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HOW COMPLETE ARE CATEGORIES OF ALGEBRAS?

JIRI ADAMEK

Completeness properties of (il the category hlg(T) of 2"-algebras

over a functor T : X -»• X and (ii) the subcategory X in the case

where T = (Tty,yr\) is a monad, are investigated. It is known that

if X is compact, then each X is compact; we present a functor

T : Set -»• Set such that Alg(T) is non-compact, although it is

hypercomplete. If T either preserves epis or has a rank, we

prove that Alq(T) and X are topologically algebraic over X

provided X satisfies mild additional hypotheses. Nevertheless, a

natural monad over the category of A-complete posets is exhibited

such, that its category of algebras is solid, but not topologically

algebraic, over Set.

Introduction

Two examples of categories of algebras form the background of the

present paper. One is a hypercomplete category which is not compact, thus

answering the problem as to whether these two properties are equivalent,

put by BiSrger, Tholen, Wischnewsky and Wolff [6]. The other is a solid
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category of unary ordered algebras which is not topologically-alqebraic

over Set , the first "natural" example of this sort.

By categories of algebras are meant the categories Alg(2V given

by a functor T : X •*• X : objects are T-algebras, that is maps

TX X > X (no axions) , morphisms from TX X > X to TY V > Y are maps

f : X •*• Y in X with f.x = y.Tf • The four properties mentioned above

are studied for categories Alg(2V and, in the case where T is the

functor-part of a monad T , for their full subcategories X . For the

latter, compactness as well as hypercompleteness are lifted from X to

X , see [75]- The same is, consequently, true for Alq(T) if T is a

varietor, that is, if each X-object generates a free T-algebra : then

hlqCTl *= X for the free monad T* generated by T , see [4]. The

quotient jP* of the covariant power-set functor obtained by merging

finite sets has the property that hlgCP*) is hypercomplete but non-

compact. It is an open problem whether compactness of hXq(T) implies

that T is a varietor.

The concepts of solid (= semi-topological) and topologically-algebraic

categories have both been created in order to express the common features

of topological and algebraic concrete categories. But whereas each

topological category is clearly topologically-algebraic (which is slightly

stronger than solid, see [5] and [7]), the situation with algebraic

categories is not that clear. For "reasonable" base categories we prove

that AlgfTj and X are topologically-algebraic whenever T either

preserves epis, or has a rank. However, the non-cocomplete monadic

category over graphs, presented in [/D , is not solid (since solid

functors lift colimits) . We present a monad T over the category X of

A-coroplete posets such that X , as a concrete category over Set , is

solid, but not topologically-algebraic. However, it is not known whether

a monadic category X is topologically-algebraic (over X ) whenever it

is solid.
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1. Compactness and Hypercompleteness

1.1 Recall from [6] that a category K is said to be hypercomplete

if it has limits of all (possibly large) diagrams D with the property

that for each K e K the collection of all compatible sources of D with

the domain K is small. (Since these sources are in a bijective corres-

pondence with homCK, lim D) , this is the strongest completeness possible

in a locally small category.)

1.2 A class M of monos in a cocomplete category X is said to be

chain-cocomplete if for each M-chain the colimit maps are in M / and the

factorization map of any compatible source of M-monos is also a M-mono.

1.3 PROPOSITION. Let X be a cocomplete, hyper complete, wellpowered

category} and let M be a chain-cocomplete class of monos containing

all aoproduct injections. Then Alg(T) is hyperaomplete for each functor

T : X ->• X preserving M-monos (T M £ M) and such that there is an object

X isomorphic to TX + Y for some separator Y .

Proof. It is proved in LI SI that the separator Y generates a free

IF-algebra, that is, there is a T-algebra K and a universal arrow Y •*• UK

(where U : Alg(2V -»• X denotes the forgetful functor) . Let D be a

diagram of 7-algebras satisfying the condition of 1.1 in A l g W . Then

the underlying diagram U.D satisfies the corresponding condition in Set:

(a). the compatible sources of U.D with the domain Y form a small

collection because they are in a bijective correspondence with the

compatible sources of D with domain K , and

(b) the compatible sources of U.D with any other fixed domain Y'

form a small collection because I' is a quotient of a co-power of Y .

