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In this paper, we consider the existence and limiting behaviour of solutions to a
semilinear elliptic equation arising from confined plasma problem in dimension two⎧⎪⎪⎨

⎪⎪⎩
−Δu = λk(x)f(u) in D,

u = c on ∂D,

−
∫

∂D

∂u

∂ν
ds = I,

where D ⊆ R
2 is a smooth bounded domain, ν is the outward unit normal to the

boundary ∂D, λ and I are given constants and c is an unknown constant. Under
some assumptions on f and k, we prove that there exists a family of solutions
concentrating near strict local minimum points of Γ(x) = (1/2)h(x, x) −
(1/8π) ln k(x) as λ → +∞. Here h(x, x) is the Robin function of −Δ in D. The
prescribed functions f and k can be very general. The result is proved by regarding
k as a measure and using the vorticity method, that is, solving a maximization
problem for vorticity and analysing the asymptotic behaviour of maximizers.
Existence of solutions concentrating near several points is also obtained.

Keywords: desingularization; confined plasma problem; elliptic free-boundary
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1. Introduction and main results

In this paper, we consider the 2D plasma problem⎧⎪⎪⎨
⎪⎪⎩
−Δu = λk(x)f(u) in D,
u = c on ∂D,

−
∫
∂D

∂u

∂ν
ds = I,

(1.1)

where D ⊆ R
2 is a simply-connected bounded domain with smooth boundary, ν is

the outward unit normal to the boundary ∂D, λ ∈ R
+ and I are given constants

and c is an unknown constant. The non-autonomous term k and the nonlinearity f
are two prescribed functions. In the following, we always assume f > 0 on (0, +∞)
and f ≡ 0 on (−∞, 0).
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2 J. Wan

The problem (1.1) arises from a model describing a simplified version of equilib-
rium of a plasma in a cavity (also called the ‘Tokamak machine’), see [13, 35, 36].
Let u+ = u if u � 0 and u+ = 0 if u < 0, u− = u+ − u. The equilibrium of a plasma
confined in a toroidal cavity is governed by the following equations (see the classical
paper [35]) ⎧⎪⎪⎨

⎪⎪⎩
Lu = λku− in D,
u = γ on ∂D,∫
∂D

1
x1

∂u

∂ν
ds = I,

(1.2)

where D ⊆ H = {x = (x1, x2) | x1 > 0} is a bounded domain, L =
∑2
i=1(∂/∂xi)

((1/x1)(∂/∂xi)), ν is the outward unit normal to ∂D at x, I is a given positive
constant and γ is an unknown constant. The non-autonomous term k satisfies

0 < k0 � k(x) � k1 <∞, x ∈ D.

The sets Dp = {x ∈ D | u(x) < 0} and Dv = {x ∈ D | u(x) > 0} are called the
plasma set and vacuum set, respectively. ∂Dp is called the free boundary. Indeed,
from a physical point of view, the nonlinear term λku− in (1.2) can be replaced by
λkf(u) for general f , which is called the constitutive function of the plasma, see
Appendix in [35].

If we simplify the elliptic operator L in (1.2) to Δ, one gets a simplified model⎧⎪⎪⎨
⎪⎪⎩

Δu = λku− in D,
u = γ on ∂D,∫
∂D

∂u

∂ν
ds = I.

(1.3)

Note that for a solution u of (1.3), v = −u satisfies (1.1) with f(t) = t+ and c = −γ.
Existence of solutions to (1.3) and the general problem (1.1) is studied in many

references, see [3, 13, 22, 28, 31, 33, 35] and reference therein. In the case k ≡ 1,
it is well-known in [36] that (1.3) has a solution if and only if λ > 0 and

γ < 0, if λ < λ1; γ = 0, ifλ = λ1; γ > 0, if λ > λ1,

where λ1 is the first eigenvalue of −Δ in D with Dirichlet boundary condition.
Moreover, if λ ∈ (0, λ2), where λ2 is the second eigenvalue of −Δ in D, the solution
of (1.3) is unique, see also [7, 29]. For the asymptotic behaviour of solutions to (1.3)
as λ tending to infinity, Caffarelli-Friedman [10] first proved the non-uniqueness of
the solutions to (1.3) and showed that the free boundary ∂Dp is approximately a
circle as λ→ +∞. Let G(x, y) be the Green function of −Δ in D with Dirichlet
boundary condition. Then G(x, y) has the decomposition

G(x, y) = − 1
2π

ln |x− y| − h(x, y),

where −(1/2π) ln |x− y| is the fundamental solution of −Δ and the regular
part h(x, y) ∈ C∞(D ×D). It is proved in [10] that if there exists O ⊆ D with
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Desingularization of an elliptic free-boundary problem 3

minx∈∂O h(x, x) > minx∈O h(x, x), then (1.3) has a solution uλ for every λ suffi-
ciently large, and the corresponding plasma set Dp shrinks to a point x∗ ∈ O with
h(x∗, x∗) = minx∈O h(x, x) as λ→ +∞. This result has been extended to solutions
to (1.3) whose plasma set has several components. Under the assumption that the
homology of Ω is nontrivial, [13] proved that for every l � 1 and λ sufficiently
large, (1.3) has a solution whose plasma set Dp consists of l components and con-
centrates near critical points of the Kirchhoff–Routh Hamiltonian as λ→ +∞ by
using the Lyapunov–Schmidt reduction method. The Kirchhoff–Routh Hamiltonian
Hl is defined by (see [23, 27, 30])

Hl(x1, . . . , xl) = −1
2

∑
1�i�=j�l

didjG(xi, xj) +
1
2

l∑
i=1

d2
ih(xi, xi), (1.4)

where (x1, . . . , xl) ∈ D(l) := D ×D × · · · ×D︸ ︷︷ ︸
l

satisfies xi �= xj for i �= j, and

d1, . . . , dl are l prescribed constants. When D has non-trivial topology, solutions
of (1.1) with f(t) = tp+(p > 1) whose plasma region shrinks down around finitely
many different points have been constructed in [28]. See [4, 5, 8] for more results.
Note that the plasma problem (1.1) with k(x) ≡ 1 also corresponds to the vortic-
ity formulation of 2D steady incompressible Euler equations. In [12], by using the
non-degeneracy of solutions to

−Δu = up+, in R
2

and the Lyapunov–Schmidt finite-dimensional reduction method, [12] proved the
existence of solutions of (1.1) with f(t) = tp+(p > 1) concentrating near isolated
non-degenerate critical points of Hl for λ sufficiently large. [14] further proved
the existence and asymptotic behaviour of concentrated solutions of (1.1) with
f(t) = tp+(p = 0) for λ sufficiently large by using Lyapunov–Schmidt reduction
method. Compared to [12], results in [14] require more delicate estimates since
the nonlinearity in [14] is not as smooth as it is in [12]. For more results, see, e.g.,
[11, 15–18, 34, 37].

When k is a function rather than a constant, many references also considered the
existence and asymptotic behaviour of solutions to (1.1), see [19, 24, 25, 32, 38] and
reference therein. [35] first obtained the existence of solutions of (1.3) by considering
minimization of a certain variational problem. For N � 3, Shibata [32] considered
the following equations⎧⎨

⎩−ε2Δu = k(x)f(u− 1), u > 0, x ∈ D,

u = 0, x ∈ ∂D,
(1.5)

where D ⊆ R
N , ε > 0 is small and k(x) is a positive function in D. Under the

assumption that f(t) = tp+ for p ∈ (1, (N + 2/N − 2)), the author proved that (1.5)
has a least energy solution concentrating near global maximum points of k as ε→
0+. Here the concentration means that the plasma set {x ∈ D | uε(x) > 1} shrinks
to some points as ε→ 0. This result has been extended to solutions to (1.5) with
general nonlinearities concentrating near several boundary points, see [24]. As for
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4 J. Wan

the plasma problem (1.1) for N � 3, solutions whose plasma region shrinks down
around finitely many distinct points were constructed in [25]. It is worth mentioning
that, both in [32] and in [24, 25] the total vorticity vanishes rather than tends to
a non-zero constant as ε→ 0, that is,∫

∂D

∂uε
∂ν

ds→ 0 as ε→ 0.

For N = 2, by considering Liouville-type equations⎧⎨
⎩
−Δu = ε2K(x)eu, in D,

u = 0 on ∂D,
(1.6)

del Pino et al. [19] proved that solutions of (1.6) have the blow up-concentration
phenomenon, i.e., there exist solutions of (1.6) concentrating near small neighbour-
hoods of critical points {x1,0, . . . , xn,0} of the function

−
n∑
i=1

2 lnK(xi) + 8πh(xi, xi) −
∑
j �=i

8πG(xi, xj) (1.7)

as ε→ 0, and the total vorticity of solutions around each xi,0 tends to a non-zero
constant as ε→ 0. Note that (1.7) is different from the Kirchhoff–Routh Hamil-
tonian (1.4) since the presence of K. Note also that (1.6) coincides with (1.1) by
letting λ = ε2 and f(t) = et. A natural question is, whether there exist solutions uλ

to (1.1) with general profile function f , such that the corresponding ‘plasma set’
{x ∈ D | uλ(x) > 0} concentrates near several points with diameter tending to 0 as
λ→ +∞?

In this paper, we will construct solutions to (1.1) concentrating near some
prescribed points with a large class of sub-exponential nonlinearities f . The nonlin-
earity f can either be continuous (e.g., f(t) = tp+ for some p ∈ (0, +∞)) or have a
jump (e.g., f being a Heaviside function), see theorems 1.1 and 1.3. We prove that
for any x0 being strict local minimizers of Γ(·) defined by (1.8), there exist solu-
tions uλ of (1.1), whose ‘plasma set’ {x ∈ D | uλ(x) > 0} concentrates near x0 as
λ→ +∞ and total vorticity tends to a non-zero prescribed constant I as λ→ +∞.
The idea is to regard the non-autonomous term k as a measure and to use the
Arnold’s variational method developed by [1, 2, 37]. Note that in [12, 14, 28], the
constitutive function is f(t) = tp+ for p � 0. Thus compared to the classical results,
we can construct concentrated solutions to plasma problem (1.1) with very general
nonlinearity.

Before stating our results, let us first introduce some notations: for every
Lebesgue-measurable set A, B ⊂ D, A denotes the closure of A and |A| denotes
the two-dimensional Lebesque measure of A, except when stated otherwise;
dist(A, B) = infx∈A,y∈B |x− y| denotes the distance between A and B; Br(y)
denotes the open ball of radius r centred at y; χA denotes the characteristic func-
tion of A ∈ D, namely χA(x) = 1 for x ∈ A and χA(x) = 0 for x /∈ A; O(1) and o(1)
denote some quantities which remain bounded and go to zero as λ tends to infinity,
respectively; for any function h, supp(h) denotes the support set of h.
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Let k(x) : D → R be a continuous function satisfying

(K). There exist two constants k0, k1 such that

0 < k0 � k(x) � k1 < +∞, ∀x ∈ D.

Let us introduce an auxiliary function which will play a crucial role in the study of
the existence of solutions to (1.1). Define

Γ(x) =
1
2
h(x, x) − 1

8π
ln k(x), (1.8)

where h(x, y) is the regular part of the Green’s function G, and k satisfies the
assumption (K). Clearly Γ(·) is well-defined in D.

Our first result concerns the existence and asymptotic behaviour of solutions to
(1.1) with the nonlinearity being the Heaviside function, i.e., f(t) = χ{t>0}.

