multiple plateaus in CL-std are observed in figure 19, which are quite
well aligned with the mode shifts as B/D increases. The reason may be that the
trailing-edge vortices are not fully developed at the generation of each new mode
(B/D = 3, 6, 9 and 12). With the increase in B/D, the intensity of trailing-edge
vortices increases, negating the reduction in the intensity of the leading-edge
vortices.

(3) At the generation of each new mode (B/D = 3, 6, 9 and 12), when the new L vortex
arrives at the trailing edge, the T vortex has not been formed yet, and the flow is
mainly governed by the ILEV (see, for example, the coherent structures of B/D = 6
in figure 10). With an increase in B/D, the wavelength of the ILEV tends to be
longer, and it needs more time for the L vortex to travel from the leading to the
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Figure 21. (a–j) Streamlines and Q contours of the primary St mode for different B/D values, corresponding
to time instant when the lateral clockwise L vortices arrive at the trailing edge.

trailing edge, providing an opportunity for the T vortex to be better developed. This
is reflected by the growth of the size and relative strength of the TEVS. Accordingly,
the merging point of the L and T vortices moves downstream. Since the L and T
vortices can be easily captured by each other in this range, the related instability
mode is preferred by the system, making the frequency more concentrated than in
other ranges, as shown in figure 18. When B/D increases to the upper bound of
each mode (B/D = 5, 8 and 11), the TEVS is fully developed and begins to shed
away when the L vortex arrives at the trailing edge, but they can still merge (see the
coherent structures for B/D = 5 in figure 9). As B/D is further increased, the L vortex
lags far behind the T vortex and they cannot capture each other at the trailing edge.
Meanwhile, a new T vortex, which has an opposite direction of rotation, is formed at
the trailing edge, and the original interactions between the L and T vortices diminish.
A more suitable interaction mechanism for the higher-order mode is selected and
enhanced by the system, initiating the transition of the global instability from a lower
mode to a higher mode.

Based on the above analyses, it can be reaffirmed that the interactions between the ILEV
and TEVS are closely related to B/D and are responsible for the jump in the main St
mode. However, this does not necessarily imply that the interference effect of TEVS on
the ILEV is the source of the global instability. Figure 23 shows the three prominent DMD
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modes in the velocity field for B/D = 9, which correspond to Modes 2–4 appearing in
the time–frequency spectrum of CL in figure 19. In Modes 2 and 3, regular TEVS and
coalescence with the ILEV are evident. In comparison, the TEVS is almost invisible for
Mode 4. The reason for this may be that the frequency of Mode 4 is too high that it
exceeds the preferred range of the TEVS. The upper and lower limits of the preferred
shedding frequency of the TEVS are discussed in § 6.2. The absence of TEVS for Mode
4 suggests that the instability is not triggered by TEVS but an intrinsic unsteadiness of
the separated shear layer, which appears as the ILEV instability. Like the Rossiter modes
in cavity flows, multiple shear-layer instability modes may coexist. At a specific B/D, one
or two of these modes are captured and enhanced by the TEVS through the interacting
mechanism discussed above if their frequencies fall into the preferred range of TEVS. The
selection feature of TEVS on the main global instability mode is further demonstrated in
§ 6.

5.3. Pressure feedback-loop mechanism
It has been determined that the global instability is caused by the self-sustained oscillations
of the shear layer. Nevertheless, the underlying pressure feedback-loop mechanism related
to the self-sustained oscillations remains unclear. To identify this pressure feedback-loop
mechanism, the predominant pressure DMD mode at each B/D is extracted from the
spanwise-averaged pressure field. The phase distribution of the pressure fluctuations in
the flow fields is calculated using (3.10) and is shown in figure 24. The time-averaged
streamlines are also presented.

At a specific mode, the number of stagnation points within the chord B is a constant
and equals the order of the mode. When B/D is increased from 3 to 5, the wavelength, i.e.
the distance between the adjacent stagnation points P1, P2, P3, . . . tends to increase. The
wavelength then experiences a sudden decrease at B/D = 6, accompanied by a jump in the
St mode. Such a decrease in the wavelength can also be noticed at B/D = 9 and 12. At the
generation of each new mode (B/D = 3, 6, 9 and 12), the phase in the near wake is close
to zero. With an increase in B/D, the phase in the near wake increases due to the phase
lag between leading-edge vortex shedding and TEVS. Near the mode jump, this phase
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Figure 23. Streamlines and Q contours of (a) Mode 2, (b) Mode 3 and (c) Mode 4 for B/D = 9.

lag approaches π for the lower-order mode, while it approaches zero for the higher-order
mode. This is in accordance with the discussion above based on the velocity modes in
figure 21.