This proves that lim U.D exists in X , and since U creates limits

[74], lim D exists also.

COROLLARY. Alg(T) for a set functor T is hypercomplete whenever

there is a set X ̂  0 with card TX £ card X - 1.
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In fact, the hypotheses of the proposition are satisfied for M
= monos. Each, set functor T preserves, non-empty monos, and we can
redefine T on the empty set, putting T'X = TX for a l l X ? 0 and
T'0 = 0 (.and analogously on maps) to obtain a set functor T' preserving
a l l monos. The hypercompleteness of Alg(2V i s clearly equivalent to that
of 'J

Open problem. If Alg(2V is hypercomplete for a set functor T ,

does it follow that there is a set X / 0 with card TX S card X - 1 ?

1.4 EXAMPLE. For the power-set functor PLPX = exp X and

Pf : M •*• f(M) ] » the category Alg(P) is not hypercomplete.

In fact, for each cardinal n > 0 we can choose a map x : Pn •*• n

satisfying

x CM) i U for any set M q n .

Then the large discrete diagram of all of these algebras (n} x ) does

not have a compatible source in AlgQPJ . In fact, consider an arbitrary
P-algebra (I, y) .
cardinal n , then
P-algebra (I} y) . Given a homomorphism f : Of, y) •*• (n, x ) for some

xnCPfPCl)) = f.yCXl e Pf(J)

which, implies PfCY) = n , that is, / i s onto. Thus, card Yin.

On the other hand, in a hypercomplete category each diagram obviously

has a compatible source.

1.5 Recall from [H] that a category K i s said to be compact
if each functor with domain K preserving a l l (possibly large) colimits
existing in K i s a left adjoint.

1.6 PROPOSITION. Alg(P*) ie hyperaomplete but non-aompaat for the
quotient P* of the power-set funotor modulo finite sets, that is, the
following functor

P*X = {M\M £ X and M is i n f i n i t e , or M = 0}

https://doi.org/10.1017/S0004972700003683 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003683


393
Categories of algebras

and

P*f(M) = PfQd) if PfCM) is infinite, else, P*f(M) = 0 .

Proof. hlqCP*) is hypercomplete by 1.3, since for a two-point

set X we have card P*X = 1 = card X - 1 .

Let P denote the quotient of the power-set functor modulo

singletons, that is, PX = {M\M C X and card M ? 1} and Pf(M) = Pf(M)

if card PfCMl f 1, else PfCM] = 0 . We shall prove that the natural

full embedding

E : MgCP*) -*• AlgCPi

assigning to each. P*-algebra P*X — > X the corresponding P-algebra

PX s> p*X — > X (for the obvious epitransformation e : P •*• P*)

preserves colimits, but is not a left adjoint. The latter is obvious : for

X = {0, 1, 2} define x : PX •*• X by xCMlt = 0 for all M / X and

xOU s= 1 . Then the P-algebra CX, x) does not have a co-universal arrow

from E because both {0, 1} and {0a 2} are subalgebras lying in

E(iag(P*ll but the algebra (JX, x) itself does not lie there.

To prove that E preserves colimits, we can restrict ourselves to

non-empty diagrams D : V •*• AXgCP*) , since E clearly preserves initial

(= singletonl algebras. We prove the following statement :

(*) If D has a colimit e^ : Dd = (X^, Xj) •*• (Y> y), d e

then there exists d such that e, is onto.
0 do

Once (*) is established, we shall see that the diagram E.D has the

colimit 0, ; (X,, xJ'zx * "*" ̂ * ^'ZY^ a S f o l l o w s* L e t

d
f, : (X3 X^.Cy ) -»• (Z, z) be a compatible family in AlgCPj , then defining
_ d _
z : P*Z •> Z by zCM) = z(M) for a l l M e P*Z , we have clear ly a

compatible family f, ; (X,, xj -»- CZ, ~zl in AlqCP*) . There i s a unique

P*-homomorphism f : (Y, y) -> (Z} ~z) with f, = f.e, , and i t i s

suff ic ient to show tha t f : (J, 2/.e™/ ->• CZ3 z) i s a P-homomorphism. For
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each M e PY we are to show that z.PfCMl = f.y.zJM) • This i s c lear