Theorem 1.1. Suppose that k(·) satisfies (K) and f(t) = χ{t>0}. Let x0 be a strict
local minimizer of Γ. Then there exists λ0 > 0, such that for any λ ∈ (λ0, +∞),
(1.1) has a weak solution pair (uλ, cλ) which satisfies the following properties:

(1) the diameter of the plasma set {x ∈ D | uλ(x) > 0} is of the order O(λ−(1/2))
as λ→ +∞.

(2) For any x ∈ {x ∈ D | uλ(x) > 0}, x tends to x0 as λ→ +∞.

(3) For λ sufficiently large, {x ∈ D | uλ(x) = 0} is a C1 curve and converges to
a circle as λ→ +∞.

(4) There holds

cλ = − I

4π
lnλ− k(x0)

2π

∫
B√

I/πk(x0)(0)

ln
1

|x∗ − y| dy + Ih(x0, x0) + o(1),

(1.9)

where x∗ is any point of ∂BB√
I/πk(x0)(0)

.

Remark 1.2. We give an example to show the existence of x0. By (1.8),
Γ(x) = (1/2)h(x, x) − (1/8π) ln k(x). Since limx→∂D h(x, x) = +∞, by assumption
(K) one can get the existence of minimum points x0,1 ∈ D satisfying Γ(x0,1) =
minx∈D Γ(x). Thus from theorem 1.1, there exists a family of solutions uλ con-
centrating near minimizers of Γ. Note that the limiting location of the plasma set
{x ∈ D | uλ(x) > 0} in theorem 1.1 coincides with that in [19] since when choosing
n = 1 in (1.7), (1.7) is equal to 16π times Γ.

When f(t) is a continuous function satisfying some growth conditions, one can
also get solutions to (1.1) concentrating near local minimizers of Γ. To this end, let
f : R → R be a continuous function satisfying

(f 1). f is locally Hölder continuous on R\{0}, f(s) ≡ 0 for s � 0, and f is strictly
increasing in (0, +∞);
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(f 2). there exists some positive number r0 ∈ (0, 1) such that∫ s

0

f(t) dt � r0f(s)s, ∀s � 0.

(f 3). For all τ > 0,

lim
s→+∞

(
f(s) e−τs

)
= 0.

Note that many nonlinearities that frequently appear in nonlinear elliptic equations
satisfy (f1)–(f3), for instance f(s) = sp+ with p ∈ (0, +∞). Our second result is as
follows.

Theorem 1.3. Suppose that k(·) satisfies (K) and f satisfies (f1)–(f3). Let x0

be a strict local minimizer of Γ. Then there exists λ0 > 0, such that for any
λ ∈ (λ0, +∞), (1.1) has a weak solution (uλ, cλ) which satisfies properties as
follows:

(1) the diameter of the plasma set {x ∈ D | uλ(x) > 0} is of the order O(λ−(1/2))
as λ→ +∞.

(2) For any x ∈ {x ∈ D | uλ(x) > 0}, x tends to x0 as λ→ +∞.

(3) For λ sufficiently large, {x ∈ D | uλ(x) = 0} is a C1 curve and converges to
a circle as λ→ +∞.

(4) There holds

cλ = − I

4π
lnλ− I

4π
ln k(x0) + Ih(x0, x0) − C∗ + o(1). (1.10)

Here C∗ = (1/2π)
∫

R2 ln(1/|x∗ − y′|)f(U)(y′) dy′, where U is the unique
radial function satisfying⎧⎨

⎩
−ΔU(x) = f(U)(x), x ∈ R

2,∫
R2
f(U)(x) dx = I,

(1.11)

and x∗ is any point of ∂{x ∈ R
2 | f(U)(x) = 0}.

Remark 1.4. We give some examples to show the existence of U in (1.11). If we
choose f(t) = t+, which corresponds to the classical confined plasma problem, then
the unique radial C1 solution of (1.11) has the explicit profile

U(x) =

{
cϕ1(x), |x| � s;
csϕ′

1(x) ln |x|
s , |x| � s,

where s is a constant such that 1 is the first eigenvalue of −Δ in Bs(0) with Dirichlet
boundary condition, ϕ1 > 0 is the first eigenfunction of −Δ in Bs(0) with ϕ1(0) = 1,
ϕ′

1 is the derivative of ϕ1, and c is a constant such that c
∫
Bs(0)

ϕ1 dx = I. Note
that U ∈ C2,α(R2) for any α ∈ (0, 1). For more results, see [9, 24] for example.
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The idea of the proof of theorems 1.1 and 1.3 is the Arnold’s variational principle,
that is, considering maximization of some functional for the vorticity and analysing
asymptotic behaviour of solutions. To this end, we introduce the definition of ‘vor-
ticity’ w = −Δu, which originally comes from the study of the incompressible Euler
equation, see [37]. Then we deduce the vorticity formulation (2.3) of (1.1) and give
an equivalent description of main results, i.e., theorems 2.1 and 2.2. Indeed, we can
generalize (2.3) to equation (2.5), which corresponds to solutions concentrating near
several points. It suffices to prove the existence of solutions to (2.5) concentrating
near strict local minimizers of an auxiliary function Γl, i.e., theorems 2.3 and 2.4,
which is a generalized version of theorems 2.1 and 2.2. For the proof of theorem 2.3,
the key is to regard the non-autonomous term k as a measure. Note that because
of the presence of the measure k(x) dx in the energy functional and the admissible
class, the classical computation of vorticity method fails and we must give new
estimates of maximizers, such as the energy E, the Lagrange multiplier με, the
diameter and limiting location of the plasma set of ωε. For the proof of theorem
2.4, the differences from theorem 2.3 are as follows. First, to show the existence
and profile of maximizers, we introduce another parameter T . Then we need to
compute the upper bound of the stream function Ψε,T

i to eliminate the patch part
and show that maximizers are solutions of (2.5), see lemma 4.5. Second, in order
to get asymptotic behaviour of solutions, the limits of ωε,Ti and Ψε,T

i need to be
estimated accurately.

Remark 1.5. We give some comments about the relation between our results and
results in [12–14, 19, 24, 25, 28]. Note that in [12–14, 28], the term k has to be a
constant and the nonlinearity is f(t) = tp+ for p � 0. The key of proof is the use of
the Lyapunov–Schmidt reduction method and the non-degeneracy of solutions to

− Δu = up+, in R
2 (1.12)

for p � 0. Especially in [14], the nonlinearity f is a Heaviside function and not
differentiable and thus the proof requires very delicate estimates. Compared to
these results, in this paper we can construct solutions of (1.1) with k not a constant
and general nonlinearity f . The key of proof is to use the expansion of Green’s
function G(x, y) to prove the radius of the plasma set, the concentration location
and the order of energy of the solution as λ→ +∞. Indeed, the advantage of using
Arnold’s variational principle is that we do not need the non-degeneracy of solutions
to (1.12) with f(t) = tp+ replaced by general f , which is also not known for general f .
The argument adopted here is not affected by this issue and all we need is that the
nonlinear term f satisfies some growth conditions. This is why our result holds for
general f . When choosing f(t) = et, del Pino et al. [19] constructed concentrated
solutions of the equation

−Δu = ε2K(x)eu, in D; u = 0, on ∂D

such that the energy concentrates near small neighbourhoods of points
x1,ε, . . . , xn,ε as ε→ 0. These points tend to a critical point of the function defined
by (1.7). When n = 1, the function is Γ. Thus to some extent, the limiting behaviour
of solutions in theorems 1.1 and 1.3 coincides with that in [19], and the only differ-
ence between theorems 1.1, 1.3 and results in [19] is the choice of the nonlinearity f .
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Finally, [24, 25] considered solutions of equation (1.5) in the case of N � 3 and k
not a constant. As ε→ 0, the plasma region of solutions to (1.5) will shrink to
maximiers of k, rather than critical points of Γ. Note that the total vorticity van-
ishes as ε→ 0, that is,

∫
∂D

(∂uε/∂ν) ds→ 0 as ε→ 0. In contrast to these results,
our result holds for N = 2, and the total vorticity tends to a non-zero prescribed
constant I as ε→ 0. That is one of main differences between our results and results
in [24, 25]. For more related works, see [4–6, 8, 20, 21, 39] for instance.

This paper is organized as follows. In § 2, we deduce the vorticity formulation of
(1.1) and generalize main results to theorems 2.3 and 2.4, respectively. In § 3, we
prove theorem 2.3 by solving a maximization problem of an energy functional for
vorticity over admissible sets and giving asymptotic estimates of maximizers for ε
sufficiently small. The proof of theorem 2.4 will be shown in § 4.

2. Equivalent problem of (1.1)

We first reduce (1.1) to a dual problem for the vorticity. Let us define the vorticity
w = −Δu. Since u is a constant on ∂D, we have

u(x) = Gw(x) − μ =
∫
D

G(x, y)w(y) dy − μ, x ∈ D

for some constant μ, where G(x, y) is the Green’s function of −Δ in D with zero
Dirichlet condition. Taking this into (1.1) we have

w = λk(x)f(Gw − μ) x ∈ D. (2.1)

Using Green’s formula, the third equation of (1.1) becomes

I = −
∫
D

∂u

∂ν
ds =

∫
D

w dx. (2.2)

Let us define ε = λ−(1/2) and ω = w/k(x). Taking ω into (2.1) and (2.2), we get
equations for ω ⎧⎪⎨

⎪⎩
ω =

1
ε2
f(G(k(x)ω) − μ), x ∈ D,∫

D

ω(x)k(x) dx = I.
(2.3)

Note that it is equivalent to solve solution pairs (uλ, cλ) of (1.1) and solution
pairs (ωε, με) of (2.3). Indeed, for a solution pair (ωε, με) of (2.3), one can recover
solutions of (1.1) by letting uλ = G(k(·)ωε) − με and cλ = −με.

For equation (2.3), we get the following equivalent description of theorems 1.1
and 1.3. Note that {x ∈ D | uλ(x) > 0} = supp(ωε).

Theorem 2.1. Suppose that k(·) satisfies (K) and f(t) = χ{t>0}. Let x0 be a strict
local minimizer of Γ. Then there exists ε0 > 0, such that for any ε ∈ (0, ε0), (2.3)
has a weak solution pair (ωε, με) with the following properties:

(1) diam(supp(ωε)) = O(ε).
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(2) For any x ∈ supp(ωε), x tends to x0 as ε→ 0+.

(3) For ε sufficiently small, ∂(supp(ωε)) is a C1 curve and converges to a circle
as ε→ 0+.

(4) There holds

με =
I

2π
ln

1
ε

+
k(x0)
2π

∫
B√

I/πk(x0)(0)

ln
1

|x∗ − y| dy − Ih(x0, x0) + o(1),

where x∗ is any point of ∂B√
I/πk(x0)

(0).

Theorem 2.2. Suppose that k(·) satisfies (K) and f satisfies (f1)–(f3). Let x0 be a
strict local minimizer of Γ. Then there exists ε0 > 0, such that for any ε ∈ (0, ε0),
(2.3) has a weak solution pair (ωε, σε) with the following properties:

(1) diam(supp(ωε)) = O(ε).

(2) For any x ∈ supp(ωε), x tends to x0 as ε→ 0+.

(3) For ε sufficiently small, ∂(supp(ωε)) is a C1 curve and converges to a circle
as ε→ 0+.