To explore the feedback-loop mechanism of the self-sustained oscillations, the location
of the in-phase point P0 near the trailing edge is determined for each B/D. Unexpectedly,
the location of P0 does not show a uniform pattern for different B/D values. When
B/D = 4–5, P0 is located at the upstream region of the trailing edge. For the cases with
B/D = 3 and B/D ≥ 6, however, no zero-phase point is observed on the top surface of the
prism near the trailing edge. To facilitate the analysis, the contour lines of phase = 0 around
the trailing edge in these cases are highlighted by red lines.

In the second regime, i.e. B/D = 3 and B/D ≥ 6, the contour line of phase = 0 is located
immediately behind the T vortex, corresponding to the location of the coalescence of the
L and T vortices. This phenomenon confirmed the assumption that the pressure pulse,
which is generated by the discontinuity of the boundary when the L vortex passes over the
trailing edge, travels upstream to the leading edge. This pressure pulse in turn promotes
the merging of the KH rollers at a regular interval and then enhances the self-sustained
oscillations of the separated shear layer. Due to the interference effect of the TEVS, the
downstream in-phase point is not at the trailing-edge corner but is in the near wake.
The more developed the TEVS is, the more the deviation of the phase = 0 line from the
downstream corner is observed.

When B/D = 4–5, P0 is located at the downstream border of the mean separation bubble,
corresponding to the mean reattachment point. It is surmised that some significant changes
in the flow characteristics occur when B/D is increased from 5 to 6 and lead to the
contrasting feedback-loop mechanisms. Figure 25 shows the evolution of the original flow
during one vortex shedding cycle for B/D = 5 and 6.

In either case, the reattachment point shows periodical oscillations around the mean
reattachment point due to the advection of the L vortices. A distinct difference between
the two flows is that the separated shear layer is always reattached to the prism afterbody
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Figure 24. Phase of the pressure fluctuations relative to the upper leading edge in the St mode for (a–j)
B/D = 3–12.
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for B/D = 6, while this is not the case for B/D = 5. For B/D = 5, the upper and lower shear
layers are not reattached to the prism from T/8 to 2T/8 and from 5T/8 to 7T/8, respectively,
as indicated by the red circles. In other words, the mean reattachment point is too close to
the trailing edge (see figure 24) that the transient reattachment point falls outside the side
surface temporarily, and the shear layer exhibits an intermittent flapping behaviour on the
prism afterbody.

The locations of the mean reattachment point for different B/D values are summarized
in figure 26. Kiya & Sasaki (1985) noted that the transient reattachment point fluctuated
around the reattachment point in a range of 1D. When B/D ≤ 5, the distance from the
mean reattachment point to the trailing edge is smaller than 1D and thus corresponds to
intermittent reattachment. Parker & Welsh (1983) also found this type of switching of the
reattachment behaviour at a critical B/D. The intermittent flapping of the shear layer on
the prism afterbody at B/D = 4 and 5 gives rise to nearly periodic pressure fluctuations,
which travel upstream to the leading edge and close the self-sustained oscillation cycle of
the shear layer. This feedback loop based on the pressure occurs not over the entire chord
length but within the mean separation bubbles.

Based on the different pressure feedback-loop mechanisms, it is surmised that it is more
appropriate to refer to the global instabilities at B/D = 4–5 and B/D ≥ 6 as the ISL and the
ILEV instabilities, respectively, to reflect the direct source of the upstream-propagating
pressure waves. The case of B/D = 3 is relatively special because the shear layer is
apparently not always reattached to the prism surface, but the pressure phase distribution
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in figure 24 still shows the ILEV instability pattern. Figure 26 shows that the mean
reattachment point for B/D = 3 is very close to the trailing edge. If the instability of
B/D = 3 belongs to the ISL instability, P0 should be almost near the downstream corner.
However, there is a weak T vortex near the trailing edge (figure 21), which has a positive
relative phase. As a result, the contour line of phase = 0 experiences a modulation by
the TEVS near the downstream corner, making the global instability appear as the ILEV
instability.