i f fCM) i s i n f i n i t e , since then Pf(M) = P*fCM) . For f(M) f i n i t e

there e x i s t s Mf C X, f i n i t e with f(JMl = f-, (M1) , see (*) , and hence,
" do do

z.ff(M). = z.Pfd CM') = fd .xd ,zx (M'l = fd .xd (0)
o o o d oo

because f, is a P-homomorphism. Since e-, is a P-homomorphism, we
o o

have e, .x, C0) - y(.0) and thus,
ao o

z.PfCMl =f-sd.xd (.01 = f.yC0) = f.y.z^M) .

In order to proye (*) , we assume the contrary, and derive a

contradiction. Let n be a cardinal larger than card J and assume, for

simplicity, that J n n = 0 , that is, ¥ does not contain ordinals

i < n . Define a P*-algebra ([J u nt y~l by

yCM)

y(M) for all M e P*X3 M ̂  I

i for M = Y u i j i <• n

0 otherwise .

Denote by e', • X •, -* Y u n the range-extension of e , , then
da a

Q ' ; (X-,, xJ •*• (Y U n3 ~y) is a compatible family of the given diagram :

for each u e P*X, we have P*e\(M) 4 Y (else, g, would be onto,
a d a

contrary to our assumption) and hence, y,P*ej(M) = y.Pe-,(U) i which proves

that e' is a p*-homomorphism. Let h : (Y} y) •*• (Y u n, y) be thea

unique P*-horoomorphism with h.e, = e'-< , that is, with

h(x) = x for all x e u e^C^; .

We shall prove by induction on i < n that Y u i c h(Y) -, this clearly

contradicts card h(Y) - card Y < n •

First step: Y £ h(Y) . The set y = j n h(Y) is a subalgebra of

(J, y) . In fact, for each M e. p*Y there is N e P*Y with
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M = P*f(N) , and we can suppose that yCM) = yCM) (for otherwise M = Y

which implies Y £ h(Y) anyhow). Thus,

y(M) = y.P*f(Nl = h.y(N) e h(Y) J

and this implies y(M) e Y . The subalgebra Y contains U ej(Xi) an^

hence, we can form range-restrictions of the P*-homomorphisms e, to

Y . This clearly implies that YQ = Y , that is, that Y c h(Y) .

At a successor ordinal we show that Y u i, £ h(Y) implies i e h(Y)

[and thus, Y u (i + 1) £ W W ] . Let M e P*J be a set with

PhCM) = Y u i then

i = y.P*h(M) = ft.yfAfJ £ feCW .

The limit steps are clear.

2. Topologicai-algebraicity and solidness

2.1 A concrete category K over a base-category X is said to be

topologically-algebraic if it has free objects and (epi, initial)-

factorization of sources. This concept introduced by Y.H. Hong 1101 and

S.S. Hong [9] , aims to express the common features of topological and

algebraic categories. The same is the aim of the following, somewhat

weaker, property : K is said to be solid if each structured sink

h
\K.\ > X(i e I) , K. £ K , has a semifinal lift, that is an object

K e K and a morphism n : X -*• \K\ such that

(a) all r\.f. : K. -*• K are K-morphisms and

(b) if h : X •*• \h\ is a map such that all h.f. : K. -»• L are

# if
K-morphisras, then there is unique h : K -*• L in K with h = h .n .

The concept of a solid category was introduced by [£], [76] and [/7], and

has often been called a semi-topological category. The following has been

proved in [5] and [7] for each cocomplete, cowellpowered base-category X :

(i) Topologically-algebraic => solid =» cocomplete and has free objects;

and

https://doi.org/10.1017/S0004972700003683 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003683


396

(iil The reverse implications hold whenever the concrete category K is

cowe1lpowered.

Moreover, each, reflective full subcategory of a solid category is solid,

and solid forgetful functors are closed under composition (and they form

the composition hull of topologically-algebraic forgetful functors) .

2.2 LEMMA. In each monadic concrete category, mono8ource8 are

initial.