(4) There holds

σε =
I

2π
ln

1
ε

+
I

4π
ln k(x0) − Ih(x0, x0) + C∗ + o(1),

where C∗ = (1/2π)
∫

R2 ln(1/|x∗ − y′|)f(U)(y′) dy′, U is the unique radial
function satisfying (1.11) and x∗ is any point of ∂{x ∈ R

2 | f(U)(x) = 0}.

Indeed, to prove theorems 2.1 and 2.2, one can directly consider solutions of (1.1)
concentrating near several distinct points. Let l be an integer and di ∈ R/{0}(i =
1, . . . , l) be l constants. Let us introduce an auxiliary function Γl which generalizes
the function Γ defined by (1.8). Define

Γl(x1, . . . , xl) = Hl(x1, . . . , xl) −
1
8π

l∑
i=1

d2
i ln k(xi), (2.4)

where Hl is defined by (1.4). Notice that if l = 1, then the auxiliary function is
Γ(x).

Let (x0,1, . . . , x0,l) be a strict local minimizer of Γl, that is, (x0,1, . . . , x0,l) is
the unique minimizer of Γl over B1 × · · · ×Bl. Here Bi := Bδ(x0,i) for some δ > 0
sufficiently small such that Bi ⊂ D and Bi ∩Bj = ∅ for i �= j. Consider solution
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pairs (ωε, μεi )(i = 1, . . . , l) of the following equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ω =

l∑
i=1

sgn(di)
ε2

fi(G(kω) − μi)χBi
, x ∈ D,∫

Bi

ωk(x) dx = di,

(2.5)

where sgn(di) = 1 if di > 0 and sgn(di) = −1 if di < 0. fi are l given functions
and μi are unknown constants. The following result shows that for any strict local
minimizer (x0,1, . . . , x0,l) of Γl, there exist solutions of (2.5) concentrating near l
distinct points x0,i.

Theorem 2.3. Suppose that k satisfies (K) and fi(t) = χ{t>0} (i = 1, . . . , l). Then
for any strict local minimizer (x0,1, . . . , x0,l) of Γl, there exists ε0 > 0, such that
for any ε ∈ (0, ε0), (2.5) has a weak solution pair (ωε, μεi ) with the following
properties:

(1) Define ωi = ωχBi
. Then diam(supp(ωεi )) = O(ε).

(2) The support of ωεi tends to x0,i as ε→ 0+, that is,

lim
ε→0+

sup
x∈supp(ωε

i )

|x− x0,i| = 0.

(3) For ε sufficiently small, ∂(supp(ωεi )) is a C1 curve and converges to a circle
as ε→ 0+.

(4) There holds

μεi =
|di|
2π

ln
1
ε

+
k(x0,i)

2π

∫
B√|di|/πk(x0,i)

(0)

ln
1

|x∗ − y| dy − |di|h(x0,i, x0,i)

+ sgn(di)
l∑

j=1,j �=i
djG(x0,i, x0,j) + o(1),

where x∗ is any point of ∂BB√|di|/πk(x0,i)
(0).

Theorem 2.4. Suppose that k(·) satisfies (K) and fi satisfies (f1) − (f3) (i =
1, . . . , l). Then for any strict local minimizer (x0,1, . . . , x0,l) of Γl, there exists
ε0 > 0, such that for any ε ∈ (0, ε0), (2.5) has a weak solution pair (ωε, σεi ) with the
same properties as those in theorem 2.3. Moreover, σεi has the following estimates

σεi =
|di|
2π

ln
1
ε

+
|di|
4π

ln k(x0,i) − |di|h(x0,i, x0,i)

+ sgn(di)
l∑

j=1,j �=i
djG(x0,i, x0,j) + Ci + o(1).

https://doi.org/10.1017/prm.2024.48 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.48


Desingularization of an elliptic free-boundary problem 11

Here Ci = (1/2π)
∫

R2 ln(1/|x∗ − y′|)fi ◦ Ui(y′) dy′, where Ui is the unique radial
function satisfying {

−ΔUi(x) = fi(Ui)(x), x ∈ R
2,∫

R2 fi(Ui)(x) dx = |di|,

and x∗ is any point of ∂{x ∈ R
2 | fi ◦ Ui(x) = 0}.

Note that when l = 1, results in theorems 2.3 and 2.4 reduce to those in theorems
2.1 and 2.2. We will give the proof of theorems 2.3 and 2.4 directly in the following
sections.

3. Proof of theorem 2.3

3.1. Variational problem

In this section, we give the proof of theorem 2.3. We define the energy functional

E(ω) =
1
2

∫
D

∫
D

G(x, y)ω(x)ω(y) dθ(x) dθ(y), (3.1)

where dθ(x) = k(x) dx is a measure deduced by the non-autonomous term k. By
the assumption (K), we know that dθ(x) is equivalent to the two-dimensional
Lebesgue measure dx.

Define a constraint set

Mε(D) =

{
ω =

l∑
i=1

ωi ∈ L∞(D) | ωi = ωχBi
,

0 � sgn(di)ωi � 1
ε2
,

∫
Bi

ωi dθ(x) = di

}
. (3.2)

The difference between Mε(D) and the classical results is that we impose the
L1(Bi, dθ(x)) norm of ωi to be di, rather than the L1(Bi, dx) norm, which may
cause essential difficulty in proving asymptotic behaviour of solutions.

Consider the maximization problem

(P ′) sup
ω∈Mε(D)

E(ω).

To begin with, we show the existence and profile of maximizers of E over Mε(D).

Proposition 3.1. There exists ωε ∈ Mε(D), such that E(ωε) = supω̃∈Mε(D)E(ω̃).

Proof. Since G(·, ·) ∈ L1(D ×D), we know that E is bounded from above on the
set Mε(D). Now we choose a maximization sequence {ωn} ⊂ Mε(D) of E, that is,

lim
k→+∞

E(ωn) = sup
ω∈Mε(D)

E(ω).

By direct computations we can prove that Mε is a sequentially compact subset of
L2(D) in the weak topology. So we may assume that, up to a subsequence, ωn → ωε
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weakly in L2(D) as n→ +∞ for some ωε ∈ Mε. So

k(x)ωn → k(x)ωε in L2(D)weak topology.

By elliptic regularity theory,

G(kωn) =
∫
D

G(x, y)ωn dθ(x) →
∫
D

G(x, y)ωε dθ(x) = G(kωε) in W 1,p(D)

for any p > 1, from which we deduce that

lim
n→+∞E(ωn) = E(ωε).

So ωε is a maximizer of E over Mε. �

We define ωεi = ωεχBi
to be each piece of the maximizer. Then using classical

idea in [37] we can get that the maximizers has the form of (2.5).

Proposition 3.2. Let ωε be a maximizer defined as in lemma 3.1. Then

ωε =
l∑
i=1

ωεi =
l∑
i=1

sgn(di)
ε2

χ{ψε
i>0}∩Bi

, (3.3)

where ψεi := sgn(di)G(kωε) − μεi and μεi are constants dependent on ε for i =
1, . . . , l. Moreover, for ε sufficiently small there holds

μεi � C0, (3.4)

where C0 is a negative constant independent of ε.

Proof. Let ωε be a maximizer. For any ω ∈ Mε, we set

ω(s) = ωε + s(ω − ωε), for s ∈ [0, 1].

Since Mε is a convex set, ω(s) ∈ Mε for any s ∈ [0, 1]. So E(ω(s)) � E(ωε), which
implies that

0 �
dE(ω(s))

ds

∣∣∣∣
s=0+

=
∫
D

(ω − ωε)G(kωε) dθ(x),

that is, ∫
D

ωG(kωε) dθ(x) �
∫
D

ωεG(kωε) dθ(x)

for any ω ∈ Mε(D). By the definition of Mε(D) and the bathtub principle (see
[26]), we get for any i = 1, . . . , l

sgn(di)G(kωε) � μεi on
{
sgn(di)ωεi =

1
ε2

}
∩Bi,

sgn(di)G(kωε) = μεi on
{

0 < sgn(di)ωεi <
1
ε2

}
∩Bi,

sgn(di)G(kωε) � μεi on{sgn(di)ωεi = 0} ∩Bi,

(3.5)
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Desingularization of an elliptic free-boundary problem 13

where μεi is a constant satisfying

μεi = inf{s ∈ R | |{x ∈ Bi | sgn(di)G (kωε) > s}|θ � |di|ε2}. (3.6)

Notice that |{x ∈ Bi | sgn(di)G(kωε) > s}|θ means that the dθ(x)−measure of the
set {x ∈ Bi | sgn(di)G(kωε) > s}. Thus using (3.5), we get that

ωεi = sgn(di)
1
ε2
χ{ψε

i>0}∩Bi
,

where ψεi = sgn(di)G(kωε) − μεi . So (3.3) is proved.
It remains to prove that μεi � C0 for some C0. In fact for any x ∈ Bi,

sgn(di)G (kωε) (x) = G(k|ωεi |)(x) + sgn(di)
∑
j �=i

G(kωεj )(x)

� −
∑
j �=i

k1|dj | max
x∈Bi,y∈Bj

|G(x, y)|. (3.7)

Combining (3.6) with (3.7), we can get (3.4) by letting C0 = −
∑
j �=i k1|dj |

maxx∈Bi,y∈Bj
|G(x, y)|. �

Remark 3.3. Indeed, one can repeat the proof in [37] to prove proposition 3.2.
Without loss of generality, we assume di > 0. For any z1, z2 ∈ L∞(D) satisfying⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

supp(z1), supp(z2) ⊂ Bi,

z1, z2 � 0, a.e. in D,
∫
D

z1(x) dθ(x) =
∫
D

z2(x) dθ(x),

z1 = 0 in D \
{
x ∈ D | ωε(x) � 1

ε2
− a

}
,

z2 = 0 in D \ {x ∈ D | ωε(x) � a} ,

(3.8)

where a > 0 is sufficiently small, we define a family of functions ωs = ωε +
s(z1 − z2), s > 0. Then one can prove that ωs ∈Mε(D) for s > 0 sufficiently small.
So dE(ωs)/ds|s=0+ � 0, which implies that∫

D

G(kωε) (x) z1(x) dθ(x) �
∫
D

G(kωε) (x) z2(x) dθ(x).

From this we get

sup
{x∈D|ωε(x)<1/ε2}∩Bi

G(kωε) (x) = inf
{x∈D|ωε(x)>0}∩Bi

G(kωε) (x) .

Define μεi := inf{x∈D|ωε(x)>0}∩Bi
G(kωε)(x), it is not hard to prove that⎧⎨

⎩ω
ε =

1
ε2

a.e. in Bi ∩ {x ∈ D | G(kωε) > μεi} ,
ωε = 0 a.e. in Bi ∩ {x ∈ D | G(kωε) < μεi} .
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On {x ∈ D | G(kωε) = μεi}, by properties of Sobolev space, we have kωε = 0.
So ωε = 0 a.e. in {x ∈ D | G(kωε) = μεi}. Thus

ωεi =
1
ε2
χ{x∈D|G(kωε)>με

i}∩Bi
.

So using this method, we can also get the same results as that in proposition 3.2.

3.2. Asymptotic analysis

In the following, we give asymptotic estimates of ωεi . We first give lower bound of
the energy Ei(ωε) and the Lagrange multiplier μεi . Note that since the measure in
(3.1) is k(x) dx, we need to choose test functions properly. Then using the properties
of function lnx and the theory of rearrangement function, we get that the diameter
of the plasma set of ωε is the order of ε and the limiting location is a minimizer of Γl.