For smaller B/D values, such as B/D = 2 and 1, the upper and lower separated shear
layers are not reattached to the prism surface (Kareem & Cermak 1984; Yu et al. 2013)
but directly interact with each other in the wake, forming Kármán-type vortex shedding
(referred to as the ‘leading-edge vortex shedding’ regime by Naudascher & Rockwell
(1994)). Neither intermittent flapping of the shear layer nor the successive splitting of the
large-scale vortices by the sharp downstream corners occurs. Thus, the above-mentioned
two instability regimes and the stepwise increase in St cannot be observed in the range of
B/D ≤ 2.

6. Further investigation of the mechanism of global instability

To further validate the pressure feedback-loop mechanism and delineate the contribution
of the TEVS to the global instability, flow characteristics of two special geometries (Case
II and Case III in figure 1), which are designed to separate the ILEV and TEVS, are
investigated in this section.

6.1. Flow characteristics without TEVS
The TEVS here mainly refers to Kármán-type vortex shedding. To prevent the formation
of Kármán-type vortices, a splitter plate with a width of 5D is attached to the middle of
the leeward face of the prism of B/D = 6. The reason for choosing such a B/D and splitter
width is that the separated shear layer was noted to intermittently reattach to the prism
surface (not shown here) under this arrangement, and thus the result is more comparable
with that of regular prisms of B/D = 4–5.

The Strouhal number calculated from the spectrum of CL is 1.776, corresponding to
Mode 3 (St ≈ 0.18) in figure 17. The corresponding DMD mode is extracted from the
spanwise-averaged velocity field, as shown in figure 27. The TEVS is eliminated by the
splitter plate, but the regular ILEV is still evident, indicating that TEVS is not a necessity
for the global instability. There are three counter-rotating pairs of L vortices on each side
of the prism (excluding the splitter plate), which is the same as the mode order. This is
consistent with those observed in figure 21 for the regular prisms of Case I.

Figure 28 shows the phase distribution of the pressure St mode. The zero-phase point P0
again is located at the mean reattachment point, indicating that the global instability in this
case is also caused by the pressure feedback loop between the leading edge and the mean
reattachment point. From the time-averaged streamline, the distance between the mean
reattachment point and the trailing edge is less than 1D, similar to the cases of B/D = 4
and 5, indicating that the shear layers intermittently reattach to the prism afterbody. This
behaviour suggests that the global instability is the ISL instability rather than the ILEV
instability.

For the regular rectangular cylinder with B/D = 6, the L vortices on the lateral sides
merge with the T vortex in the near wake, and the width of vortices in the wake is relatively
large. For Case II, however, the splitter plate eliminates the TEVS and prohibits the L
vortices on the two sides from merging together, and thus the vortex width is smaller.
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Figure 27. Streamlines and Q contours of the St mode for Case II.
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Figure 28. Phase of the pressure fluctuations relative to the upper leading edge in the St mode for Case II.

For a fixed convection velocity, a shorter vortex width means a higher shedding frequency.
In addition, without the interference effect of the TEVS, the ILEV can select its preferred
shedding frequency. As a result, Case II with a splitter plate could reach a higher St number
and DMD mode.

The above analysis shows that the formation of the self-sustained oscillations of the
separated shear layer is independent of the TEVS. However, CL-std of the integral structure
(prism and splitter plate) is 0.14, much smaller than 0.37 of the regular prism with
B/D = 11, which has the same total width. In addition, Nakamura & Nakashima (1986)
found that the flows over H-section prisms with and without a splitter plate both suggest
the presence of the ISL instability, while the vortex shedding on the two sides with the
splitter plate are not antiphase but rather in phase. Thus, although the TEVS is not essential
for the global instability, its participation may influence the global instability significantly.

6.2. Flow characteristics without ILEV
To better investigate the source and behaviour of the TEVS, the separated shear layer is
excluded by extending the prism lateral faces upstream to the inlet boundary, as depicted
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Figure 29. Streamlines and Q contours of the St mode for Case III.
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Figure 30. Strouhal number (based on D) for different B/D ratios.

in figure 1. Since the prism width in this case has no direct meaning, St is calculated based
on D and is 0.195. The corresponding instability mode is shown in figure 29. A regular
Kármán vortex street is formed in the wake as a result of the interactions between the
upper and lower shear layers separated at the trailing edge.

Combined with the evolution of the coherent structures in figure 9 and the instantaneous
streamlines in figure 25, it can be confirmed that the TEVS in the global instability of
the rectangular prisms is caused by the intermittent shear layers in the interval of two
neighbouring ILEVs. A larger ILEV wavelength leads to a wider boundary layer and
further a more developed TEVS. This relationship can be ascertained by the DMD mode
shapes of different B/D values in figure 21.