Proof. Let m- : 0T, x} •*• CX-, y.l, i e I , be a monosource in X .

Then m. : X-+Y• (i+I) is a monosource in X . If p} q:Z + X fulfil

m-.p = "I..q , then for the homomorphisms x.Tp, x.Tq : (_TZav,y) •*• (X, x)

we have

m..x.Tp = y ..T(m-.p) = y..T(m..q) = m..x.Tq ,

and hence x.Tp f x.Tq . Consequently

p = x.x\x.p = x.Tp.r\z = x.Tq.n^ = q .

Let CZt zl be a T-algebra, and let h : Z •*• X be a map such that

each m-.fi is a homomorphism, that is,

m-.h.z ~ y..Tm..Th = m-.x.Th (for all i ) .

Then h.z = x.Th , that is, h is a homomorphism.

2.3 PROPOSITION. Let X be a complete category with intersections.

Then each monadic category over X which is cowellpowered with respect to

extremal epis is topologically-algebraic.

Proof. By the preceding Lemma, it is sufficient to show that each

category X , cowellpowered with respect to extremal epis, has (epi,

monosource)-factorizations of sources.

Since monadic functors create Clarge) limits, see [J41 the category

X is complete and has intersections. Consequently, it has (extremal epi.
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mono)-factorizations of morphisms; it follows immediately that each small

source f • : A •*• A. Ci e I) has an textremal epi, monosource)-factoriz-

ation: factor the corresponding morphi.sn) A •*• II A. . Finally, for

id *

large sources, we factor a small subsource representing all of the

extremal co-images of the members of the source.

EXAMPLE. There is a monad T over Pos, the category of posets,

such that Pos is not topologically-algebraic. In fact, a monad T

such that Pos is not cocomplete is exhibited in [3], and topologically-

algebraic functors lift colimits.

2.4 PROPOSITION. Let X be a cocomplete, E-oowellpowered

category with a morphism factorization system (E,M) . For each functor

T : X •* X preserving E-epis (that is, TE £ E), equivalent are:

Ci) T is a varietor;

(HI AlgCTj is topologically-algebraic.

Remark. Furthermore, for each monad T preserving E-epis, X

is topologically-algebraic - the proof is analogous.

Proof, ii •*• i is clear since a topologically-algebraic category

always has free objects. To prove i •* ii, it is sufficient to show that

if T is a varietor then Alq(T) has (E , monosource)-factorization of

source - since E £ Epi and each monosource is initial, this will prove

that fiXq(T) is topologically-algebraic.

It is proved in [3] that hlg(T) is cocomplete. It has (E, H)~

factorizations of morphisms because for each homomorphism

/ ; CX, x) •* (X, y) with (E,M)-factorization / = m.e in X ,

the diagonal fill-in yields an operation map such that m and e become

homomorphisms:
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Te
TX > TZ

/
/

x | / Tm
t

XA

1
X / TY

/ i

eV
For each source f. : A -*• B .(i e I) let g ; A •*• A' be the cointersection

of all E-quotients of A in Alg(T) through which each f. factors,

then e e E and we have factorizations f. = f'..e del) . The source

/I : A' •*• B.Ci el) is a monosource : if p, q V C + X' are merged by

each. f. , then each f. factors through the coequalizer o of p and

in AlgfrJ , and hence, each /. factors through c.e e E - consequently,

o is an isomorphism.

2.5 DEFINITION. Let X be a category with a morphism factorization

system CE, M) and with colimits of M-chains.

A functor T : X ->• X is said to have rank k , where k is a

regular cardinal, if for each chain V : k •*• X of M-monos the canonical

morphism colim (T.V) -+T fcolim V) is an E-epi.

2.6 Remark.. It is often the case that the class M of all monos

is chain-cocomplete (see 1.2), and that rank k implies that colimits of

fe-chains of M~mon°s are actually preserved (for example, this holds for

mono-preserving functors on X = Set, Top, Pos, varieties of finitary

algebras.1

For functors T with rank, the category AlgfJV was proved to be

solid by Koubek and Reiterman [73] (.assuming X cocomplete and

E- cowe 1 lpowe red). Using the technique developed by Barr [41» we are able

to prove more:
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2.7 THEOREM. Let X be a cocomplete, E-cowellpowered category

with a factorization system (E,M1 such, that M is chcdn-cocomplete. Then

AlgCTl is topologically-algebraic for each functor T : X -»• X with rank.