To simplify the proof , we define the energy functional associated with ωεi

Ei(ω) :=
1
2

∫
D

G(x, y)ωi(x)ωi(y) dθ(x) dθ(y) for i = 1, . . . , l. (3.9)

Direct computation shows that

E(ω) =
l∑

k=1

Ek(ω) +O(1) = Ei(ω) + E

⎛
⎝∑
j �=i

ωj

⎞
⎠+O(1) ∀ω ∈Mε(D). (3.10)

We first give a rough lower bound of Ei(ωε).

Lemma 3.4. Let ωε be a maximizer. Then for i = 1, . . . , l

Ei(ωε) � d2
i

4π
ln

1
ε

+O(1).

Proof. We choose

ω̃ε =
sgn(di)
ε2

χBt(ε)ε(x0,i) +
l∑

k=1,k �=i
ωεk =

l∑
k=1

ω̃εk,

where t(ε) ∈ ((1/2)
√

|di|/πk(x0,i), 2
√
|di|/πk(x0,i)) satisfies

∫
Bi
ω̃εi dθ(x) = di.

Direct calculations show that t(ε) exists for ε sufficiently small and limε→0+ t(ε) =√
|di|/πk(x0,i). Then ω̃ε ∈ Mε(D) and E(ωε) � E(ω̃ε), which implies that

E(ωε) � − 1
4π

∫
D

∫
D

ln |x− y|ω̃εi (x)ω̃εi (y) dθ(x) dθ(y)

− 1
2

∫
D

∫
D

h(x, y)ω̃εi (x)ω̃
ε
i (y)θ(x) dθ(y)

+ E

⎛
⎝∑
j �=i

ωεj

⎞
⎠+O(1). (3.11)
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Since the diameter of supp(ω̃εi ) is
√

(|di|/πk(x0,i))ε+ o(ε), we have

− 1
4π

∫
D

∫
D

ln |x− y|ω̃εi (x)ω̃εi (y) dθ(x) dθ(y) � d2
i

4π
ln

1
ε

+O(1). (3.12)

By the choice of Bi we obtain∣∣∣∣12
∫
D

∫
D

h(x, y)ω̃εi (x)ω̃
ε
i (y)θ(x) dθ(y)

∣∣∣∣ = O(1), (3.13)

Taking (3.12), (3.13) into (3.11) and using (3.10), we get the desired result. �

Then, one can get the lower bound of Lagrange multipliers μεi .

Lemma 3.5. Let ωε be a maximizer and μεi be the associated Lagrange multiplier.
Then there holds

μεi � |di|
2π

ln
1
ε

+O(1). (3.14)

Proof. Let us first prove that

sgn(di)
∫
D

(sgn(di)G(kωε) − μεi )ω
ε
i dθ(x) = O(1). (3.15)

Using the definition of Bi we get

sgn(di)
∫
D

(sgn(di)G(kωε) − μεi )ω
ε
i dθ(x)

=
∫
D

(sgn(di)G(kωε) − μεi + C0)|ωεi |dθ(x) + |C0di|

�
∫
D

(sgn(di)G(kωεi ) − μεi + C0)+|ωεi |dθ(x) +O(1). (3.16)

Define P εi = (sgn(di)G(kωεi ) − μεi + C0)+ and P̄ εi = (sgn(di)G(kωε) − μεi + C0)+.
So by (3.4), P εi , P̄

ε
i ∈ H1

0 (D). On the one hand, we get∫
D

P εi ω
ε
i dθ(x) =

∫
D

|∇P εi |2 dx. (3.17)

On the other hand, by the choice of C0 we have supp(P̄ εi ) ∩Bi ⊆ supp(ωεi ), which
implies that∫

D

P εi |ωεi |dθ(x) �
∫
D

P̄ εi |ωεi |dθ(x) +O(1)

� 1
ε2

∫
supp(ωε

i )

P̄ εi dθ(x) +O(1)

� k1

ε2
|supp(ωεi )|1/2

(∫
supp(ωε

i )

(P̄ εi )2 dx

)1/2

+O(1).
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Using the continuous embedding W 1,1(Bi) ⊂ L2(Bi), we have∫
D

P εi |ωεi |dθ(x)

� Ck1

ε2
|supp(ωεi )|1/2

(∫
Bi

P̄ εi dx+
∫
Bi

|∇P̄ εi |dx
)

+O(1)

� Ck1

ε2
|supp(ωεi )|1/2

(∫
supp(ωε

i )

P εi dx+
∫
supp(ωε

i )

|∇P εi |dx
)

+O(1)

� Ck1

k0
|supp(ωεi )|1/2

∫
D

P εi ω
ε
i dθ(x)

+
Ck1

ε2
|supp(ωεi )|1/2

∫
supp(ωε

i )

|∇P εi |dx+O(1).

So for ε sufficiently small, we get
∫
D
P εi |ωεi |dθ(x) � (Ck1/ε

2)|supp(ωεi )|1/2
∫
supp(ωε

i )

|∇P εi |dx+O(1). By Hölder’s inequality,

∫
D

P εi |ωεi |dθ(x) � Ck1

ε2
|supp(ωεi )|

(∫
supp(ωε

i )

|∇P εi |2 dx

)1/2

+O(1)

� Ck1

(∫
D

|∇P εi |2 dx
)1/2

+O(1). (3.18)

Combining (3.17), (3.18) and (3.16), we get (3.15).
Notice that

2Ei(ωε) = sgn(di)
∫
D

(sgn(di)G(kωε) − μεi )ω
ε
i dθ(x) + |di|μεi .

So using lemma 3.5, we get (3.14). �

By lemma 3.5, one can prove that the diameter of ωεi is O(ε).

Lemma 3.6. Let ωε be a maximizer. Then

r1ε � diam (supp(ωεi )) � R1ε,

where r1, R1 > 0 are constants independent of ε.

Proof. By the choice of Mε(D), we know that k1|supp(ωεi )| � |di|ε2. This implies
that

diam (supp(ωεi )) � r1ε

for some r1 > 0.
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On the other hand, for any x ∈ supp(ωεi ), using (3.3) we have ψεi (x) � 0, which
shows that

μεi � − 1
2π

∫
D

ln |x− y||ωεi |(y) dθ(y) −
∫
D

h(x, y)|ωεi (y)|dθ(y)

+ sgn(di)
l∑

j=1,j �=i
G(kωεj )(x)

� − 1
2π

∫
D

ln |x− y||ωεi |(y) dθ(y) +O(1).

Thus by (3.14), we have

|di|
2π

ln
1
ε

� − 1
2π

∫
D

ln |x− y||ωεi |(y) dθ(y) +O(1).

From the classical estimates in [37], we get diam(supp(ωεi )) � R1ε for some
R1 > 1. �

We now estimate the limiting location of ωεi as ε tends to 0. To begin with, we
define the θ-weighted mass centre of ωεi as

X̄ε
i :=

1
di

∫
D

xωεi (x) dθ(x) for i = 1, . . . , l.

Then X̄ε
i ∈ Bi. Since Bi is compact, we may choose a subsequence of {X̄εn

i }∞n=1(still
denoted by X̄ε

i ) satisfying

lim
ε→0+

X̄ε
i = x∗

i ∈ Bi.

Define the scaled function of ωεi

ζεi :=
sgn(di)
ε2

ωεi (εx+ X̄ε
i ) x ∈ Dε,

where Dε = {x ∈ R
2 | εx+ X̄ε

i ∈ D}. Then using the definition of Mε(D), we have
0 � ζεi � 1. Moreover, by lemma 3.6 we get that the support set of ζεi is contained
in BR1(0). Using

∫
Bi
ωεi dθ(x) = di, we get∫

BR1 (0)

k(εx+ X̄ε
i )ζ

ε
i (x) dx =

∫
Bi

|ωεi |dθ(x) = |di|. (3.19)

Since ζεi is uniformly bounded in Lp(BR1(0)) for any p ∈ [1, +∞], then still up to
a subsequence, we may assume that ζεi → ζ∗i in Lp weak topology and L∞ weak
star topology for some ζ∗i ∈ L∞(BR1(0)) as ε→ 0. We now calculate the necessary
condition of x∗

i and the profile of ζ∗i . To this end, we define a real-valued function

Qi(t) =
t2

4π

∫∫
ln

1
|x− y|χB√

|di|/πt
(0)(x)χB√

|di|/πt
(0)(y) dxdy. (3.20)

Direct calculation shows that Qi(t) = (d2
i /8π) ln t+ C∗, where C∗ is a universal

constant.
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Proposition 3.7. There holds

Hl(x∗
1,x

∗
2, . . . ,x

∗
l ) −

l∑
i=1

Qi(k(x∗
i )) = min

xi∈Bi

Hl(x1, x2, . . . , xl) −
l∑
i=1

Qi(k(xi)).

(3.21)

As a consequence, x∗
i = x0,i for i = 1, . . . , l. Moreover,

ζεi → ζ∗i = χB√|di|/πk(x∗
i
)
(0) (3.22)

in Lp topology for any p > 1 as ε→ 0.

Proof. By proposition 3.2, we know that |ωεi | is a vortex patch with height 1/ε2,
so ζεi is a vortex patch with height 1. So the limiting function ζ∗i is also a vortex
patch with height 1, that is, ζ∗i = χU∗ for some set U∗ ⊆ BR1(0).

Since k is a C0 function and limε→0+ X̄ε
i = x∗

i , we have

k(εx+ X̄ε
i ) → k(x∗

i ) uniformly in BR1(0),

so by (3.19)

|di| = lim
ε→0+

∫
BR1 (0)

k(εx+ X̄ε
i )ζ

ε
i (x) dx = k(x∗

i )|U∗|. (3.23)

On the one hand, by the definition of E(ωε) and lemma 3.6, we get

E(ωε) = − 1
4π

l∑
i=1

∫∫
ln |x− y|ωεi (x)ωεi (y) dθ(x) dθ(y)

− 1
2

l∑
i=1

∫∫
h(x, y)ωεi (x)ω

ε
i (y)θ(x) dθ(y)

+
1
2

∑
1�i�=j�l

∫∫
G(x, y)ωεi (x)ω

ε
j (y)θ(x) dθ(y)

=
l∑
i=1

1
4π

∫∫
ln

1
ε|x− y|k(εx+ X̄ε

i )ζ
ε
i (x)k(εy + X̄ε

i )ζ
ε
i (y) dxdy

−Hl(x∗
1,x

∗
2, . . . ,x

∗
l ) + o(1)

=
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

1
4π

∫
BR1 (0)

∫
BR1 (0)

× ln
1

|x− y|k(εx+ X̄ε
i )ζ

ε
i (x)k(εy + X̄ε

i )ζ
ε
i (y) dxdy

−Hl(x∗
1,x

∗
2, . . . ,x

∗
l ) + o(1).
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Since ζεi → ζ∗i in Lp weak topology and k(εx+ X̄ε
i ) → k(x∗

i ) uniformly as ε→ 0,
we have ∫∫

ln
1

|x− y|k(εx+ X̄ε
i )ζ

ε
i (x)k(εy + X̄ε

i )ζ
ε
i (y) dxdy

= k(x∗
i )

2

∫∫
ln

1
|x− y|ζ

∗
i (x)ζ

∗
i (y) dxdy + o(1),

where we have used the Lp theory in elliptic equations and the compact embedding
theorem. Thus

E(ωε) =
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

k(x∗
i )

2

4π

∫
BR1 (0)

∫
BR1 (0)

ln
1

|x− y|ζ
∗
i (x)ζ

∗
i (y) dxdy

−Hl(x∗
1,x

∗
2, . . . ,x

∗
l ) + o(1)

�
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

k(x∗
i )

2

4π

∫
BR1 (0)

∫
BR1 (0)

× ln
1

|x− y|χB√|di|/πk(x∗
i
)
(0)(x)χB√|di|/πk(x∗

i
)
(0)(y) dxdy

−Hl(x∗
1,x

∗
2, . . . ,x

∗
l ) + o(1)

=
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

Qi(k(x∗
i )) −Hl(x∗

1,x
∗
2, . . . ,x

∗
l ) + o(1) (3.24)

where the second inequality we have used (3.23) and the Riesz’s rearrangement
inequality.