If St of the regular rectangular prisms (Case I) is calculated based on D, it is noted to
be distributed within the range of 0.11–0.21, as shown in figure 30. This range is often
described as the preferred shedding frequency of TEVS (Mills et al. 2002, 2003). The
St(D) experiences a monotonic decrease with B/D within each mode, but shows a sudden
increase around the mode jump.

Now, the influence of TEVS on the global instability in Case I can be determined. On
the one hand, for the global instability to be formed, the shedding frequencies of the ILEV
and the TEVS should be the same. The shedding frequency of the T vortex is controlled
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by the convective velocity of the shear layer Ub. The value of Ub is usually smaller than
the free-stream velocity of Case III, and thus the TEVS frequency should be smaller than
that of Case III (0.195). As shown in figure 30, most of the St(D) values of Case I are
smaller than 0.195. This forms the upper limit of the frequency of the global instability.
For B/D = 9 and 12, St of the main instability mode is close to the upper limit, making
the ILEV and TEVS less compatible. As a consequence, the main instability mode is
less enhanced, and the spectrum becomes more complicated compared with adjacent B/D
values, as shown in figure 18. On the other hand, the lower limit of St is achieved through
the length of the shear layer. If St is too low, the shear layer between two L vortices is
long enough for the T vortex to fully develop and shed from the trailing edge before the
arrival of the L vortices. As a result, the L and T vortices cannot capture each other, and
the original instability mode cannot be maintained, as discussed in § 5.2.

Due to the above limitations imposed by the TEVS, only the most suitable modes, whose
frequencies fall into the preferred range of TEVS, will be selected and enhanced by the
system for each B/D. For Case II, however, the TEVS is removed and the system can
reselect its preferred frequency based on the ILEV. Thus, St of Case II is much higher
than that of Case III. It is worth mentioning that the TEVS decides which instability mode
should be selected, but it does not directly change the frequency of a specific mode. The
mode frequency is governed by the pressure feedback-loop mechanism and is characterized
by an integral multiple of 0.6 (based on B).

7. Concluding remarks

Based on the large-eddy simulation and analysis employing DMD, the behaviour and
mechanism of the global instability are investigated for prisms with a wide range of
chord-to-depth ratios (B/D) at Re = 1000.

The interaction between the ILEV shedding and TEVS and its variation with B/D are
recognized based on the velocity DMD mode. The leading- and trailing-edge vortices
merge together in the near wake, and the level of development of trailing-edge vortices
is dependent on B/D. Due to the integral number of leading-edge vortex pairs on the
side of the body and the interference effect of TEVS, St based on B shows a stepwise
variation with the change of B/D. Within each mode, the phase difference between the
TEVS and ILEV at the trailing edge increases with B/D until it reaches π, thus promoting
the transition from the lower mode to the higher mode.

Two types of pressure feedback mechanism controlling the global instability are revealed
based on the phase distribution in the pressure DMD mode. When B/D = 4 and 5, the shear
layer is intermittently reattached to the prism afterbody and exhibits a flapping behaviour.
Thus, the flow is characterized by the ISL instability and the feedback loop covers the
separation region. When B/D ≥ 6, however, the shear layer is fully reattached to the prism.
The shear-layer instability is enhanced by the upstream propagation of the pressure pulse
induced by the discontinuity of the boundary condition and the interference effect of
trailing-edge vortices when the leading-edge vortices flow past the trailing edge. Thus,
the flow is characterized by the ILEV instability, and the feedback loop covers the entire
chord. For B/D = 3, due to the mean reattachment point being very close to the trailing
edge, the flow still shows the ILEV instability under the interference effect of the TEVS.

Based on an additional case with a splitter plate, it is found that the ILEV can reach a
much higher frequency without the participation of TEVS. According to St (based on D) of
regular rectangular prisms, the preferred shedding frequency of the TEVS is determined.
Based on an additional case where the leading-edge vortices are removed, it is found that
the lower and upper limits of the preferred shedding frequency are governed by the phase
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difference between ILEV and TEVS and the convective velocity of the separated shear
layer at the trailing edge, respectively. Due to the interaction between the ILEV and TEVS,
only the most suitable ILEV modes whose frequencies fall into the preferred range of
TEVS will be selected and enhanced by the system for each B/D, leading to the stepwise
increase in St with B/D.
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