Remark.. Furthermore, for each monad T with, rank, X is

topologically-algebraic. The proof is analogous.

Proof. It has been proved by Koubek and Reiterman in [73] that T

is a varietor and Alg(T) is cocomplete.

Thus, it is sufficient to prove that Pilg(f) is cowellpowered with respect

to extremal epis. Then hlg(T) has (extremal epi, monosource)-

factorization of sources : for each source f. • A •*• B • (i e I) let
J% t

e : A •*• A' denote the cointersection of all extremal quotients of A in

AlgCrJ through, which each f. factors del) . Then each f.

factors as /. = f'.e , and the source f'.:A'-+B.(ieI) is clearly

a monosource. Since T is a varietor, monosources are initial in hlg(T)

by 2.2, and this will establish hlg(T) as a topologically-algebraic

category.

Let k denote the rank of T . For each object X of X define

a small set X* = U M. of objects inductively as follows:

closure of M. under T-images and

colimits of diagrams with less than

M.., = \ k objects [i even);

a choice set of all E-quotients of

all M.-objects (i oddl,

M. = U M' for limit ordinals i- .

The proof will be concluded if we verify that for each extremal epi

f : (X3 x) ->• (J) y) in KlgCT) , Y is isomorphic to an object in X* :

since X* is a small set, it follows that A\g(T) is cowellpowered with

respect to extremal epis.
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Define a chain V : k + 1 "*" X and a natural JH -transformation

17?. ; y. •*• y (•£ £ kj by the following induction:

Cil factor f as e : x •*• Vn in E followed by m . Vn •*• X
 i n M- ;

Cii) given ^. : 7. -»• 7 » factor the morphism fm y.Tm.) : V. + TV- •*• X

as an E-epi (having compoents y. . • y -». y and d. : TV. •+ V. -)

followed by m. - : V. -•*• X in M ;

(iiil for each limit ordinal i , V. = colim V • and m • = colim m.
3<L 3<t

(which is in M since M is chain-cocomplete) .

Observe that V. e X* for each i £ k . Since T has rank k , the

canonical morphism

a : colim TV. •* TV-.

is an E-epi. Let d : colim TV. •*• V-, be the colimit map of the

morphisms d. : TV. -*• V. ,~(i < k) , then the square below commutes.

In fact, the components of y.Tm, .a are y.Tm, .TV., = y.Tm. = m. ..d. ,

and m. ~.d. are the components of m,.d . By the diagonal fill-in, there
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colim TV. \ TV,
i T k

1
h •• Tvk V-, such that

k> Vk>

becomes a homomorphism. Since f factors through this monomorphism in

X /it factors also in Rlg(T) (because monos are initial) and hence,

m, is an isomorphism. Thus, Y is isomorphic to an object of X* .

In order to study the solidness of the categories of T-algebras, we

shall work with the concept of a partial ff-algebra as a partial morphism

from TX to X . Thus, a partial T-algebra is represented by a span

TX< X >X with m a mono. The category P Alg(T) of partial

T-algebras has as morphisms from TX XQ X into TX' ^

those X-maps / : X -»• X' for which there exists a (unique) f. : Xg •*• XL

such that the following diagram commutes. This category contains AlgfW

TX

Tf

TX1

0

x: x1

as a full subcategory in the obvious sense.

2.9 PROPOSITION. Let X be a finitely complete category with

intersections. Then for each T : X •*• X the category P Alg(T) is

monotopologicalj that is, has initial lifts of structured monosources.
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Proof. Let us work with a larger category R hlg(T) of relational

algebras, that is, relations from TX to X (represented by a span

TX *^— X~ > X such that m and x are collectively mono) with

morphisms defined as above. We prove that R AlgCW is topological

and then we conclude that P Alg(2V is monotopological as follows :

given a structured monosource in P Klg(T) :

X —L*(TY.«^-X'.—1-*Y.) del)
% % t

we can find its initial lift TX<^—X'-^-*X in R Alg(T) and then m

is a mono, hence, this is an initial lift in P hlg(T) . In fact, let

Tf.