On the other hand, for any zi ∈ Bi(i = 1, . . . , l), we choose a function ω̂ε =∑l
i=1 ω̂

ε
i , where ω̂εi is defined by

ω̂εi =
sgn(di)
ε2

χBτi(ε)ε(zi).

Here τi(ε) ∈ ((1/2)
√

|di|/πk(zi), 2
√

|di|/πk(zi)) is chosen to satisfy
∫
Bi
ω̂εi (x)

dθ(x) = di. Then direct calculation shows that such τi(ε) exists for ε sufficiently
small and limε→0+ τi(ε) =

√
|di|/πk(zi). By the definition of ω̂ε, we obtain ω̂ε ∈

Mε(D).
For E(ω̂ε), similarly as calculations in (3.24), we obtain

E(ω̂ε) = − 1
4π

l∑
i=1

∫∫
ln |x− y|ω̂εi (x)ω̂εi (y) dθ(x) dθ(y)

− 1
2

l∑
i=1

∫∫
h(x, y)ω̂εi (x)ω̂

ε
i (y)θ(x) dθ(y)

https://doi.org/10.1017/prm.2024.48 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.48


20 J. Wan

+
1
2

∑
1�i�=j�l

∫∫
G(x, y)ω̂εi (x)ω̂

ε
j (y)θ(x) dθ(y)

=
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

Qi(k(zi)) −Hl(z1, . . . , zl) + o(1). (3.25)

By E(ωε) � E(ω̂ε), (3.24) and (3.25), we get

l∑
i=1

Qi(k(x∗
i )) −Hl(x∗

1,x
∗
2, . . . ,x

∗
l ) �

l∑
i=1

Qi(k(zi)) −Hl(z1, . . . , zl) ∀zi ∈ Bi.

Thus we get (3.21). Notice that Hl(x1, x2, . . . , xl) −
∑l
i=1Qi(k(xi)) = Γl(x1, x2,

. . . , xl) + C∗
0 , where C∗

0 is a universal constant. Then by the assumption that
(x0,1, . . . , x0,l) is a strict local minimizer of Γl, we get x∗

i = x0,i.
It suffices to prove (3.22). Indeed by (3.24) we have∫∫

ln
1

|x− y|ζ
∗
i (x)ζ

∗
i (y) dxdy

=
∫∫

ln
1

|x− y|χB√|di|/πk(x∗
i
)
(0)(x)χB√|di|/πk(x∗

i
)
(0)(y) dxdy.

Using strict Rearrangement inequality (see theorem 3.9, [26]), there exists a
translation T̄ such that T (ζ∗i ) = χB√|di|/πk(x∗

i
)
(0). Notice that both the centre

of ζ∗i and the centre of B√|di|/πk(x∗
i )

(0) are the origin, we get T̄ = id, namely,
ζ∗i = χB√|di|/πk(x∗

i
)
(0).

Finally, by (3.19) we have
∫
BR1 (0)

k(εx+ X̄ε
i )(ζ

ε
i (x))

p dx = |di|, which implies
that

lim
ε→0+

‖ζεi ‖Lp =
(

|di|
k(x∗

i )

)1/p

= ‖ζ∗i ‖Lp .

Using the strict convexity of Lp norm, we finish the proof. �

Remark 3.8. By proposition 3.7, we know that E(ωε) has the following expansion

E(ωε) =
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

Qi(k(x0,i)) −Hl(x0,1, x0,2, . . . , x0,l) + o(1).

Direct consequence of lemma 3.6 and proposition 3.7 is that the support set of
ωεi is contained in Bi for ε sufficiently small.

Corollary 3.9. For ε sufficiently small, there holds

supp(ωεi ) ⊂ ⊂Bi, for any i = 1, . . . , l.

Moreover, by proposition 3.7, we can repeat the classical result in [37] to show the
boundary of supp(ζεi ) is a C1 curve and converges to the boundary of supp(ζ∗i )
(which is a circle) in C1 sense as ε→ 0+, see lemma 4.10 for a detailed proof.
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As a corollary of lemmas 3.4, 3.5, 3.6 and proposition 3.7, one can get the order
of the functional Ei(ωε) and constants μεi .

Lemma 3.10. For ε sufficiently small, there holds

Ei(ωε) =
d2
i

4π
ln

1
ε

+Qi(k(x0,i)) −
d2
i

2
h(x0,i, x0,i) + o(1), (3.26)

μεi =
|di|
2π

ln
1
ε

+
k(x0,i)

2π

∫
B√|di|/πk(x0,i)

(0)

ln
1

|x∗ − y| dy − |di|h(x0,i, x0,i)

+ sgn(di)
l∑

j=1,j �=i
djG(x0,i, x0,j) + o(1), (3.27)

where x∗ is any point of ∂B√|di|/πk(x0,i)
(0).

Proof. Using (3.24), one can immediately get (3.26). For (3.27), notice that
for any x ∈ ∂supp(ωεi ), μ

ε
i = sgn(di)

∫
D
G(x, y)ωε(y) dθ(y). So by lemma 3.6 and

proposition 3.7,

μεi = sgn(di)
∫
D

G(x, y)ωε(y) dθ(y)

=
1
2π

∫
Bi

ln
1

|x− y| |ω
ε
i (y)|dθ(y) −

∫
Bi

h(x, y)|ωεi (y)|dθ(y)

+ sgn(di)
∑
j �=i

djG(x0,i, x0,j) + o(1)

=
1
2π

∫
Bi

ln
1

|x− y| |ω
ε
i (y)|dθ(y) − |di|h(x0,i, x0,i)

+ sgn(di)
∑
j �=i

djG(x0,i, x0,j) + o(1). (3.28)

Let x = εx′ + X̄ε
i , then x′ ∈ supp(ζεi ). By the definition of ζεi , we get

1
2π

∫
Bi

ln
1

|x− y| |ω
ε
i (y)|dθ(y)

=
1
2π

∫
BR1 (0)

ln
1

ε|x′ − y′|k(εy
′ + X̄ε

i )ζ
ε
i (y

′) dy′

=
|di|
2π

ln
1
ε

+
1
2π

∫
BR1 (0)

ln
1

|x′ − y′|k(εy
′ + X̄ε

i )ζ
ε
i (y

′) dy′. (3.29)

By proposition 3.7 and the continuity of k, we have

1
2π

∫
BR1 (0)

ln
1

|x′ − y′|k(εy
′ + X̄ε

i )ζ
ε
i (y

′) dy′

=
k(x0,i)

2π

∫
B√|di|/πk(x0,i)

(0)

ln
1

|x∗ − y′| dy′ + o(1), (3.30)
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where x∗ is any point of ∂B√|di|/πk(x0,i)
(0). Taking (3.29), (3.30) into (3.28), we

get (3.27). �

3.3. Proof of theorem 2.3

Proof. By proposition 3.2, we know that ωε has the form

ωε =
l∑
i=1

sgn(di)
ε2

χ{G(kωε)−με
i>0}∩Bi

.

By lemma 3.6, we have diam(supp(ωεi )) = O(ε). Moreover, by lemmas 3.6, 3.7 and
the assumption that (x0,1, . . . , x0,l) is the strict local minimizer of Γl, the support
set of ωεi tends to x0,i as ε→ 0+, namely,

lim
ε→0+

sup
x∈supp(ωε

i )

|x− x0,i| = 0.

By proposition 3.7 and lemma 3.10, we get (3)(4) in theorem 2.3. The proof of
theorem 2.3 is thus complete. �

3.4. Proof of theorems 1.1 and 2.1

Proof. Let l = 1 and d1 = I in theorem 2.3, we get theorem 2.1. Let λ = 1/ε2 and
uλ = uε, cλ = −με, we get theorem 1.1. �

4. Proof of theorem 2.4

Since proof of theorem 2.4 is similar to that of theorem 2.3 , we only emphasize the
differences here, see proposition 4.7, lemmas 4.9, 4.10, 4.12 and 4.13.

By assumption (f2), we know that lims→+∞ f(s) = +∞. Moreover, direct
computation shows that (f2) is equivalent to

(f2)′. there exists δ1 ∈ (0, 1) such that

F (s) � δ1s f
−1(s)

for any s � 0. Here f−1(s) = 0 if t < 0 and f−1(s) be the inverse function of f if
t � 0. Let F (s) =

∫ s
0
f−1(t) dt.

Notice that f−1 is nonnegative increasing continuous and F is a convex C1

function.
Define Fi(s) =

∫ s
0
f−1
i (t) dt (i = 1, . . . , l). Our idea is to consider the maximiza-

tion problem

(P∗) E(ωε) = max
ω∈Nε,T (D)

E(ω),

where

E(ω) =
1
2

∫
D

∫
D

G(x, y)ω(x)ω(y) dθ(x) dθ(y) − 1
ε2

l∑
i=1

∫
D

Fi(sgn(di)ε2ωi) dθ(x)

(4.1)
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and the set

Nε,T (D) =

{
ω =

l∑
k=1

ωk ∈ L∞(D) | ωk = ωχBk
, 0 � sgn(di)ωi � T

ε2
,

∫
D

ωi dθ(x) = di, i = 1, . . . ,m
}
. (4.2)

Here T > 1 is a constant to be determined later. Note that the only difference
between Nε,T (D) and Mε(D) defined by (3.2) is the presence of parameter T .
However, we will show that this is a technical trick and it will not affect the final
results.

4.1. Variational problem

Similarly as proof of propositions 3.1 and 3.2, we first get the existence and profile
of maximizers of the functional E(ω) over Nε,T (D).

Lemma 4.1. There exists ωε,T ∈ Nε,T (D), such that E(ωε,T ) = supω̃∈Nε,T (D) E(ω̃).

Proof. The proof is similar to that of proposition 3.1. So we omit it here. �

Then we can get the profile of a maximizer ωε,T as follows.

Lemma 4.2. Let ωε,T be a maximizer defined as in lemma 4.1. Then

ωε,T =
l∑
i=1

sgn(di)
(

1
ε2
fi(ψ

ε,T
i )χ{0<ψε,T

i <f−1
i (T )}∩Bi

+
T

ε2
χ{ψε,T

i �f−1
i (T )}∩Bi

)
,

(4.3)

where ψε,Ti := sgn(di)G(kωε,T ) − σε,Ti , and σε,Ti are Lagrange multipliers dependent
on ε for i = 1, . . . , l. Moreover, for ε sufficiently small there holds

σε,Ti � −f−1
i (T ) − C0, (4.4)

where C0 > 0 is some constant independent of ε, T .

Proof. For each ω ∈ Nε,T , we choose test functions

ω(s) = ωε,T + s(ω − ωε,T ), for s ∈ [0, 1].

Since ωε,T is a maximizer, we get E(ω(s)) � E(ω(0)), which implies that
(dE(ω(s)))/ds|s=0+ � 0, that is,

∫
D

ω

(
G(kωε,T ) −

l∑
i=1

f−1
i (sgn(di)ε2ω

ε,T
i )sgn(di)

)
dθ(x)

�
∫
D

ωε,T

(
G(kωε,T ) −

l∑
i=1

f−1
i (sgn(di)ε2ω

ε,T
i )sgn(di)

)
dθ(x)
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for all ω ∈ Nε,T . Using the bathtub principle, we obtain

sgn(di)G(kωε,T ) − f−1
i (sgn(di)ε2ω

ε,T
i ) � σε,Ti on

{
sgn(di)ω

ε,T
i =

T

ε2

}
∩Bi,

sgn(di)G(kωε,T ) − f−1
i (sgn(di)ε2ω

ε,T
i ) = σε,Ti on

{
0 < sgn(di)ω

ε,T
i <

T

ε2

}
∩Bi,

sgn(di)G(kωε,T ) − f−1
i (sgn(di)ε2ω

ε,T
i ) � σε,Ti on{sgn(di)ω

ε,T
i = 0} ∩Bi,

(4.5)

where σε,Ti is a constant satisfying

σε,Ti = inf

{
s ∈ R | |{x ∈ Bi | sgn(di)G(kωε,T ) − f−1

i (sgn(di)ε
2ωε,Ti ) > s}|θ � |di|ε2

T

}
.

(4.6)

Define ψε,Ti = sgn(di)G(kωε,T ) − σε,Ti , then by (4.5) one has

ωε,Ti = sgn(di)
(

1
ε2
fi(ψ

ε,T
i )χ{0<ψε,T

i <f−1
i (T )}∩Bi

+
T

ε2
χ{ψε,T

i �f−1
i (T )}∩Bi

)
. (4.7)

So we get (4.3).
It remains to prove that σε,Ti � −f−1

i (T ) − C0. For any x ∈ Bi,

sgn(di)G(kωε,T )(x) − f−1
i (sgn(di)ε2ω

ε,T
i )(x)

� −
∑
j �=i

|dj | max
x∈Bi,y∈Bj

G(x, y) − f−1
i (T ). (4.8)

Choose C0 =
∑
j �=i |dj |maxx∈Bi,y∈Bj

G(x, y). Combining (4.6) and (4.8), we get
(4.4). �

4.2. Asymptotic analysis of ωε,T

For simplicity, we define functionals of ω ∈ Nε,T

Ei(ω) :=
1
2

∫
D

G(x, y)ωi(x)ωi(y) dθ(x) dθ(y) − 1
ε2

∫
D

Fi(sgn(di)ε2ωi) dx.

Direct calculation shows that

E(ω) =
l∑
i=1

Ei(ω) +O(1) (4.9)

for any ω ∈ Nε,T . Here O(1) is uniformly bounded about ε and T . First we give a
rough lower bound of Ei(ωε,T ).

Lemma 4.3. Let ωε,T be a maximizer. Then for i = 1, . . . , l

Ei(ωε,T ) � d2
i

4π
ln

1
ε

+O(1). (4.10)
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Proof. We choose a function ω̃ε,T = (sgn(di)/ε2)χBt(ε)ε(x0,i) +
∑
j �=i ω

ε,T
j =∑l

k=1 ω̃
ε,T
k . Here t(ε) ∈ ((1/2)

√
|di|/πk(x0,i), 2

√
|di|/πk(x0,i)) satisfies

∫
Bi
ω̃ε,Ti

dθ(x) = di. Direct calculations shows that t(ε) exists for ε sufficiently small and
limε→0+ t(ε) =

√
|di|/πk(x0,i). Then ω̃ε,T ∈ Nε,T (D). Notice that

1
ε2

∫
D

Fi(sgn(di)ε2ω̃
ε,T
i ) dθ(x) � 1

ε2
Fi(1)

∫
χBt(ε)ε(x0,i)

dθ(x) = Fi(1)|di|

1
2

∫
D

G(x, y)ω̃ε,Ti (x)ω̃ε,Ti (y) dθ(x) dθ(y) � d2
i

4π
ln

1
ε

+O(1),

so we get E(ω̃ε,T ) � (d2
i /4π) ln(1/ε) +

∑
j �=i Ej(ωε,T ) +O(1). By E(ωε,T ) � E(ω̃ε,T )

and (4.9), we get (4.10). �

Then we give the lower bound of Lagrange multiplier σε,Ti .

Lemma 4.4. Let ωε,T be a maximizer. Then for ε sufficiently small there holds

σε,Ti � −|di|
2π

ln ε− |1 − 2δ1|f−1
1 (T ) −O(1). (4.11)

Proof. By the definition of Ei and assumption (f2)′, we get

2Ei(ωε,T ) =
∫
D

ωε,Ti G(kωε,Ti ) dθ(x) − 2
ε2

∫
D

Fi(sgn(di)ε2ω
ε,T
i ) dθ(x)

�
∫
D

ωε,Ti (G(kωε,T ) − sgn(di)σ
ε,T
i ) dθ(x)

− 2δ1
∫
D

|ωε,Ti |f−1
i (sgn(di)ε2ω

ε,T
i ) dθ(x) + |di|σε,Ti

=
∫
{|ωε,T

i |= T
ε2 }

|ωε,Ti |
(
sgn(di)G(kωε,T ) − σε,Ti − f−1

i (T )
)

dθ(x)

+ (1 − 2δ1)
∫
D

|ωε,Ti |f−1
i (ε2|ωε,Ti |) dθ(x) + |di|σε,Ti

�
∫
{|ωε,T

i |= T
ε2 }

|ωε,Ti |
(
ψε,Ti − f−1

i (T ) − C0

)
+

dθ(x)

+ |di||1 − 2δ1|f−1
i (T ) + |di|σε,Ti + C0|di|, (4.12)

where ψε,Ti = sgn(di)G(kωε,T ) − σε,Ti .
To estimate the first term of the last line of (4.12), we define W ε,T

i =
(ψε,Ti − f−1

i (T ) − C0)+ and W̄ ε,T
i = (sgn(di)G(kωε,Ti ) − σε,Ti − f−1

i (T ) − C0)+.
Using (4.4), we have W̄ ε,T

i , W ε,T
i ∈ H1

0 (D).
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On the one hand, ∫
D

|ωε,Ti |W̄ ε,T
i dθ(x) =

∫
D

|∇W̄ ε,T
i |2 dx. (4.13)

On the other hand, by (4.3), we get supp(W ε,T
i ) ∩Bi ⊆ {|ωε,Ti | = T/ε2}, which

implies that∫
D

|ωε,Ti |W̄ ε,T
i dθ(x) �

∫
D

|ωε,Ti |W ε,T
i dθ(x) +O(1)

=
∫
{|ωε,T

i |=T/ε2}
|ωε,Ti |W ε,T

i dθ(x) +O(1).

Using the Sobolev imbedding W 1,1(Bi) ⊂ L2(Bi), we get∫
D

|ωε,Ti |W̄ ε,T
i dθ(x)

� T

ε2

∫
{|ωε,T

i |=T/ε2}
W ε,T
i dθ(x) +O(1)

� CT

ε2

∣∣∣∣
{
|ωε,Ti | =

T

ε2

}∣∣∣∣1/2
(∫

Bi

W ε,T
i dx+

∫
Bi

|∇W ε,T
i |dx

)
+O(1)

� C

∣∣∣∣
{
|ωε,Ti | =

T

ε2

}∣∣∣∣1/2
∫
{|ωε,T

i |=T/ε2}
sgn(di)ω

ε,T
i W̄ ε,T

i dx

+
CT

ε2

∣∣∣∣
{
|ωε,Ti | =

T

ε2

}∣∣∣∣1/2
∫
{|ωε,T

i |=T/ε2}
|∇W̄ ε,T

i |dx+O(1).

So by the fact that |{|ωε,Ti | = Λ/ε2}| = O(ε2) and Hölder’s inequality, for ε
sufficiently small we get∫

D

|ωε,Ti |W̄ ε,T
i dθ(x)

� CT

ε2

∣∣∣∣
{
|ωε,Ti | =

T

ε2

}∣∣∣∣1/2
∫
{|ωε,T

i |=T/ε2}
|∇W̄ ε,T

i |dx+O(1)

� CT

ε2

∣∣∣∣
{
|ωε,Ti | =

T

ε2

}∣∣∣∣
(∫

{|ωε,T
i |=T/ε2}

|∇W̄ ε,T
i |2 dx

)1/2

+O(1)

� C|di|
(∫

{|ωε,T
i |=T/ε2}

|∇W̄ ε,T
i |2 dx

)1/2

+O(1). (4.14)

Combining (4.13) and (4.14), we get
∫
D
|ωε,Ti |W̄ ε,T

i dθ(x) = O(1), which implies
that ∫

{|ωε,T
i |=T/ε2}

|ωε,Ti |W ε,T
i dθ(x) = O(1). (4.15)

Taking (4.15) into (4.12) and using lemma 4.3, we get (4.11). �
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Using assumptions (f1)–(f3) and the rearrangement inequality, one can get the
upper bound of ψε,Ti . As a result, we show that the vortex patch part of ωε,Ti indeed
vanishes by choosing T sufficiently large.

Lemma 4.5. Let ωε,T be a maximizer as in lemma 4.1. Then

‖ψε,Ti ‖L∞(Bi) � |1 − 2δ1|f−1
i (T ) +

|di|
4π

lnT +O(1). (4.16)

As a consequence, one can choose T = T0 sufficiently large such that

|{ψε,T0
i � f−1

i (T0)} ∩Bi| = 0,

and so ωε,T0
i has the form

ωε,T0
i = sgn(di)

1
ε2
fi(ψ

ε,T0
i )χ{ψε,T0

i >0}∩Bi
. (4.17)

Proof. For any x ∈ Bi, using the definition of ψε,Ti and the rearrangement inequality

ψε,Ti (x) = sgn(di)G(kωε,T )(x) − σε,Ti

� 1
2π

∫
D

ln
1

|x− y| |ω
ε,T
i |(y) dyθ(y) − σε,Ti +O(1)

� k1T

2πε2

∫
B√

|di|/(πk1T )ε
(0)

ln
1
|y| dy − σε,Ti +O(1)

=
|di|
2π

ln
1
ε

+
|di|
4π

lnT − σε,Ti +O(1).

Thus using lemma 4.4, we obtain

ψε,Λi (x) � |1 − 2δ1|f−1
i (T ) +

|di|
4π

lnT +O(1).

It follows from assumption (f3) that for each a0 > 0, lims→+∞ fi(s)e−a0s = 0,
which implies that lims→+∞ τf−1(s) − ln s = +∞. Thus we can choose T = T0

sufficiently large such that

(1 − |1 − 2δ1|)f−1
i (T0) >

|di|
4π

lnT0 +O(1),

that is, |1 − 2δ1|f−1
i (T0) + (|di|/4π) lnT0 +O(1) < f−1

i (T0). Thus we have |{ψε,Ti �
f−1
i (T )} ∩Bi| = 0. Using lemma 4.2, we get (4.17). �

In the following, we shall abbreviate (Nε,T0(D);ωε,T0
i ;σε,T0

i ;ψε,T0
i ) as

(Nε(D);ωεi ;σ
ε
i ;ψ

ε
i ) for i = 1, . . . , l. By lemma 4.5, we know that any maximizer

ωε of the maximization problem (P∗) has the form of (2.5).
Similarly as lemma 3.6, we can get the diameter of supp(ωεi ) is of the order O(ε).
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Lemma 4.6. Let ωε be a maximizer. Then for ε sufficiently small, there holds

r̄1ε � diam (supp(ωεi )) � R̄1ε (4.18)

for some 0 < r̄1 < R̄1 independent of ε.