For each i e I we have f!r'ai = fi'a2 (since m^ is a mono, and

m..f'..a- = m..f'..a0) and hence, f..Cx.a1) = f..(x.aj , and since

(fj) is a monosource, we get x.a, = x.a9 . Since a: and m are

collectively mono, this proves a* = an •

To prove that R klg(T) is topological, we use that fact that X

has (extremal epi, mono)-factorizations of morphisms. Let a

structured sink be given in R h.lgCT) •

m' #£ ?i

Denote by m • : Y '• -*• 7. x TY • the mono with components y • and m • , and
"%r Is Is "Is Is Is
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let us factor (f. x TfJ.m. as an extremal epi e. : II •*•!.*followed

by a mono m.* : I.* •*• X x TX . Since X has intersections, the lattice
1 1

of subobjects of X x TX is large-complete, and hence, there is a union

m"
u m.*. m-* •= m*.d. for i e I .

1 t. t

171171 X
The mono m* represents a relation TX < X' >X , and we verify that

this is the final lift of the given sink in if AlgfSV :

Tf,

TX

Th

TZ z1

m.
First, f. : X) is a

homomorphism, that is (f. * TfJ.m* factors through m* : in fact.
If If I*

(f. x Tf.J.m. =m.*.e. = m*.d..e. . Next, let . Z be an

object and h : X •*• Z a morphism such that each h.f.tt el) is a

homomorphism. This means that for each i e I ,

(h x Th).(f. x TfJ.m. factors through n ,
Is Is Is

where n : Z' * Z x TZ is the mono with the components z and n. Let us

form the pullback (n,h) of h and h * Th , see below.

For each i , we see that (f. x TfJ.m. = m.*.e,. factors through the
lr if Is ts is

mono n and hence, m.* factors through n . Therefore, m* factors

through n , and this proves that (h x Th).m* factors through n . In
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Y!

* O ^ (f. x Tf.) .m.
\ s. •» i l i

\ -V n J+

P > X x TX
\
^ h h x Th
\
\

-tf
Z' — / Z x TZ

other words, h : CTX^—X' -^ X) •*• (TZ-^—Z' -%-* Z) is a homomorphism.

COROLLARY. Let X be complete and wellpowered. Then each X and

Alg(T) is a strongly fibre-small category, that is3 every X e X has a

small set of representative structured maps from X to algebras.

In fact, since X is wellpowered, P Alq(T) is fibre-small and,

being monotopological, it is thus strongly fibresmall. Consequently, each

full subcategory is strongly fibresmall.

The equivalence of (ii) and (iii) in the following proposition has

been established, under more restrictive hypotheses, in [73J.

2.10 PROPOSITION. Let T = (Tt n, u) be a monad on a finitely

complete category X with intersections and coequalizers. Equivalent

are:

(i) X is solid;

(.ii) X has coequalizers;

dii) partial T-algebras have free T-completions, that is, X is

reflective in PAlgCT).

Proof, i ->• ii is clear since solidness implies lifting of colimits.

ii -*• iii For each partial T-algebra TX < Xn * X we form the

coequalizer in X :
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(TXpv)

Then the following diagram

v.Tm

TX < ^ _ xQ —JLni
Tci

TY

2 . Tm
T X <—— TX,,

. Tx

< % y) •

TX

commutes, and since j/.Te = o.\iy implies that y.TC.r\-Y = y.To . Tr\y , we
'TX

conclude that

(1, y)

is a homomorphism in P Alq(T) . To verify that this is the reflection of

the given partial T-algebra, let

h : CI'-t y')

be a homomomorphism in P Alg(T) . Then the T-homomorphism

y'.Th : (.TX,v) •*• (J1, y') merges Tx and v.Tm : since h is a

homomorphism, that is h.x = y'.Th.m , we have

(y'.Th).Tx = y'.T(h.x)

= y'.Ty'.xh.Tm

= y'.\iY,.
rrh.Tm

= (y'.Th).Mx.Tm .