Proof. Since |ωεi | � T0/ε
2 and

∫
Bi
ωεi dθ(x) = di, we get |supp(ωεi )| � Cε2, which

implies that diam(supp(ωεi )) � r̄1ε for some r̄1 > 0.
Similarly as the proof of lemma 3.6, one can get the existence of R̄1 > 1 such

that

diam (supp(ωεi )) � R̄1ε. �

Finally, we analyse the limiting location of ωεi as ε→ 0+, which is the most
important part in our construction. To this end we define the centre of ωεi by

X̂ε
i :=

1
di

∫
D

xωεi (x) dθ(x) ∀ i = 1, . . . , l.

Since Bi is compact, we may choose a subsequence {X̂εn
i }∞n=1(still denoted by X̄ε

i )
satisfying

lim
ε→0+

X̂ε
i = x∗i ∈ Bi.

Define the scaled functions

ξεi (x) = sgn(di)ε2ωεi (εx+ X̂ε
i ) x ∈ Dε. (4.19)

Here Dε = {x ∈ R
2 | εx+ X̂ε

i ∈ D}.
By lemma 4.6, we know that the support set of ξεi is contained in BR̄1

(0). Notice
that

|di| =
∫
Bi

|ωi|(x) dθ(x) =
∫
BR̄1

(0)

k(εx+ X̂ε
i )ξ

ε
i (x) dx, (4.20)

which implies that

lim
ε→0+

∫
BR̄1

(0)

ξεi (x) dx =
|di|
k(x∗i )

. (4.21)

Since ‖ξεi ‖L∞(BR̄1
(0)) � T0, ξεi is uniformly bounded in Lp(BR̄1

(0)) for any p ∈
[1, +∞]. So up to a subsequence, we may assume that ξεi → ξ∗i in Lp weak topology
as ε→ 0. By the definition of X̂ε

i and (4.19), one can get∫
BR̄1

(0)

xξ∗i (x) dx = lim
ε→0+

∫
BR̄1

(0)

xξεi (x) dx = 0.

Since ωε is a maximizer of E , using lemma 4.6 we can get the necessary condition
of x∗i .
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Proposition 4.7. There holds

Hl(x∗1, . . . , x
∗
l ) −

l∑
i=1

d2
i

8π
ln k(x∗i ) = min

xi∈Bi

Hl(x1, x2, . . . , xl) −
l∑
i=1

d2
i

8π
ln k(xi).

(4.22)
As a consequence, x∗i = x0,i for i = 1, . . . , l.

Proof. On the one hand, using lemma 4.6 and the definition of x∗i , we get

1
2

∫
D

∫
D

h(x, y)ωεi (x)ω
ε
i (y)θ(x) dθ(y) =

d2
i

2
h(x∗i , x

∗
i ) + o(1),

∑
1�i�=j�l

∫∫
G(x, y)ωεi (x)ω

ε
j (y)θ(x) dθ(y) =

∑
1�i�=j�l

didjG(x∗i , x
∗
j ) + o(1).

By the definition of ξεi , we have

− 1
4π

∫∫
ln |x− y|ωεi (x)ωεi (y) dθ(x) dθ(y)

=
d2
i

4π
ln

1
ε

+
1
4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y)k(εx+ X̂ε

i )k(εy + X̂ε
i ) dxdy.

Since supp(ξεi ) ⊆ BR̄1
(0) and ||ξεi ||L∞ � T0, we obtain

− 1
4π

∫∫
ln |x− y|ωεi (x)ωεi (y) dθ(x) dθ(y)

=
d2
i

4π
ln

1
ε

+
k(x∗i )

2

4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy + o(1). (4.23)

For the term involving Fi, we have

1
ε2

∫
D

Fi(sgn(di)ε2ωεi ) dθ(x) =
∫
BR̄1

(0)

Fi(ξεi )(x)k(εx+ X̂ε
i ) dx

= k(x∗i )
∫

R2
Fi(ξεi )(x) dx+ o(1).

Taking those into the definition of E , we get

E(ωε) =
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

k(x∗i )
2

4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy

−Hl(x∗1, . . . , x
∗
l ) −

l∑
i=1

k(x∗i )
∫

R2
Fi(ξεi )(x) dx+ o(1). (4.24)

On the other hand, for any zi ∈ Bi(i = 1, . . . , l), we choose test functions ω̂ε =∑l
i=1 ω̂

ε
i , where ω̂εi is defined by

ω̂εi =
sgn(di)
ε2

ξεi

(
·−zi
τ̄i(ε)ε

)
.
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τ̄i(ε) ∈ ((1/2)
√
k(x∗i )/k(zi), 2

√
k(x∗i )/k(zi)) is chosen to satisfy

∫
Bi
ω̂εi (x) dθ(x) =

di. By (4.20) and (4.21), one can prove that such τ̄i(ε) exists for ε sufficiently small
and τ̄i(ε) =

√
(k(x∗i )/k(zi)) + o(1). Now we calculate the energy expansion of ω̂ε.

It is not hard to prove that

− 1
2

l∑
i=1

∫∫
h(x, y)ω̂εi (x)ω̂

ε
i (y)θ(x) dθ(y)

+
1
2

∑
1�i�=j�l

∫∫
G(x, y)ω̂εi (x)ω̂

ε
j (y)θ(x) dθ(y)

= −Hl(z1, . . . , zl) + o(1).

Similar as (4.23), we get

− 1
4π

∫∫
ln |x− y|ω̂εi (x)ω̂εi (y) dθ(x) dθ(y)

=
d2
i

4π
ln

1
τ̄i(ε)ε

+
k(zi)2τ̄i(ε)4

4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy + o(1). (4.25)

Taking τ̄i(ε) =
√

(k(x∗i )/k(zi)) + o(1) into (4.25) we obtain

− 1
4π

∫∫
ln |x− y|ω̂εi (x)ω̂εi (y) dθ(x) dθ(y)

=
d2
i

4π
ln

1
ε

+
d2
i

8π
ln k(zi) −

d2
i

8π
ln k(x∗i )

+
k(x∗i )

2

4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy + o(1).

For the term involving Fi, we get

1
ε2

∫
D

Fi(sgn(di)ε2ω̂εi ) dθ(x) =
∫
BR̄1

(0)

Fi(ξεi )(x
′)k(τ̄i(ε)εx′ + zi)τ̄i(ε)2 dx′

= k(x∗i )
∫

R2
Fi(ξεi )(x) dx+ o(1).

Taking those into the definition of E(ω̂ε), we get

E(ω̂ε) =
l∑
i=1

(
d2
i

4π
ln

1
ε

+
d2
i

8π
ln k(zi) −

d2
i

8π
ln k(x∗i )

+
k(x∗i )

2

4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy

)

−Hl(z1, . . . , zl) −
l∑
i=1

k(x∗i )
∫

R2
Fi(ξεi )(x) dx+ o(1). (4.26)
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Since E(ωε) � E(ω̂ε), by (4.24) and (4.26) we get

l∑
i=1

d2
i

8π
ln k(x∗i ) −Hl(x∗1, . . . , x

∗
l ) �

l∑
i=1

d2
i

8π
ln k(zi) −Hl(z1, . . . , zl) ∀ zi ∈ Bi.

Thus we get (4.22). By the assumption that (x0,1, . . . , x0,l) is a strict local
minimizer of Γl, we have x∗i = x0,i. �

Remark 4.8. By lemma 4.6 and proposition 4.7, we get for ε sufficiently small,

supp(ωεi ) ⊂ ⊂Bi, ∀i = 1, . . . , l.

Using lemma 4.6 and proposition 4.7, we can further get the accurate estimates
of E and σεi . To this end, we define the scaled functions of ψi by

Ψε
i (x) = (sgn(di)G(kωε) − σεi )(εx+ X̂ε

i ) x ∈ (Bi)ε.

Here (Bi)ε = {x ∈ R
2 | εx+ X̂ε

i ∈ Bi}. By lemma 4.2 and remark 4.8, we have
supp(ξεi ) = supp((Ψε

i )+) ⊆ BR̄1
(0).

It follows from (4.17) that Ψε
i satisfies

ξεi (x) = fi(Ψε
i )(x) x ∈ (Bi)ε. (4.27)

Thus by the definition of Ψε
i and ξεi , we get

−ΔΨε
i (x) = sgn(di)ε2k(εx+ X̂ε

i )ω
ε
i (εx+ X̂ε

i )

= k(εx+ X̂ε
i )ξ

ε
i (x) = k(εx+ X̂ε

i )fi(Ψ
ε
i )(x). (4.28)

By (4.21) and (4.27), we have

lim
ε→0+

∫
BR̄1

(0)

fi(Ψε
i )(x) dx = lim

ε→0+

∫
BR̄1

(0)

ξεi (x) dx =
|di|
k(x∗i )

. (4.29)

Let Ψ∗
i be the unique radial function satisfying⎧⎨

⎩
−ΔΨ∗

i (x) = k(x∗i )fi(Ψ
∗
i )(x) x ∈ R

2,∫
R2
fi(Ψ∗

i )(x) dx =
|di|
k(x∗i )

.
(4.30)

Then Ψ∗
i (x) = Ui(k(x∗i )

1/2x), where Ui is the unique radial function satisfying⎧⎨
⎩
−ΔUi(x) = fi(Ui)(x) x ∈ R

2,∫
R2
fi(Ui)(x) dx = |di|.

(4.31)

We first show that ξ∗i is a radial function. Denote ξ̃εi the radially symmetric decreas-
ing Lebesque rearrangement function of ξεi . Up to a subsequence we may assume
that ξ̃εi → ξ̃∗i weakly in Lp(BR̄1

(0)) as ε→ 0+.
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Lemma 4.9. There holds

ξ∗i = ξ̃∗i .

So ξ∗i is a radially symmetric function.

Proof. On the one hand, by the Riesz’s rearrangement inequality, we have∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy

�
∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y| ξ̃
ε(x)ξ̃ε(y) dxdy,

which implies that∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y|ξ
∗
i (x)ξ

∗
i (y) dxdy

�
∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y| ξ̃
∗
i (x)ξ̃

∗
i (y) dxdy. (4.32)

On the other hand, let ω̃ε = ω̃εi +
∑l
j=1,j �=i ω

ε
j ∈ Nε(D) satisfying

ω̃εi (x) =

⎧⎪⎨
⎪⎩

sgn(di)
ε2

ξ̃εi

(
x− X̂ε

i

c(ε)ε

)
if x ∈ BR̄1

(X̂ε
i ),

0 if x ∈ D\BR̄1
(X̂ε

i ),

where c(ε) is a constant such that
∫
Bi
ω̃εi dθ(x) = di. Then c(ε) = 1 + o(1). Similarly

as the proof of proposition 4.7, we get

E(ωε) =
d2
i

4π
ln

1
ε

+
d2
i

4π

∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy

− d2
i

2
h(x∗i , x

∗
i ) +

l∑
j=1,j �=i

didjG(x∗i , x
∗
j )

− 1
ε2

∫
Bi

Fi(sgn(di)ε2ωεi ) dθ(x) + E

⎛
⎝ l∑
j=1,j �=i

ωεj

⎞
⎠+ o(1),

E(ω̃ε) =
d2
i

4π
ln

1
ε

+
d2
i

4π

∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y| ξ̃
ε
i (x)ξ̃

ε
i (y) dxdy

− d2
i

2
h(x∗i , x

∗
i ) +

l∑
j=1,j �=i

didjG(x∗i , x
∗
j )

− 1
ε2

∫
Bi

Fi(sgn(di)ε2ω̃εi ) dθ(x) + E

⎛
⎝ l∑
j=1,j �=i

ωεj

⎞
⎠+ o(1),
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and

1
ε2

∫
Bi

Fi(sgn(di)ε2ωεi ) dθ(x) =
1
ε2

∫
Bi

Fi(sgn(di)ε2ω̃εi ) dθ(x) + o(1).