Thus, y'.Th factors through a , and hence, h factors through a. r\y

iii ->• i This follows from the preceding proposition.
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COROLLARY. For X as above, Alg(T) is solid if and only if

T : X -»• X is a varietor such that Alg(T) has coequalizers.

2.11 EXAMPLE. A concrete category over Set which is solid, but is

not topologically-algebraic.

Let X = APos denote the category of A-coraplete posets, (that is,

such that each non-empty up-directed set has a join) and A-continuous

maps (;that is, those preserving directed joins) . Let T : X -»• X be the

"discretization" functor, assigning to each poset X the discretely

ordered poset TX with the same underlying set. Then K\q(T) is the

category of ordered unary algebras where the order is A-complete (and

unrelated to the operation). We shall prove that Alg(T) , as a concrete

category over Set , is solid but not topologically-algebraic.

(a) Algf2V is solid over APos .

In fact, AlgfTj is reflexive in P Alg(T) •• for each partial

algebra CXa a) (where AT is a A-complete poset, and o : D •*• X is a

map, D c X ) the free completion is the following algebra

(X + (X - D) x Wj a ;

where (X - D) x a) i s d i sc re t e ly ordered, X + CX - D) x to i s the

(cardinal) sum, and

a(x) = a(x) i f x e D

a(x) = (x, 0) i f x e X - D

aCXj i) = (x, i + 1) if (x, i) e (X - D) x u> .

(b) APos is solid over Set .

This follows from [2, Theorem 2E3]: for solidness over Set it is

sufficient to have concrete products, small fibres, and bounded generation.

The first two properties are obvious, for the last one we observe that

given a subset M of a A-complete poset X , then the closure M of X

under all existing joins in X is a subobject of X with

card M * 2 c a r d M .
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(c) Rlg(T) is not topologically-algebraic over Set .

For each infinite ordinal i, we denote by (i, + 1 y.) the

T-algebra with the usual ordering on i + 1 = {03 lt ••., £} and with

Y-(j) =0+1 for j < it y.(i) = i . We have a source of inclusion maps.

f. : (X, a) •* (i + 1, y.) (i e Ord, i > toj

where X is the discretely ordered set of all natural numbers, and a is

the successor function. Let g. : (JJ &) -*• (i + 1, y.) be an initial

source through which our source factors (f- = g-.e) - we shall derive a

contradiction by exhibiting, for each ordinal i, y a strictly increasing

chain yQ < y1 < ... < y . < . .. (j < i) in Y with g^fyJ = 3 f o r a 1 1

k> o .

First, put yQ = e(0). We have g^CyQ) = fk(0) = 0 .

Given such an i-chain y. < y < ... < y . < ..., put

y. = V y • if i is a limit ordinal

y- = BCw. ~) if i is isolated .

In the first case, we obtain a strictly increasing (i + D-chain, and by

the A-continuity of gv we have g-f.(y-) = V gj,(y„•) = V 3 = i. In the
* * * 3<i K ° 3<i

latter one, we have g-^y^ = 9^-^y^ = y^-g-^h^ = Yfe^"2-' = i • Ifc

remains to prove that y . 7 < y. . First observe that y. . / y. (because

if y. 7 = y. , then w. is a fixpoint of 0 and hence, 3t,(y >) is a

fixpoint of y, , but this is not true for k > i\ . Define a T-algebra

A = (X + {0, 1, ..., i}3 6) on the coproduct of X and the chain i + 1

as follows : 6 agrees with a on X , and 6 is the successor map on

the second summand except that 6(i) = 0 e X . Define

h : X + {0, 1, ..., £} -* I by h(n) = &n(y-) for n e X and h. = y .
** 3 3

for 3=0, 1, ..., i. This map clearly has the property that

g,. h : A •*• (k + 1, y-jJ are homomorphisms for all k 5 a> . Consequently,
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h : A ->• (Y, $) is a homomorphism, and thus, y.^= h(i - 1) < h(i) = y . .

Remark. A solid category over Set which is not topologically

algebraic was first exhibited by BSrger and Tholen [5].

Open problem. Does there exist a monad on a "reasonable" category

X such that the Eilenberg-Moore category is solid, but not topologically-

algebraic over X ?
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