Since E(ω̃ε) � E(ωε), we conclude that∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy

�
∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y| ξ̃
ε(x)ξ̃ε(y) dxdy + o(1),

which implies that∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y|ξ
∗
i (x)ξ

∗
i (y) dxdy

�
∫
BR̄1

(0)

∫
BR̄1

(0)

ln
1

|x− y| ξ̃
∗
i (x)ξ̃

∗
i (y) dxdy.

Thus the equality holds in (4.32). By the strict Riesz’s rearrangement inequality
(see theorem 3.9, [26]), there exists a translation T such that T ξ∗i = ξ̃∗i . Since∫

BR̄1
(0)

xξ∗i (x) dx =
∫
BR̄1

(0)

xξ̃∗i (x) dx = 0,

we get ξ∗i = ξ̃∗i . �

Lemma 4.10. There holds as ε→ 0,

Ψε
i → Ψ∗

i in C1
loc(R

2).

As a consequence, for ε sufficiently small, ∂(supp(ξεi )) = {x ∈ BR̄1
(0) | Ψε

i (x) = 0}
is a C1 curve and converges to the circle {x ∈ BR̄1

(0) | Ψ∗
i (x) = 0} as ε→ 0.

Proof. For any R > R̄1, notice that ξεi is uniformly bounded in L∞(B2R(0)). Thus,
by (4.28) and classical elliptic estimates, Ψε

i is uniformly bounded in W 2,p(BR(0))
for every 1 � p < +∞. By the Sobolev embedding theorem, we may conclude that
Ψε
i is compact in C1,α(BR(0)) for every 0 < α < 1. Then up to a subsequence we

may assume Ψε → Ψ in C1,α(BR(0)). By (4.28) and (4.29), Ψ satisfies⎧⎨
⎩
−ΔΨ = k(x∗i )ξ

∗
i = k(x∗i )fi(Ψ) x ∈ R

2,∫
R2
fi(Ψ) dx =

|di|
k(x∗i )

.

By lemma 4.9, ξ∗i is a radial function. Using the Green’s function representation,
Ψ is also radial. By the uniqueness of radial solutions of (4.30), we have Ψ = Ψ∗

i .
By the strong maximum principle, one can show that for any x ∈ {x ∈ BR̄1

(0) |
Ψ∗
i (x) = 0}, |∇Ψ∗

i (x)| �= 0. Thus by the implicit function theorem, we get that
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for ε sufficiently small, {x ∈ BR̄1
(0) | Ψε

i (x) = 0} is a C1 curve and converges to
{x ∈ BR̄1

(0) | Ψ∗
i (x) = 0} in C1 sense as ε→ 0. �

As a corollary, we have ξεi → ξ∗i in Lp topology as ε→ 0+.

Corollary 4.11. For any p > 1, there holds as ε→ 0

ξεi → ξ∗i = fi(Ψ∗
i ) in Lploc(R

2).

Proof. Using (4.27) and lemma 4.10, one can immediately get the result. �

Using lemma 4.10 and corollary 4.11, we can get the asymptotic expansion of the
energy E(ωεi ) as follows

Lemma 4.12. There holds

E(ωε) =
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

d2
i

8π
ln k(x0,i) −Hl(x0,1, . . . , x0,l) + C0 + o(1), (4.33)

where C0 = (1/4π)
∑l
i=1

∫
R2

∫
R2 ln(1/|x− y|)fi ◦ Ui(x)fi ◦ Ui(y) dxdy −

∑l
i=1

∫
R2

Fi ◦ fi ◦ Ui(x) dx is a constant independent of ε.

Proof. The proof is based on the proof of proposition 4.7. By (4.24), we have

E(ωε) =
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

k(x0,i)2

4π

∫∫
ln

1
|x− y|ξ

ε
i (x)ξ

ε
i (y) dxdy

−Hl(x0,1, . . . , x0,l) −
l∑
i=1

k(x0,i)
∫

R2
Fi(ξεi )(x) dx+ o(1). (4.34)

By lemma 4.10 and corollary 4.11, we obtain

k(x0,i)2

4π

∫
R2

∫
R2

ln
1

|x− y|ξ
ε
i (x)ξ

ε
i (y) dxdy

=
k(x0,i)2

4π

∫
R2

∫
R2

ln
1

|x− y|fi ◦ Ψ∗
i (x)fi ◦ Ψ∗

i (y) dxdy + o(1),

k(x0,i)
∫

R2
Fi(ξεi )(x) dx = k(x0,i)

∫
R2
Fi ◦ fi ◦ Ψ∗

i (x) dx+ o(1).

Taking those into (4.34), we have

E(ωε) =
l∑
i=1

d2
i

4π
ln

1
ε

+
l∑
i=1

k(x0,i)2

4π

∫
R2

∫
R2

ln
1

|x− y|fi ◦ Ψ∗
i (x)fi ◦ Ψ∗

i (y) dxdy

−Hl(x0,1, . . . , x0,l) −
l∑
i=1

k(x0,i)
∫

R2
Fi ◦ fi ◦ Ψ∗

i (x) dx+ o(1). (4.35)
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However, by the definition of Ψ∗
i and (4.31), we get

l∑
i=1

k(x0,i)2

4π

∫
R2

∫
R2

ln
1

|x− y|fi ◦ Ψ∗
i (x)fi ◦ Ψ∗

i (y) dxdy

−
l∑
i=1

k(x0,i)
∫

R2
Fi ◦ fi ◦ Ψ∗

i (x) dx

=
1
4π

l∑
i=1

∫
R2

∫
R2

ln
k(x0,i)

1
2

|x− y| fi ◦ Ui(x)fi ◦ Ui(y) dxdy −
l∑
i=1

∫
R2
Fi ◦ fi ◦ Ui(x) dx

=
l∑
i=1

d2
i

8π
ln k(x0,i) + C0, (4.36)

where C0 = (1/4π)
∑l
i=1

∫
R2

∫
R2 ln(1/|x− y|)fi ◦ Ui(x)fi ◦ Ui(y) dxdy −

∑l
i=1

∫
R2 Fi ◦

fi ◦ Ui(x) dx is a constant dependent of fi. Taking (4.36) into (4.35), we get the
result. �

Moreover, one can get the order of the functional Ei(ωε) and constants σεi as
follows

Lemma 4.13. For ε sufficiently small, there holds

Ei(ωε) =
d2
i

4π
ln

1
ε

+
d2
i

8π
ln k(x0,i) −

d2
i

2
h(x0,i, x0,i) + C1 + o(1), (4.37)

σεi =
|di|
2π

ln
1
ε

+
|di|
4π

ln k(x0,i) − |di|h(x0,i, x0,i)

+ sgn(di)
l∑

j=1,j �=i
djG(x0,i, x0,j) + C2 + o(1), (4.38)

where C1 = (1/4π)
∫

R2

∫
R2 ln(1/|x− y|)fi ◦ Ui(x)fi ◦ Ui(y) dxdy −

∫
R2 Fi ◦ fi ◦

Ui(x) dx, C2 = (1/2π)
∫

R2 ln(1/|x∗ − y′|)fi ◦ Ui(y′) dy′, and x∗ is any point of
∂{x ∈ R

2 | fi ◦ Ui(x) = 0}.

Proof. Similarly as the proof of lemma 4.12, one can immediately get

Ei(ωε) =
d2
i

4π
ln

1
ε

+
d2
i

8π
ln k(x0,i) −

d2
i

2
h(x0,i, x0,i)

+
1
4π

∫∫
R2×R2

ln
1

|x− y|fi ◦ Ui(x)fi ◦ Ui(y) dxdy

−
∫

R2
Fi ◦ fi ◦ Ui(x) dx+ o(1).
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For (4.38), notice that for any x ∈ ∂(supp(ωεi )), σ
ε
i = sgn(di)

∫
D
G(x, y)ωε(y) dθ(y),

which implies that

σεi =
1
2π

∫
Bi

ln
1

|x− y| |ω
ε
i (y)|dθ(y) − |di|h(x0,i, x0,i)

+ sgn(di)
l∑

j=1,j �=i
djG(x0,i, x0,j) + o(1). (4.39)

Let x = εx′ + X̂ε
i , then x′ ∈ ∂(supp(ξεi )). So

1
2π

∫
Bi

ln
1

|x− y| |ω
ε
i (y)|dθ(y)

=
|di|
2π

ln
1
ε

+
1
2π

∫
BR̄1

(0)

ln
1

|x′ − y′|k(εy
′ + X̂ε

i )ξ
ε
i (y

′) dy′. (4.40)

By lemma 4.10 and the continuity of k, we have

1
2π

∫
BR̄1

(0)

ln
1

|x′ − y′|k(εy
′ + X̂ε

i )ξ
ε
i (y

′) dy′

=
k(x0,i)

2π

∫
R2

ln
1

|x′ − y′|fi ◦ Ψ∗
i (y

′) dy′ + o(1)

=
1
2π

∫
R2

ln
k(x0,i)

1
2

|x∗ − y′|fi ◦ Ui(y
′) dy′ + o(1)

=
|di|
4π

ln k(x0,i) +
1
2π

∫
R2

ln
1

|x∗ − y′|fi ◦ Ui(y
′) dy′ + o(1), (4.41)

where x∗ is any point of ∂{x ∈ R
2 | fi ◦ Ui(x) = 0}. Taking (4.40), (4.41) into (4.39),

we get (4.38). �

4.3. Proof of theorem 2.4

Proof. The proof is similar to the proof of theorem 2.3. By lemma 4.5, we know
that ωε has the form

ωε =
l∑
i=1

sgn(di)
1
ε2
fi(ψεi )χ{ψε

i>0}∩Bi
,

where ψεi = sgn(di)G(kωε) − σεi for some σεi ∈ R. By lemma 4.6, diam(supp(ωεi )) =
O(ε).

Moreover, by proposition 4.7, the support set of ωεi tends to x0,i as ε→ 0+,
namely

lim
ε→0+

sup
x∈supp(ωε

i )

|x− x0,i| = 0.

By lemmas 4.10 and 4.13, we get (3)(4) in theorem 2.4. The proof of theorem 2.4
is thus complete. �
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4.4. Proof of theorems 1.3 and 2.2

Proof. Let l = 1 and d1 = I in theorem 2.4, we get theorem 2.2. Let λ = 1/ε2 and
uλ = uε, cλ = −με, we get theorem 1.3. �
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